
Sufficient conditions for sound hashing using a truncated
permutation

Joan Daemen1, Tony Dusenge2, and Gilles Van Assche1

1 STMicroelectronics
2 Université Libre de Bruxelles

Abstract. In this paper we give a generic security proof for hashing modes that make use of an
underlying fixed-length permutation. We formulate a set of five simple conditions, which are easy to
implement and to verify, for such a hashing mode to be sound. These hashing modes include tree
hashing modes and sequential hashing modes. We provide a proof that for any hashing mode satisfying
the five conditions, the advantage in differentiating it from an ideal monolithic hash function is upper
bounded by q2/2n+1 with q the number of queries to the underlying permutation and n the length
of the chaining values.

Keywords: permutation-based hashing, indifferentiability, tree hashing

1 Introduction

In this paper, we give a generic security proof for tree and sequential hashing modes calling a
fixed-length permutation. We formulate a number of simple conditions for such a hashing mode
to be sound. For the soundness, we base ourselves on the indifferentiability framework introduced
by Maurer et al. in [10] and applied to hash functions by Coron et al. in [7]. In particular, we
prove an upper bound of the advantage of an adversary in differentiating a hashing mode calling
a random permutation from an ideal hash function based on a random oracle as a function of
the attack cost and the length of the chaining value. As already stated in [10] and formalized in
[1, Theorem 2], the success probability of any generic attack (e.g., collision, pre-image, length-
extension, …) on such a hashing mode has success probability at most the proven bound plus
the success probability of this attack on a random oracle. It suffices to take the chaining value
long enough to make the difference between the success probability for the hashing mode and a
random oracle negligible.

After the indifferentiability paradigm was applied to hash functions in [7], indifferentiability
was proven for several other modes such as enveloped Merkle-Damgård (EMD) transform in [2]
and chopped Merkle-Damgård in [6]. These modes are sequential and call an ideal compression
function or an ideal block cipher that is used in Davies-Meyer mode. In contrast, the modes
treated in this paper call a random permutation and do not require a feedforward. Note that the
first hashing mode calling a random permutation that was proven indifferentiable was the sponge
construction [4]. However, as opposed to the modes treated in this paper, the sponge mode is
strictly sequential.

Provable security of tree hashing was already investigated in [12] and indifferentiability of
permutation-based tree hashing modes was treated in [8], covering the mode used in the SHA-3
candidate MD6 [11]. However, as opposed to the modes treated in this paper, they used a two-layer
approach. First, the tree hashing mode was proven indifferentiable assuming an underlying ideal
compression function. Second, an ideal compression function construction was proven indifferen-
tiable assuming an underlying random permutation. As another example, the paper [5] proves
the indifferentiability of tree hashing modes calling an ideal compression function, which can in
turn be instantiated by using either a permutation-based or block cipher-based construction.

In contrast, this paper addresses modes composed of only one layer. This allows a more efficient
construction. For instance, the compression function in [8] is built by fixing part of the input of
the permutation and truncating its output. Our construction is more efficient in that in typical

scenario’s for most calls to the permutation its full input can be used. This is especially relevant
in sequential hashing where the full input can be used for all but one permutation call.

Despite similarity with some of the mentioned prior work, we believe this paper has a sub-
stantial added value as it is to our knowledge the first time that indifferentiability is proven for
tree hashing modes (with sequential hashing as a special case) calling a random permutation.
Moreover, the bound we achieve on the success probability of differentiating the mode from an
ideal hash function is as tight as theoretically possible. Finally, we treat a more general case than
prior work in several aspects. Our mode of use is parameterized, with parameters specifying the
way to build the tree.

The remainder of this paper is organized as follows. After providing a rigorous definition of
tree hashing modes in Section 2, we introduce in Section 3 a set of simple and easy-to-verify
conditions for permutation-based tree hashing modes that result in sound tree hashing. After
adapting the indifferentiability setting of [7] to permutation-based tree hashing in Section 4, we
provide in Section 5 the indifferentiability proof as a series of lemmas and a final theorem. In
Appendix A we illustrate our formalism to describe tree hashing.

2 Tree hashing mode

In this paper, we consider tree hashing modes such as those treated in [5] by Bertoni et al. and
cover sequential hashing modes as a special case. In [5], tree hashing modes T were considered
that call an underlying function F , called inner function, with variable input length and indefinite
output length. In this paper we consider the case where the inner function is a permutation P
operating on b-bit values. The tree hashing modes T applied to a permutation P defines a concrete
hash function T [P], called outer hash function.

In our modes, we use a permutation P with the output truncated to its first n bits, denoted
by Pn, to compute chaining values. Therefore, our outer hash function T [P] produces outputs
with fixed length n. In the rest of this section, we give the tree hashing mode description taken
from [5], keeping in mind that F is Pn in our case.

We consider the general case of parameterized hash functions. Next to the input message M ,
such a function takes as input a set of parameter values A that determine the topology of the
hashing tree such a node degree or total depth. In the simplest case, this set may be empty and
the tree topology may be fully determined by the message length |M | .

2.1 Hashing as a two-step process

A tree hashing mode specifies for any given parameter choice A and message length the number
of calls to F and how the inputs in these calls must be constructed from the message and the
output of previous calls to F .

For a given input (M,A), the result is the hash h = T [F](M,A). We express tree hashing as
a two-step process:

Template construction The mode of use T generates a so-called tree template Z that only
depends on the length |M | of the message and the parameters A. We write Z = T (|M |, A).
The tree template consists of a number of virtual strings called node templates. Each node
specifies for a call to F how the input must be constructed from message bits and the output
of previous calls to F (see Section 2.3).

