Private and Oblivious Set and Multiset Operations

Marina Blanton and Everaldo Aguiar
Department of Computer Science and Engineering
University of Notre Dame
{mblanton,eaguiar }@nd.edu

Abstract

Privacy-preserving set operations, and set intersection in particular, are a popular research
topic. Despite a large body of literature, the great majority of the available solutions are
two-party protocols and are not composable. In this work we design a comprehensive suite
of secure multi-party protocols for set and multiset operations that are composable, do not
assume any knowledge of the sets by the parties carrying out the secure computation, and
can be used for secure outsourcing. All of our protocols have communication and computation
complexity of O(mlogm) for sets or multisets of size m, which compares favorably with prior
work. Furthermore, we are not aware of any results that realize composable operations. Our
protocols are secure in the information theoretic sense and are designed to minimize the round
complexity. Practicality of our solutions is shown through experimental results.

1 Introduction

The ability to securely perform set operations on private inputs has numerous applications. As
an example, we mention computing intersection of databases belonging to different agencies or
organizations, which by law or other provisions are not permitted to share their records in the clear,
but want to compute the set of records common to both of them. This can be used in contexts
ranging from finding passengers of an airline who appear in the national watch list to determining
customers common to two companies for more effective advertisement. The importance of the topic
is also evidenced by a significant body of prior work (see, e.g., [34, 52, 35, 31, 49, 43, 5]).

Work on privacy-preserving set operations started with the seminal work of [34]. Consequently,
many other publications appeared with the goal of extending the functionality or improving its
performance. Secure protocols are known for set intersection (e.g., [34, 52, 42, 31, 49]), set union
(e.g., [62, 35, 43]), set intersection cardinality or over-the-threshold cardinality (e.g., [68, 29]),
multiset element reduction ([52]), and others. Most of publications assume the two-party setting,
in which Alice and Bob each possess a private set A and B, respectively, apply a set operation to
the sets, and learn the result (or only one party learns the result). In such protocols, the knowledge
of the private input A or B is essential for correctly recovering the result.

While this problem formulation has a large number of applications, the existing solutions cannot
be securely used as building blocks in larger protocols as they are not designed to be composable.!
That is, a set operation has to comprise the entire computation as neither the output can remain
private from both parties nor the existing solutions apply when A or B is the result of prior
secure computation and is not known to either party. One example application that could benefit

'Here, by composability we mean the ability to use set operations as building blocks in larger computation using
sequential composition. This is different from security under concurrent execution in the universal composability
framework, which our protocols also achieve.

from composable set operations is privacy-preserving product network aggregation [62], in which
set union and set intersection operations are executed one after another. Prior solutions to this
problem had to reveal some information at an intermediate step because the existing set union and
intersection protocols were not composable. The literature that provides solutions for the multi-
party setting [52, 35] likewise assumes that each participant has access to her private set in the
clear.

The recent emergence of cloud computing demands techniques for secure outsourcing that will
allow the benefits of available cloud services to be utilized to the fullest extent, which otherwise
might not be used due to the fear of information disclosure. In that setting the computational
parties do not have access to the private inputs and it is essential that they do not learn any
information about the data they process, while are able to carry out the computation correctly. In
other words, the computation needs to be data-independent or oblivious. From that point of view,
it is desirable to have protocols that are both composable and can be used in outsourced tasks,
which we set as one of our goals. Note that in many existing solutions, the computation cannot be
outsourced because performing the computation requires knowledge of some of the inputs.

We utilize secure multi-party computation (SMC) framework, where n > 2 computational par-

ties carry out the computation using linear secret sharing and can be independent from input
owners or output recipients. This means that the techniques are suitable for traditional secure
multi-party computation as well as secure outsourcing by one or more parties who utilize multiple
computational servers for secure computation. In the case of secure outsourcing, each client simply
distributes its input to the servers and receives and reconstructs the output at the end of the com-
putation, i.e., the computation is non-interactive for the client. As we employ secret sharing, only
a fraction ¢ of the computational parties (or servers to which the computation is being outsourced)
can collude or misbehave to guarantee security, i.e., the majority of the computational parties must
be honest. Related problem formulations from the literature include secure outsourcing to a sin-
gle server (e.g., [70]), secure outsourcing to two non-colluding servers (e.g., [10]), and server-aided
computation with a single server, where the client’s work is not guaranteed to be linear in the
input/output size (e.g., [51]).
Our contributions. In this work, we provide a suite of secure multi-party protocols for a number
of set and multiset operations, which are union, intersection, difference, symmetric difference,
equality, subset and superset relationships, and element reduction (for multisets only). Besides
computing the main functionality, we provide variants of the protocols that produce cardinality of
the resulting (multi)set or compute over-the-threshold cardinality and produce a bit. Furthermore,
our protocols can be used to always hide the size of the input/output (multi)sets or the size can be
revealed to make any computation that follows more efficient (since complexity of set operations
is proportional to the size of their representation). We also provide a generic conversion from a
multiset to a set that allows us to run our protocols for secure set operations on multisets, as well as
a direct and more efficient implementation of multiset operations. Finally, we describe a number of
optimizations that allow for faster performance of our protocols. In addition to minimizing the total
number of operations, substantial part of this work is dedicated to reducing the number of rounds
(i.e., sequential interactive operations) of set and multiset operations, which has a tremendous
impact of the performance of our protocols in practice. We implement our solutions for selected
set and multiset operations and show that their performance is practical and comparable to those
of the latest (more restrictive) two-party solutions.

The advantages of our solutions over previously available results are as follows:

1. The requirement that each input set /multiset is known by a participant in the clear is removed.
This implies that the elements of the input sets can be arbitrarily partitioned among the

participants. The input sets can also be a result of prior privacy-preserving computation and
are not known in the clear to any participant.

2. Our protocols are composable. Because both the inputs and outputs are split among the
participants, our protocols can be composed an arbitrary number of times or they can be
used as building blocks in larger computations.

3. No intermediate results or other information are revealed to the participants, which makes
the solution suitable for secure computation outsourcing. In other words, the parties who
provide the inputs and/or learn the output can be different from the parties carrying out
secure computation. This is in contrast to prior results, where the knowledge of a set in the
clear was essential for correctness of the computation.

4. Our solution provides natural support for hiding the sizes of the sets. The input sets can be
padded for additional security, and the size of the result is never revealed, unless the parties
decide to do otherwise.

5. Unlike most prior literature, our techniques make no use of expensive operations based on
public-key cryptography and achieve information-theoretic security (assuming the existence
of secure channels between the participants).

6. All of our protocols are efficient and have O(mlogm) communication and computation com-
plexity where m is the sum of the input sets’ sizes. This compares favorably with the existing
solutions (which we detail below).

Security of our protocols is shown in both semi-honest (honest-but-curious or passive) and malicious
(active) models. Part of this work appeared in [9].

2 Related Work

Privacy-preserving set operations. The first custom solutions for securely computing set
operations were two-party set intersection and intersection cardinality protocols of [34] based on
homomorphic encryption and polynomial representation of sets. The authors also proposed an
optimization using balanced hash functions that reduced the computation overhead to O(m Inlnm),
while the overall communication complexity of the protocols was O(m). Here m represents the set
size and n > 2 will denote the number of parties. [52] extended that work by building a framework
of multiset operations which included set union, intersection and element reduction. This work
was also the first to establish protocols secure against malicious players when three or more parties
were involved, which was done via zero-knowledge proofs. The protocols secure in the honest-
but-curious model (and the set intersection protocol secure in the malicious model) presented in
[52] had communication complexities of O(n?m), or O(c*m) when ¢ < n dishonest players collude,
and computation complexity of O(n?m?). [42] proposed the first two-party private set intersection
protocol based on oblivious pseudo-random functions (OPRFs). If we denote m; and my to be the
number of elements in the sets, where the first set is considered to belong to the server and the
second to the client, and t to be the size of the binary representation of input elements, the solution
in [42] is constant round and have communication and computation (modular exponentiations)
complexities of O(my - t + mg). An improvement to this work is presented in [48], and a similar
protocol that replaces the OPRFs with unpredictable functions can be found in [49].

An efficient set union protocol for the malicious adversary, with communication complexity
of O(n?m? + n3m) and O(n) rounds, was given by [35]. [46] suggest another set union protocol
for the malicious adversary, which uses a modified ElGamal cryptosystem and achieves constant-
round communication. Additionally, [21, 43, 30, 22] provide protocols for privacy preserving set
intersection in the two-party setting secure against malicious adversaries. The approach in [30],

Reference Operation Computation Commucation lg/lality [Sjeléic;?gl hiScliiZEg pS;)ar?)ie
[30] PSI O(m) O(m)
[29] PSI-CA O(m) O(m)
[5] PSI O(mlogm) O(m) N4
[52] PSI, PSI-CA O(n?m?) O(n?m) Vv
[17] PSI O(n®m) O(n®m) vV
[22] PSI O(nm?) O(nm +mlogm)| +/
46 PMU O(n*m?) O(n?m) Vv
59 PSI O(n3m? +nt)| O(m3m? +n?) vV vV
PSI, PSU, PSDIiff, PER,
PSR, PSI-CA, PSU-CA,
. PSDiff-CA, PER-CA, | O(nmlogm+ O(nmlogm+
This work PMI, PMU, PMDiff, nQ(log m +n?3) nQ(log m+n?) % v v v
PSE, PSuR, PMI-CA,
PMU-CA, PMDiff-CA

Table 1: Summary of secure set operations protocols with the best performance.

building on the efficient solution from [31], yields linear complexities (in the number of set elements)
for both communication and computation achieving higher efficiency than prior linear-time work
[48]. Also, publications [52, 68, 58, 29, 63] propose protocols that compute the set intersection
cardinality (rather than the intersection itself), with [29] being the most efficient and having linear-
time computation and communication complexities in the semi-honest model (in the random oracle
model). One noteworthy recent work [5] adds to the two-party set intersection operation the
feature of hiding the size of the input set (including the upper bound) held by the participant who
learns the result. The computation performed locally by that party is then no longer linear, but
instead is O(mlogm), where m is size of that party’s input set. Lastly, we highlight the work [63],
which describes protocols for several set operations in the Universal Composability framework with
malicious adversaries and O(n?m?) complexities.

There are also publications that develop private set intersection protocols in the information-
theoretic setting [56, 59, 58, 60]. [56] proposed the first unconditionally secure protocol using
polynomial representation of sets and two-dimensional secret sharing (where values are shared
among the players and each share is again shared among them) with communication complexity
of O(n*m?) in the malicious model and ¢ < n/3 parties under control of an active adversary
(though that complexity is contested in [59]). [59] revisit the problem and provide an information-
theoretically secure set intersection protocol with communication complexity of O(n3m? + n?).
This solution is used in [60] to build a protocol that works when the adversary controls ¢ < n/2
parties, in which case communication complexity becomes O(n*m? 4+ n®). [58] addresses private
matching, set disjointness, and set intersection cardinality in the information-theoretic setting with
semi-honest adversaries.

The only implementations of private set operations that we are aware of are for two-party set
intersection in [47] that uses garbled circuits and in [32] that implements the protocol from [30].

Table 1 provides a brief comparison of the most relevant protocols listing their complexities and
functionality. Notations PSI and PMI stand for “private set intersection” and “private multiset
intersection,” respectively. U stands for “union,” ER stands for “element reduction,” CA means
“cardinality”, SR denotes “subset relationship”, and “set equality” and “superset relationship” are
represented by SE and SuR. All complexities are listed for the malicious adversary and correspond
to solutions with the best performance. In the table, a solution is marked as size hiding if the sizes

of the input sets can be protected by means of padding. We note that [5] achieves a stronger notion
of size hiding in which no information about one of the two input sets is revealed. We additionally
achieve that no information about the size of the output set (beyond the bounds imposed by the
sizes of the (padded) input sets) is revealed to the parties. The complexity of the results in Table 1
that rely on public-key cryptography is measured in public-key operations reported in them (i.e.,
not the total number of operations) and the security parameters for communication are implicit.
The remaining solutions achieve information-theoretic security with communication measured in
the number of field elements (of small size). All reported complexities reflect the combined work
and communication of all parties.

Secure multi-party computation. The literature on SMC and function evaluation is very
extensive and its review is beyond the scope of this work. In the multi-party setting, employed in
this work, the available techniques are garbled circuit evaluation (e.g., [38, 8]), linear secret sharing
techniques (e.g., [65, 19]), and threshold homomorphic encryption (e.g., [33, 27, 20]). We employ
linear secret sharing and design efficient and information-theoretically secure protocols for set and
multiset operations.

Parallel set operations. Set operations have also been examined in the realm of parallel comput-
ing. Early solutions [53, 66] utilized specially designed array structures to efficiently compute these
operations directly in hardware. More recent parallel techniques [11] involve a careful arrangement
of the data into random balanced binary trees. While these techniques allow set operations to
be performed efficiently, they were not designed to be secure, are not data-oblivious, and do not
naturally lend themselves to secure multi-party protocols.

3 Preliminaries

3.1 Framework

In this work we use the multi-party setting in which n > 2 parties Pi,..., P, jointly execute
prescribed functionality on private inputs. We utilize a linear secret sharing scheme (such as [65])
for representation of, and secure computation over private values. To ensure composability of our
protocols, we assume P; through P, receive their shares of the input prior to the computation and
compute shares of the output. Then any party with private input will produce shares of it before
the computation starts, and upon computation completion P; through P, send their shares to the
entities entitled to learn the result. This gives flexibility to the problem setting in that the input
parties may be disjoint from the computational parties (as in the case with outsourcing). Similarly,
the parties receiving the output do not have to coincide with the input parties or computational
parties.

Throughout this work we assume that parties Pi,..., P, are pair-wise connected by secure
authenticated channels (the underlying communication model depends on the employed secret
sharing; usually synchronous communication with broadcast channels is assumed). Each input and
output party also establishes secure channels with P; through P,. With (n,t)-secret sharing, any
private value is secret-shared among n parties such that any ¢+ 1 shares can be used to reconstruct
it, while ¢t or fewer shares information-theoretically reveal no information about the shared value.
Therefore, the values of n and t should be chosen such that an adversary is unable to corrupt more
than ¢ computational parties.

