
Green Cryptanalysis: Meet-in-the-Middle Key-Recovery
for the Full KASUMI Cipher ?

Keting Jia1, Christian Rechberger2, and Xiaoyun Wang1,3??

1 Institute for Advanced Study, Tsinghua University, China
{ktjia,xiaoyunwang}@mail.tsinghua.edu.cn

2 Department of Mathematics, Technical University of Denmark, Denmark
c.rechberger@mat.dtu.dk

3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, Shandong
University, China

Abstract. KASUMI is a block cipher with eight Feistel rounds and a key of up to 128 bits. Proposed
more than 10 years ago, the confidentiality and integrity of 3G mobile communications systems
depend on the security of KASUMI. In the practically interesting single key setting that we are
aiming for in this work, no attack is known.

For the full 8-round KASUMI we show for the first time a wide variety of results with data
complexities between 232 chosen plaintexts and as few as 2 texts, while the speed-ups over brute
force are between a factor 4 and 6. For use-cases of KASUMI in 2G networks, relying on a 64-bit
master key, we describe key recovery methods with extremely low data complexity and speed-ups
between a factor 2 and 3 for essentially any desired success probability. The latter results are the
first of this type of cryptanalysis that could result in practically realizable cost and energy savings
for key recovery efforts.

By also analyzing an earlier version of the KASUMI-64 design that had a different mapping from
the 64-bit master key to the 128-bit cipher key, we shed some light on a high-level key schedule design
issue that may be of independent interest.

Keywords: KASUMI, KASUMI-64, Meet-in-the-Middle Attack, Cryptanalysis

1 Introduction

The block cipher KASUMI, designed by ETSI SAGE [29], is the foundation of the 3GPP encryp-
tion and integrity algorithms. Nowadays, it is also recommended as the standard algorithms A5/3
and GEA3 in GSM and GPRS mobile communications systems, respectively [31]. By now there
are over 1-billion subscribers for 3GPP and more than 4-billion GSM devices. Although A5/3 is
not yet widely deployed in GSM networks, it is widely considered to be imperative to switch to
A5/3 from A5/1, because it is trivial to eavesdrop GSM conversations [27,30], even to emulate
a mobile phone to make phone calls and send text messages [28] using a time-memory trade-off
attack on A5/1 [4]. In response to these attacks, the GSM Association has vowed to switch to the
much more modern A5/3 cipher since 2010. Once adopted, KASUMI will become one of the most
widely used cryptographic algorithms in the world. Hence, it is very important to understand the
security offered by KASUMI, especially with the particular applications of KASUMI in mind.

Earlier cryptanalysis of KASUMI. KASUMI is a slightly modified version of the block
cipher MISTY1 [26], which is optimized for hardware performance and has a 128-bit key and 8
Feistel rounds. Owing to the importance of KASUMI, it has received a lot of interest from the
cryptographic research community. In the single-key setting, Kühn introduced the impossible dif-
ferential attack on 6-round KASUMI [24], which was very recently extended to 7-round KASUMI
by Jia et al. [21]. Sugio et al. gave a higher order differential attack on 5-round KASUMI with
practical complexity [33]. Since the key schedule of KASUMI is linear and simple, many attacks

? Supported by 973 Program(2013CB834205) the National Natural Science Foundation of China (61133013 and
60931160442)

?? Corresponding author

2 Keting Jia et al.

were presented in the related-key setting. Blunden et al. gave a related-key differential attack on
6-round KASUMI [8]. The first related-key attack on the full 8-round KASUMI was proposed
by Biham et al. with 276.1 encryptions [6], which was improved to a practical related-key attack
on the full KASUMI by Dunkelman et al.[12]. However, these attacks assume control over the
differences of two or more related keys in all the 128 key bits. This renders the resulting attack
inapplicable in most real-world usage scenarios. To our knowledge there is no attack on the full
KASUMI without related keys.

MITM attacks. In this paper, we explore the meet-in-the-middle(MITM) attack vector and
apply it to the full 8-round KASUMI. The meet-in-the-middle attack was first introduced by Diffie
and Hellman to analyze the block cipher DES [14]. The method was used to analyze KTANTAN,
GOST and IDEA, reduced-round DES and reduced-round AES [7,10,16,19,22]. Furthermore, the
meet-in-the-middle framework found applications in integral attacks [13,15,17]. Recently, started
by pioneering work of Aoki and Sasaki, this type of attack was extended to hash functions, and
has been improved with many techniques to carry out preimage attacks on the hash functions
MD5, Tiger, and reduced versions of SHA-1 and SHA-2 etc.[2,3,18,32]. These techniques include
the splice-and-cut framework, initial structure and partial matching etc.

Bruteforce-like cryptanalysis. Khovratovich et al. introduced the biclique cryptanalysis
originating from the initial structure technique in hash function cryptanalysis [23]. Later, the
biclique technique was utilized to analyze block ciphers, and combined with a partial brute-force
resulting in a meet-in-the-middle framework to give the first attacks on the full AES-128/-192/-
256 with 3-5 times improved speed over a brute force attack [9]. Bruteforce-like cryptanalysis is
not able to conclude that a particular target has a cryptanalytic weakness, as in principle any
number of rounds can be “attacked”. However it can help better understand the real security
offered against attacks in the absence of other shortcuts. Most recently reported applications of
bruteforce-like biclique cryptanalysis have an advantage that is much smaller than a factor of
2 (e.g. [1,11,20,23]). For ciphers like AES with key sizes of 128 bits or more this is merely of
academic interest, we argue however that for ciphers with key sizes of 80 bits or less, this is very
useful to know, especially when cost saving is a factor 2 or more.

New results. In this paper, we capture some observations on KASUMI, which are used
to separate some key words to speed up the key search. We firstly develop a MITM attack on
full KASUMI with only a single chosen plaintext and a known plaintext that is about 4 times
faster than brute-force search. Then we give an attack with lower time complexity and a higher
data complexity. KASUMI has a 128-bit key in the specification, but the key length needs to be
reduced in some cases, e.g., for downwards compatibility to 2G networks, which only allow the key
length to be 64 [31] bits. Subsequently we call the block cipher KASUMI used in GSM and GPRS
“KASUMI-64”. As a result of the widespread use of GSM mobiles, we also focus on KASUMI-64.
We obtain a noticeable improvement over the brute-force attack for the full 8 rounds by the
using the MITM attacks. Firstly, we start by giving a MITM attack on KASUMI-64, which only
needs a single known plaintext/ciphertext pairs and still results in a factor 2 speed-up over brute-
force. Secondly, this is improved to a computational complexity of about 262.63 encryptions and a
data complexity of 220 chosen plaintexts. Furthermore, a trade-off between the data complexity
and time complexity is given, which needs 1152 chosen plaintexts, and a time complexity of
262.75 encryptions. All time complexities are worst-case complexities, and the amount of known
or chosen plaintext is small enough to be relevant for the actual use-case of KASUMI, i.e. in
specific communication protocols. As exhaustive search of a key space of size 264 is feasible for
well-funded adversaries, even such relatively small improvements using new cryptanalytic results
still have the potential for a practical impact in terms of computational complexity and also
energy consumption that is very rare for modern designs that withstood cryptanalytic scrutiny
for a long time. Hence the tongue-in-cheek “Green Cryptanalysis” in the title.

Green Cryptanalysis: Meet-in-the-Middle Key-Recovery for the Full KASUMI Cipher 3

Paper organization. We give a brief description of the block cipher KASUMI in Sect. 2.
Section 3 presents meet-in-the-middle attacks on the full KASUMI. We introduce several MITM
attacks on the full KASUMI-64 and draw a lesson on key-schedule design in Sect. 4, before we
summarize the findings and conclude in Sect. 5.

2 Description of KASUMI

KASUMI uses a key of up to 128-bit to encrypt a 64-bit block. A brief description of KASUMI
is given in this section.

Key schedule. The key schedule of KASUMI is much simpler than the original key schedule
of MISTY1, which makes the hardware significantly smaller and reduces key set-up time. The
128-bit key K is divided into eight 16-bit words: k1,k2, ..., k8, i.e., K = (k1, k2, k3, k4, k5, k6, k7, k8),
which are used to compute the round subkeys. The round subkeys consist of three parts KLi, KOi

and KIi, where KLi = (KLi,1,KLi,2), KOi = (KOi,1,KOi,2,KOi,3) and KIi = (KIi,1,KIi,2,
KIi,3). We summarize the details of the key schedule of KASUMI in Tab. 3 in App. B.