Template execution The tree template Z is executed by a generic template interpreter Z for
a specific message M and a particular F to obtain the output h = T [F](M,A).
The interpreter produces an intermediate result called a tree instance S consisting of node
instances. Each node instance is a bit string constructed according to the corresponding node
template and presented to F . We write S = Z[F](M,Z). The hash result is finally obtained
by h = F(S∗), where S∗ is a particular node of S, called the final node (see Section 2.2).

2

Hence h = T [F](M,A) is a shortcut notation to denote first Z = T (|M |, A) then S = Z[F](M,Z)
and finally h = F(S∗). This two-step process is illustrated in Appendix A.

In this paper we only consider tree hashing modes that can be described in this way. However,
this is without loss of generality. While we split the function’s input in the parameters A and the
message content M , this is only a convention. If the tree template has to depend on the value
of bits in M , and not only on its length, the parameters A can be extended so as to contain a
copy of such message bits. In other words, the definition of the parameters A is just a way to
cut the set of possible tree templates into equivalence classes identified by (|M |, A). As far as we
know, all hashing modes of use proposed in literature allow a straightforward identification of the
parameters that influence the tree structure.

2.2 The tree structure

The node templates of a tree template Z are denoted by Zα, where α denotes its index. Similarly,
node instances are denoted by Sα. As such, the nodes of tree templates and tree instances form
a directed acyclic graph and hence make a tree.

Related to the tree topology, we now introduce some terminology and concepts. These are
valid both for templates and instances and we simply say “node” and “tree”.

– A node may have a unique parent node. We denote the index of the parent of node with index
α by parent(α). (We assume that the node indexes α faithfully encode the tree structure, so
that the function parent can work alone on the index given as input.) In a tree all nodes have
a parent, except the final node. We use the index ∗ to denote the final node. By contrast, we
call the other nodes inner nodes.

– We say the node with index α is a child of the node with index parent(α). A node may have
zero, one or more child nodes. We call the number of child nodes of a node its degree and a
node without child nodes a leaf node.

– We say that a node Zα is an ancestor of a node Zβ if α = parent(β) or if Zα is an ancestor
of the parent of Zβ. In other words, Zα is a parent of Zβ if there exists a sequence of indices
α0, α1, αd−1 such that α = α0, αi−1 = parent(αi) and αd−1 = parent(β). We say Zβ is a
descendent of Zα and d is the distance between Zα and Zβ. Clearly, the final node has no
ancestors and a leaf node has no descendents.

– Every node Zα is a descendent of the final node and the distance between the two is called the
height of α. The final node has by convention height 0. The height of a tree is the maximum
height over all its nodes.

– We denote the restriction of a tree Z to a set of indices J as the subset of its nodes with indices
in J and denote it as ZJ . The restriction is a subtree if for all the nodes it contains, except
one, the parents are also in the restriction. We call a subtree a final subtree if it contains the
final node. We call a subtree a proper subtree of a tree if it does not contain all its nodes.

2.3 Structure of node templates

A node template Zα is a sequence of template bits Zα[x], 0 ≤ x < |Zα|, and instructs the forming
of a bit string called the node instance Sα in the following way. Each template bit has a type and
the following attributes (and purpose), depending on its type:

Frame bits Represent bits fully determined by A and |M | and cover padding, IV values and
coding of parameter value A. A frame bit has a single attribute: its binary value. Upon
execution, the template interpreter Z assigns the value of Zα[x] to Sα[x].

Message pointer bits Represent bits taken from the message. A message pointer bit has a
single attribute: its position. The position is an integer in the range [0, |M | − 1] and points
to a bit position in a message string M . Upon execution, Z assigns the message bit M [y] to
Sα[x], where y is the position attribute of Zα[x].

3

Chaining pointer bits Represent bits taken from the output of a previous call to F . A chaining
pointer bit has two attributes: a child index and a position. The child index β identifies a node
that is the child of this node and the position is an integer that points to a bit position in
the output of F . Upon execution, Z assigns chaining bit F(Sβ)[y] to Sα[x], with β the child
index attribute of chaining pointer bit Zα[x] and y is its position attribute. A chaining value
is the sequence of all chaining bits coming from the same child. We denote the chaining value
obtained by applying the inner hash function to Sα by cα.

Appendix A gives an illustration of this concept.

3 Sufficient conditions for sound tree hashing

In this paper, we assume that the four conditions for a sound tree hashing mode T , formulated
by Bertoni et al. [5] are fulfilled. In addition, we introduce a fifth condition specific for a tree
hashing mode using a truncated permutation. First, let us briefly recall the four conditions of [5].

Consider a tree hashing mode T using an inner function F (e.g., a truncated permutation as
in our case), and using the truncation of F to its first n output bits, denoted by Fn to compute
chaining values.

Definition 1 ([5]). An inner collision in T [F] is a pair of inputs (M,A) and (M ′, A′) such
that their corresponding tree instances are different: S ̸= S′, but have equal final node instances
S∗ = S′

∗.

A collision of Fn can be used to generate an inner collision. However, an inner collision does
not necessarily imply an output collision of Fn. One can define tree hashing modes where it is
possible to produce an inner collision without collision in Fn (see Appendix A for an illustrated
example). To avoid this situation, the concept of tree decodability has been introduced.

Definition 2 ([5]). A mode of use T is tree-decodable if for all tree instances S generated with T
(i.e., there is an input (M,A) and a function F such that S = Z[F](M,Z) with Z = T (|M |, A)),
given any proper final subtree SJ , one can identify at least one node index β ̸∈ J , the chaining
pointer bits in SJ with child index β and their position attribute. We call the index β an expanding
index of SJ .

In [5], it has been proven that when T is tree-decodable, an inner collision in T [F] implies an
output collision in Fn. This leads to the first condition.

Condition 1 ([5]) T is tree-decodable

Naturally, we can have an output collision in T [F] without an inner collision if there are
message bits that are not mapped to any template node or if two template trees resulting from
two different messages of the same length and different parameters, are equal in all frame bits and
chaining pointer bits, but not in message pointer bits. For that reason, the concept of message-
completeness has been introduced.