In a linear secret sharing scheme, a linear combination of secret-shared values can be computed
by each computational party locally, without any interaction, but multiplication of two secret-
shared values requires communication between the computational parties. In other words, if we let
[x] denote that value x is secret-shared among P, ..., P,, operations [x]| + [y], [z] + ¢, and ¢[x] are

performed by each P; locally on its shares of x and y, while computation of [z][y] is interactive.
The most common way of implementing a multiplication operation is by sending the total of O(n?)
messages (where each participant sends n — 1 messages, one to each other participant) using, for
instance, the techniques of [36], but recent results [45, 28, 7] lower the communication to O(n)
messages per multiplication.

All operations are assumed to be performed in a field Z, for a small prime p greater than the
maximum value used in the computation. We use ¢ to denote the bitlength of (multi)set elements,
and therefore it must hold that p > 2¢. Without loss of generality, we assume that the domain of
set elements consists of integers greater than 0, i.e., it is [1,2¢ — 1] (i.e., if the domain is different,
it can always be mapped to [1,2¢ — 1] for some /).

Performance of secure computation is of grand significance, as protecting secrecy of data
throughout the computation often incurs substantial computational costs. For that reason, besides
security, efficient performance of the developed techniques is one of our primary goals. Perfor-
mance of a protocol in our setting is typically measured in terms of: (i) the number of interactive
operations (multiplications, distributing shares of a private value or opening a secret-shared value)
necessary to perform the computation, or invocations, and (ii) the number of sequential interactions,
or rounds. We employ the same metrics here.

3.2 Building blocks

We now proceed with a brief description of building blocks which are used in our solutions, namely,
oblivious sorting, comparisons, and prefix AND.

Oblivious sorting. When sorting is utilized in secure computation, the sequence of operations
that the parties execute must be independent of the set they are sorting, or data-oblivious, to
ensure that no information about the private data is revealed. While most sorting algorithms
are not oblivious, using a sorting network results in an oblivious solution. Such techniques use
compare-and-exchange operations (CEQO), which are fixed and independent of the input. In our
setting, a CEO can be implemented as follows:

[s] += GE([al, [0], £)
[c] « [s][b] + (1 = [s])[a]
[d] < [slla] + (1 = [s)[0]

where GE denotes a “greater than or equal” operation for ¢-bit operands (detailed below) that
produces a bit. After comparing a and b, ¢ corresponds to min(a,b) and d to max(a,b).

Ajtaiet al. [1] describe a sorting network with O(m logm) comparisons for a set of cardinality m,
but it has a very high constant behind the big-O notation. More practically, Batcher’s network [6]
uses O(mlog?m) comparisons and was the basis of secure multi-party sorting in [50]. More recent
results [55, 39, 41] developed oblivious randomized sorting algorithms with O(m logm) comparisons
and low constants which succeed with very high probability. Another recent solution is [72], in
which oblivious sorting is achieved in constant round using O(m?) or O(mR) communication and
computation, where [0, R] is the range of numbers to be sorted. Throughout the paper, we use
notation ([y1], ..., [ym]) < Sort([z1], ..., [Tm],) to denote secure implementation of oblivious sorting
on /-bit values in this framework. In some cases, we also need to sort tuples, where the comparisons
are performed using the first element of each tuple, but the entire tuples are swapped based on the
outcome of a comparison. We denote this modification by SortT, e.g., ([z1], [v1]), - - -, ([Tm], [ym]) <
SortT({[a1], [b1]), - - -, ([am], [bm]), £) denotes sorting of 2-tuples.

Because performance is of particular importance to us and complexity of oblivious sorting
dominates the complexity of all of our algorithms, we analyze the solutions of [39] and [6] in more

detail. Goodrich’s shellsort [39] uses asymptotically low 5mlogm — 7.5m + 9 ~ 5mlogm CEOs,
but requires 5m — logm + 1 = 5m of them to be executed consecutively. The number of rounds
then corresponds to this value multiplied by the round complexity of a CEO. Batcher’s network [6]
that uses odd-even merge sort involves im(log2 m—logn+4)—1~= %mlong CEOs, but they
can be more effectively parallelized using %log m(logm + 1) ~ %log2 m consecutive CEOs. Also,
for m < 105, Batcher’s network involves fewer comparisons than Goodrich’s shellsort.

In some cases we also need to merge two sorted arrays, which can be accomplished faster
than sorting all elements. For that reason, we define and use protocol Merge(([z1], ..., [Tm,]),
([y1ls - s [Ums]), £), which is part of Batcher’s oblivious merge sort. Oblivious bitonic merge from [6]
uses %mlogm CEOs and has depth (i.e., the number of consecutive CEOs) of logm. Similar to
sorting, use MergeT to denote the tuple version of Merge.

Other protocols. We also rely on the following secure protocols from prior literature:

e [b] «+ Eq([z], [y],¢) is an equality protocol that, on input two secret-shared values x and y of
length at most ¢ bits, outputs (shares of) a bit b which is set to 1 iff z = y. The most efficient
implementation of this operation that we are aware of is from [15] which uses ¢ + 4log/
invocations in 4 rounds, where most of the cost is input independent and can be performed
ahead of time.

o [b] < GE([z],[y],¢) is a comparison protocol that, on input two secret-shared ¢-bit values x
and y, outputs a bit b which is set to 1 iff x > y. Efficient implementations of this function
also exist, e.g., we can use the protocol from [15] with 4 rounds and 4¢ — 2 invocations, where
precomputation can also reduce the cost.

e ([y1l,--.,[yx]) < PreAND([x1], ..., [xx]) computes prefix-AND, which on input a sequence of

bits 1, ..., xg, outputs bits yi1,...,yr, where each y; = /\;‘-:1 xj. Secure multi-party imple-
mentation of PreAND can be realized by utilizing prefix-OR, PreOR, by calling PreOR(1 —
[z1],...,1 — [zx]) and outputting the complements of the returned bits. The PreOR pro-
tocol from [15] uses 3 rounds and 5k — 1 invocations, where, as before, input-independent

precomputation can reduce the cost.

The complexities of Eq, GE, and PreAND functionalities cited above correspond to statistically
secure protocols, but alternative implementations that achieve perfect secrecy are also available. All
other parts of our solutions, with the exception of another building block described in Protocol 17 in
optimizations section 7, are perfectly secure. Therefore, by using perfectly secure implementations
of these building blocks the overall solutions will be perfectly secure as well. Because the separation
between perfect and statistical security might be important with respect to what security properties
we can obtain, we note that perfectly secure versions of Eq, GE, and PreAND that also run in a
constant number of rounds and have linear complexities (in £ in case of Eq and GE and in k in case
of PreAND) are available from [23]. They can be built from any linear secret sharing scheme with a
multiplication protocol. The main difference between these protocols and the protocols from [15] is
that the perfectly secure versions of comparison operations assume that the arguments are given in a
bitwise form (i.e., z and y are represented as shares of £ bits each). This does not impose a limitation
for the type of computations used in this work because the overwhelming number of operations
are contributed by comparisons. We therefore can use bitwise representation of (multi)set elements
throughout the protocols without increasing their asymptotic complexity. If at any point of the
computation bit-decomposition is required (e.g., for computing over-the-threshold versions of set
operations), it is also available from [23] and other sources.

Finally, another recent work [67] provides equality and comparison protocols of sublinear (in
¢) complexity. In particular, the equality protocol in [67] uses O(J) invocations in a constant

number of rounds, where § is a correctness parameter, and a comparison is performed using
O(log (8 + loglog ¢)) invocations in O(log /) rounds or using O(v#(8 + log/)) interactive oper-
ations in a constant number of rounds for the same §. These protocols are, however, more suitable
for SMC based on homomorphic encryption and are applicable to our setting only when ¢t = 1.

3.3 Security model

For each presented protocol, we define its secure functionality such that the computational parties
do not provide any input and do not receive any output. Instead, it is assumed that prior to
the beginning of each protocol the input parties secret-share their sets among the computational
parties. Likewise, at the end of the computation, the computational parties send their shares to
the entities entitled to learn the result who reconstruct the output.

We next formally define security using the standard definition in secure multi-party computation
for semi-honest adversaries, who follow the protocol as prescribed, but might try to learn more than
they entitled from the protocol execution. For this case we assume that the adversary is static, i.e.,
the set of corrupted parties is fixed prior to the protocol execution. When, however, treating the
case of malicious adversaries who can follow any arbitrary strategy, we will assume the adaptive
adversary who can adaptively corrupt the participants throughout the protocol execution.

Definition 1 Let parties P, ..., P, with pair-wise secure channels engage in a protocol 7w that
computes a (possibly probabilistic) n-ary function f: ({0,1}*)" — ({0,1}*)", where P; contributes
input in; and receives output out;. Let VIEW (P;) denote the view of participant P; during the
execution of protocol w. More precisely, P;’s view is formed by its input and internal random
coin tosses ri, as well as messages mq,...,my passed between the parties during protocol execu-
tion: VIEW(F;) = (inj,ri,m1,...,mg). Let I = {P;,, P;,,...,P;,} denote a subset of the partic-
ipants, VIEW (I) denote the combined view of participants in I during the execution of protocol
m (i.e., VIEW,(I) = (VIEW(F;,),...,VIEW(F;,))), and fr(in1,...,in,) denote the projection
of f(iny,...,in,) on the coordinates in I (i.e., fr(ini,...,in,) consists of the iith, ..., i;th ele-
ments that f(iny,...,in,) outputs). We say that protocol w is t-private in presence of static semi-
honest adversaries if for each coalition I of size at most t and all in; € {0,1}* there exists a
probabilistic polynomial time simulator St such that {(Sr(ing, fr(ini,...,iny)), f(ing,....iny))} =
{(VIEW (1), (outy,...,out,))}, where inf = (in,,...,in;,) and “=” denotes perfect or statistical
indistinguishability.

By secure channels we mean private authenticated channels, in which case security is information-
theoretic. In case of malicious adversaries, security is formalized by comparing a protocol execution
to an ideal model where the participants simply send their inputs to a trusted third party and receive
their outputs back.

Definition 2 Let m be a protocol that computes function f : ({0,1}*)" — ({0,1}*)", with party
P; contributing input in;. Let A be an arbitrary algorithm with auziliary input x and S be an
adversary/simulator in the ideal model. Let REALy (g 1(in1,...,in,) denote the view of adversary
A controling parties in I together with the honest parties’ outputs after real protocol w execution.
Similarly, let IDEALf g(y1(in1,...,in,) denote the view of S and outputs of honest parties after
ideal execution of function f. We say that w t-securely computes f if for each coalition I of size at
most t, every probabilistic A in the real model, all in € {0,1}* and = € {0, 1}*, there is probabilistic
S in the ideal model that runs in time polynomial in A’s runtime and {IDEAL¢ g (in1,...,in,)} =

{REALmA(x)’[(inl, vy |nn)}

Security in the semi-honest model holds for ¢ < n/2 and in malicious for ¢t < n/3.

4 Set Operations

This section presents our solutions for several set operations — set intersection, union, asymmetric
and symmetric difference, subset and superset relationships, and set equality, as well as multiset
element reduction. All other multiset operations are treated in consecutive sections. Our solutions
assume that the set or multiset operations are performed on ¢-bit values in integer representation,
and the parameter £ is omitted from the notation.

Intuitively, correctly computing an operation on sets A and B of size m without any knowledge
of what these sets contain appears to be hard if fewer than m? comparisons are used (one comparison
for each a; € A and b; € B). Indeed, if any given pair of elements a;, b; have not been (explicitly
or implicitly) compared, then for arbitrary sets A and B the result is not guaranteed to be correct.
If, however, the result is known to be correct with fewer comparisons, then some information about
the input sets must be known which violates our security requirements. Fortunately, relationships
between some pairs a;,b; can be determined implicitly, based on other explicit comparisons of
elements of A and B, which eliminates the need for m? comparisons. We notice that once data-
oblivious sorting is used as a building block, we can realize all of our set and multiset operations
using O(mlogm) interactive operations (comparisons) and their round complexity exceeds that
of sorting by a small (additive) constant. We mark all interactive operations and rounds in our
protocols.

4.1 Core protocols

The main idea behind our solutions consists of combining the input sets into one, sorting the result-
ing set, and comparing adjacent elements of the sorted set to determine what elements should be
kept and what should be erased, depending on the desired set operation. For certain set operations
such as set difference, we also maintain information about the origin of an element (e.g., coming
from the first or the second input set) to implement the desired functionality. A more detailed
description of each operation is given next.

Set union. The first protocol that we describe computes the set union C = A U B, where
A=A{ai,...,am }, B={b1,...,bm,}, and C = {c1,. .., m,+m, |- Initially the elements of A and B
are combined into a new set and subsequently sorted. Next, we need to eliminate duplicates, as we
wish to keep only a single instance of each item appearing in either of the sets. To accomplish this,
our protocol looks at adjacent items in the sorted set, x; and x;y1. If the elements are the same,
the first instance is erased by setting the corresponding item ¢; in the resulting set to 0 (recall that
0 is not a valid element of A or B). The protocol makes no changes to those items that occur a
single time.

Protocol 1. [c1],.. ., [¢m,+msy] < Union([a1], ..., [@m,], [b1]; - - -5 [bmy])

(1], -+ o [Tmy+my] < Sort([a1], ..., [@my]s [b1], - - -5 [Bmy]s £); // section 3.2
. for : =1 to my + mo — 1 do in parallel
[u;] < Eq([xi], [zit1], £); // section 3.2
[ci] < [z (1 — [ug]); // 1 round, m; + my — 1 inv
[Cm1+m2] A [wm1+m2];
return [c1], . . ., [Cmy+ms);

S N

For example, on input sets (2,4,1,5) and (4,3,2), we obtain (1,2,2,3,4,4,5) after step 1 and
(1,0,2,3,0,4,5) after step 5. Note that the computation in the protocol can be parallelized, and
each element of the output is computed independently of others. While this protocol provides the

most basic version, we subsequently describe how the size of the set C' can be reduced to contain
only non-zero elements (the actual members of the union) if desired.