KASUMI-64 and variants. The key length of KASUMI is allowed to 128 bits at most.
For KASUMI used in GSM and GPRS, the key length is set to 64, and the most significant bits
of key carry the effective 64-bit key information, whereas the remaining, least significant bits
duplicate the key, i.e., k5 = k1, k6 = k2, k7 = k3, k8 = k4. We call it KASUMI-64. The variant
of KASUMI-64 is to simply set k5, . . . , k8 to a constant zero. In fact this option was chosen in an
earlier version of the KASUMI-64 design [34], and we refer to as KASUMI-64-0.

Encryption. KASUMI has a 8-round Feistel structure, and each round consists of an FL
function and an FO function. The FL function precedes the FO function in odd numbered rounds,
whereas the FO function precedes the FL function in even numbered rounds (see Fig. 7 (a) in
App. B).

Let Li−1||Ri−1 be the input of the i-th round, and then the round function is defined as

Li = FO(FL(Li−1,KLi),KOi,KIi)⊕Ri−1,
Ri = Li−1,

where i = 1, 3, 5, 7.‘⊕ ‘ denotes the bitwise exclusive-or (XOR), and ‘‖‘ represents the concatena-
tion. When i = 2, 4, 6, 8,

Li = FL(FO(Li−1,KOi,KIi),KLi)⊕Ri−1,
Ri = Li−1.

Here, Li−1, Ri−1 denote the left and right 32-bit halves of the i-th round input, and L0‖R0,
L8‖R8 are the plaintext and ciphertext respectively.

The FL function is a simple key-dependent boolean function. Let XLi = XLi,l‖XLi,r, KLi =
(KLi,1,KLi,2) be the input of the FL function of the i-th round, and Y Li = Y Li,l‖Y Li,r be the
corresponding output, where XLi,l, XLi,r, Y Li,l and Y Li,r are 16-bit variables. The FL function
has the form:

Y Li,r = ((XLi,l ∧KLi,1) ≪ 1)⊕XLi,r, (1)

Y Li,l = ((Y Li,r ∨KLi,2) ≪ 1)⊕XLi,l, (2)

where ‘∧ ‘ and ‘∨ ‘ denote bitwise AND and OR respectively, and ‘x ≪ i‘ implies that x rotates
left by i bits. We call FLi the FL function of i-th round with subkey KLi.

The FO function is another three-round Feistel structure made up of three FI functions and
key mixing stages, which provides the non-linear property in each round (see Fig. 7 (b) in App. B).
Let XOi = XOi,l‖XOi,r, KOi = (KOi,1,KOi,2,KOi,3), KIi = (KIi,1,KIi,2,KIi,3) be the input
of the FO function of i-th round, and Y Oi = Y Oi,l‖Y Oi,r be the corresponding output, where

4 Keting Jia et al.

XOi,l, XOi,r, Y Oi,l, Y Oi,r and XOi,3 are 16-bit variables. Then the FO function is defined as
follows:

XOi,3 = FI((XOi,l ⊕KOi,1),KIi,1)⊕XOi,r,
Y Oi,l = FI((XOi,r ⊕KOi,2),KIi,2)⊕XOi,3,
Y Oi,r = FI((XOi,3 ⊕KOi,3),KIi,3)⊕ Y Oi,l.

For simplicity, we call FOi the FO function of i-th round with subkeys KOi and KIi.
The FI function includes two Sboxes S7 and S9 which are permutations of 7-bit to 7-bit and

9-bit to 9-bit respectively. Suppose the input of the j-th FI function of the i-th round is (XIi,j ,
KIi,j) and the output is Y Ii,j , where XIi,j and Y Ii,j are 16-bit variables. In order to abbreviate
the FI function, we define half of FI function as FI, which is a 16-bit to 16-bit permutation. See
Fig. 7 (d) in App. B for the illustrations of FI and FI. Y Ii,j = FI(XIi,j) is written as

Y Ii,j [0− 8] = S9(XIi,j [7− 15])⊕XIi,j [0− 6],

Y Ii,j [9− 15] = S7(XIi,j [0− 6])⊕ Y Ii,j [0− 6],

where z[i1 − i2] denotes the (i2 − i1 + 1) bits from the i1-th bit to i2-th bit of z, and ‘0‘ is the
least significant bit. The FI function is simplified as

Y Ii,j = FI(XIi,j ,KIi,j) = FI((FI(XIi,j)⊕KIi,j) ≪ 7).

We call FIi,j the j-th FI function of the i-th round with subkey KIi,j , and define four variables
XIi,j,1, XIi,j , Y Ii,j,1 and Y Ii,j,2 for simplification (see the illustration of FI function in Fig. 7
(d) in App. B).

XIi,j,1 = S9(XIi,j [7− 15]), XIi,j = Y Ii,j ⊕KIi,j ,

Y Ii,j,1 = S9(XIi,j [0− 8]), Y Ii,j,2 = S7(XIi,j [9− 15]).

3 Meet in the Middle Attacks on KASUMI

In contrast to SPN networks like the AES, where the number of subkey-bits used per round
exactly corresponds to the block size of the cipher, KASUMI uses the 1.5 fold amount. This
makes, in principle, an application of MITM attacks based on separating key spaces more difficult.
Nevertheless we will design a key recovery method with this high level approach in mind.

In particular, we capture some observations on KASUMI, which are used to separate some
key words to speed up the key search. Combining the observation of FL function, we explore a
meet-in-the-middle attack on KASUMI, which only needs a single chosen plaintext and a known
plaintext with a factor 4 speed-up. This attack is converted to a known plaintext attack, which
needs about 128 known plaintexts with the same time complexity. Besides, we find that when
the left 32-bit inputs of the first and third round are assigned to the value 0x0000ffff , there
exists a 3.3-round subcipher without the 16-bit key word k3. Based on the subcipher and several
optimizations, we give an improved attack, which succeeds with a data complexity of 232 chosen
plaintexts and a time complexity of 2125.5 encryptions.

3.1 Some Observations in KASUMI

Let the plaintext P = Pl‖Pr, the ciphertext C = Cl‖Cr, and Li = Li,l‖Li,r be the left 32-bit
input of (i + 1)-th round, i = 0, 1, ..., 7 (see Fig. 7 (a) in App. B).

Observation 1 Let XLi, Y Li be the input and output of FLi, then

Y Li,r[j + 1] = XLi,r[j + 1]⊕ (XLi,l[j] ∧KLi,1[j]) = XLi,r[j + 1] when XLi,l[j] = 0,

Y Li,l[j + 1] = XLi,l[j + 1]⊕ (Y Li,r[j] ∨KLi,2[j]) = XLi,l[j + 1]⊕ 1 when Y Li,r[j] = 1,

where j = 0, 1, . . . , 15, and j + 1 is an integer modulo 16.

Green Cryptanalysis: Meet-in-the-Middle Key-Recovery for the Full KASUMI Cipher 5

This observation is straightforward by the bit equation presentation of the FL function, and
it implies that KLi,1[j] does not affect the output Y Li,r when XLi,l[j] = 0, and KLi,2[j] does
not affect the output Y Li,l when Y Li,r[j] = 1.

Observation 2 The intermediate value XIi,1[7−8] is independent of KOi,1[0−6] in the function
FOi, and XIi,j [0− 6] is independent of KIi,j [7− 8] in the inversion of the FIi,j function.

Proof. By the definition of FO function, we know

XIi,1[7− 8] = S9(XOi,1[7− 15]⊕KOi,1[7− 15])[7− 8]⊕KIi,j [7− 8].

Hence, XIi,1[7− 8] is independent of KOi,1[0− 6].
We know KIi,j is not involved in the computation of the intermediate value XIi,j by inverting

FIi,j , and XIi,j [0− 6] is computed as follows,

XIi,j [0− 6] = S7−1(KIi,j [0− 6]⊕XIi,j [0− 6]⊕KIi,j [9− 15]⊕XIi,j [9− 15]).

It is obvious that XIi,j [0− 6] is independent of KIi,j [7− 8]. ut

This observation is applied to reduce the data complexity in our analysis of KASUMI-64.

Observation 3 Let L0 = L2 = 0x0000ffff . Then there exists a subcipher covering 3.3 rounds
of KASUMI, which does not include the key word k3.

Proof. We compute the plaintext variant P and intermediate value S from L0 and L2 by partial
encryption and decryption, which is depicted in Fig. 1.