Definition 3 ([5]). A mode of use T is message-complete if for any tree instance S generated
with T , one can fully determine the input message M .

Condition 2 ([5]) T is message-complete.

Similarly, we can have an output collision in T [F] without an inner collision if the tree instance
does not allow to fully determine the tree parameters A.

This leads to the condition for T that for all inputs (M,A), the resulting tree instance S fully
determines A. This property has been called parameter-completeness.

Condition 3 ([5]) T is parameter-complete.

4

The fourth condition prevents a property that generalizes length extension to tree hashing.
That is, given an output h = T [F](M) of some message M , one can compute the output h′ =
T [F](M ′) with M a substring of M ′, without knowing M (see Appendix A for an illustrated
example). The simplest way to avoid this is to have domain separation between final and inner
nodes.

Condition 4 ([5]) T enforces domain separation between final and inner nodes. In other words,
T is such that for any (M,A) and (M ′, A′) and for any node index α ̸= ∗ in T (|M |, A) we have
S∗ ̸= S′

α, where S and S′ correspond with inputs (M,A) and (M ′, A′), respectively.

For a tree hashing mode T using Pn to compute chaining values, generating an inner collision
is easy due to the possibility of computing P−1, the inverse of the permutation. For instance,
consider a leaf node instance Sα of a given known tree instance S. The evaluation of Pn(Sα)
gives a n-bit chaining value c which is in the parent node instance of Sα in S. The evaluation of
P−1(c||x) (with || denoting concatenation) returns a b-bit value X. If X has the right coding for
a leaf node (e.g., frame bit values indicating that they are leaf nodes), we can replace Sα by X
in S and this gives an inner collision: another tree instance S′ which differs from S only by one
leaf node instance.

A solution to this problem, called leaf node anchoring, is to impose a fixed initial value IV in
a fixed position in each leaf node. For the generation of an inner collision as described above to
succeed, the evaluation of P−1(p) shall returns an inner node instance X having the IV in the
right position. It turns out that for the simplicity of the security proof, non-leaf nodes shall have
a chaining value at that position. Without loss of generality, we take for the fixed position just
the first n bits of the node. We use the notation ⌊x⌋n to denote the truncation of a binary string
x to its n first bits.

Definition 4. A mode of use T is leaf-anchored if for any leaf node template Zα generated with
T , ⌊Zα⌋n contains frame bits coding a fixed value IV and for any non-leaf node Zβ generated with
T , ⌊Zβ⌋n contains a chaining value.

Condition 5 T is leaf-node-anchored.

4 The distinguisher’s setting

We study the indifferentiability of a tree hashing mode T , using a random permutation P, from
an ideal hash function G. We base ourselves on the indifferentiability framework introduced by
Maurer et al. in [10] and applied to hash functions by Coron et al. in [3].

The adversary shall distinguish between two systems (see Figure 1) using their responses to
sequences of queries. The system at the left is T [P] and P, and the adversary can make queries to
both subsystems separately, where the former in turn calls the latter to construct its responses.
As P is a permutation, the distinguisher can also make calls to its inverse P−1. She has the
following interfaces to this system:

– H taking as input (M,A) with M ∈ Z∗
2 and A the value of the mode parameters, and returning

a binary string y ∈ Zn
2 , i.e., y = T [P](M,A);

– I±1 combining two sub-interfaces:
• I+1 taking as input a binary string s ∈ Zb

2, and returning a binary string p ∈ Zb
2 with

p = P(s);
• I−1 taking as input a binary string p ∈ Zb

2, and returning a binary string s ∈ Zb
2 with

s = P−1(p).

The system at the right consists of an ideal hash function G and of a simulator S simulating
the permutation. It offers the same interface as the left system. G provides the interface H and
returns an output truncated to n bits when queried with (M,A). The permutation simulator
provides the interface I±1 combining two sub-interfaces I+1 and I−1, like in the left system.

5

Fig. 1. The differentiability setup

First, the simulator should be self-consistent: if queried with the same query multiple times,
it should give the same response. Second, the output of S should look consistent with what
the distinguisher can obtain from the ideal hash function G, like if S was P and G was T [P]. To
achieve that, the simulator can query G, denoted by S[G]. Note that the simulator does not see the
distinguisher’s queries to G. Third, S must simulate a permutation consistently: I+1(s) ̸= I+1(s′)
iff s ̸= s′, I−1(p) ̸= I−1(p′) iff p ̸= p′ and p = I+1(s) iff s = I−1(p). We call this property
permutation-consistency.

Indifferentiability of T [P] from the ideal function G is now satisfied if there exists a simulator
S such that no distinguisher can tell the two systems apart with non-negligible probability, based
on their responses to queries it may send.

In this setting, the distinguisher can send queries Q to both interfaces. Let X be either
(T [P],P) or (G,S[G]). The sequence of queries Q to X consists of a sequence of queries to the
interface H, denoted QH and a sequence of queries to the interface I±1, denoted QI±1 . QH is
a sequence of couples QH,i = (Mi, Ai), and QI±1 is a sequence of couples QI±1,i = (k, f) with
k ∈ Zb

2 and f a flag equal to 1 or -1, indicating whether the query k is sent to I+1 or I−1 .
In the following, we use the concept of T -consistency recalled below. Note that T -consistency

is per definition always satisfied by the system on the left but not necessarily by the system on
the right.

Definition 5 ([5]). For a given set of queries Q and their responses X (Q), the T -consistency
is the property that the responses to the H interface are equal to those that one would obtain by
applying the tree hashing mode T to the responses to the I±1 interface (when the queries QI±1

suffice to perform this calculation), i.e., that X (QH) = T [X (QI±1)](QH).