Set intersection. Following the set union logic, we could implement our protocol for set intersec-
tion in a similar manner. This time, after sorting the combined set of size m = m1 +ms, we wish to
erase (i.e., set to 0) each distinct element once (note that there will be either one or two instances
of each distinct element). In its simplest form, in the protocol we could compare two consecutive
elements x; and x;41 in the sorted set and keep z; if they are equal. [47], however, notice that
the size of the output set can be reduced in half if instead we compare each even element of the
sorted set to its adjacent elements. Then if either comparison results in 1, we keep the current
element and otherwise set it to 0. The output consists of only even elements, which gives us [m/2|
elements in the output set. Implementing this logic in our framework results in similar (in fact,
slightly more efficient) performance compared to the simpler logic, but the output size is reduced
in half, which improves efficiency of the computations that follow. We also note that from the set
operations that we implement in this work, set intersection is the only operation where the output
size can be reduced to a fraction of the input set sizes without any knowledge of the inputs by
computing values at certain fixed locations.

In our set intersection protocol we implement the logic described above, where we have to make
an exception for the last element in case m = mj + my is even (i.e., in that case the element at
position m is compared only to its predecessor at position m —1). For any given element xo; of the
sorted set, let u; denote the result of the comparison of x9; with x9;_1 and v; denote the result of
T9;’s comparison with xo;41. Then to compute the corresponding element of the output set ¢;, we
need to multiply x9; with the OR of u; and v;. In general, Boolean OR a V b can be implemented
as a + b — ab, but we note that in our case u; and v; will never be simultaneously 1. This means
that the sum wu; 4+ v; will correspond to their OR, reducing the number of interactive operations. As
before, computing all elements of the result AN B proceeds in parallel, which is of grand importance
because the size of A and B can be very large. For our example input sets, the protocol outputs
(2,0,4).

Protocol 2. [c1], ..., [c|m/2)] < Int([a1], .. ., [am,], [b1]; - - -, [bms,))
L. [x1], ..., [zm] < Sort([a1], - . -, [am,], [b1], - - -, [Bms]s €); // section 3.2
2. fori =1 to [(m —1)/2] do in parallel
3 [u;] < Eq([z2i], [T2i-1], €); // section 3.2
4. [vi] < Eq([z2i], [v2i41], 0); // section 3.2
5. ei] «+ (Jug] + [vi])[wail; // 1 round, |(m —1)/2] inv
6. if (m mod 2 = 0)
7. [umgel < Ea([m], [2m-1], 0); // section 3.2
8 [m/2] [um/Q][xm]; // 1 inv
9. return [e1], ..., [c|m/2];

Subset relationship. The subset protocol computes whether a given set A is contained in another

>
set B, i.e., A C B. It returns a bit which is set to 1 if A C B and 0 otherwise. The algorithm
proceeds by comparing all pairs of adjacent elements in the aggregate sorted array and returns 1
iff the number of elements that were equal is exactly the size of the set A. Note that we run the
protocol only when m; < mg (assuming no padding in the input sets); otherwise, the output bit
is automatically set to 0. For example, for inputs (2,4,1,5) and (4, 3,2), the output is 0 because
my > mgy. For inputs (4,3,2) and (2,4,1,5), on the other hand, the protocol is executed, but
returns 0 because t = 2 # m; = 3.

10

Protocol 3. [s] < Sub([ai],. .., [am,], [b1]; - - - [bms])

L [z1], - o [Tmytmy) < Sort([a1], ..., [@m,], [b1]; - - -5 [Bmy]s £); // section 3.2
2. for i = 2 to my + mg do in parallel [u;] < Eq([x;], [zi—1],€); // section 3.2
3. [t) S)

4. [s] < Eq([t], m1, [logm]); // section 3.2
5. return [s];

Utilizing the logic above, we can also derive a similar protocol to compute set equality. In that
scenario, our first step would be to check if m; = mo, as otherwise we can automatically report
that the sets are not equal. The rest of the protocol will be exactly the same as the steps of Sub.
Similarly, we can also produce a protocol for verifying a superset relationship between sets A
and B from the logic provided in Protocol 3. In fact, the algorithm need not be changed in this
case either, as a subset relationship directly implies an inverse superset relation between the same
sets. That is, if the return bit [s] indicates that A is a subset of B, we can conversely say that B
is a superset of A. Hence, the two operations can be done interchangeably by simply switching the
order in which the sets are passed to Sub.

Set difference. An intuitive solution to computing the set difference A \ B is to combine sets
A and AN B, sort the combined set, and eliminate all values that appear twice in the resulting
multiset (by erasing both instances). This approach, however, results in running sorting twice
(where the second time it is executed on a set of size 2|A| + |B|) and thus more than doubling
the overhead compared to other protocols. Our solution instead is to label the elements of the two
sets with opposite bits which will allow us to perform this operation using a single sort. In detail,
we associate a 0 bit with all elements of set A and a bit with value 1 with the elements of B and
sort the concatenation of these tuples. After sorting, we compare (in parallel) each element of the
sorted set to its successor and store the results into a bit vector u. Based on these results, the
protocol will then erase (set to 0) each pair of elements that have the same value, while keeping
those that have unique values unchanged. To erase both instances of duplicate elements, we can
compute values ¢;’s as
[ei] = [(1 = [wi]); [eia] = [wisa] (X = [wi));

for each i, where x;’s represent the previously sorted concatenation of the elements of A and B.
Although this logic can be safely realized when the computation is executed sequentially, it needs
to be modified if we want it to be parallelized. To achieve this, we make sure that the value of
each ¢; in the resulting set depends on the result of the comparison of z; with x;_1 and z;41, and
each ¢; is set only once. In particular, we set ¢; to O if either w; 1 or u; is true and it is set to
x; otherwise. Similar to the OR computation in the set intersection, because at most one of u;_1
and u; can be set for each value of 7, the OR computation is performed as u;_1 + u; instead of full
Ui—1 + Ui — Uj—1Uj.

Finally, as the last step of the protocol we compute the elements ¢;’s of the set difference A\ B
by erasing all elements of B that still remain. This is accomplished using the second element of each
tuple of the sorted set, which stores information about the input set from which the value originated.
For the example inputs (2,4, 1,5) and (4, 3, 2), the protocol produces ¢ = (1,0,0, 3,0, 0, 5) after step
5 and ¢ = (1,0,0,0,0,0,5) after step 6.

Protocol 4. [c1],.. ., [¢m,+m,] < Diff([a1], .. ., [am,], [b1], - - - [bms])
L. <[x1]7 [y1]>7 SRR <[xm1+m2]7 [ym1+m2]> — SOI’tT(<[a1], [O]>7 SR <[am1]7 [OD? <[b1]7 [1]>7 R <[bm2]7 [1]>7
0); // section 3.2

11

2. for i =1 to my + ma — 1 do in parallel [u;] < Eq([zi], [zi+1], 0); // section 3.2

3. [e1] « [z1] (1 — [u1]); // 1 round, 1 inv

4 [emitms] < [2m](1 = [tmi4me—1]); // 1inv

5. for i =2 to my + ma — 1 do in parallel [¢;] < [z;](1 — [u;] — [wi—1]); // m1 + m2 — 2 inv

6. for i =1 to my +mg do in parallel [¢;] < [¢;](1 — [yi]): // 1 round, m; +mg inv
7. return [c1],. .., [Cmy+msl;

Symmetric difference. Given two sets A and B, symmetric difference AAB computes the
elements that belong to either of the sets while not being common to both. A naive approach to
implementing the operation would be to compose a new protocol that computes (AU B) \ (AN B).
To improve efficiency, however, this operation can be done directly by modifying the above set
difference protocol. Note that the last step of Protocol 4 (line 6) removes from the resulting set
the elements of B that are not part of the intersection. Hence, by not executing that operation,
we automatically obtain the symmetric difference protocol SDiff. This also implies that the SortT
routine on line 1 can be replaced by regular sorting.

Element reduction. Element reduction is applied to a single multiset A, during which one
instance of each distinct element is erased. The logic for its implementation is very similar to
that of the intuitive implementation of set intersection (which we mention but do not use), but
now each distinct element can appear any number of times in the sorted combined set instead
of only once or twice. We therefore erase the first instance of each distinct element. This is
implemented by comparing two adjacent elements x; and x;41 in the sorted multiset and setting
the element at position ¢ + 1 in the result, ¢;+1, to 0 iff z; and x;41 differ (i.e., x;41 is a new
distinct element). For correctness, the first element c; is always set to 0. For example, if the sorted
input is (1,2,2,3,4,5,5,5), the protocol outputs (0,0,2,0,0,0,5,5). As before, computation of
each element of the resulting multiset can proceed in parallel.

Protocol 5. [c1],...,[cm] + Red([a1], ..., [am])
L. [x1],. .., [zm] < Sort([ai], .. -, [am], £); // section 3.2
2. [a1] < 0;
3. for i =1 to m — 1 do in parallel
4. [wi] < Eq([zi], [xit1], £); // section 3.2
5. [eiy1] < [uil[risi); // 1 round, m — 1 inv
6. return [c1], ..., [cm];

4.2 Protocol variants

The above protocols implement the basic functionality of multi-party set operations. In this section
we show how they can be modified or extended to enable a number of new features.

Opening the result of a (multi)set operation. The output of the protocols presented in
section 4.1 cannot be safely opened without leaking information about their inputs because the
locations of erased items will be revealed. If the result is to be opened (e.g., when one of the above
operations is the last operation in the computation), the parties will need to additionally sort the
result, or randomly permute it, prior to the opening to hide all patterns. To do so, the last line of
each protocol in section 4.1 should be changed from

return [c1], ..., [cx];
to
return Sort([c1], .. ., [ck], £);

12

for the appropriate value of k. In section 7 we also show how this step can be performed more
efficiently using set compaction.

Reducing the size of the result of a (multi)set operation. The way our protocols are
specified does not reveal the size of the resulting set or multiset. In certain cases, however, for
efficiency reasons it is desirable to reveal the size of the output and eliminate all extra elements.
We distinguish between these two modes of computation by referring to them as length-hiding and
length-preserving, respectively. To perform a length-preserving operation, the parties follow each
protocol as defined in section 4.1, after which they sort the outcome and discard zero elements
by comparing each of them to 0 and opening the result of the comparison. More precisely, each

“return [c1], ..., [ckx]” operation (for the appropriate value of k) in the original protocol now needs
to be replaced with the following:

L. [di],. .., [dk] < Sort([c1], ..., [ex], £); // section 3.2

2. S« 0;

3. for ¢ =1 to k in parallel

4. [b] «+ Eq([di],0,0); // section 3.2

5. b+ Open([t)); // 1 round, 1 inv

6. if(b=0)S«+ Su{[d]};

7. return S,

The Open operation corresponds to broadcasting the shares of its argument, so that all parties can
reconstruct its value. As before, faster compaction can be used instead of sorting.

Computing (multi)set cardinality or over-the-threshold cardinality. Our basic protocols
for set operations compute the resulting set, while in certain applications different information
such as set cardinality needs to be computed. It is, however, rather straightforward to modify
our protocols to instead compute the cardinality (e.g., |A N B| for set intersection) or over-the-

”
threshold cardinality (e.g., |A N B| > T for set intersection and threshold T') of the resulting set.
For completeness, we next describe such modifications, which give us even simpler protocols than
the original versions.

To compute set union cardinality, it is no longer necessary to compute the ¢;’s in the Union
protocol. Instead, it suffices to compute only the number of elements that differ from the next
adjacent element in the combined sorted set xi, ..., Zm,+m,- In particular, we replace lines 2-6 in
Union with the following computation:

2. for i =1 to m; + ma — 1 do in parallel [u;] < Eq([zi], [zi+1], £); // section 3.2

3. return my + mso — Zﬁlﬁmrl[ui];

The set union over-the-threshold cardinality can likewise compute and return GE(m; + mg —
Z:‘ill—i_mQ_l [ul]v T, f)

The set intersection cardinality and the cardinality of a multiset after element reduction follow
a similar logic, where now the parties compute and return Zi“:nl/ 2l [u;] + Zy:nl/ 2} [v;] and 377 ui],
respectively. The over-the-threshold versions are formed analogously.

To compute the set difference cardinality, the parties need to produce the count of the number
of elements that do not get erased from the resulting set. This can be achieved by replacing lines
3-7 of the Diff protocol with the following:

3. return my — ST]

Finally, the symmetric difference cardinality can be obtained by replacing lines 3-7 of the Diff
protocol with the following:

13

3. return my 4 mg — 2372
As before, the over-the-threshold cardinality version is produced analogously.

Performing set operations on multiple input sets. Our protocols have been defined to work
on two input sets, while existing literature on multi-party set operations considers the problem of
computing set intersection or union of n input sets with n participating parties. Here we show that
it is not difficult to modify our set union, intersection, and equality protocols to work on k inputs
for any k > 2 (i.e., kK may or may not depend on n). We consider only these three set operations
as we are not aware of a standard way of defining other operations on multiple input sets.

First, observe that a protocol for multiple-input set union [cﬂ o lem] Union([agl)],...,
[a%i],..., [agk)],. [aﬁn,{]), where C' = I, A, A0 = {agi) aml} fori =1,...,k, and m =
Zle m;, can be obtained from the original Protocol 1 with virtually no changes. The only obvious
difference is that the step 1 now consists of sorting the concatenation of all of the AWg e,
(1], ... [2m] < Sort([agl)], e [aﬁ,ﬂ], - [agk)], e [a,ﬂf,{],). As before, the algorithm keeps a single
instance of each present distinct value and eliminates the rest.

In order to implement multiple-input set intersection [c1], . . ., [c[m—1)/k]] < Int([agl)], e [a%h,

. [agk)],. [affﬁ,{]), where now C' = ﬂle A® | the algorithm in Protocol 2 needs to be modified.
This time we would like to keep only the elements that appear exactly k times in the sorted array.
To do that, instead of checking two consecutive elements, we need to compare two elements k — 1
positions apart. Similar to Protocol 2, instead of producing a set of size m, this time we output a
set of size [(m — 1)/k] and the OR of multiple bits from which at most one is set is computed as
their sum. More precisely, we obtain:

Protocol 6. [c1], .., [cron_1m] < Int([al], ., [a], . [al), ., atnl)
1. [21],. . [zm] < Sort(jalM], .., a2, .. (@], .., (0], 0); // section 3.2
2. for i =1 tom — k + 1 do in parallel [u;] Eq([ml], [Tivk—1],0); // section 3.2
3.d+« |(m—1)/kl;
4. for i =1 to d do in parallel [¢;] « Zf 1([’[1,(1 D5 [T —1)k451); // 1 round, d- k inv
5. if ((m — 1) mod k # 0) cfim-ni ¢ 2oy V" uanrs)tarsil; // (m—1) mod k iny
6. return [c1],. .., [crm— 1)/;ﬂ],

Lastly, to obtain a set equality protocol that works on multiple input sets, we only need to sort the
concatenation of all £ sets and compare the elements of the sorted set k — 1 positions apart instead
of the original 1 position apart in the Sub protocol. It is obvious that m; = m; must also hold for
every ¢ and j.