From equations (1) and (2), it is easy to know that when the input of FL is 0x0000ffff , the
output of FL is always 0xffffffff , for all the values of KL1 and KL3.

Because the key words in rounds 1 and 3 do not contain k3 except KL1 and KL3. So, the
output values Y O1 and Y O3 of the first and third round functions have no relation with the key
word k3, where

Y O1 = FO(0xffffffff,KO1,KI1), Y O3 = FO(0xffffffff,KO3,KI3).

According to the details of KASUMI, we deduce the output Y L2 of FL2 function,

Y L2 = L0 ⊕ L2 = 0x0000ffff ⊕ 0x0000ffff = 0.

Inverting the second round function, the input XI2,1 of FI2,1 and the right 16-bit L1,r of L1 are
obtained, and L1,l = XI2,1 ⊕ (k3 ≪ 5).

By forward encryption from L0 and L2, we get the internal state S = (Y I4,2, F) satisfying
the following equations:

Y I4,2 = FI(Y O3,r ⊕ L1,r ⊕KO4,2,KI4,2),

F = Y O3,l ⊕XI2,1 ⊕KO4,1.

We obtain a plaintext variant P = (P l‖P r) by backward decryption from L2.

P l = L0 = 0x0000ffff,

P r = Y O1 ⊕ (XI2,1‖L1,r).

It is easy to verify that Pr,l = P r,l ⊕ (k3 ≪ 5) and Pr,r = P r,r.
Because k3 is not intervened in the computations of Y O1, Y O3, XI2,1 and L1,r, the pair (P ,

S) is independent of the key word k3. There are about 3.3-round computations from P to S
in total, so we conclude that there exists a 3.3-round subcipher from P to S without k3 when
L0 = L2 = 0x0000ffff . ut

6 Keting Jia et al.

 FI FI FI

k6'
k8 13

k1'

k2 1

k4'

k1 1

k3'

 FI FI FI

k2 5
k5'

k7 13
k8'

k3 1

k5'

 FI FI FI

k4 5
k7'

k1 13
k2'

k4'
k6 8

k5'
k7 8

k6'
k8 8

 FI FI

k5 5

k6' k5'
k1 8

(k3 5)||0000

k3 5

YO1

3L

L2

4,2YI
F

YL2

YO3

L0

0

0

0

ffff
ffff

ffff

ffff
ffff

ffff

rP

1L

PrPl

4,2(,)S F YI

(0 0000 ||)rP x ffff P

Fig. 1. The subcipher covering 3.3 rounds of KASUMI without key word k3

This interesting phenomenon motivates us to explore an attack on KASUMI by separating
the 16-bit key word k3 from the other key words to speed-up the search of the total key space.

Observation 4 For KASUMI, the key words k2, k3 and k8 are not involved in the computations
of the functions FI8,1, FI8,3 and Y I8,2 = FI(KO8,2⊕Cr,r) in the process of decrypting a ciphertext
C, where Y I8,2 is the output of the first FI function of FI8,2.

This observation follows straightforwardly from the definition of KASUMI, and is used to
separate the key words k2, k3 and k8 from the rest of the key space to skip some computations
in the last round.

Distinguisher. For a known pair (P,C) of KASUMI, we get L5 = Y O5 ⊕L3 by encrypting
the plaintext, and L5 = Y O7 ⊕ L7 by decrypting the ciphertext. Then we know the equation

Y O5 ⊕ L3 = Y O7 ⊕ L7 (3)

holds with probability 1 for the right key K. But for a wrong key, it holds only with probability
2−32. We also get another equation

Y O3 ⊕ L1 = Y O5 ⊕ L5. (4)

Equation (4) holds with probability 1 for the right key K, and holds with probability 2−32 for a
wrong key too. The two equations are used as distinguishers in our attacks.

Observation 5 Given the input value (L4, L3) of the 5-th round and the output value (L7, L6)
of the 7-th round, it takes about 9 Sbox calls to detect the equation Y O5 ⊕ L3 = Y O7 ⊕ L7 hold
or not for a guessed key, where Y O5 and Y O7 are the outputs of FO5 and FO7 respectively.

The equation Y O5 ⊕ L3 = Y O7 ⊕ L7 is able to be expressed as 32 bit-equations in paral-
lel. Hence, we apply the partial matching technique and early abort technique to test it. The
complexity proof refers to App. A.

Cost models. In the evaluation of time complexity of our attacks, we take a hardware-centric
view: the number of Sbox calls will dominate the cost, as all other operations are comparatively
cheap to implement, both in terms of gate-count or energy consumption. Hence, for simplicity,
the time complexity only considers the number of Sbox calls.

Green Cryptanalysis: Meet-in-the-Middle Key-Recovery for the Full KASUMI Cipher 7

3.2 The MITM Attack on KASUMI with a Single Chosen Plaintext

In the cryptanalysis of a block cipher, some attacks usually take high data complexities, such
that it is very hard to carry out in the practical attack environments owing to prohibitive high
data complexities. Here we propose an attack on KASUMI with only a single chosen plaintext
and an additional known plaintext, using Observation 1 and the key schedule algorithm.

We consider a special plaintext P for KASUMI. The left 16 bits of the plaintext Pl,l = 0x0000,
which is used to absorb the impact of key word k1 on the FL1 function. The remaining 48-bit
part of the plaintext is allowed to any 48-bit value. On the basis of the definition of round
functions, we know that k1[9 − 15] is independent of the computation of the intermediate value
S0 = (Y I2,2,Y I2,3[9− 15], Y I2,3,1) by partially encrypting the plaintext P . Then we decrypt the
ciphertext C corresponding to P , and get the intermediate value Y L8,r. There are about 8 bits of
Y L8,r which equal to 1. By Observation 1, 8 bits of k2 have no impact on the computations of Y L8,l

by partial decrypting C, which hence avoid some computations from Y L8 to the intermediate
value (Y I7,2, Y I7,3). Furthermore, there are about 4.5 bits 4 of k2[0 − 8] independent of the
computations of the intermediate values S1 = (Y I7,2[0 − 8], Y I7,2,2, Y I7,3). Hence, we get two
trunks: one is partial encryption from P to S0, in which 7-bit k1[9− 15] is not involved, and the
other is partial decryption from C to S1, in which there are about 4.5 bits of k2[0− 8] is not used
(see Fig. 2).

k7 1

k1'

 FI FI FI

k8 5
k3'

k5 13
k6'

k2'
k4 8

 FI FI FI

k1 5
k4'

k6 13
k7'

k8 1

k2'

 k3'
k5 8

L6

L7
YL8

YO7

XL8,l

 FI FI FI

k6'
k8 13

k1'

k2 1

k4'

k1 1

k3'

 FI FI FI

k2 5
k5'

k7 13
k8'k4'

k6 8

k5'k7 8

YO1

L1 YL2

L0

0

ffff
ffff

ffff

k3 5

S7 S7

k1'[9-15]

k1'[0-8]

S9

2,3,1YI2,3[9 15]YI 

S9

S7 S7

k2'[9-15]

k2'[0-8]

S9

7,2,2YI

7,2[0 8]YI 

S9

7,3YI

2,2YI

7,21 7,2,2 7,3([0 8], ,)S YI YI YI 

2,30 2,2 2,3,1(, [9 15],)S YI YI YI 

the green

part

the red

part

Trunk 1

P→ S0

Trunk 2

C→ S1

Fig. 2. The two trunks of KASUMI in the MITM attack with a single chosen plaintext

Let P = 0x0000‖Pl,r‖Pr, where Pl,r‖Pr is a fixed 48-bit random value, and then query the
corresponding ciphertext C. We divide the key space into 2112 small groups corresponding to
(k1[0− 8], k2[9− 15], k3, k4, k5, k6, k7, k8), and each group traverses (k1[9− 15], k2[0− 8]). For each
group, we execute the following process to distinguish the right key (see Fig. 3).

4 There are about 4.5 js, such that Y L8,r[j] = 1, which absorb the impact of k2[j] on Y L8,l, where j = 0, ..., 8.

8 Keting Jia et al.

1. Traverse k2[0 − 8], encrypt the plaintext P to get the intermediate values L1, S0 = (Y I2,2,
Y I2,3[9− 15], Y I2,3,1), and store them in a hash table indexed with k2[0− 8]. It takes 29 × 23
Sbox calls.