4.1 The cost of queries
We consider the same cost of queries setting as in [5]. The cost q of queries to a system X is the
total number of calls to P or P−1 it would yield if X = (T [P],P), either directly due to queries
QI±1 , or indirectly via queries QH to T [P]. The cost of a sequence of queries is fully determined
by their number and their input. Each query QI±1,i to P or P−1 contributes 1 to the cost. Each
query QH,i = (Mi, Ai) to H costs a number fT (|Mi|, Ai), depending on the tree hashing mode T ,
the mode parameters Ai and the length of the input message |Mi|. The function fT (|M |, A) counts
the number of calls T [P] needs to make to P from the template produced for parameters A and
message length |M |. Note that fT (|M |, A) is also the number of nodes produced by T (|M |, A).

Duplicate queries are not taken into account. This means that two equal queries QI±1,i or two
equal queries QH,i are counted as one. Note that this is only an a posteriori accounting convention
rather than a suggestion to replace overlapping queries by a single one. This convention only
benefits to the adversary and is thus on the safe side regarding security.

4.2 Definition
We can now adapt the definition as given in [7] to our setting.

6

Algorithm 1 The simulator S[G]
1: Initialization: T = T+ ∪ T− ← ∅, C ← {IV}

2: Interface p = I+1(s) with s, p ∈ Zb
2

3: if ∃(s, t) ∈ T then
4: return p = t
5: end if
6: if s is a final node instance then
7: Retrieve input from s using T+ according to Algorithm 2
8: if Input retrieval returned (M,A) then
9: Set p to G(M,A)

10: Append (b− n) uniformly and independently drawn random bits to p
11: else if decoding returned a “dead-end at c” exception then
12: Choose p randomly and uniformly from Zb

2 \ Tr

13: C ← C ∪ {c}
14: else {decoding returned a “n-collision” or “invalid coding” exception}
15: Choose p randomly and uniformly from Zb

2 \ Tr

16: end if
17: else {s is an inner node instance}
18: Choose p randomly and uniformly from Zb

2 \ Tr

19: C ← C ∪ {⌊p⌋n}
20: end if
21: Add the couple (s, p) to T+

22: return p

23: Interface s = I−1(p) with s, p ∈ Zb
2

24: if ∃(i, p) ∈ T then
25: return s = i
26: end if
27: Choose s randomly and uniformly from Zb

2 \ Tl

28: C ← C ∪ {⌊s⌋n}
29: Add couple (s, p) to T−

30: return s

Definition 6 ([7]). A tree hashing mode T with oracle access to an ideal hash function P is said
to be (tD, tS , q, ϵ)-indifferentiable from an ideal hash function G if there exists a simulator S[G],
such that for any distinguisher D it holds that:

|Pr [D[T [P],P] = 1]− Pr [D[G,S[G]] = 1] | < ϵ.

The simulator has oracle access to G and runs in time at most tS. The distinguisher runs in time
at most tD and has a cost of at most q. Similarly, T [P] is said to be indifferentiable from G if ϵ
is a negligible function of the security parameter n.

5 Indifferentiability proof

In this section, we always assume that the five conditions presented in Section 3 are fulfilled by
the tree hashing mode T . We first describe the input retrieval process that we use to make the
simulator satisfy T -consistency. Then we describe the simulator and its general goal. Finally, we
prove the indifferentiability results by means of a series of lemmas and a final theorem.

5.1 The simulator

Algorithm 1 specifies the simulator S[G]. It has the following design principles. It is always self-
consistent. It violates permutation-consistency only with a very small probability and satisfies
T -consistency as long as a particular event, called a C-collision, does not occur. As long as
permutation-consistency is not violated and there are no C-collisions, its output has the same
distribution as that of a random permutation.

7

To satisfy self-consistency, it keeps track of the queries and their responses in a table T
containing couples (s, p) with s, p ∈ Zb

2. We denote the set of first members of these couples by Tl

and the set of second members by Tr. Initially, this table is empty. When receiving a query I+1(s)
with s already in Tl, the simulator returns the second member of (s, p) ∈ T (line 4). Similarly,
when receiving a query I−1(p) with p already in Tr, the simulator returns the first member of
(s, p) ∈ T (line 25).

In general the simulator satisfies permutation-consistency in the following way. When receiving
a query I+1(s) with s /∈ Tl it selects the response p randomly from the set of possible values,
excluding those in Tr (lines 12, 15 and 18). When receiving a query I−1(p) with p /∈ Tr it selects
the response s randomly from the set of possible values, excluding those in Tl (line 27). This
conflicts with T -consistency in certain queries I+1(s) with s a final node. In that case, and in
that case only, permutation-consistency may be violated (lines 9-10). Note that if the simulator
has violated permutation-consistency, there may be multiple pairs in T with the same second
member and the simulator’s response to I−1 (line 25) is not well-defined. This could be fixed but
would complicate the description of the simulator and in our proof we consider the adversary has
succeeded as soon as permutation-consistency is violated.

The simulator has a multiset C containing n-bit chaining values and the IV (Definition 4). A
multiset is a generalization of a set, in that a member may occur more than once. The number
of times a member occurs in a multiset is its multiplicity. Initially, C contains the IV and the
simulator adds members to C when receiving queries:

– A query I+1(s), with s an inner node, adds to C the chaining value ⌊p⌋n (line 19).
– A query I−1(p) adds ⌊s⌋n (line 28) to C. Due to leaf-node anchoring, if the response s is a

leaf node, ⌊s⌋n = IV and otherwise ⌊s⌋n is a chaining value.
– A query I+1(s), with s a final node, adds the chaining value c to C iff the input retrieval of s

returns a “dead-end at c” exception.

The multiset C has no influence on the way the simulator generates its responses and its purpose
is to define a concept that facilitates our proof: C-collisions.