4.3 Length-hiding set operations

Recall that our original protocols do not reveal any information about the size of the resulting set.
To enable their use in the full length-hiding mode, we need to make sure that our protocols work
correctly when the length of the input sets is also protected. To hide the actual length of a set, one
adds to that set a number of additional elements that have value 0. In this framework, for instance,
all sets can be padded to be of the same size (or one of few fixed sizes). It remains to show that
correctness of our protocols is preserved when the input sets contain dummy zero elements. We
consider each protocol in turn.

In the Union protocol, after the first step, all dummy elements will occupy the lowest indices
in the sorted set which we denote 1 through s. During the loop execution, the zero elements will

14

be set to 0 again, which has no effect on the result of the operation. The only place where a care
needs to be exercised is during comparison of zero element x5 and the next non-zero element x4, 1.
Notice that in the Union protocol, the result of computing Eq([zs], [zs+1],¢) has no effect on xg41.
We therefore obtain that the output of the protocol will be correct regardless of the number of
regular elements contained in the sets A and B (including the case when A and B are entirely
composed of dummy elements). By applying similar reasoning to other protocols, we obtain that
regardless of whether zero elements are reset to zero or their values are preserved, the result of
the computation is not affected. In the intersection protocol Int, we have that computation “at
the border” of dummy and regular elements, namely, xs; and xs11, can possibly affect xs41 only
when s + 1 is even, but we see that in that case c(;y1)/2 Will be set correctly to the result of the
comparison of xgy1 and xs19. Thus, the protocol works as expected on padded inputs. In the
element reduction protocol Red, we can also see that the result of Eq([zs], [zs+1],¢) will be 0 and
xsy1 will be set to 0 as required. Finally, in the set difference protocols Diff and SDiff protocols,
the value of us will be 0 as well and therefore will not affect the correctness of the value of ¢4 1.

The only protocol that cannot be executed as previously described on padded inputs is subset
relationship Sub. In contrast to other protocols that erase elements from the input sets, the subset
protocol counts the number of matched elements (which the padding can increase) and requires
the knowledge of the input set size. We therefore next describe a more elaborate version of Sub
protocol that works on padded input sets.

In the protocol below, we preserve information about the origin of each element during sorting
(note that elements from set A are marked with bit 1). After comparing the adjacent elements of
the sorted set, we prepend the array of computed bits u; with 1 if the first element of the sorted set
is 0, and with 0 otherwise. Now notice that if the sorted set contains k zero elements (which will
precede all other elements), u; = ... = ux = 1, while ugyq = 0. Thus, if we perform prefix-AND
on bits w1, ..., Um,+m,, the output will consist of k 1’s followed by mi + mg — k 0’s. This gives
us a mechanism to identify all zero elements within the sorted set. We then count the number
of non-zero elements in A and store the value in ¢, and count the number of matches between
non-zero elements in A and B and store the value in t9. If the values are the same, the protocol
outputs 1, and otherwise it outputs 0.

Protocol 7. [s] <+ Sub([a1], ..., [am,], [b1],- - - [bms])

L. <[331]7 [y1]>7 R <[xm1+m2]7 [ym1+m2]> — SortT(<[a1], [1]>7 T <[am1]7 [1]>v <[b1]7 [O]>> S <[bm2], [0]>’
0); // section 3.2

2. for i = 2 to my + mg do in parallel [u;] < Eq([x;], [xi—1],€); // section 3.2

3. [u1] < Eq([z1],0,¢); // section 3.2

4. ([v1], -+, [Vmy+msy]) < PreAND([u1], . . ., [Umi+ms,)); // section 3.2

5. [t1] ZmﬁmQ([yZ](l — [v])); // 1 round, my + mgy inv

6. [ta] — S (] — [w3]):

7. [s] + E[q][tl] , [t2], [logmq]); // section 3.2

8. return |s|;

This protocol also computes set equality when m; = ms.

We conclude that all our protocols except Sub can be used unmodified on inputs padded with
zero elements so that the size of both the input and output sets is protected. For the subset
operation, Protocol 7 should be used instead of Protocol 3.

15

4.4 Security

Correctness of the computation has been discussed with each respective protocol. We only comment
on the performance of randomized sorting algorithms, and randomized shellsort [39] in particular,
that can fail to sort the input with a small probability. In our context, failure to sort the input
can potentially become a security leak that reveals some information about the input sets. Toward
this end, we note that the algorithm of [39] can fail with probability at most 1/m? for some b > 1
and has not failed on any tested input. Furthermore, increasing the number ¢ of region compare-
exchange operations can be used to reduce the probability of failure to the desired 1/2* for a security
parameter x, which will result in statistical security. Lastly, we note that our protocols can run
in O(mlogm) time even without using randomized sorting algorithms by employing optimizations
described in section 7. Security of our protocols can be shown as follows:

Theorem 4.1 The above set operations protocols are t-private in presence of semi-honest partici-
pants with private channels with t < n/2.

Proof First, note that the (n,t)-threshold linear secret sharing scheme achieves perfect secrecy
in presence of collusions of size at most ¢ < n (i.e., zero information can be learned about secret-
shared values by t or fewer parties) in the case of passive adversaries. Also, the multiplication
operation does not reveal any information when ¢ < n/2 (see, e.g., [3] for a formal security proof).
Furthermore, because most other building blocks used in this work (i.e., Eq, GE, and PreAND)
have been previously shown to be secure, information is not revealed during their execution as
well. Their most efficient implementations are statistically secure (as opposed to perfectly secure)
for any desired security parameter k. Then if our protocols call only secure building blocks, the
security of the overall protocols will follow. In particular, by Canetti’s composition theorem [12],
(sequential) composition of secure sub-protocols results in security of the overall solution.

More formally, to comply with the security definition 1, we need to build a simulator St for each
protocol that can simulate the views of the corrupted parties I using their inputs and outputs in a
way which is indistinguishable from real protocol execution. We can easily build this simulator by
invoking simulators for the corresponding building blocks to simulate views for the entire protocol.
The resulting views are guaranteed to be indistinguishable from the real protocol execution by the
participants.

The only missing piece is security of Sort protocol. First, note that any candidate sorting
algorithm suitable for use in secure computation consists of a sequence of compare-and-exchange
operations. Each compare-and-exchange operation consists of a comparison GE, multiplications,
and additions/subtractions as shown in section 3.2. We thus can easily build a simulator for it
by invoking the corresponding simulators for the underlying operations. Second, we employ only
oblivious sort, in which the sequence of compare-and-exchange operations is input-independent and
therefore cannot leak information about the input. Thus, security of the overall Sort follows from
the security of compare-and-exchange operations where we invoke the corresponding simulator the
necessary number of times.

Lastly, we mention that the extension to set operation protocols that allows the parties to learn
information about the actual size of the resulting set is also secure, because in this case both the
function f and our protocol 7 reveal this information. O

Before we proceed with security in presence of malicious participants, we note that when the
building blocks Eq, GE, and PreAND are perfectly secure (i.e., implemented as arithmetic circuits),
all of our protocols are perfectly secure as well. It then follows from [14, 3] that security in presence
of adaptive adversaries comes “for free,” and the protocols are secure in presence of both static and

16

adaptive adversaries (this applies to the malicious setting as well). When, however, the building
blocks are statistically secure, according to [14] static and adaptive models are equivalent when
the number of computational parties is small (as a function of the security parameter), e.g., fixed,
which means that we also automatically obtain security against adaptive adversaries.

To show security in presence of malicious adversaries, we need to ensure that (i) all participants
prove that their input is well-formed, (ii) all participants comply with the prescribed computation
by proving that each step was performed correctly, and (iii) if some dishonest participants quit,
others will be able to reconstruct their shares and proceed with the rest of the computation. When
the computation corresponds to an arithmetic circuit, (ii) and (iii) are normally achieved using a
verifiable secret sharing scheme (VSS), and a large number of results have been developed over
the years (e.g., [36, 18, 44, 45, 7, 26, 24, 25| and many others). When, however, the participants
are expected to additionally perform other operations, we need to employ the corresponding zero-
knowledge proofs of knowledge. Similarly, if the input has a specified form, zero-knowledge proofs
will need to be employed.

When each input is a set (as opposed to a multiset), each element needs to be unique. Therefore,
to ensure correctness of a set operation, the participants need to verify this property prior to
execution of the operation. To minimize the overhead associated with such verification, we suggest
the following approach: on input two or more sets, the participants sort each set separately, then
verify that the difference between two consecutive elements in each sorted set is non-zero, merge

the sorted sets, and proceed with the rest of the operation as before. Then if any observed
value is zero, the participants abort the protocol. For example, if the input consists of two sets
A1y, Qm, and by, ..., by,, we replace sorting Sort([a1], ..., [am,], [b1],- - -, [bm,],£) in any protocol

with the following steps:

L. [x1], ... [zm,] < Sort([ai], .. -, [am,], £);
2. [y, .-+, [Yms] < Sort([bi], .., [bms], €);
3. for ¢ =1 to m; — 1 do in parallel
4. [a] < Eq([zip1] — [2i],0,0);
5. ¢ « Open([¢i]);
6. if ¢; =1, output L;
7. for i =1 to mg — 1 do in parallel
8. [c] + Eq([yi+1] — [wil, 0,0);
9. ¢ « Open([c]]);
10. if ¢, =1, output L;
11. [21]7 SERY) [Zm1+m2] < Merge(([x1]7 SRR) [‘rmJ)? ([y1]7 ST [ymz])v 6);

Clearly, opening the values on lines (5) and (9) does not reveal any information about the private
values and is the exactly the condition that the participants want to verify.

When padding is used, each input set is allowed to have multiple instances of zero elements.?
In such a case, the difference between two consecutive elements in a sorted set is allowed to be zero
as long as the elements are zero. We then modify the above verification to work with padded sets
as follows: now the participants privately compare each element of the sorted set to 0, privately
compare each difference between two consecutive elements of the sorted set to 0, and open the value
of the form (d; # 0) V ((d; = 0) A (z; = 0)) for each position i, where x; denotes the ith element
of the sorted set and d; the difference between x; and z;y1. Let u; denote the result of comparison
of z; to 0 and v; the result of comparison x;11 — x; to 0. The participants then compute and open

2The verification algorithm described above does not enforce absence of padding, which is normally not needed.
If, however, the participants want to ensure that no zero elements are present, they can simply compare the first
element of the sorted set to 0 and open the result of the comparison.

17

value v;u; + 1 — v; for each ¢ and abort if any of the opened values is 0. It is straightforward to
modify the verification steps given above for sets with no padding to incorporate the computation
of the u;’s and opening a modified expression on lines (5) and (9). It is interesting to note that
input verification is not needed when inputs are multisets since the inputs can be arbitrary.

Theorem 4.2 Given a (n,n/3)-VSS scheme with support for multiplication, generating a random
field element, and opening a secret-shared value, the above set operations protocols are t-secure in
presence of malicious participants with private channels with t < n/3.

Proof When the overall computation corresponds to an arithmetic circuit, all we need to obtain
security in presence of malicious participants is to employ a VSS scheme which ensures that (i)
each multiplication protocol is performed correctly, (ii) each input is secret-shared correctly in
case the dealer is corrupt, and (iii) a secret can be properly reconstructed from it shares (when
not already implied by the above). There are many such results for a variety of settings and
assumptions, normally for ¢ < n/3, and we in particular mention the result of [4] which provides
perfect security with ¢ < n/3. Then if at any point of the computation the participants are required
to input values of a specific form, they would have to prove that the values they supplied are well
formed. For our constructions such proofs are necessary only if statistically secure building blocks
(Eq, LE, and PreAND) are used, where the computational parties need to supply private random
values of a specific length. While enforcement of this constraint can be performed by using a range
proof from prior literature, e.g., [61], we propose an alternative solution that avoids computational
assumptions. In particular, when using Eq, LE, and PreAND from [15], collectively choosing a
random bit by the computational parties (using protocol RandBit) involves only generating a random
field element that VSS techniques already cover. Then to generate a random value of bitlength
k, the parties can call RandBit &k times in parallel obtaining bits bg, ..., by_1, after which each of
them locally computes r = Zi':ol 2b;. We thus obtain that the security of our protocols in the
malicious model follows from VSS techniques (e.g., [4, 36, 19]) when either perfectly secure or fast
statistically secure implementations of the building blocks from [15] are used. O

Note that in the malicious model the complexity of RandInt algorithm increases, which now uses
O(k) interactive operations to generate a k-bit random value instead of being local using PRSS in
the semi-honest setting. This slightly increases the overall number of interactive operations, but
has no effect on the asymptotic complexity of set operations.

As mentioned before, security in presence of adaptive and static participants in the malicious
model are equivalent for perfectly secure protocols [14] and in that setting we automatically gain
security in presence of adaptive adversaries. Then security in presence of adaptive adversaries
can only be obtained if the (statistically secure) building blocks are proven secure in the adaptive
adversarial model. Lastly, security under concurrent general composition [57] (or, equivalently,
universal composability [13]) is also free in the information-theoretic setting according to [54]. That
is, every perfectly secure protocol in the stand-alone setting is also secure under concurrent general
composition, and every statistically secure protocol in the stand-alone setting can be easily modified
to be secure under concurrent general composition (by adding the so-called start synchronization
to ensure that all inputs are ready before the computation starts).

5 General Conversion from a Multiset to a Set

Our previous protocols do not work correctly when they are run on multisets. To enable compu-
tation on multisets, we describe a general conversion from a multiset to a set, which will allow all
previous protocols to be run on multisets with only notational changes.