2. For each k1[9−15], compute the intermediate values (XL8,l, Y L8,r) by partial decryption. By
Observation 1, for j=0,...,8, when Y L8,r[j] = 0, guess k2[j] which affects the output Y L8,l,
and compute the intermediate values L6 and S1 = (Y I7,2[0 − 8], Y I7,2,2, Y I7,3). Then guess
the remaining bits of k2[0− 8], and compute the output values of the 5-th round, which needs
27 × 12 + 27 × 24.5 × 11 + 27 × 29 × 13 5Sbox calls.

3. Partially encrypt S0 corresponding to k2[0− 8] with the same subkey k1[9− 15] as Step 2 to
get the input values of the 3-rd round. We spend 216 Sbox calls in this step.

4. For the input values of the 3-rd round and the output values of the 5-th round corresponding
to (k1[9− 15], k2[0− 8]), detect the equation Y O3⊕L1 = Y O5⊕L5 hold or not by the similar
computations as Observation 5, which takes 216 × 9 Sbox calls.

5. For the subkeys which make Equation (4) hold, we search the right key by trial encryptions
with 2 known plaintext/ciphertext pairs. There are about 2−32 × 2128 = 296 keys to keep
Equation (4) hold, resulting in the time complexity of 296 encryptions in this step.

Therefore, we need 2112 × 216 × (13.69 + 1 + 9)=2128 × 23.69 Sbox calls, which are equivalent
to 2125.98 encryptions. The data complexity is a chosen plaintext and a known plaintext. And the
memory complexity is 27 blocks to store the hash table in Step 1.

3 1 5 5Detect hold or not YO L YO L  

L2 L1

L4

 FI FI FI

k6'
k8 13

k1'

k2 1

k4'

 k5'k7 8
L1 YL2k3 5

 FI FI FI

k7 5
k2'

k4 13
k5'

k6 1

k8'

k7 1

k1'

 FI FI FI

k8 5
k3'

k5 13
k6'

k1'
k3 8

k2'
k4 8

L5

L6

YL6

YO7

R2

R7

R6

7,21 7,2,2 7,3([0 8], ,)S YI YI YI 

2,30 2,2 2,3,1(, [9 15],)S YI YI YI 

Fig. 3. Detect whether Y O3 ⊕ L1 = Y O5 ⊕ L5 holds

It is remarked that our attack only needs a single chosen plaintext of this special form, and a
subsequent known plaintext/ciphertext pair to filter the remaining key candidates. For each key
group taking 216 values of (k1[9−15], k2[0−8]), 7 bit-conditions Pl,l[1, 10−15] = 0 are necessary to
make the computations from P to S0 independent of k1[9−15]. Since there are about one plaintext
such that Pl,l[1, 10−15] = 0 among 128 random plaintexts, it is feasible to convert this attack to a
known-plaintext attack. The known-plaintext attack needs 128 plaintext/ciphertext pairs and the
time complexity is also 2125.98 encryptions. The success rate is dominated by the probability to get
a plaintext P with Pl,l[1, 10− 15] = 0 from 128 random plaintexts, i.e., 1− (1− 1/128)128 = 0.63.

5 There are 4.5 bits of the 9-bit k2[0− 8] which are absorbed by Y L8,r[0− 8] on average, because there are about
4.5 js, such that Y L8,r[j] = 1, where j = 0, ..., 8.

Green Cryptanalysis: Meet-in-the-Middle Key-Recovery for the Full KASUMI Cipher 9

3.3 The MITM Attack on KASUMI with Improved Time Complexity

In this section, combining Observation 3 and Observation 4, we explore a meet-in-the-middle
attack on KASUMI with a little improvement of the time complexity.

Data collection. We know that the left 32-bit parts of plaintexts are assigned to a constant,
i.e., Pl = 0x0000ffff according to Observation 3. For the 232 plaintexts P = 0x0000ffff‖Pr,
collect their corresponding ciphertexts C, and store the pairs (Pr, C) in a hash table T1 with the
16-bit index Pr,r. The total data complexity is hence 232 chosen plaintexts.

Key recovery. Observation 3 shows that k3 has no relation with the subcipher P
3.3 rounds−−−−−−−→ S

under the given condition L0 = L2 = 0x0000ffff , so it is feasible to separate k3 from other
key words to speed-up exhaustive search. We also notice that the key words (k2, k3, k8) have
no effect on the partial decryption from C to S1, where S1 = (Y I8,2, Y I8,3) by Observation 4.
Consequently, we start our attack by partitioning the whole key space into small key groups.
Each group corresponds to a value of key words K = {k1, k4, k5, k6, k7}, and traverses 248 values
of key words (k2, k3, k8). There are 2128−48 = 280 such groups.

For each key group, set the intermediate value L0 = L2 = 0x0000ffff , and traverse (k2, k8)
to compute the input and output values (P , S) of the 3.3-round subcipher. The pair (P,C) and
its corresponding (P , S) satisfy the following equations except Pl = P l = 0x0000ffff .

Pr,l = P r,l ⊕ (k3 ≪ 5), (5)

Pr,r = P r,r. (6)

Therefore, given the matched (P,C) and (P , S), the corresponding key word k3 is computed
by equation (5).

We demonstrate our attack as follows, which is depicted in Fig. 8 in App. B.

1. For each key group, traverse k2 and k8 to compute the values of (P , S) from the val-
ues L0 = L2 = 0x0000ffff by partial encryption and decryption. We obtain 232 pairs
(P (0x0000ffff‖P r), S) corresponding to 232 key word pairs (k2, k8). Store (P r, S, k2, k8) in
a hash table T2 indexed by P r,r. There are about 216 entries in T2 with each index. This step
needs 280 × 232 × 10× 4 = 2112 × 40 Sbox calls.

2. For each Pr,r, there are 216 (P,C) pairs on average in table T1. For each pair, compute the
intermediate values S1 by partially decrypting C. There are about 280×216×216×10 = 2112×10
Sbox calls and 296 table T1 look-ups in this step.

3. For each pair (P,C), search 216 elements (P r, S, k2, k8) with P r,r = Pr,r in table T2. For
every (P r, S, k2, k8), calculate k3 = (P r,l ⊕Pr,l) ≫ 5. Here we know all the 128-bit key. Then
we compute the output of the 7-th round by partially decrypting S1 with 2 Sbox calls, and
the input of the 5-th round by partially encrypting S with 8 Sbox calls for each key. It takes
280 × 216 table T2 look-ups and 2128 × 10 Sbox calls.

4. Then check whether (Y O5 ⊕ L3) = (Y O7 ⊕ L7) holds by Observation 5. If they are equal, go
to the next step. Otherwise we conclude the key is wrong and discard it. We spend 2128 × 9
Sbox calls in this step.

5. There are about 216 candidates of key words (k2, k3, k8) such that Equation (3) holds. Detect
whether the key words (K, k2, k3, k8) are right by trail encryptions of another two known
plaintext/ciphertext pairs. Go to Step 2. If all the Pr,rs are traversed, go to Step 1, and test
for a new key group. This steps takes 280 × 216 encryptions.

Altogether we spend 19 Sboxes instead of 96 for every key and 297 table lookups, resulting in
a time complexity with about 2125.67 KASUMI computations.

Remark. Furthermore, we extend one more Sbox in (P , S), i.e., S = (F [7−15], XI4,1,2, Y I4,2),
where XI4,1,2 = S7(F [0 − 6] ⊕ k3[0 − 1, 11 − 15]). It is obvious that k3[2 − 10] does not occur

10 Keting Jia et al.

in the computation of (P , S) from L0 = L2 = 0x0000ffff . We also append one more Sbox in
(C, S1), i.e., S1 = (Y I8,2[0− 8], Y I8,2,2, Y I8,3). k3[0− 8] is independent of the partial decryption
from C to S1. Here, we partition the key space into key groups of (k2, k3[2 − 8], k8) instead of
(k2, k3, k8), and perform the above attack process. Hence it needs to compute in total 17 Sboxes
for each key in turn resulting in 2125.5 encryptions.

4 MITM Attacks on KASUMI with a 64-bit Key

For backwards compatibility, e.g. with 2G-telephony, KASUMI is used with a 64-bit key. We
focus on KASUMI with a key of 64 bits in this section. In order to be faster than brute force,
a key recovery technique has to require the computations of less than 264 KASUMI encryptions
in the worst case. This, together with the fact that the key words are repeated twice as often
makes the design of such key recovery algorithms more difficult. Nevertheless, for this situation
we give several MITM attacks on KASUMI-64. This is probably the first instance of this line of
cryptanalytic work, where the speed-up over brute force is not merely an academic curiosity but
can lead to cost-savings in practice. We first give several time/data trade-offs for the attacks.
Then we introduce an attack on KASUMI-64-0 with a different key schedule. Finally, we draw
some conclusions on key-schedule design in Sect. 4.5.