Definition 7. There is a C-collision in the simulator if its multiset C has at least one member
with multiplicity larger than 1.

The simulator satisfies T -consistency by querying G if necessary. When making a query I+1(s)
with s a final node (line 6), the simulator performs input retrieval to s (line 7). If the input retrieval
of s returns (M,A), the simulator calls G with (M,A) to guarantee T -consistency (line 9); then
it extends the received n-bit value G(M,A) with (b − n) random bits to make a b-bit response
p (line 10). Note that this may may violate permutation-consistency if the generated value p is
already in Tl. If the input retrieval of s does not return an input (M,A), the simulator chooses p
randomly from all possible values excluding Tr (lines 12 and 15).

5.2 Input retrieval

For T -consistency, we use an input retrieval process very similar to the one called “T -decoding”
in [5]. This process extracts an input (M,A) from a given final node instance, using couples (s, p)
in T . Input retrieval of a final node s using a table T does not necessarily lead to an input (M,A).
In this context we provide the following definition.

Definition 8. A final node instance s is T -bound for a given table T if there exists a tree instance
S with s = S∗, such that given any proper final subtree SJ of S, for each expanding index β of
SJ and the corresponding chaining value cβ, ∃(Sβ, p) ∈ T where ⌊p⌋n = cβ. Given the message
M and the parameter A corresponding to S, we say that s is T -bound to (M,A) via S.

Note that a final node instance may be T -bound to multiple inputs (M,A).
With respect to input retrieval we distinguish between couples (s, p) in T that are obtained

from queries to I+1 and those to I−1, and we denote the former by T+ and the latter by T−.

8

Algorithm 2 Input retrieval
1: input: s and T+

2: output: message M and tree parameters A, or an exception
3: Initialization: J ← {∗} and set S∗ to s
4: while SJ has an expanding index β do
5: Let c = cβ , the chaining value corresponding to β extracted from SJ

6: if there is one entry (s′, p) ∈ T+ with ⌊p⌋n = c then
7: Let J ← J ∪ {β} and set Sβ to s′

8: else if there is no entry (s′, p) ∈ T+ with ⌊p⌋n = c then
9: return “dead-end at c” exception

10: else {there is more than one entry (s′, p) ∈ T+ with ⌊p⌋n = c}
11: return “n-collision” exception
12: end if
13: end while
14: if SJ does not have valid coding to be a tree instance generated with T then
15: return “invalid coding” exception
16: else
17: Extract the message M and parameters A from the tree instance SJ

18: return (M , A)
19: end if

Thus, T+ and T− form a partition of T . Our input retrieval procedure is specified in Algorithm 2.
It makes use of T+ and ignores couples in T−.

We define an n-collision in a table T .
Definition 9. Two couples (s, p) and (s′, p′) in T with s and s′ inner nodes, s ̸= s′ and ⌊p⌋n =
⌊p′⌋n is called an n-collision in T .

If Algorithm 2 is successful for a given node s, it returns an input (M,A) and we say the node
s is input-retrievable. Otherwise, it returns one of the following exceptions:

– “dead-end at c”: for some expanding index β, there is no couple (s, p) in T+ with ⌊p⌋n = cβ.
– “n-collision”: for some expanding index β, there are more than one couple (s, p) in T+ with

⌊p⌋n = cβ, hence there is an n-collision in T+.
– “invalid coding”: the constructed tree instance S is inconsistent with the tree hashing mode.

When there are no n-collisions in T+, all T+-bound final nodes are input-retrievable.

5.3 Events that violate T -consistency

We now introduce events that force the simulator S[G] to violate T -consistency: inner collision
in the simulator, final node correction and fatal inverse. We will prove (Lemma 6) that there are
no other events that can force the simulator to violate T -consistency.

Definition 10. An inner collision in the simulator is the existence of a final node s ∈ Tl that is
T -bound to at least two inputs.

An inner collision in the simulator violates T -consistency with high probability. Let (s, p) be
a couple in T with s a final node that is T -bound to both (M,A) and (M ′, A′). For T -consistency
both G(M,A) and G(M ′, A′) must be equal to ⌊p⌋n, implying they must be equal. As these are
the outputs of a random oracle for two different inputs, the probability that this is not the case
is 1− 2−n.

Definition 11. A final node correction is a query to the simulator that causes a final node
instance s in Tl that was not T -bound to become T -bound.

A final node correction violates T -consistency with high probability. Indeed, assume a couple
(s, p) ∈ T , with s a final node instance that is not T -bound. If s becomes T -bound to (M,A), the
adversary may query G with (M,A). The response G(M,A) will differ from ⌊p⌋n with probability
1− 2−n, since a random oracle chooses it responses randomly.

9

Definition 12. A fatal inverse is a couple (s, p) ∈ T− with s a T -bound final node.

A fatal inverse violates T -consistency with high probability. Given a fatal inverse (s, p), the
adversary can reconstruct (M,A) from previous queries and subsequently query G(M,A). For
T -consistency, the result must be equal to the ⌊p⌋n. The probability that it is different is 1−2−n.

5.4 Determining the differentiating advantage

In this section we give the proof by a series of lemmas and a final theorem.

Lemma 1. As long as there are no C-collisions in the simulator, a final node s that is T -bound
to an input (M,A), is also T+-bound to (M,A).

Proof. Let s be a final node that is T -bound to an input (M,A) via a tree S, but not T+-bound.
This tree has one or more nodes Sγ with (Sγ , p) ∈ T− for some p. We denote the set of those
nodes by S−. Now let Sα be a node in S− such that none of its child nodes (if any) is in S−.
As (Sα, p) ∈ T−, ⌊Sα⌋n is in C. If Sα is a leaf node, then this implies a C-collision because
⌊Sα⌋n = IV and the multiplicity of IV in C is at least two. Otherwise, Sα has a child node Sβ

with (Sβ, p
′) ∈ T+ and with ⌊p′⌋n = ⌊Sα⌋n. The query I+1(Sβ) has added ⌊p′⌋n = ⌊Sα⌋n to C. It

follows that the simulator has a C-collision as the member ⌊Sα⌋n has multiplicity at least two. ⊓⊔

Lemma 2. An n-collision in T+ implies a C-collision in the simulator.