18

Our solution converts a multiset ay, .. ., ay, to a representation (z1,y1), ..., (Tm,Ym), where x;’s
correspond to the a;’s, and indices y;’s count the number of instances of each distinct value in the
multiset. That is, if a value v appears k times in the multiset, the indices of the corresponding
elements in the multiset will be numbered 1 through k. This makes each pair (z;, y;) unique and our
protocols for set operations apply. The multiset-to-set protocol below illustrates how this multiset
representation can be computed.

Protocol 8. ([z1], [y1]). ... ([Zm], [ym]) < M2S([a1], . ., [am])

L. [z1],. .., [zm] < Sort([ai], ..., [am], £); // section 3.2

2.] 1

3. fort=1tom—1do

4. [wi] < Eq([zi], [xit1], £); // section 3.2

5. [yit1] < [willyi] + 1; // m — 1 rounds, m — 1 inv
6. return {[z1], [, - {[m], [gm]):

In this protocol, the indices y; have to be computed sequentially. In the attempt to design an
algorithm that does not require the number of rounds to be linear in the size of the multiset, we
resort to the techniques that were used in [23] to design constant-round protocols for other integer
arithmetic operations. In particular, suppose we are given an associative binary operator o. Also
suppose that we can securely compute this operation on m inputs o[[a;] in R rounds and C(m)
operations. Given this, [16] describe a method for computing prefix-o, Pre,, that uses 2R rounds
and Ziozgfm 21C(m - 27%) 4+ mC(logy m) < logy mC(m) + mC(logy m) operations. Secure prefix-o
functionality is defined as ([bi1],...,[bm]) < Pres([a1], ..., [am]), where b; = oé-zlaj. In the context
of Protocol 8, this means that if we define a procedure for computing ([z,], [ym]) = o%,[a;] in
the multiset-to-set conversion using R rounds, we will be able to use their method to compute all
([, [yil) as (1), [i])s - o {[2m), [ym])) < Pre([al, . . [am]) in 2R rounds.

Before we proceed with further description, we need to specify the operator o used to perform
the conversion. The M2S protocol can be viewed as starting with individual elements, each with
count 1, and aggregating the first ¢ of them to compute the count at position i. Because the
operator must work on “individual” and “aggregate” values, we define it as:

([e1] [ea]) = (laa], [a2]) o ([ba], [b2])
1. [u] < Eq([a1], [b1],€); // section 3.2
2. [Cl] — [bl];
3. [ea] « [u][a2] + [ba]; // 1 round, 1 inv
4. return ([c1], [e2]);

The above assumes that the operands are well-formed, i.e., by > a;. We refer to this operation as
addition with reset, i.e., the count is reset if the value of the current multiset element has changed,
and the count is incremented otherwise. The operator can be shown to be associative.

To be able to use the method from [16] for computing Pre,([ai],. .., [am]) using a solution to
o™, [a;], we need a constant round procedure for computing o}, [a;], where a; = (x;,y;). We realize
it as shown below. Note that in this protocol each y; can be an arbitrary count (i.e., if y; > 1, the
pair (x;,y;) corresponds to an “aggregate” of several multiset elements with the same value), but
the z;’s must form a non-decreasing sequence.

Protocol 9. ([z], [y]) < o™ ([zi], [wi])

19

1. for i =1 to m — 1 do in parallel [u;] - Eq([z;], [zi+1], €); // section 3.2

2. ([vm=1]s ..., [v1]) < PreAND([tm—1], .. ., [u1]); // section 3.2

3. for i =1 to m — 1 do in parallel [w;] « [vi][yi]; // 1 round, m — 1 inv
4. [y] = [ym] + 2007 wil;

5. [z] + [zm];

6. return ([z], [y]);

In the protocol above, as a result of prefix-AND in step 2, we obtain an array of bits vy,_1, ..., v1,
where v; is set to 1 iff all elements xz; through z,, are equal. This allows us to count the number
of elements in the input which have the same value as z,,. Their corresponding counts are added
together in step 4 and are returned as the count for the entire set. This computation in particular
implies that if z,, > z,—1, then the pair (x,,, y,n) will be returned as required. This protocol allows
us to obtain a new solution for multiset-to-set conversion where the round complexity is the round
complexity of sorting plus a small constant.

Protocol 10. ([z1], [y1]), - - - ([zm], [ym]) < M2S([a1], - - -, [am])

L[], ..., [zh,] < Sort([ai], ..., [am], €); // section 3.2
2. for i =1 to m do in parallel [y}] < 1;

3. () [l - s ([wml, [ym]) = Preo(([1]; [l - - (], lyil)); - // Protocol 9
4. return ([z1], [1]), - ([&m]; [ym]);

This concludes our description of the conversion. To illustrate how it can be used to perform
multiset operations, we sketch a solution for multiset union A U B. It assumes that the input
multisets are already available in the proper format with numbered instances of each distinct value.

This can be achieved by executing the conversion protocol twice as ([z1], [¥1]), - - - ([#7,,], Wi,]) <
M2S([ar), - [ama]) a0 (2], (1) - ([t 5]} M2S([ba), - [bms]). Alternatively, tho in-

put multisets might already be avallable in the proper format as a result of prior processing. For
instance, the output of the multiset union protocol presented next produces an (unsorted) multiset
with properly numbered elements. The only exception are zero elements that have been erased as
the result of union computation. In particular, their counts are also set to 0 to ensure that such
elements do not affect correctness of our protocols during their composition.

Protocol 11. <[331], [y1]> 3 <[33m1+WL2]> [ym1+m2}> A l\/IUnion(([ac’l], [yll]>’ ERRS <[$lm1]’ [yvln1]>’ <[x/1/]7 [yi/Dv
o ([#ms)]s [Um,]))

1. k « max(mi,ma) + 1;
2. {loal, [B1], D), o [y o], B bma), [t) = SortT((k[2A]+ (4], [#a], []), - (l;[ff mal T

Wi)s [0,)s Wi 1) (R [20] + [0), (210 [D) - - (Rlan,]+ i), [0, [0,) €+ flog K1):
// section 3.2

3. for i =1 to my1 + me — 1 do in parallel

4. [wi] < Eq([eu], [ait1], £ + [log k1); // section 3.2

5. (] « [Bi] (1 — [ui)); // 1 round, m; + mg — 1 inv
6. [yi] < [7](1 = [w)); // optional

7. [xm1+m2] [Bm1+m2]

8. [Umy+ms] [’Ym1+mz] // optional

9. return <[$1]7 [y]) * <[xm1+m2]7 [ym1+m2]>;

In the protocol k should be set to a value larger than any y. and y/ (which are bounded by the

20

size of the multisets). In that way, the values will be sorted by the first elements z’s and z/’s, but
in case of their equality, the ties will be resolved — and the tuples will be sorted — by the second
elements y;’s and y’s. The safest way to set k is therefore to use k = max(m, ma) + 1.

As we indicate above, lines 6 and 8 are optional. That is, if the counts for each value do need
to be maintained, the protocol returns only [z;]’s. Otherwise, the counts can be computed at low
cost (i.e., significantly lower than executing the M2S protocol).

The remaining operations (such as intersection, difference, etc.) can be constructed similarly,
and we sketch such protocols in Appendix A. Security of these protocols can be shown analogously
to the security of set operations.

6 Direct Operations on Multisets

The previous section described efficient algorithms for private multiset operations using a general
multiset-to-set conversion. It is, however, often the case that direct implementations are more
efficient than utilizing general procedures. This is true for secure multiset operations as well. In
particular, by directly computing a multiset operation, both communication and round complexity
is reduced approximately by a factor of two because sorting is used only once instead of calling
it once for the conversion procedure for each input multiset and once on the combined multiset
for the set operation itself. Therefore in this section we describe our solutions that provide direct
implementation of multiset operations.

6.1 Overview of the technique

To be able to perform a multiset operation, we first sort the concatenation of two input multisets in
such a way that all elements from the first input set A appear before the elements of the same value
from the second input set B. It is accomplished by setting indices associated with the elements of
A to 0 and indices associated with the elements of B to 1. We then use values 2a; + 0 and 2b; + 1
to compare two elements during sorting, where a;’s and b;’s are elements of A and B, respectively.
This will ensure that all elements with the same original value will be grouped together in the
sorted multiset, but the elements from A appear before the elements with the same value from B.
After the sorting, we assign to all elements with the same value counts. The elements from A have
counts that start from 1 and increment, while the counts of the elements from B decrement from
the highest count of the elements with same value from A. That is, if the first occurrence of a
distinct value comes from A, its count is set to 1 (and otherwise it is set to —1). When another
element with the same value from A is observed, its count is incremented, but once elements from
B with the same value are observed, the count will be decremented after each occurrence. For
instance, a sorted combined multiset (1,0),(2,0),(2,0),(2,1),(2,1),(2,1),(3,1) will be converted
to the multiset with counts (1,0,1), (2,0, 1),

(2,0,2),(2,1,1),(2,1,0),(2,1,—1),(3,1,—1). The first element with a negative count corresponds
to an element from B for which there is no matching element from A. Then depending on what
operation needs to be performed, either elements with non-negative or elements with negative
counts might need to be erased. For instance, to compute multiset union, we erase all elements
with non-negative counts from B (i.e., erase the duplicates); to compute multiset intersection, we
erase all element of A and all elements of B with negative counts (i.e., those that do not have
matching elements from A). Verifying if a subset relation B C A exists is also very simple and it
requires only that we check for negative counts, since that would indicate an unmatched element
in B, denoting that a subset relation does not hold.

21

In order to efficiently calculate the multiset difference, we slightly modify the logic. This time,
we associate index 1 with the elements of A and index 0 with the elements of B. We then use
2a; + 1 and 2bj 4 0 for comparisons, which will force the elements of B to precede those from A
in the sorted multiset when the values of the elements are equal. As before, following the sorting
procedure we assign counts to all elements (note that this time the elements of B will have positive
counts and the first distinct occurrences will be given a —1 count if the element belongs to A).
After this preprocessing step, we can easily compute A \ B by erasing all elements from B along
with all elements of A with non-negative counts.

The (non-private) algorithm below for direct multiset union illustrates the logic for this opera-
tion, where the sorting procedure Sort sorts tuples using their first elements.

Algorithm 1. ¢i,...,¢pny+m, < DMUnion(ay, ..., am,,b1,...,bm,)

Lo (Z1,Y1,21)y - - s Ty tmas Ymi+mas Zmi+ms) < Sort((2a1,a1,0), ..., (2am,, am,,0), (2b1+1,b1, 1),
oy (2, + 1,6y, 1));
county < 1 — 2zq;
for i = 2 to my +msg do
if (yi-1 = i)
if (z;) count; < count;—1 — 1;
else count; < count;_1 + 1;
else count; <+ 1 — 2z;;
€1 < Y1,
for ¢ = 2 to my1 + my do in parallel
if (y; A (count; > 0)) ¢; < 0;
else ¢; < yi;
. return ci, . . ., Cmy+ma;

© XN O W

— = =
o = O

The two for loops can be easily combined into one (i.e., the y;’s can be reset to 0 inside the first
loop). We separate them for clarity of presentation: the computation in the first loop will be
common to all of our multiset operations, and the computation in the second loop is specific to
multiset union. We also note that, for the purposes of the above sequential algorithm, it is not
necessary to maintain negative counts. Instead, all elements from the second multiset that have no
matching elements from the first multiset can have the same count (e.g., —1). If the same count
is used, the comparison on line 10 can be replaced with an equality check, which would result in
a slightly more efficient implementation. We, however, need to maintain the exact counts for the
elements coming from both multisets for the purposes of a constant-round implementation of this
functionality.
To compute multiset intersection, it is sufficient to replace lines 811 above with:

8. c1 + 0;

9. for i = 2 to my + meo do in parallel
10. if (—y;) ¢ + 0;
11. else if (count; < 0) ¢; < 0;
12. else ¢; + x;;

2

Computing the subset relation (B C A) can be achieved by replacing lines 8-12 with:

8. s+ 1;
9. for ¢ =1 to m1 + mo do in parallel
10. if (count; < 0) s« 0;

22

11. return s;
To compute multiset difference, we change line 1 of the union algorithm to:

Lo (@1,91, 21)s - - o, Ty tmas Ymy+ma s Zmy+mg) < Sort((2a1+1,a1,1), ..., (2am,+1, am,, 1), (2b1, b1, 0),
*) <2bm2)bm270>);

and replace lines 8-11 with the appropriate logic:

8. for i = 1 to m1 + ms do in parallel
9. if (=y;) ¢ < 0;

10. else if (count; > 0) ¢; + 0;

11. else ¢; + x;;

What is important to notice is that the proposed approach for representing sorted multisets is
asymmetric with respect to the inputs A and B, which makes it a natural choice for asymmetric
(i.e., not commutative) set operations such as (asymmetric) difference and subset relation. As
shown above, it also works for symmetric operations such as union and intersection. If, however,
we would like to implement an improved logic for the set intersection that produces a multiset of
size (m1 +mg)/2 instead of m; +mgy or symmetric difference, we are not aware of a convenient way
to modify Algorithm 1 for that purpose.

To use our multiset-to-set conversion approach for symmetric set operations, we observe that the
procedure for computing the counts can be applied to the input multisets independently, after which
the two multisets can be merged. This gives us a mechanism for realizing symmetric functionalities
using an asymmetric function. We provide additional information on how this functionality can be
implemented below.

6.2 Efficient secure implementation

All of the algorithms for performing multiset operations directly that we described so far are
sequential and involve a linear number of rounds. To be able to compute these multiset operations
in a constant number of rounds, all that is necessary is to design a mechanism for computing all
counts count; in a constant number of rounds. Using the intuition developed in the previous section,
we define a new operator for the purposes of computing counts, which can be securely implemented
on two operands as follows:

([2], [yl [count]) < ([x1], [y1], [count1]) o ([x2], [y2], [counts])

L. [u] < Eq([z1], [22], £); // section 3.2

2. [w] « [wal;

3. [yl < [y2];

4. [count] « [u][counti] + [counta]; // 1 round, 1 inv
5. return ([z], [y], [count]);

In the above, each x; and x5 is a multiset element and y; and yo are bits. It is expected that the
inputs are well-formed, which means that z1 < z9 and if 1 = x2, then y; < y3. Then we obtain
that if 1 = @9, the counts are simply added. Otherwise, count; is ignored and counts is used in
the result. This operator can also be shown to be associative.