4.1 The MITM Attack on KASUMI-64 with a Known Plaintext

It is obvious that the subkey k4[9− 15] is not used in the partial encryption from P to S0, where
S0 = (Y I1,2[9− 15], Y I1,2,1, Y I1,3[9− 15], Y I1,3,1), and the subkey k3[9− 15] is not included in
the partial decryption from C to S1, where S1 = (Y I8,2[9 − 15], Y I8,2,1, Y I8,3[9 − 15], Y I8,3,1)
for a known pair (P,C) (see Fig. 4). Then we get two trunks, one is from P to S0, in which the
subkey k4[9− 15] is not involved, the other is from C to S1, in which the subkey k3[9− 15] does
not occur. Then we partition the key space into 250 small groups, and each takes all values of
(k3[9− 15], k4[9− 15]). Given a known pair (P,C), for each (k1, k2, k3[0− 8], k4[0− 8]), we do the
following steps to find the right key.

k1 1

k3'

k2 5
k1''

k3 13
k4''k4'

k2 8
YO1

L0

ffff

FI FI FI

k1 5
k4'

k2 13
k3''

k4 1

k2'

k3'
k1 8

L7

FI FI FI

Pr

YL7

R1

R8

k4''[0-8]

S7 S7

k4''[9-15]

S9 S9

8,2 8,31 8,2,1 8,3,1([9 15], , [9 15],)S YI YI YI YI  

1,2 1,30 1,2,1 1,3,1([9 15], , [9 15],)S YI YI YI YI  

1,3[9 15]YI  1,3,1YI

the red part

the green

part

Trunk 1

P→ S0

Trunk 2

C→ S1

Fig. 4. The two trunks of KASUMI-64 in the known-plaintext attack

1. Traverse k3[9− 15], partially encrypt P to get the intermediate values S0, and store 27 values
of S0 in a hash table indexed with k3[9− 15]. It takes 27 × 10 Sbox calls.

2. Guess k4[9− 15], partially decrypt C to get the intermediate values S1, which needs 27 × 10
Sbox calls.

Green Cryptanalysis: Meet-in-the-Middle Key-Recovery for the Full KASUMI Cipher 11

3. Guess k3[9−15], partially decrypt S1 to get the output values of the 7-th round, and partially
encrypt S0 corresponding to k3[9 − 15] to get the input values of the 5-th round. This step
takes 214 × 10× 4 Sbox calls.

4. Detect whether the equation Y O5 ⊕ L3 = Y O7 ⊕ L7 holds by the method in Observation 5
for the input values of the 5-th round and the output values of the 7-th round, which needs
214 × 9 Sbox calls.

5. For the subkeys which make the Equation (3) hold, we search the right key by trial encryptions
with a known plaintext/ciphertext pairs. Since there are about 2−32 × 264 = 232 keys to keep
Equation (3) hold, it takes 232 encryptions in this step.

This attack needs 250 × (27 × (10 + 10) + 214 × 49) Sbox calls in the worst case, which is about
263.03 encryptions in total. The ciphertexts of only two known plaintexts are enough, and the
memory complexity is 27 32-bit words.

4.2 The MITM Attack on KASUMI-64 with Lower Time Complexity

Key partitioning. For KASUMI-64, select Y L1,r = 0xffff to cancel the differences of k3 in
the FL1 function, and set I = (Y L1,r, Y I1,1[0− 8], XI1,1[9− 15]) to obtain two trunks. The first

trunk is I
partial Enc−−−−−−−−−→ S0, where S0 = (Y I2,2[9− 15], Y I2,2,1, Y I2,3[9− 15], Y I2,3,1). The second

trunk includes two parts, I
partial Dec−−−−−−−−−→ P and C

partial Dec−−−−−−−−−→ S1, where S1 =(Y I8,2[9 − 15],
Y I8,2,1, Y I8,3[9− 15], Y I8,3,1). This is depicted in Fig. 5. We notice that the subkey k3[9− 15] is
not used in the second trunk when Y L1,r = 0xffff , and the subkey k1[9− 15] is not intervened
in the first trunk, because XI9,15 = 0 holds always for different k1[9− 15]. Then we partition the
KASUMI-64 key space into 250 groups, and each takes all values of (k1[9 − 15], k3[9 − 15]), and
carry out the meet-in-the-middle attack on KASUMI-64.

Data collection. Let Y L1,r = 0xffff , Y I1,1[0 − 8] = 0, XI1,1[9 − 15] = 0 and the right
32-bit parts Pr of the plaintexts be fixed to a constant, compute all the left 32-bit parts Pl of the
plaintexts by partial decrypting the intermediate values by searching all 248 subkeys (k1, k2, k3).
By the computer search, there are exact 1119744 ≈ 220 Pls in total. For all the plaintexts P =
Pl‖Pr found above, query their corresponding ciphertexts and store these plaintext/ciphertext
pairs.

Key recovery. For each key group corresponding to (k1[0− 8], k2, k3[0− 8], k4), we execute
the following attack process to distinguish the right key.

1. Traverse k1[9 − 15], compute plaintexts P by partially decrypting the intermediate values
Y L1,r = 0xffff , Y I1,1[0− 8] = 0, XI1,1[9− 15] = 0, query the corresponding ciphertexts C,
compute the intermediate values S1 by partial decryption, and store (Cr, S1) in a hash table
indexed with k1[9− 15], which takes 27 × 12 Sbox calls.

2. Guess k3[9− 15], partially encrypt the intermediate values Y L1,r = 0xffff , Y I1,1[0− 8] = 0,
XI1,1[9−15] = 0 and Pr to get the intermediate values L1 and S0. This step needs 6+27×14
Sbox calls.

3. Guess k1[9 − 15], partially encrypt L1 and S0 to get the input values of the 5-th round, and
partially decrypt S1 corresponding to k1[9 − 15] to get the output values of the 7-th round.
We spend 214 × 28 Sbox calls in this step.

4. Detect the equation Y O5⊕L3 = Y O7⊕L7 hold or not by the method in Observation 5 for the
input values of the 5-th round and the output values of the 7-th round, which needs 214 × 9
Sbox calls.

5. For the subkeys such that the Equation (3) holds, we search the right key by trial encryptions
with 2 known plaintext/ciphertext pairs. There are about 2−32 × 264 keys to make Equation
(3) hold, so we speed 232 encryptions in this step.

12 Keting Jia et al.

k1'[0-8]

k2'' k4 13k1'

k2 1

k4'

k1 1

k3'

k2 5
k1'' k3 13

k4''k4'
k2 8

k1''k3 8

YO1

L1 YL2

L0

k3 5

FI FI

FI FI FI

k1 5
k4'

k2 13
k3''

k4 1

k2'

k3'
k1 8

L7

FI FI FI

Pr

YL7

R1

R2

R8

k2 1

S7 S7

k1'[9-15]

S9 S9

S7 S7

k3'[9-15]

k3'[0-8]

S9 S9

8,2 8,31 8,2,1 8,3,1([9 15], , [9 15],)S YI YI YI YI  

2,2 2,30 2,2,1 2,3,1([9 15], , [9 15],)S YI YI YI YI  

FI

the red part

the green

part

S7 S7

k1''[9-15]

S9S9

k1'[0-8]
1,1[9 15] 0XI  1,1[0 8] 0YI  

break point:

1,1 1,11,(, [0 8], [9 15]) (0 ,0,0)rI YL YI XI xffff   

I

Trunk 1

I→ S0

Trunk 2

YL1,r=0xffff

I→P,C→ S1

k′′
i = ki + ci+4, i = 0, 1, 2, 3. .

Fig. 5. The two trunks for the MITM attack on KASUMI-64 with lower time complexity

Here we need about 27 blocks memory to store the intermediate values in Step 1. We need about
250× (6 + 27× (14 + 12) + 214× 37) Sbox calls equivalent to 262.63 encryptions in total. The data
complexity is about 220 chosen plaintexts.