Proof. Consider two couples (s, p) and (s′, p′) in T+ with s and s′ inner nodes that form an n-
collision, i.e., ⌊p⌋n = ⌊p′⌋n. As both ⌊p⌋n and ⌊p′⌋n are added to C, the simulator has a C-collision.

⊓⊔

Corollary 1. As long as there are no C-collisions in the simulator, any final node s that is
T -bound is input-retrievable.

Proof. Let s be a final node that is T -bound to an input (M,A). Thanks to Lemma 1, s is
T+-bound to the input (M,A). Hence, there can be no “dead-end at c” exception (line 8 of
Algorithm 2). Thanks to Lemma 2 the exception in line 10 of Algorithm 2 cannot occur. It
follows that a T -bound final node is input-retrievable. ⊓⊔

Lemma 3. An inner collision in the simulator implies a C-collision in the simulator.

Proof. Assume s is a final node, T -bound to both inputs (M,A) and (M ′, A′). Thanks to Lemma 1,
s is T+-bound to input (M,A) via some tree instance S and T+-bound to input (M ′, A′) via some
tree instance S′. The trees S and S′ have the same final node but must differ in at least one node.
Let α be the index with the smallest height such that Sα ̸= S′

α and Sparent(α) = S′
parent(α). Such

an index exists as the final nodes of S and S′ are equal. It follows that T+ has an n-collision: it
contains two couples (Sα, p) and (S′

α, p
′) with ⌊p⌋n = ⌊p′⌋n. According to Lemma 2 this implies a

C-collision. ⊓⊔

Lemma 4. A final node correction implies a C-collision in the simulator.

Proof. Let s be a final node that is not T -bound and (s, p) ∈ T . Now suppose there is no C-
collision in the simulator and there is a final node correction making s T -bound. According to
Lemma 1 s becomes T+-bound to some input (M,A) via some tree instance S. This implies
that all chaining values in the tree S are in C. When the final node s was queried, it could not
have returned an input (M,A). It could not have returned an “n-collision” exception either as
according to Lemma 2 an n-collision in T+ implies a C-collision. So there are two remaining cases:

– Input retrieval returned a “dead-end at c” exception: this implies C contains c due to that
query. As c is a chaining value in S, it would occur in C twice forming a C-collision.

10

– Input retrieval returned an “invalid coding” exception: this implies that during input retrieval
of s a tree S′ was obtained that differs from the tree S to which s is T -bound after the final
node correction. As there are no C-collisions in the simulator, due to Corollary 1 s is now
input-retrievable. However, if Algorithm 2 returns for a given final node s an “invalid coding”
exception, adding couples to T+ cannot change that if there are no C-collisions: Algorithm 2
builds the tree SJ by iteratively processing expanding indices until it can no longer find one.
As long as couples (s′, p′) are added to T+ with ⌊p′⌋n ̸= cβ for all expanding indices β ∈ J ,
this process is not affected and an “invalid coding” exception will continue to be returned. If
a couple (s′, p′) is added to T+ with ⌊p′⌋n = cβ for some expanding indices β ∈ J , this implies
an n-collision and hence a C-collision.

⊓⊔

Lemma 5. A fatal inverse implies a C-collision in the simulator.

Proof. We assume that there is a fatal inverse, i.e., the simulator responds s to a query I−1(p),
with s a final node T -bound to an input (M,A) via a tree S. Due to Lemma 1, all chaining values
in S are in C. It follows that C also contains the chaining value in s that consists of its first n
bits: ⌊s⌋n. The query I−1(p) that returns s adds ⌊s⌋n again to C, resulting in a C-collision. ⊓⊔

Lemma 6. Violation of T -consistency implies a C-collision in the simulator.

Proof. Assume the simulator has no C-collisions after a number of queries. We know from Corol-
lary 1 that any T -bound final node is input-retrievable. Now assume that a new query to the
simulator violates T -consistency. That is, after the simulator responded to the new query, there
is a couple (s, p) ∈ T with s a final node T -bound to (M,A), such that ⌊p⌋n ̸= G(M,A). There
are three possible cases for the state of the simulator prior to this query.

1. s was not T -bound: violation of T -consistency is per definition due to a final node correction
of s = S∗ due to the new query. According to Lemma 4, a final node correction implies a
C-collision.

2. s was T -bound to (M,A): if (s, p) was obtained from a query I+1(s) , the simulator would
have guaranteed T -consistency by querying G with (M,A) (see line 9 of Algorithm 1) and
there cannot be a violation of T -consistency. Thus, (s, p) was obtained from a query I−1(p)
and s is a fatal inverse of p. According to Lemma 5, a fatal inverse implies a C-collision.

3. s was T -bound to an input (M ′, A′) ̸= (M,A): violation of T -consistency can only be due to
an inner collision in the simulator due to the new query, causing s to become also T -bound
to (M,A). According to Lemma 3, an inner collision in the simulator implies a C-collision.

⊓⊔

Lemma 7. If there are no C-collisions in the simulator, any sequence of queries QH can be
converted to a sequence of queries QI , where QI gives at least the same amount of information
to the adversary and has no higher cost than that of QH.

Proof. For each query QH,i = (Mi, Ai, ℓi), we can produce the template from Ai and |Mi|. This
template determines exactly how the query QH,i can be converted into a set QI of fT (Ai, |Mi|)
queries to interface I. From the definition of the cost, it follows that the cost of QI cannot be
higher than that of QH; the cost can be lower if there are redundant queries in QI . ⊓⊔

Lemma 8. If there are no C-collisions in the simulator and if it does not violate permutation-
consistency, the output of the simulator has the same distribution to that of a random permutation.