The last piece that remains before we are ready to present our direct implementations of private
multiset operations is to show how to compute unbounded fan-in ¢ operator o/, (x;, y;, count;) in
a constant number of rounds. This can be accomplished in a similar way to computing o, (x;, y;)
in section 5. In more detail, we have:

23

Protocol 12. ([z], [y], [count]) < o™ ([xi], [yi], [count;])

1. for i =1 to m — 1 do in parallel [u;] < Eq([z;], [zi+1],); // section 3.2

2. ([vm=1]s-- -, [v1]) + PreAND([tm—1], - ., [u1]); // section 3.2

3. for i =1 to m — 1 do in parallel [w;] < [v;][count;]; // 1 round, m — 1 inv
4. [z] = [zm];

5. [yl < [yml;

6. [count] [count,,] + 77wl

7. return ([z], [y], [count]);

Now, for example, the multiset union protocol becomes:

Protocol 13. [c1],.. ., [¢my+m,] < DMUnion([a1], ..., [am,], [b1], - - - [bms])

L. <[w,1]7 [yll]v [Zi]>7 SRRS) <[x;nl+m2]7 [y4n1+m2]7 [Z;nlergD «— SortT((2[a1], [a1]7 [0]>’ RS <2[am1}7
[@m,], [0]), (2[b1] + 1, [b1], [1]), - - -5 (2[bmy] + 1, [biny]s [1]), €+ 1); // section 3.2
2. for i =1 to m1 4+ mg do in parallel [count]] < 1 — 2[y.];

3. <[5L‘1]7 [yl]v [count1]>, EER) <[$m1+m2]a [ymlerz]’ [Countm1+m2]> — Pre<>(<[y/1]’ [21]7 [Countllb RR)
(o s g s [coURELp o)) // Protocol 11

4. for i = 2 to m; + mg do in parallel [u;] <= GE([count;], 0, [log max(m,m2)]); // section 3.2

5. for i = 2 to my + mg do in parallel [v;] < [x;][yi]; // mi+mg —1inv

6. [c1] « [z1];

7. for i = 2 to my + ma do in parallel [¢;] < [z;] — [us][vi]; // 1 round, m; +mg — 1 inv

8. return [c1],. . ., [Cmy+msl;

The subset relation protocol DMSub can be obtained from DMUnion by replacing lines 4-8 with:

4. for i =1 to m; + mg do in parallel [u;] <— GE([count;], 0, [logm1]); // section 3.2
5 [t] = o7 [udl;

6. [s] < Eq([t], m1 + ma, [log(m1 +m2)]); // section 3.2
7. return [s];

It is assumed above that m; > ms; otherwise, the result of the operation is 0 based on the multiset
sizes (when no padding is used). To form a private multiset difference protocol DMDIiff, one needs
to change the loops on lines 4 and 5 of the DMUnion protocol to start from ¢ = 1, as well as replace
line 1 with:

L (Lt 1) (24001 o (s s s oma)s [y s} SORET((2fa] + 1, an], (1), (2lam,] +
L, s (1), (200, [B1], 0] - - - (200um]s s, 0]), € + 1): // section 3.2

and lines 6-7 with:
6. for i =1 to my + mg do in parallel [¢;] < (1 — [u;])[vi]; // 1 round, m; + mg inv

As was mentioned earlier, we use a different logic for set intersection and symmetric difference
protocols, in which Pre, is executed on each input multiset separately, and the results are merged to
produce a single sorted set. In what follows, we provide a set intersection protocol that implements
the same computation for multisets as Protocol 2 for sets, but uses different variable naming for
ease of consecutive description. Below, m = mj + mo.

Protocol 14. [c1], ..., [c|m/2]] < DMInt([a1], ..., [am,]; [b1]; - - -, [bm,])

L [a}], ..., [a),,] < Sort([ai], .. ., [am,],€); // section 3.2

24

2. 1], ... (b,] < Sort([1y [bmal, £); // section 3.2

3. (4], il [eountt]) ... (1}, b Wi), [eount, 1) < Preo(([an], 0], [1), - -, (fam,], [0, [1]));
// Protocol 11

4. (1] [y], [eountt]), . .., ([,], [Um,], [countyy,) <= Preo({[ba], [0], [11), - - -, ([bm,], [0, [11));
// Protocol 11

5. k = max(my,ma) + 1;

6. ([z1], [x1], [counti]), ..., {[zm], [Tm], [count,,]) «— MergeT(((k[z}] + [count], []], [count]]), ...,
(K[, |+ [county,], [27,,], [county,, 1)), ((K[2Y]+[county], [27], [countt]), ..., (k[z7,, |+[county,],
[x7,], [county 1)), £ + [log k1); // section 3.2

7. for i =1 to m — 1 do in parallel [u;] <= GE(k[z;] + [count;], k[xiy1] + [count;i1], €+ [log k]);
// section 3.2
8. for i =1to [(m—1)/2] do in parallel [¢;] < ([ugi—1] + [v2i])[x2]; // 1 round, [(m —1)/2] inv
9. if (m mod 2 = 0) [¢;/2] = [m—1][Tm]; // 1inv
10. return [e1], ..., [c|m/2];

To implement multiset symmetric difference DMSDIff, all we need is to replace lines 8-10 in DMInt
with the following:

8. [c1] [z1](1 — [w1]); // 1 round, 1 inv
9. [em] = [em] (1 = [um—1]); // 1 inv
10. for i = 2 to m — 1 do in parallel
[ei] < fara] (1 = fu] = uia]); /] m—2iny
11. return [¢1],. .., [cm];

As before, security of these protocols can be shown in both passive and active models using the
same argument as in section 4.4.

While in the most general case our direct implementation of multiset operations yields more
efficient results, there are circumstances when the general approach described in section 5 achieves
a performance not significantly different from the direct implementation of the respective multiset
operation. In particular, if we can guarantee that the conversion procedure M2S will be executed
over the elements of all multisets as the initial step and that, as a result, each input multiset is
properly sorted, it then becomes possible to replace the SortT procedure present on all set operations
protocols by a more efficient MergeT. In that case, the cost of using the general conversion and
running the protocols for regular set operations will be very close to that of executing the protocols
presented in this section. The main difference in the performance of the two solutions then comes
from the need to operate on longer values in the general conversion than in the direct solutions for
most multiset operations while comparing the multiset elements. For example, sorting (or merging)
in MUnion executes compare-and-exchange operations on (¢ + [log k])-bit values, while DMUnion
performs this operation on values of length £+ 1. In both cases the modulus p of the secret sharing
scheme must be chosen appropriately to allow for correct representation of integers of the specified
length.

We next show how the multiset protocols described in this section can be made suitable for
length-hiding operations. Similar to set operations, all direct operations on multisets with the
exception of subset relationship work correctly when input multisets are padded with zero elements
to hide the actual number of elements in a multiset. It therefore remains to show how DMSub
needs to be modified to be suitable for length-hiding computation.

To ensure correct operation of DMSub on padded multisets, what is needed is to guarantee
that zero elements will not affect the outcome. This means that the excess of zero elements in the
second multiset B which have negative counts needs to be ignored in determining the result of the

25

operation. The simplest way to achieve this is to compare each element of the merged sorted set
to 0 and disregard zero elements with negative counts. This is what the protocol below computes,
where the total number of non-zero elements with negative counts should be 0 to result in the
output bit being set.

Protocol 15. [s] < DMSub([a41],. . ., [am,], [b1], - - - [bms])

L[], h) (210D - oo [0, o) Wi ms s (200, 4ma 1) <= SortT((2[aa], [aal, [01), - -, (lam,], [am,], [0]),
(2[b1] + 1, 1], [1]), - - -, (2[bmy] + 1, [bmo]s [1]), € + 1); // section 3.2

2. for i =1 to my + mg do in parallel [count]] < 1 — 2[y}];

3. ([3;‘1], [yl]a [Count1]>v SERY) <[$m1+m2]7 [ym1+m2]a [Countm1+m2]> A Preo(<[y’1], [ziL [Countll]> Y}
s s o rma)s (000 4] // Protocol 11

4. for i =1 to mi + mg do in parallel [u;] <— GE([count;], 0, [log max(m1,m2)]); // section 3.2

5. for i =1 to my + mg do in parallel [v;] < Eq([;], 0, ¢); // section 3.2

6. [t] « S22 (1 — [ug]) [wil; // 1 round, mj + mg inv

7. [s] < Eq([t], 0, [log max(m1,m2)]); // section 3.2

8. return [s];

This change to the original DMSub, however, involves mi1 + mso additional equality tests, which
generally can be avoided. In particular, as we represent multiset elements using positive numbers,
we can replace lines 5-7 above with

5. [t] + Z?l11+m2(1 — [ug]) [@il; // 1 round, m; + mg inv
6. [s] < Eq([t],0, ¢+ [log max(mq,ma)]); // section 3.2

which completely avoids the extra equality tests. Note that, instead of being the sum of bits, the
value of ¢ is now larger and contains the sum of the elements themselves with negative counts. The
correctness of the result, however, is still guaranteed if we appropriately increase the number of bits
considered in the final equality test when comparing the value of ¢ to 0. Unlike adding m; + myo
equality checks, this change has a negligible effect on the performance of the operation.

7 Optimizations

In this section we describe techniques for improving efficiency of the protocols by optimizing sorting
or replacing it with more efficient alternatives.

7.1 Operating on sorted inputs

As the first optimization, we notice that if the input sets in our set operations are always given
in a sorted form, the sorting step of our algorithms (which introduces their main complexity) can
be replaced by a merge operation. Because the merging step has lower complexity than sorting,
the efficiency of the overall protocol improves. In particular, as mentioned earlier, oblivious bitonic
merge [6] uses %mlogm compare-and-exchange operations and, perhaps more importantly, has
depth of logm as opposed to imlog2 m and %log2 m, respectively, for merge sort.

In order to be able to use merging instead of sorting in our protocols, we need to ensure that
inputs are given in a sorted form and the outputs also correspond to sorted (multi)sets. When each
set is originally coming from a single input party, it can be locally sorted prior to distributing its
shares to the computational parties. Alternatively, if the entire set is not known to any individual
party, every portion of it known to a single party can still be sorted and multiple portions are
merged by the computational parties prior to a protocol execution. Then the complexity of the

26

first set operation which handles that set will be higher than that of merging, but all other uses of
the same set save the cost of sorting.

To ensure that the output produced by a protocol is a sorted set, notice that non-zero elements
of all output sets are already sorted. Thus, instead of performing full sorting to produce a sorted
set, all that is necessary is to use set compaction which will place all zero elements before non-zero
elements. Producing a sorted set as the output will also eliminate the need to sort the set at the end
of the overall computation when the set is to be revealed to the output parties. Efficient oblivious
set compaction is therefore what we address next.

7.2 Utilizing (multi)set compaction

Our starting point for realizing set compaction obliviously was tight order-preserving compaction
for the external memory [40] that places all zero elements before non-zero elements while preserving
the order of the non-zero elements. We adopt the solution of [40] to our setting and optimize to
minimize the number of interactive operation as well as the number of rounds. The algorithm uses
butterfly-like network that consists of logm levels for sets of size m x1,...,Z,. Initially, at level
Ly, the cells store the original set to be compacted (cells with non-zero values x; are considered
occupied). Cell j at level L; is connected to cells j and j — 2° at level L;, 1, which means that it
can be routed to either cell at the next level. Initially, each non-zero element is labeled with the
number of cells that it needs to be moved to the left to create a tight compaction. In other words,
the label corresponds to the number of 0s in front of a non-zero element. For instance, if the input
setis 1, 0, 2, 0, 0, 3, the labels of 1, 2, and 3 will be 0, 1, and 3, respectively (and zero elements can
be assumed to be labeled with 0). These labels can be produced by a single scan of the array, which
we parallelize to run only in one round in our solution. Then for each level L; for 0 < i <logm —1,
the content of each occupied cell j with label y; is routed to cell j — (y; mod 2°1) (which will be
either j or j — 2%) at level L; 11, after which the label is updated to y; = y; — (y; mod 2¢+1).

Note that in the above description, non-zero elements of the input set are collected on the
left, at low indices, while for our set protocols we would like zero elements to be moved to the
left. This can be easily corrected by calling set compaction on the set x,,,..., 1 with the order of
the element reversed instead of the original x1,.. ., x,, and consequently reversing the order of the
elements in the returned set. Because the compaction algorithm is order preserving, it will work in
either situation.

In our compaction protocol Comp below, we first determine all non-zero elements and produce
their labels. The labels are incremented from element j to j + 1 only if element j + 1 is non-zero.
Then the labels of zero elements are erased (reset to 0). Because all additions are performed locally,
producing the labels (lines 2-4) involves only a single round. After computing the labels, we process
one level of the routing network at a time, during which for each cell j at level ¢ we compute the
bit v; = (y; mod 2+ = 0). The value of the cell j at level 7 + 1 is then determined based on the
routing decisions for cells j and j + 2¢ at level 4. That is, if both cells j and j + 2¢ at level i are
occupied, the content of either of them can be copied to cell j at level ¢ + 1. Otherwise, it may
or may not be occupied. Due to the algorithm’s correctness at most one occupied cell from level 4
will be routed to any given cell j at level ¢ + 1. This logic is encoded on lines 9-14 of the protocol,
which updates the cell contents as well as their labels for level 7 + 1.