4.3 Trading off Time with Data for MITM Attacks on KASUMI-64

In this section, we give two new trunks to reduce the data complexity by relaxing a little of
the time complexity. We choose (k1[7 − 8], k3[9 − 15]) as a key group and the break point I =
(Y L1,r, Y L1,l[0 − 6], A), where Y L1,r = 0xffff , Y L1,l[0 − 6] = 0, A = (k′′1 [7 − 8]‖07) ⊕XI1,1,1,
and A[7 − 8] = 0 (see Fig. 6). The first trunk is from I to S2 by partial encryptions, in which
k1[7 − 8] is not involved due to XI1,1[7 − 8] = A[7 − 8] = 0, and the second trunk is from I
to S1 with partial decryptions, in which k3[9 − 15] is not used as a result of Y L1,r = 0xffff .
Here S1 =(Y I8,2[9− 15], Y I8,2,1, Y I8,3[9− 15], Y I8,3,1), is the same as that in the Sect. 4.2, and
S2 =(Y I2,2[0− 8], Y I2,2,2, Y I2,3[0− 8], Y I2,3,2)

6.
On basis of Observation 2, we know KO1,1[0 − 6](k2[0 − 1, 11 − 15]) is independent of the

computations of the intermediate value XI1,1[7 − 8] in the FI1,1 function, and k1[7 − 8] has
no relation with the intermediate value XI1,1[0 − 6] in the computations of plaintexts from the
break point by partial decryption. Furthermore k1[7 − 8] is not involved in the computations
of the intermediate value Y L1,l[0 − 6], so we assign Y L1,l[0 − 6] = 0 to avoid the impacts of
k1[0 − 5, 15] and k2[0 − 1, 11 − 15] in the computations of plaintexts from the break point I by
partial decryption.

Data collection. Let Y L1,r = 0xffff , Y L1,l[0− 6] = 0, A = 0 and the right 32-bit parts Pr

of plaintexts are assigned to a constant, compute all the left 32-bit parts of plaintexts by partial
decrypting the intermediate values and searching all the subkeys (k1[6 − 14], k2[2 − 10], k3). By
the computer search, there are 1152 plaintexts in total. For all the plaintexts computed above,
query their corresponding ciphertexts and store the 1152 plaintext/ciphertext pairs.

6 Since we substitute k1[7 − 8] for k1[9 − 15] in the key group, which makes the end of the first trunk S2 a little
different from S0 in Sect. 4.2.

Green Cryptanalysis: Meet-in-the-Middle Key-Recovery for the Full KASUMI Cipher 13

L0

YIi,jS7 S7S9

k1''[9-15]

k1''[0-6]

k1 1

k3'

YL1,r=0xffff k2[0-1,11-15]

YL1,l[0-6]=0

1,1[7 8] 0XI  

S9

k1[7-8] is independent of the computation from I to S2

k2[2-10] k1''[7-8]||07 A=0
1, 1,(, [0 6],]) (0 ,0,0)r lI YL YL A xffff  

break point‘I’

1,1,1XI

Fig. 6. The new break point of the MITM attack on KASUMI-64

Key recovery. For each key group with 29 values of (k1[7− 8], k3[9− 15]), we use the similar
key recovery process including 5 steps as that in Sect. 4.2 with k1[7 − 8] instead of k1[9 − 15]
and S2 instead of S0. Therefore the time complexity in Step 1 is 22 × 12 Sbox calls as a result of
traversing k1[7− 8]. Step 2 still needs 6 + 27 × 14 Sbox calls. We spend 29 × 28 and 29 × 9 Sbox
calls in Step 3 and Step 4, respectively. Totally, we need about 255× (6 + 27× 14 + 29× 37) Sbox
calls, which is equivalent to 262.75 encryptions. The data complexity is 1152 chosen plaintexts and
22 blocks memory to store intermediate values in Step 1.

4.4 The MITM Attack on KASUMI-64-0

In this section we give a MITM attack on KASUMI-64-0, the least 64 bits of which are set to
zero. Our cryptanalysis method of KASUMI in Sect. 3.2 is applicable to attack KASUMI-64-0.
Because in our cryptanalysis we use the key groups of (k1[9 − 15], k2[0 − 8]). The key words
k4 = 0, k5 = 0, k6 = 0, k7 = 0 have no impact on the attack process. If the method in Sect. 3.2
is applied to attack the KASUMI-64-0, the time complexity is about 261.98 encryptions and the
data complexity is a chosen plaintext. This attack is also converted to a known-plaintext attack,
which succeeds with 128 known plaintexts and 261.98 encryptions.

4.5 Lessons on Key-Schedule Design

By analyzing two versions of the KASUMI-64 we shed some light on key schedule design aiming to
support multiple key sizes, a to-date extremely ad-hoc part of cipher design. Should key material
that is smaller than the master key be repeated to fill up the master key, or should it rather be
padded with a constant? Both natural options can also be found in other cipher designs. E.g.
Serpent is designed with a key schedule supporting 256-bit master keys, and other versions of
the Serpent key schedule are then specified with parts of them set to zero. Also for Hierocrypt-
192, a 64-bit constant is used to make it fit into the 256-bit key schedule. For Hierocrypt-128,
both options are combined. In Threefish, three distinct key schedules for 128, 192, or 256-bit are
designed, but also intermediate key sizes are supported, and specified via padding with a constant
rather than repeating key material.

For the first time we can give concrete evidence that the former, i.e., repeating key material,
is preferable, by giving an improved attack on the later for the case of KASUMI-64. Even with
respect to a single attack vector like the MITM attack considered in this paper this is not obvious,
as repeating key material also makes it more likely to have high probably related-key differentials
via local collisions, which can also be used in speed-up MITM key search. We give an MITM
attack on the padding variant of KASUMI-64 in Sect. 4.4, which is a factor 4 rather than a
factor 2 faster than brute-force. The reason is that re-introducing master-key material in subkeys
increases the diffusion of the master key bits, which in turn affects the performance of our new
MITM attacks.

14 Keting Jia et al.

5 Conclusion

In this paper, we present new key recovery methods for the full KASUMI block cipher. These are
the first results on the full KASUMI with a single key. Tab. 1 and Tab. 2 summarize our results
along with the best previous known results for KASUMI in single key setting.

Bruteforce-like cryptanalysis gets renewed attention since their application to full AES. It is
a new way to better understand the real security offered by a cipher, and deserves attention.
Common criticisms of recent bruteforce-like cryptanalytic results are (1) that they achieve only
a small improvement over brute-force search, often much less than a factor of 2, (2) those small
speed-ups are irrelevant with key sizes of 128 bits or more, and (3) in addition to that this often
comes with impractically high data complexities. Our work on KASUMI is unique in the sense
that it can address and refute all of those criticisms at the same time:

– We only give key recovery methods with speed-ups of a factor 2 or better. These speed-ups
also remain speed-ups, when compared to clever brute-force optimizations that have recently
been described by Biham et al. [7].

– The master key can be only 64 bits in real-world use, and achieved speed-ups apply to this
case as well.

– The resulting methods have small enough data complexity (down to unicity distance) to allow
for a practical collection of ciphertexts in actual use of communication networks.

Of independent interest, we give evidence that repeating key material to fill a larger master
key as input to a key schedule is preferable over padding with a constant. The two attacks on
KASUMI-64 and the earlier variant of it, together with some data/time trade-offs, give a set
of data points in support of this conclusion. We hope that this discussion inspires more work
on key-schedule design issues, which is compared to other aspects of cipher design notoriously
under-researched.

Table 1. Summary of the new key recovery methods on full KASUMI. CP refers to the number of chosen plaintexts,
KP refers to the number of known plaintexts, and Enc refers to the number of encryptions for the corresponding
KASUMI version.

Attack Type Rounds Version Data Time Source

Meet-in-the-Middle Attack 8 128-bit 1 CP + 1 KP 2125.98 Enc Sect. 3.2

Meet-in-the-Middle Attack 8 128-bit 128 KP 2125.98 Enc Sect. 3.2

Meet-in-the-Middle Attack 8 128-bit 232 CP 2125.67 Enc Sect. 3.3

Meet-in-the-Middle Attack 8 128-bit 232 CP 2125.5 Enc Sect. 3.3

Meet-in-the-Middle Attack 8 64-bit 1 KP 263.03 Enc Sect. 4.1

Meet-in-the-Middle Attack 8 64-bit 220 CP 262.63 Enc Sect. 4.2

Meet-in-the-Middle Attack 8 64-bit 1152 CP 262.75 Enc Sect. 4.3

Meet-in-the-Middle Attack 8 64-bit variant 1 CP 261.98 Enc App. 4.4

Meet-in-the-Middle Attack 8 64-bit variant 128 KP 261.98 Enc App. 4.4

Table 2. Summary of earlier key recovery methods on reduced KASUMI.