Proof. We distinguish between three types of query:

1. Query I+1(s), with s an inner node instance or a final node instance that is not input-
retrievable. The simulator generates the image p randomly with the constraint that it guar-
antees permutation-consistency by excluding elements in Tr.

11

2. Query I−1(p). The simulator generates the pre-image s randomly with the constraint that it
guarantees permutation-consistency by excluding elements in Tl.

3. Query I+1(s) with s an input-retrievable final node instance. In this case, the output is
generated randomly.

So for the first two types of queries, the responses of the simulator to queries are random with
only constraint that they are permutation-consistent. For the last type, imposing that it does
not violate permutation-consistency is equivalent to stating that it has the same distribution as
a random permutation. ⊓⊔

Lemma 9. The probability Ps that the simulator has a C-collision or violates permutation-
consistency in q queries is upper-bounded by 1− e−

q(q+1)

2n+1 .

Proof. Assuming the simulator has received i − 1 queries and there have been no C-collisions
and it is permutation-consistent we evaluate the probability that an additional query results in a
C-collision or the violation of permutation-consistency. Depending on the type of the new query,
three cases must be considered.

1. Query I+1(s) with s an input-retrievable final node instance. In this case, a C-collision is im-
possible as no element is added to C. Violation of permutation-consistency is possible though.
According to Algorithm 1, all bits of the response p are chosen randomly and uniformly (see
lines 9 and 10). After i − 1 queries, there are at most i − 1 values in Tr. So the probability
that the simulator returns a response p ∈ Tr is upper-bounded by Ps ≤ i−1

2b
.

2. Query I+1(s), with s an inner node instance or a final node instance that is not input-
retrievable. Here, the simulator guarantees permutation-consistency by excluding the elements
of Tr. Hence, it can choose from 2b− (i−1) possible responses. As each query to the simulator
adds at most one element to C and it has initially one element, it contains at most i elements.
There are now at most i × 2b−n possible responses with their first n bits in C. Thus, the
probability that the query results in a C-collision is at most i×2b−n

2b−(i−1)
.

3. Query I−1(p). The simulator guarantees permutation-consistency by excluding the elements
of Tl. Hence, it can choose from 2b− (i−1) possible responses. There are now at most i×2b−n

possible responses with their first n bits in C. Thus, the probability that the query results in
a C-collision is at most i×2b−n

2b−(i−1)
.

It follows that the probability that the simulator has a C-collision or violates permutation-
consistency in the i-th query if it had no C-collision and was permutation-consistent before is
upper-bounded by max(i

2b
, i×2b−n

2b−(i−1)
) = i×2b−n

2b−(i−1)
. If i ≪ 2b this can be closely approximated by

i
2n .

The probability Ps that a C-collision or permutation-consistency violation occurs in the sim-
ulator in q queries is hence given by (using the approximation log(1− ϵ) ≈ −ϵ):

Ps = 1−
q∏

i=1

(
1− i

2n

)
≈ 1− e−

∑q
i=1

i
2n = 1− e−

q(q+1)

2n+1

⊓⊔

We have now all ingredients to prove our main theorem.

Theorem 1. A tree hashing mode T [P] that uses Pn for the chaining values and satisfies Con-
ditions 1, 2, 3, 4 and 5 is (tD, tS , q, ϵ)-indifferentiable from an ideal hash function, for any for
any tD, tS = O(q3), q < 2n and any ϵ > 1− e−

q(q+1)

2n+1 .

Proof. Lemma 9 upper bounds the probability Ps of C-collisions or violation of permutation-
consistency happening during q queries to the simulator. Lemma 7 states that any sequence of
queries QH can be converted to a sequence of queries QI , where QI gives at least the same amount

12

of information to the adversary and has no higher cost than that of QH. The combination of these
lemmas upper bound the probability Ps for any set of queries QH and QI as a function of their
total cost q.

Lemma 8 states that if there are no C-collisions in the simulator and it does not violate
permutation-consistency, the output of the simulator has the same distribution as a random
permutation. According to [9, Theorem 1], the adversary’s advantage can therefore by bounded
by Ps = 1− e

q(q+1)

2n+1 .
We have tS = O(q3) as the simulator may have to perform input-retrieval for at most q node

instances, each requiring to look up at most q nodes in the table T+ with at most q entries. ⊓⊔

If 1 ≪ q ≪ 2n we have Ps ≈ q2/2n+1.

6 Conclusions

We have proven that a hashing mode that calls a compression function consisting of a truncated
fixed-input-length permutation achieves the best possible differentiating advantage if it satisfies
five simple conditions. This is valid for both sequential and tree-hashing modes.

References

1. E. Andreeva, B. Mennink, and B. Preneel, Security reductions of the second round SHA-3 candidates, Cryptology
ePrint Archive, Report 2010/381, 2010, http://eprint.iacr.org/.

2. M. Bellare and T. Ristenpart, Multi-property-preserving hash domain extension and the EMD transform,
Advances in Cryptology – Asiacrypt 2006 (X. Lai and K. Chen, eds.), LNCS, no. 4284, Springer-Verlag, 2006,
pp. 299–314.

3. M. Bellare and P. Rogaway, Random oracles are practical: A paradigm for designing efficient protocols, ACM
Conference on Computer and Communications Security 1993 (ACM, ed.), 1993, pp. 62–73.

4. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, On the indifferentiability of the sponge construction,
Advances in Cryptology – Eurocrypt 2008 (N. P. Smart, ed.), Lecture Notes in Computer Science, vol. 4965,
Springer, 2008, pp. 181–197.