Protocol 16. [z1],...,[zy] < Comp([ai],..., [am])

1. for i = 1 to m do in parallel [z;] < Eq([a;],0,¢); // section 3.2
2. [county] « [z1];
3. for i =2 to m do [count;] < [count;_1] + [z];

27

4. for i =1 to m do in parallel [y;] < (1 — [z;])[count;]; // 1 round, m inv
5. for i =1 to m do in parallel [z;] < [a;];

6. for i =0 to logm — 1 do

7. for j =1 to m do in parallel [u;] <= Mod2k([y;],¢,i+1); // see below

8. for j =1 to m do in parallel [v;] < Eq([u;],0,7+ 1); // section 3.2

9. for j =1 tom — 2% do in parallel
10. [25] < [vj][z;] + (1 = [vj10i]) [240i]; ‘ // 1 round, 2(m — 2') inv
o g« ol + (1= [ogpa) (o] — (1= a2 /) 2m —2) inv
12. for j = m — 2" to m do in parallel
13. (2] [vj][z;]; // 22" inv
14. [y]%[ilyil; // 22" inv

15. return [z1], ..., [Tm];

This protocol uses a new function which computes a mod 2* for a secret-shared integer a, the
description of which we present next. Our protocol Mod2k takes a secret-shared value a, its length
¢ in bits and an integer k and produces value a mod 2¥ — 2Fy (modulo p), where u is a bit. Our
protocol is a much reduced version of similar functionality in [15], which computes the operation
precisely as a mod 2¥ by removing the error factor 2¥u. We next describe our protocol and then
explain why the error factor does not affect correctness of compaction.

Protocol 17. [b] «+ Mod2k([a], ¢, k)

[r"] + RandInt(k + £ — k);

['] +— RandInt(k);

c + Open([a] + 25[7"] + [r']); // 1 round, 1 inv
¢ < ¢ mod 2F:

[b] = ¢ = [r'];

return [b];

SRRl

In the above, RandInt produces a random value of the bitlength given as its argument and requires
no interaction (see, e.g., [15] for more detail). Also recall that Open allows the parties to reconstruct
the value given as its argument. In the protocol, k corresponds to the statistical security parameter,
and after the first three steps of the protocol the parties learn a + r, where the length of random
r = 28" £ 1/ is at least & bits more than the length of a. Then note that the output b is equal
to (a mod 2¥) — 2¥u, where bit v = 1 iff (a mod 2¥) 4+ 7' > 2¥. We obtain that the result is
a mod 2% when (a mod 2’“) + 1’ < 2F, otherwise, when the sum overflows k-bit integers, the result
is (a mod 2F) — 2.

Returning back to compaction, we note that the above computation with a possible error 2%
does not pose a problem for our compaction algorithm. That is, the only values that @ mod 2* can
take during compaction are 0 and 2*~!. This means that 0 will always be computed correctly (no
overflow is possible), while 2! can be computed as either 2¥~1 or 25~ — 2%, Because the only
information that we need based on this computation is whether the result was equal to zero or
not (i.e., equality test on line 7 of Comp), the result of the comparison will always be correct, i.e.,
neither 25=1 nor 251 — 2% can be 0 in our representation to produce an error. This is true in our
setting (i.e., for any odd modulus p) even if we consider only k + 1 significant bits when comparing
the result of Mod2k to 0.

Remarkably, we obtain the cost of (reduced) modulo reduction of only one interactive operation.
We obtain that the overall cost of compaction is dominated by mlogm equality tests, where each
Eq protocol is executed on short values and the operation itself is substantially faster than GE used

28

Adv Security Communication Reference
passive | perfect/statistical O(nfmlogm + n?) [28]
active perfect O(nfmlogm + n?logm + n?) [7]
active statistical O(n(f + k)mlogm + n?logm + n?) [7]

Table 2: Communication complexity of set and multiset protocols measured in the number of field
elements.

in compare-and-exchange operations. This means that compaction runs in a small fraction of time
of either sorting or merging protocols. The round complexity of Comp is (round(Eq)+1)(logm+1),
i.e., similar to that of merging.

Finally, we would like to mention that compaction is not the only mechanism of a cost lower
than sorting for protecting private information about the output of a (multi)set operation before
revealing it to the output parties. [47], for example, use Waksman switching network [69] that
computes a random permutation of a set, which allows the parties to randomly shuffle the elements
of the output set and thus hide any patterns in it. Waksman network is implemented in [47] for
the two-party setting based on garbled circuits using a number of computation optimizations which
allow for an efficient implementation of the switching network. In particular, in [47] one party
supplies a random permutation and “hard-wires” it in the circuit, and the representation of the
wires associated with the comparison operations in the switching network is optimized as well. In
our setting, however, implementing such a network becomes substantially more costly. That is, in
addition to having the computational parties obliviously choose a random permutation not known
to any of them, implementing the network itself will include =~ mlogm GE operations as well as
other computation. The compaction algorithm that we instead choose in this work to accomplish
this (and other) goal allows for a significantly faster implementation: while requiring a similar
number of operations, it uses only equality tests Eq which are noticeably faster in our framework
than GE comparisons and does not involve a significant amount of other work.

The security of the protocols presented in this section follows the same argument as before.
In particular, it relies on the same elementary building blocks as other sub-protocols from prior
literature used throughout our solutions (such as comparisons).

8 Complexity Analysis

After presenting optimizations to the protocols, we are ready to evaluate their complexities under
different security settings. The complexities of all of our protocols are dominated by O(mlogm)
compare and exchange operations needed for sorting, where m is the combined size of the input
(multi)sets, or O(¢mlogm) invocations, where £ is the bitlength of set elements. When the compu-
tation proceeds on sorted sets, the depth or round complexity of all protocols is O(log m) (with and
without compaction). The communication complexity of our protocols measured in the number of
field elements is shown in Table 2 using the results from prior literature. The computation is the
same as communication. The results assume ¢ < n/2 for passive adversaries and ¢ < n/3 for active
adversaries (although results for ¢ < n/2 are available as well). The results with perfect security use
perfectly secure building blocks. When statistically secure building blocks are used in the malicious
setting, as discussed in section 4.4, complexity of LT, Eq, and PreAND becomes O(¢+ k) invocations,
where & is a (statistical) security parameter. This is due to the fact that protocol RandlInt is called
to generate random integers s bits longer than integers used in the computation. This change is
reflected in Table 2. The constants, however, are small enough that we expect the solution that
uses statistically secure building blocks is faster in the malicious model as well. When statistically

29

Protocol Set size
16 32 64 128 | 256 | 512 | 1024 | 2048
Set union 0.127 | 0.247 | 0.515 | 1.104 | 2.411 | 5.384 | 11.886 | 24.880
Set intersection 0.125 | 0.245 | 0.510 | 1.097 | 2.359 | 5.327 | 11.734 | 24.875
Set intersection with compaction | 0.164 | 0.316 | 0.640 | 1.337 | 2.880 | 6.323 | 13.849 | 30.716
Multiset intersection 0.163 | 0.310 | 0.634 | 1.297 | 2.855 | 6.287 | 14.242 | 29.598

Table 3: Runtime of set and multiset operations protocols in seconds.
secure building blocks are used in any more, the field size is increased by a security parameter x.

9 Performance Evaluation

In order to fully evaluate performance of our techniques, we implemented several protocols and
measured their runtime for a number of set sizes. We used 32-bit integers to represent set elements
(i.e., £ = 32), and following the implementation of related primitives in [64] set the statistical
security parameter s to 48. This requires that the field Z, used for the secret sharing scheme has
modulus p of size greater than ¢ + x, and we use |p| = 81 in our implementation of set operations.
For the multiset operations, the modulus size is increased by log(max(mj, mg) + 1) bits, where as
before mq and msy are the number of elements in the input multisets. For the experiments we used
(3, 1)-secret sharing scheme, where each of the three computational parties was run on a 2.4GHz
AMD Opteron computer. The computational parties were connected by 1Gb Ethernet. The code
was written in C++ using the GMP library [37] for large number arithmetic. All integer operations
were implemented as described in [2].

We implemented optimized set union and intersection protocols, as well as multiset-to-set con-
version which correspondingly allows us to run multiset union and intersection. In more detail, we
used bitonic merge [6] instead of full sort together with the building blocks’ instantiations listed in
section 3.2. As described in section 7, this setup assumes that the input sets are already individually
sorted.

Our implementation used a limited degree of parallelism. In particular, when a number of
operations of the same type could be carried out in parallel, they were executed in a single batch.
For instance, in bitonic merge m/2 independent compare-and-exchange operations can be carried
out simultaneously, and in our implementation each computational party first batched computation
and communication of all of them together using the same number of rounds as that of a single
compare-and-exchange operation. While this type of processing allows us to greatly reduce the
communication time compared to the sequential execution of each operation by the computational
parties, it by no means is optimal in terms of its runtime and the performance can be improved. In
particular, with a full support for parallelism, the computation could be split among the multiple
cores of the computational parties. In addition, the number of communication rounds could be
lowered as data-independent rounds of the comparison protocol of a bitonic merge iteration could
be carried out in parallel with the comparison computation of its previous iteration.

We measured performance of implemented protocols on sets of size from 16 to 2048, where
the set size was increased by a factor of 2 for each consecutive experiment. Table 3 lists the
running times of our set union (Protocol 1), set intersection (Protocol 2), set intersection followed
by compaction (Protocols 2 and 16), and multiset intersection (Protocol 18 in Appendix A) in
seconds. Each reported runtime corresponds to the average running time over five identical runs
of the corresponding operation and the set size. As can be seen from the table, we obtain practical
results which can scale to sets and multisets of rather large sizes. As expected, the runtime grows

30

301 Intersection with compaction 1 209 [g
, 25| — Intersection without compaction 1 Eos B Communication |
“% N .%00.7 [] Computation 1
2 €06
g 15} 205
> g 0.4
E 1ot 303
= g=
ol 202
-
0.1
0

. 16 32 64 128 _256 512 1024 2048
Set size Set size

Figure 1: Performance of set intersection protocols.

slightly faster than a linear function in the size of the (multi)set.

One can notice that the performance of the set union protocol is very close to that of set
intersection. This is due to the fact that almost all of the time is being spent in the merging step
common to both operations, and the remaining computations are also very similar. Both Table 3
and Figure 1 report times for the set intersection protocol with and without compaction. As can
be seen, despite a larger constant in the complexity of compaction compared to that of merging,
performance of compaction is noticeably faster than that of the set intersection itself.

Table 3 also shows that performance of multiset operations is only slightly slower than that of
the corresponding set operations.

Lastly, we measure the amount of time used for communication compared to that for computa-
tion. As previously discussed, our protocols were designed to minimize the round complexity and
consequently reduce the communication time. We therefore were interested in determining the por-
tion of the overall runtime due to communication, and the results for the set intersection protocol
(without compaction) are given in Figure 1. Following our expectation, for small set sizes most
of the overall runtime is due to communication, and the fraction of time spent on communication
gradually decreases as we increase the set size.

Recently, implementations of secure set intersection protocols in the two-party setting have
appeared in the literature [47, 32]. Because of the drastic differences in our setting and the setting
adopted in those publications, a direct performance comparison of our solutions and those in [47,
32] is not possible. We can therefore only provide a discussion of the relative performance and
capabilities of the solutions. In particular, [47] propose protocols for set intersection in the two-
party setting based on Yao’s generic garbled-circuit evaluation [71]. For sets with 1024 elements
and the security parameter set to guarantee short-term security (112 bits), their most efficient
implementation yields a runtime of 11.8 seconds for elements represented using 32 bits (exact
runtimes are not available for sets of other sizes). In another recent implementation of two-party set
intersection [32], the authors measured the performance of a custom linear-time RSA-based protocol
from [31]. The implementation was optimized and fully parallelized, in that the computation was
partitioned among the cores of a 4-core server and dual core client. The authors achieve a notable
runtime of 1.8 seconds for sets of size 1000 and the same 112-bit short-term security parameter.
Although our implementation results in a slower performance, this gap is largely expected for a
variety of reasons. The most prominent reason is the fact that our multi-party framework incurs
numerous interactive rounds during computation while these two-party solutions require a single
interaction. Second, our solution is oblivious with respect to the inputs, while in the solutions
implemented in both [47] and [32] the fact that the parties have knowledge of the sets (and in

31

some cases other information) results in faster performance. Third, not taking advantage of the
available multiple CPU cores in our implementation contributes to the amount of time spent on
computation, although this can be substantially reduced in an implementation that parallelizes the
computation. Lastly, the flexibility of our framework, composability of the protocols, and support
for a large number of set and multiset operations offer advantages not available in other settings,
and our solution can be preferred for those reasons despite its longer runtime.

10 Conclusions

This work is the first to provide a comprehensive suite of protocols for multi-party set and multiset
operations that are data-oblivious and composable. The list of covered operations consists of
set and multiset union, intersection, equality, symmetric and asymmetric difference, subset and
superset relationships, and element reduction (for multisets). The flexibility of the framework
allows these operations to be employed in a variety of settings ranging from the traditional secure
multi-party computation to secure outsourcing by one or more parties. The solutions have a
natural support for hiding the output size and can be easily extended to compute cardinality
or over-the-threshold cardinality of the result. All solutions are information-theoretically secure
against malicious adversaries, achieve low communication and computation cost of O(m logm) for
data sets of size m, and were designed to minimize round complexity. Experimental results show
practicality of our solution.

Acknowledgments

Portions of this work were sponsored by grant AFOSR-FA9550-09-1-0223 from the Air Force Office
of Scientific Research. Any opinions, findings, and conclusions or recommendations expressed in
this publication are those of the authors and do not necessarily reflect the views of the AFOSR.

References

[1] M. Ajtai, J. Komlds, and E. Szemerédi. An O(nlogn) sorting network. In STOC, pages 1-9,
1983.

[2] M. Aliasgari, M. Blanton, Y. Zhang, and A. Steele. Secure computation on floating point
numbers. In Network and Distributed System Security Symposium (NDSS), 2013.

[3] G. Asharov and Y. Lindell. A full proof of the BGW protocol for perfectly-secure multiparty
computation. Electronic Collogium on Computational Complexity (ECCC), Report No. 36,
2011.

[4] G. Asharov, Y. Lindell, and T. Rabin. Perfectly-secure multiplication for any ¢ < n/3. In
CRYPTO, 2011.

[5] G. Ateniese, E. De Cristofaro, and G. Tsudik. (If) size matters: Size-hiding private set
intersection. In Public Key Cryptography (PKC), volume 6571 of LNCS, pages 156-173, 2011.

[6] K. Batcher. Sorting networks and their applications. In AFIPS Spring Joint Computer Con-
ference, 1968.

32

[7]

8]

[10]

[11]

[12]

Z. Beerliova-Trubiniova and M. Hirt. Perfectly-secure MPC with linear communication com-
plexity. In Theory of Cryptography Conference (TCC), pages 213-230, 2008.