Attack Type Rounds Version Data Time Source

Higher-Order Differential 5 128-bit 228.9 CP 231.2 Enc [33]
Impossible Differential 6 128-bit 255 CP 2100 Enc [24]
Impossible Differential 7(2-8) 128-bit 252.5 CP 2114.3 Enc [21]
Impossible Differential 7(1-7) 128-bit 262 KP 2115.8 Enc [21]

Green Cryptanalysis: Meet-in-the-Middle Key-Recovery for the Full KASUMI Cipher 15

References

1. Abed, F., Forler, C., List, E., Lucks, S., Wenzel, J.: Biclique Cryptanalysis of the PRESENT and LED
Lightweight Ciphers, Cryptology ePrint Archive, Report 2012/591.

2. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and More. In: Avanzi, R., Keliher,
L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 82–98. Springer, Heidelberg (2008)

3. Aoki, K., Sasaki, Y.:Meet-in-the-Middle Preimage Attacks Against Reduced SHA-0 and SHA-1. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89. Springer, Heidelberg (2009)

4. Barkan, E., Biham, E., Keller, N.: Instant Ciphertext-Only Cryptanalysis of GSM Encrypted Communication.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 600–616. Springer, Heidelberg (2003)

5. Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and Khufu. In: Knudsen, L.R. (ed.)
FSE 1999. LNCS, vol. 1636, pp. 124-138. Springer, Heidelberg (1999)

6. Biham, E., Dunkelman, O., Keller, N.: A Related-Key Rectangle Attack on the Full KASUMI. In: Roy, B. (ed.)
ASIACRYPT 2005. LNCS, vol. 3788, pp. 443–461. Springer, Heidelberg (2005)

7. Biham, E., Dunkelman, O., Keller, N., Shamir, A.: New Data-Efficient Attacks on Reduced-Round IDEA.
Available at http://eprint.iacr.org/2011/417, 2011.

8. Blunden, M., Escott, A.: Related Key Attacks on Reduced Round KASUMI. In: Matsui, M. (ed.) FSE 2001.
LNCS, vol. 2355, pp. 277–285. Springer, Heidelberg (2002)

9. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique Cryptanalysis of the Full AES. In: Lee, D.H., Wang,
X. (eds.) ASIACRYPT 2011, LNCS, vol. 7073, pp. 344–371. Springer, Heidelberg (2011)

10. Bogdanov, A., Rechberger, C.: A 3-Subset Meet-in-the-Middle Attack: Cryptanalysis of the Lightweight Block
Cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010, LNCS, vol. 6544, pp. 229–240.
Springer, Heidelberg (2010)

11. Çoban, M., Karakoç, F., Boztaş, Ö.: Biclique Cryptanalysis of TWINE, CANS 2012, to appear.
12. Dunkelman, O., Keller, N., Shamir, A.: A Practical-Time Related-Key Attack on the KASUMI Cryptosystem

Used in GSM and 3G Telephony. In: Rabin, T. (ed.) CRYPTO 2010. LNCS 6223, pp. 393–410. Springer,
Heidelberg (2010)

13. Dunkelman, O., Keller, N., Shamir, A.: Improved Single-Key Attacks on 8-Round AES-192 and AES-256. In:
Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 158–176. Springer, Springer, Heidelberg (2010)

14. Diffie, W., Hellman, M. E.: Exhaustive Cryptanalysis of the NBS Data Encryption Standard. Computer 10
(6): 74–84.

15. Demirci, H., Selçuk. A.: A Meet-in-the-Middle Attack on 8-round AES. In: Nyberg, K. (ed.) FSE 2008. LNCS,
vol. 5086, pp. 116–126. Springer, Heidelberg (2008)

16. Dunkelman, O., Sekar, G., Preneel, B.: Improved Meet-in-the-Middle Attacks on Reduced Round DES. In:
Srinathan, K., Ranga, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 86–100. Springer,
Heidelberg (2007)

17. Demirci, H., Taskin, I., Coban, M., Baysal, A.: Improved Meet-in-the-Middle Attacks on AES. In: Roy, B.K.,
Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp.144–156. Springer, Heidelberg (2009)

18. Guo,J., Ling,S., Rechberger, C., Wang, H.: Advanced Meet-in-the-Middle Preimage Attacks: First Results on
Full Tiger, and Improved Results on MD4 and SHA-2. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 56–75. Springer, Heidelberg (2010)

19. Isobe, T.: A Single-Key Attack on the Full GOST Block Cipher. In A. Joux (ed.) FSE 2011. LNCS, vol. 6733,
pp. 290–305. Springer, Heidelberg (2011)

20. Jeong, K., Kang, H., Lee, C., Sung, J., Hong, S.: Biclique Cryptanalysis of Lightweight Block Ciphers
PRESENT, Piccolo and LED, Cryptology ePrint Archive, Report 2012/621.

21. Jia, K., Li,L., Rechberger, C., Chen, C., Wang, X.: Improved Cryptanalysis of the Block Cipher KASUMI. In:
Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 222–233. Springer, Heidelberg (2012)

22. Khovratovich, D., Leurent, G., Rechberger, C.: Narrow Bicliques: Cryptanalysis of Full IDEA. In: Pointcheval,
D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 392–410, Springer, Heidelberg (2012)

23. Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for Preimages: Attacks on Skein-512 and the SHA-2
Family. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol, 7549, pp. 244–263, Springer, Heidelberg (2012)

24. Kühn, U.: Cryptanalysis of Reduced-Round MISTY. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 325–339. Springer, Heidelberg (2001)

25. Kühn, U.: Improved Cryptanalysis of MISTY1. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365,
pp. 61-75. Springer, Heidelberg (2002)

26. Matsui, M.: Block Encryption Algorithm MISTY. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 64–74.
Springer, Heidelberg (1997)

27. Nohl, K.: Attacking Phone Privacy, Black Hat, Las Vegas, 2010.
28. Nohl, K., Munaut, S.: Wideband GSM Sniffing, 27th Chaos Communication Congress, Berlin, 2010.
29. 3rd Generation Partnership Project, Technical Specification Group Services and System Aspects, 3G Security,

Specification of the 3GPP Confidentiality and Integrity Algorithms; Document 2: KASUMI Specification,
V3.1.1 (2001)

16 Keting Jia et al.

30. Paget, C., Nohl, K.: GSM: SRSLY?, 26th Chaos Communication Congress, Berlin, 2009.

31. 3rd Generation Partnership Project, Technical Specification Group Services and ystem Aspects, 3G Security,
Specification of the A5/3 Encryption Algorithms for GSM and ECSD, and the GEA3 Encryption Algorithm
for GPRS; Document 1: A5/3 and GEA3 Specifications, V6.2.0 (2003)

32. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster than Exhaustive Search. In: Cramer, R. (ed.)
EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer, Heidelberg (2009)

33. Sugio, N., Aono, H., Hongo, S., Kaneko, T.: A Study on Higher Order Differential Attack of KASUMI. IEICE
Transactions 90-A(1), pp. 14-21 (2007)

34. Universal Mobile Telecommunications System (UMTS), 3G Security; Cryptographic Algorithm Requirements,
3G TS 33.105 version 3.2.0 Release 1999 (2000)

35. Universal Mobile Telecommunications System (UMTS), LTE; Cryptographic Algorithm Requirements, 3GPP
TS 33.105 version 10.0.0 Release 10 (2011)

A Proof of Observation 5

This section describes the proof of Observation 5. We use the partial matching technique and
early abort technique to check whether the equation Y O5⊕L3 = Y O7⊕L7 holds for a guess key.
Because the equation can be represented as 32 parallel bit equations, and some bit equations are
much easier to be detected owing to the Feistel structure with two Sboxes of different length for
FI functions.

Proof. Concerning the FI function, it takes 2 Sbox calls to compute Y Ii,j [7 − 8] by the given
input XIi,j and KIi,j

7. Computing Y Oi,l[7− 8] takes 4 Sbox computations for given XOi, KOi

and KIi.

Consequently, we spend 8 Sbox calls to test whether the equation Y O5,l[7− 8]⊕L3,l[7− 8] =
Y O7,l[7− 8]⊕ L7,l[7− 8] holds, the detail computations of which are given in the following.

1. The inputs of 4 FI functions XI5,1, XI5,2, XI7,1 and XI7,2 are computed by XOR the inputs
of the FO functions and the corresponding subkeys.