5. , Sufficient conditions for sound tree and sequential hashing modes, Cryptology ePrint Archive, Report
2009/210, 2009, http://eprint.iacr.org/.

6. D. Chang and M. Nandi, Improved indifferentiability security analysis of chopMD hash function, Fast Software
Encryption (K. Nyberg, ed.), Lecture Notes in Computer Science, vol. 5086, Springer, 2008, pp. 429–443.

7. J. Coron, Y. Dodis, C. Malinaud, and P. Puniya, Merkle-Damgård revisited: How to construct a hash function,
Advances in Cryptology – Crypto 2005 (V. Shoup, ed.), LNCS, no. 3621, Springer-Verlag, 2005, pp. 430–448.

8. Y. Dodis, L. Reyzin, R. Rivest, and E. Shen, Indifferentiability of permutation-based compression functions
and tree-based modes of operation, with applications to MD6, Fast Software Encryption (O. Dunkelman, ed.),
Lecture Notes in Computer Science, vol. 5665, Springer, 2009, pp. 104–121.

9. U. Maurer, Indistinguishability of random systems, Advances in Cryptology – Eurocrypt 2002 (L. Knudsen,
ed.), Lecture Notes in Computer Science, vol. 2332, Springer-Verlag, May 2002, pp. 110–132.

10. U. Maurer, R. Renner, and C. Holenstein, Indifferentiability, impossibility results on reductions, and applications
to the random oracle methodology, Theory of Cryptography - TCC 2004 (M. Naor, ed.), Lecture Notes in
Computer Science, no. 2951, Springer-Verlag, 2004, pp. 21–39.

11. R. Rivest, B. Agre, D. V. Bailey, S. Cheng, C. Crutchfield, Y. Dodis, K. E. Fleming, A. Khan, J. Krishnamurthy,
Y. Lin, L. Reyzin, E. Shen, J. Sukha, D. Sutherland, E. Tromer, and Y. L. Yin, The MD6 hash function – a
proposal to NIST for SHA-3, Submission to NIST, 2008, http://groups.csail.mit.edu/cis/md6/.

12. P. Sarkar and P. J. Schellenberg, A parallelizable design principle for cryptographic hash functions, Cryptology
ePrint Archive, Report 2002/031, 2002, http://eprint.iacr.org/.

A Illustrations

In this section we illustrate the tree hashing mode described in section 2 and two undesired
properties of tree hashing modes explained in Section 3 to introduce two of the four conditions
for sound tree hashing.

In our figures of tree templates we use the following conventions. We depict message, chaining
and frame blocks rather than individual bits, where a block is just a sequence of consecutive
bits. Frame blocks are depicted by white rectangles with their value indicated, message blocks

13

http://eprint.iacr.org/
http://eprint.iacr.org/
http://groups.csail.mit.edu/cis/md6/
http://eprint.iacr.org/

by light grey rectangles and their position in the message indicated, and chaining blocks by dark
grey rectangles with an indication of their child. An output is depicted by a rounded rectangle.
The relation between the nodes is indicated by arrows, symbolizing the application of F (or Pn)
during template execution for a concrete input M .

Figure 2 shows a tree template consisting of a number of node templates. Each row represents
a call to the inner function F . Each node contains frame bits (with constant bit values). Leaf
nodes contain message pointer bits representing bits taken form the message M . Except leaf
nodes, other nodes contain chaining pointer bits representing chaining value bits taken from the
output of a previous call to F .

Figure 3 represents a tree instance obtained after executing the tree template with the message
M and the parameters A. Message pointer bits in leaf nodes have been replaced by the message
bits. The output of F after treating the final node constitutes the hash value.

Fig. 2. A tree template. Fig. 3. A tree instance.

We now illustrate undesired properties using figures of templates generated by some mode of
use. The way these templates have been generated by the mode of use are out of scope of this
section. Note also that these templates illustrate undesired properties and hence the modes of
use that would produce them are per definition not sound.

The first property is related to the existence of inner collisions in the absence of collisions in
the output of F and is illustrated in Figure 4. The figure depicts two templates that are generated
by a mode of use T for two different message lengths. All nodes have as first two bits frame bits
with value 01. The template on the left has four nodes: three leaf nodes of height 1 and a final
node that takes an input block and the chaining values corresponding to the three leaf nodes. The
template on the right has three nodes: two leaf nodes of height 1 and a final node that takes an
input block and the chaining values corresponding to the two leaf nodes. Note that the final node
of the right template has a message block (indicated by M ′

0) in the place where the final node
of the left template has the concatenation of a message block M0 and a chaining block CV2. We
can exploit this fact to construct an inner collision from any message M with length matching
the left template. As can be seen in the figure, it suffices to form M ′ by replacing in M the block
M1 by F(01|M1).

The second property, a generalization of length-extension to tree hashing, is illustrated in
Figure 5. Given the output of h = T [F](M) of some message M , length-extension is the possibility
to compute the output of T [F](M ′) with M a substring of M ′, only knowing h and not M itself.
Figure 5 depicts two templates corresponding with two different message lengths. The templates
have a binary tree structure. The template at the left has three nodes: two leaf nodes and a
final node containing the chaining values corresponding to the two leaf nodes. The template at

14

Fig. 4. Example of an inner collision without a collision in F

the right has seven nodes: four leaf nodes, two intermediate nodes each containing the chaining
values corresponding to two leaf nodes and a final node containing the chaining values of the
intermediate nodes. Note that the chaining block CV0 in the final node of the right template
corresponds with the hashing output of the left template. As can be seen in the figure, given
the hash output h of a message M with length matching the left template, one can compute the
hash output of any message M ′ = M |M2|M3 with length matching the right template without
knowledge of M .

15

Fig. 5. Example of the generalization of length extension to tree hashing

16

	Sufficient conditions for sound hashing using a truncated permutation