A. Ben-David, N. Nisan, and B. Pinkas. FairplayMP: A system for secure multi-party computa-
tion. In ACM Conference on Computer and Communications Security (CCS), pages 257-266,
2008.

M. Blanton and E. Aguiar. Private and oblivious set and multiset operations. In ASTACCS,
2012.

M. Blanton, M. Atallah, K. Frikken, and Q. Malluhi. Secure and efficient outsourcing of
sequence comparisons. In ESORICS, pages 505-522, 2012.

G. Blelloch and M. Reid-Miller. Fast set operations using treaps. In SPAA, pages 16-26, 1998.

R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryp-
tology, 13(1):143-202, 2000.

R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS, 2001.

R. Canetti, I. Damgard, S. Dziembowski, Y. Ishai, and T. Malkin. Adaptive versus non-
adaptive security of multi-party protocols. Journal of Cryptology, 17(3):153-207, 2004.

O. Catrina and S. de Hoogh. Improved primitives for secure multiparty integer computation.
In Security and Cryptography for Networks (SCN), pages 182-199, 2010.

A. Chandra, S. Fortune, and R. Lipton. Unbounded fan-in circuits and associative functions.
In ACM Symposium on Theory of Computing (STOC), pages 52—60, 1983.

J. H. Cheon, S. Jarecki, and J. H. Seo. Multi-party privacy-preserving set intersection with
quasi-linear complexity. IFICE Trans. on Fund. of Electr., Comm. and Comp. Sci., E95-
A(8):1366-1378, 2012.

R. Cramer, I. Damgard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty com-
putations secure against an adaptive adversary. In Advances in Cryptology — EUROCRYPT,
pages 311-326, 1999.

R. Cramer, I. Damgard, and U. Maurer. General secure multi-party computation from any
linear secret-sharing scheme. In Advances in Cryptology — EUROCRYPT, pages 316-334, 2000.

R. Cramer, I. Damgard, and J. Nielsen. Multiparty computation from threshold homomorphic
encryption. In Advances in Cryptology — FUROCRYPT, pages 280-300, 2001.

D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Efficient robust private set inter-
section. In Applied Cryptography and Network Security (ACNS), pages 125-142, 2009.

D. Dachman-Soled, T. Malkin, M. Raykova, and M. Yung. Secure efficient multiparty com-
puting of multivariate polynomials and applications. In ACNS, pages 130-146, 2011.

I. Damgard, M. Fitzi, E. Kiltz, J. Nielsen, and T. Toft. Unconditionally secure constant-
rounds multi-party computation for equality, comparison, bits and exponentiation. In TCC,
pages 285-304, 2006.

33

[24]

[25]

[26]

I. Damgard, M. Geisler, M. Krgigaard, and J. Nielsen. Asynchronous multiparty computation:
Theory and implementation. In Public Key Cryptography (PKC), pages 160-179, 2009.

I. Damgard, Y. Ishai, and M. Krgigaard. Perfectly secure multiparty computation and the
computational overhead of cryptography. In Advances in Cryptology — EUROCRYPT, pages
445-465, 2010.

I. Damgard, Y. Ishai, M. Krgigaard, J. Nielsen, and A. Smith. Scalable multiparty computation
with nearly optimal work and resilience. In Advances in Cryptology — CRYPTO, pages 241-261,
2008.

I. Damgard and M. Jurik. A generalisation, a simplification and some applications of Paillier’s
probabilistic public-key system. In Public Key Cryptography (PKC), pages 119-136, 2001.

I. Damgard and J. Nielsen. Scalable and unconditionally secure multiparty computation. In
CRYPTO, pages 572-590, 2007.

E. De Cristofaro, P. Gasti, and G. Tsudik. Fast and private computation of cardinality of
set intersection and union. In International Conference on Cryptology and Network Security
(CANS), 2012.

E. De Cristofaro, J. Kim, and G. Tsudik. Linear-complexity private set intersection protocols
secure in malicious model. In Advances in Cryptology — ASIACRYPT, volume 6477 of LNCS,
pages 213-231, 2010.

E. De Cristofaro and G. Tsudik. Practical private set intersection protocols with linear com-
plexity. In Financial Cryptography and Data Security (FC), volume 6052 of LNCS, pages
143-159, 2010.

E. De Cristofaro and G. Tsudik. Experimenting with fast private set intersection. In Interna-
tional Conference on Trust and Trustworthy Computing (TRUST), pages 5573, 2012.

P.-A. Fouque, G. Poupard, and J. Stern. Sharing decryption in the context of voting or
lotteries. In International Conference on Financial Cryptography (FC), volume 1962 of LNCS,
pages 90-104, 2000.

M. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set intersection. In
Advances in Cryptology — EUROCRYPT, volume 3027 of LNCS, pages 1-19, 2004.

Keith Frikken. Privacy-preserving set union. In ACNS, volume 4521 of LNCS, pages 237252,
2007.

R. Gennaro, M. Rabin, and T. Rabin. Simplified VSS and fast-track multiparty computations
with applications to threshold cryptography. In ACM PODC, pages 101-111, 1998.

The GNU multiple precision arithmetic library release 5.0.5. http://gmplib.org/, 2012.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC, pages
218-229, 1987.

M. Goodrich. Randomized Shellsort: A simple oblivious sorting algorithm. In SODA, pages
1262-1277, 2010.

34

[40]

[41]

[42]

[47]

[48]

M. Goodrich. Data-oblivious external-memory algorithms for the compaction, selection, and
sorting of outsourced data. In ACM Symposium on Parallelism in Algorithms and Architec-
tures, pages 379-388, 2011.

M. Goodrich. Spin-the-bottle sort and annealing sort: Oblivious sorting via round-robin
random comparisons. In Workshop on Analytic Algorithmics and Combinatorics (ANALCO),
2011.

C. Hazay and Y. Lindell. Efficient protocols for set intersection and pattern matching with se-
curity against malicious and covert adversaries. In Theory of Cryptography Conference (TCC),
pages 155175, 2008.

C. Hazay and K. Nissim. Efficient set operations in the presence of malicious adversaries. In
PKC, 2010.

M. Hirt and U. Maurer. Robustness for free in unconditional multi-party computation. In
Advances in Cryptology — CRYPTO, pages 101-118, 2001.

M. Hirt and J. Nielsen. Robust multiparty computation with linear communication complexity.
In CRYPTO, pages 463482, 2006.

J. Hong, J. W. Kim, J. Kim, K. Park, and J. H. Cheon. Constant-round privacy preserving
multiset union. Cryptology ePrint Achive Report 2011/138, 2011. http://eprint.iacr.org/
2011/138.

Y. Huang, D. Evans, and J. Katz. Private set intersection: Are garbled circuits better than
custom protocols? In Network & Distributed System Security Symposium (NDSS), 2012.

S. Jarecki and X. Liu. Efficient oblivious pseudorandom function with applications to adaptive
OT and secure computation of set intersection. In Theory of Cryptography Conference (TCC),
pages 577-594, 2009.

S. Jarecki and X. Liu. Fast secure computation of set intersection. In SCN, pages 418435,
2010.

K. Jonsson, G. Kreitz, and M. Uddin. Secure multi-party sorting and applications. Cryptology
ePrint Archive Report 2011/122, 2011.

S. Kamara, P. Mohassel, and M. Raykova. Outsourcing multi-party computation. Cryptology
ePrint Archive report 2011/272, 2011.

L. Kissner and D. Song. Privacy-preserving set operations. In CRYPTO, pages 241-257, 2005.

H. T. Kung and P. Lehman. Systolic (VLSI) arrays for relational database operations. In
ACM SIGMOD International Conference on Management of Data, pages 105-116, 1980.

E. Kushilevitz, Y. Lindell, and T. Rabin. Information-theoretically secure protocols and secu-
rity under composition. STAM Journal of Computing, 39(5):2090-2112, 2010.

T. Leighton and C. Plaxton. Hypercubic sorting networks. SIAM Journal of Computing,
27:1-47, 1998.

R. Li and C Wu. An unconditionally secure protocol for multi-party set intersection. In ACNS,
2007.

35

[57]

[58]

Y. Lindell. General composition and universal composability in secure multi-party computa-
tion. In FOCS, pages 394-403, 2003.

G. Narayanan, T. Aishwarya, A. Agrawal, A. Patra, A. Choudhary, and C. Rangan. Multi
party distributed private matching, set disjointness and cardinality of set intersection with

information theoretic security. In Cryptology and Network Security (CANS), pages 21-40,
20009.

A. Patra, A. Choudhary, and C. Rangan. Information theoretically secure multi party set
intersection re-visited. In Selected Areas in Cryptography, pages 71-91, 2009.

A. Patra, A. Choudhary, and C. Rangan. Round efficient unconditionally secure MPC and
multiparty set intersection with optimal resilience. In INDOCRYPT, pages 398-417, 2009.

K. Peng and F. Bao. An efficient range proof scheme. In IEEE PASSAT, pages 826833, 2010.

T. Raeder, M. Blanton, N. Chawla, and K. Frikken. Privacy-preserving network aggregation. In
Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD), pages 198-207,
2010.

Y. Sang and H. Shen. Efficient and secure protocols for privacy-preserving set operations.
ACM Transactions on Information and System Security, 13(1):9:1-9:35, 20009.

Information security in supply chain management (SecureSCM) project deliverable D9.2. Uni-
versity of Mannheim, July 2009.

A. Shamir. How to share a secret. Communications of the ACM, 22(11):612-613, 1979.

A. K. Sood and M. Abdelguerfi. Parallel and pipelined processing of some relational algebra
operations. International Journal of Electronics, 59(4):477-482, 1985.

T. Toft. Sub-linear, secure comparison with two non-colluding parties. In PKC, pages 174-191,
2011.

J. Vaidya and C. Clifton. Secure set intersection cardinality with applications to association
rule mining. Journal of Computer Security, 13(4):593-622, 2005.

A. Waksman. A permutation network. Journal of the ACM, 15(1):159-163, 1968.

C. Wang, K. Ren, and J. Wang. Secure and practical outsourcing of linear programming in
cloud computing. In INFOCOM, pages 820-828, 2011.

A. Yao. How to generate and exchange secrets. In FOCS, pages 162-167, 1986.

B. Zhang. Generic constant-round oblivious sorting algorithm for MPC. In ProvSec, pages
240-256, 2011.

36

A Multiset Protocols using General Multiset-to-Set Conversion

The multiset intersection protocol, MInt, is somewhat similar to MUnion. To obtain MInt with
the optimized performance of Protocol 2, we replace lines 3-9 in MUnion (Protocol 11) with the
appropriate logic, resulting in the following protocol (as before, m is compact for my + mo):

Protocol 18. ([z1], [y1]). -, ([Zmytmol; [Ym4mal) < MInt(([1], [y1]), - -, i,], [y, 1) {[21) [97]),
co (2,) [, 1))

1. k< max(mi,ma) + 1;
2. <[a1]’ [51]7 [’Yle Tt <[am1+m2]7 [ﬁmﬁ-mz]) ['le—i-mg}) A SortT((k[az’l]—l—[yﬂ, [xll]v [yﬁ%)
Wi s [0,], Wi 1) (R[] + 1], 2], (D) - s (R,] + Ey/é’m], [1‘4%2]?; [23/72’12]%5 + [log k]);
section 3.

3. for i =1 to [(m —1)/2] do in parallel

4. [i| < Eq([aai], [a2i—1], £ + [log k]); // section 3.2

5. [v] + Eq([agi], [a2it1], £ + [log k]); // section 3.2

6. fwi] = ([u] + [wi]) [Bil; // 1 round, [(m —1)/2] inv
7. [y« (ud + o) Pl // optional

8. if (m mod 2 = 0)

9. [umya] + Eq(lam], [am—1], £ + [log k1); // section 3.2

N i DU g // 1inv

1. [Ymga] ¢ [my/2)[¥ml; // optional

12. return [z1], ..., [T1n/2)];

The multiset version of our subset relation protocol MSub returns only a single bit and can be
constructed from the multiset union by simply replacing lines 3—9 with:
3 for i = 2 to my + ma do in parallel [u;] < Eq([7i], [vi—1], ¢ + [logk]); // section 3.2

4. [t] & 2T [wil;
5. [s] < Eq([t], m1, [logmi]); // section 3.2
6. return [s];
It is also not very difficult to derive the multiset difference protocol MDiff from its set version Diff,
which we provide next.

Protocol 19. ([x1], [y1]). -, ([@mi+ms); [Ymi4ma]) <= MDIF(([24], [1]), - s [0, [y, 1, ([27), [0]),
- (2,], [, 1))

1. k + max(mq,mgo) + 1;
2. <[O¢1], [51]7 [71]7 [51]>7 RS <[am1+m2]v [5m1+m2]7 [’le-i-mz]ﬂ [5m1+m2]> — SortT((k[x’l]+[yi], [x/1]7 [yll]v [0]>7
o (Kl [[,) [, s i, 15 [OD) - R[]I], (24T, [0] (20D - - s (R, 1 [y, | [,] [y, s (1)),

¢+ [log k); // section 3.2
3. for i =1 to m; +mg — 1 do in parallel [u;] < Eq([as], [it1], € + [logk]); // section 3.2
4. [m1] = [B](1 = [ua]); // 1 round, 1 inv
5. (1] < [= [w]); // optional
6. [@my+ma) < [Brmitme] (1 = [tmy+ms—1]); // 1inv
7. [Ymr+mal < [Ymat+ma] (1 = [ty 4mo—1]); // optional
8. for i = 2 to m1 + mo do in parallel
9. [LI?Z] — [51](1 — [Uz] — [ui_l]); // m1 + mg — 2 inv
10 [y] <= [l (X = [u] = [uia]); // optional

37

11. for ¢+ =1 to my + my do in parallel

12, [z < [Bi](1 = [6i]); // 1 round, m; + mg inv
13, [y « Pl — [8)) // optional
14. return ([z1], 1)), - ([Tmy-tms]s [Ym1ma));

In this protocol sorting is done with respect to the first element of each (4-)tuple. Symmetric
difference can be obtained by skipping lines 11-13. As before, we will execute the lines marked as
optional only if the counts need to be preserved.

38