2. Compute Y O5,l[7 − 8] on the basis of XI5,1 and XI5,2 by partial encryption, which takes 4
Sbox calls.

Y I5,1[0− 8] = S9(XI5,1[7− 15])⊕XI5,1[0− 6],

Y I5,1,1 = S9(Y I5,1[0− 8]⊕KI5,1[0− 8]),

Y I5,2[0− 8] = S9(XI5,2[7− 15])⊕XI5,2[0− 6],

Y I5,2,1 = S9(Y I5,2[0− 8]⊕KI5,2[0− 8]),

Y O5,l[7− 8] = (Y I5,1,1 ⊕ Y I5,2,1 ⊕ Y L5,l)[7− 8].

3. Compute Y O7,l[7−8] with XI7,1 and XI7,2 by partial decryption, with a cost of 4 Sbox calls.

Y I7,1[0− 8] = S9(XI7,1[7− 15])⊕XI7,1[0− 6],

Y I7,1,1 = S9(Y I7,1[0− 8]⊕KI7,1[0− 8]),

Y I7,2[0− 8] = S9(XI7,2[7− 15])⊕XI7,2[0− 6],

Y I7,2,1 = S9(Y I7,2[0− 8]⊕KI7,2[0− 8]),

Y O7,l[7− 8] = (Y I7,1,1 ⊕ Y I7,2,1 ⊕ Y L7,l)[7− 8].

4. Then compare (Y O5,l[7− 8]⊕Y O7,l[7− 8] with (L3,l⊕L7,l)[7− 8]. If they are equal, we check
other bit equations. Otherwise we conclude Y O5 ⊕ L3 6= Y O7 ⊕ L7.

7 Given an input XIi,j of the FIi,j function, Y Ii,j [7− 8] = S9(S9(XIi,j [7− 15])⊕ (00‖XIi,j [0− 6])⊕KIi,j [0−
8])[7− 8], which costs 2 Sbox calls.

Green Cryptanalysis: Meet-in-the-Middle Key-Recovery for the Full KASUMI Cipher 17

Compute Y O5,l[0− 6] and Y O7,l[0− 6] as follows, which takes 2−2 × 4 = 1 Sbox calls.

Y I5,1[0− 6] = S7(XI5,1[0− 6])⊕ Y I5,1[0− 6]⊕KI5,1[9− 15]⊕ Y I5,1,1,

Y I5,2[0− 6] = S7(XI5,2[0− 6])⊕ Y I5,2[0− 6]⊕KI5,2[9− 15]⊕ Y I5,2,1,

Y O5,l[0− 6] = Y I5,1[0− 6]⊕ Y I5,2[0− 6],

Y I7,1[0− 6] = S7(XI7,1[0− 6])⊕ Y I7,1[0− 6]⊕KI7,1[9− 15]⊕ Y I7,1,1,

Y I7,2[0− 6] = S7(XI7,2[0− 6])⊕ Y I7,2[0− 6]⊕KI7,2[9− 15]⊕ Y I7,2,1,

Y O7,l[0− 6] = Y I7,1[0− 6]⊕ Y I7,2[0− 6].

Then compare (Y O5,l[0− 8]⊕ Y O7,l[0− 8]) with (L3,l ⊕ L7,l)[0− 8]. If they are equal, we check
the other bit equations. Otherwise we conclude Y O5 ⊕ L3 6= Y O7 ⊕ L7.

Compute Y O5,l and Y O7,l using the values obtained in the above steps, which needs extra
2−9 × 4 Sbox calls, and then detect the equation Y O5,l ⊕ L3,l = Y O7,l ⊕ L7,l hold or not.

If the above equation does not hold, we conclude Y O5⊕L3 6= Y O7⊕L7. Otherwise we compute
Y O5,r and Y O7,r, which costs extra 2−16×8 Sbox calls. If the equation Y O5,r⊕L3,r = Y O7,r⊕L7,r

holds, then Y O5,l ⊕ L3,l = Y O7,l ⊕ L7,l. Otherwise Y O5,l ⊕ L3,l 6= Y O7,l ⊕ L7,l

Altogether we need 9 Sbox calls to detect the equation Y O5,l ⊕ L3,l = Y O7,l ⊕ L7,l hold or
not. ut

B Some Tables and Figures for the Cryptanalysis of KASUMI

We list some tables and figures used in this paper.

Table 3. The key schedule of KASUMI

Round KLi,1 KLi,2 KOi,1 KOi,2 KOi,3 KIi,1 KIi,2 KIi,3
1 k1 ≪ 1 k′

3 k2 ≪ 5 k6 ≪ 8 k7 ≪ 13 k′
5 k′

4 k′
8

2 k2 ≪ 1 k′
4 k3 ≪ 5 k7 ≪ 8 k8 ≪ 13 k′

6 k′
5 k′

1

3 k3 ≪ 1 k′
5 k4 ≪ 5 k8 ≪ 8 k1 ≪ 13 k′

7 k′
6 k′

2

4 k4 ≪ 1 k′
6 k5 ≪ 5 k1 ≪ 8 k2 ≪ 13 k′

8 k′
7 k′

3

5 k5 ≪ 1 k′
7 k6 ≪ 5 k2 ≪ 8 k3 ≪ 13 k′

1 k′
8 k′

4

6 k6 ≪ 1 k′
8 k7 ≪ 5 k3 ≪ 8 k4 ≪ 13 k′

2 k′
1 k′

5

7 k7 ≪ 1 k′
1 k8 ≪ 5 k4 ≪ 8 k5 ≪ 13 k′

3 k′
2 k′

6

8 k8 ≪ 1 k′
2 k1 ≪ 5 k5 ≪ 8 k6 ≪ 13 k′

4 k′
3 k′

7

x ≪ i : x rotates left by i bits.
k′
i = ki ⊕ ci,where the cis are fixed constants.

18 Keting Jia et al.

KL1

FL FO

KO1 KI1

KL2

FO FL

KO2 KI2

KL3

FL FO

KO3 KI3

KO4

FO FL

KL4KI4

KL5

FL FO

KO5 KI5

KO6

FO FL

KL6KI6

KL7

FL FO

KO7 KI7

KO8

FO FL

KL8KI8

L0

R0

L1

R1

L2

R2

L3

R3

L4

R4

L5

R5

L6

R6

L7

R7

L8 R8

(a) KASUMI general structure

XIi,j
YO1

YL2

YO3

YL4

YO5

YL6

YO7

YL8

YIi,j

S7

S7

S9

S9

KIi,j[9-15]

KIi,j[0-8]

(d) FI function

KOi,1

FI KIi,1

KOi,2

FI KIi,2

KOi,3

FI KIi,3

(b) FO function

XOi,l XOi,r

YOi,l YOi,r

XLi,l XLi,r

YLi,l YLi,r

KLi,2

KLi,1

(c) FL function

FI

,i jYI

, ,1i jYI

, ,2i jYI

, ,1i jXI

,i jXI

Fig. 7. The structure and building blocks of the block cipher KASUMI

FI

k5 5
k8' k2 13

k3'

k4 1

k6'

k7'
k1 8

k3 5

F 4,2YI

3L

(k3 5)||0000

YL4

FIFI

M

4,3XI

FI FI FI

k1 5
k4'

k6 13
k7'

k8 1

k2'

 k3'
k5 8

L7

YL8

YI8,3

XL8,l8,3XI

8,2YI

5 3 7 7Detect hold or not by Observation 5YO L YO L  

R4

R8

L4 L3

L6

8,21 8,3(,)S YI YI

4,2(,)S F YI

Fig. 8. Detect whether Y O5 ⊕ L3 = Y O7 ⊕ L7 holds using Observation 5

	Green Cryptanalysis: Meet-in-the-Middle Key-Recoveryfor the Full KASUMI Cipher
	Introduction
	Description of KASUMI
	Meet in the Middle Attacks on KASUMI
	Some Observations in KASUMI
	The MITM Attack on KASUMI with a Single Chosen Plaintext
	The MITM Attack on KASUMI with Improved Time Complexity

	MITM Attacks on KASUMI with a 64-bit Key
	The MITM Attack on KASUMI-64 with a Known Plaintext
	The MITM Attack on KASUMI-64 with Lower Time Complexity
	Trading off Time with Data for MITM Attacks on KASUMI-64
	The MITM Attack on KASUMI-64-0
	Lessons on Key-Schedule Design

	Conclusion
	Proof of Observation 5
	Some Tables and Figures for the Cryptanalysis of KASUMI

