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Abstract. The Diophantine Equation Hard Problem (DEHP) is a po-
tential cryptographic problem on a Diophantine equation. The DEHP has
been in existence for “worst case scenario” of the RSA, Diffie-Hellman
and El-Gammal schemes. However, the DEHP emerges after the expo-
nentiation and modular reduction process. The proposed scheme (known
as the AAβ-cryptosystem) is an asymmetric cryptographic scheme that
utilizes this concept (without any prior mathematical operation) together
with the factorization problem of two large primes. Its encryption speed
has a complexity order faster than the Diffie-Hellman Key Exchange,
El-Gammal, RSA and ECC. It can encrypt large data sets than its key
size. It has a simple mathematical structure. Thus, it would have low
computational requirements and would enable communication devices
with low computing power to deploy secure communication procedures
efficiently.

Keywords: Diophantine equation hard problem (DEHP), integer fac-
torization problem, asymmetric cryptography

1 Introduction

The discrete log problem (DLP) and the elliptic curve discrete log prob-
lem (ECDLP) has been the source of security for cryptographic schemes
such as the Diffie Hellman key exchange (DHKE) procedure, El-Gamal
cryptosystem and elliptic curve cryptosystem (ECC) respectively [2], [7].
As for the world renowned RSA cryptosystem, the inability to find the
e-th root of the ciphertext C modulo N from the congruence relation
C ≡ Me(modN) coupled with the inability to factor N = pq for large
primes p and q is its fundamental source of security [8]. It has been
suggested that the ECC is able to produce the same level of security
as the RSA with shorter key length. Thus, ECC should be the preferred
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asymmetric cryptosystem when compared to RSA [12]. Hence, the notion
“cryptographic efficiency” is conjured. That is, to produce an asymmetric
cryptographic scheme that could produce security equivalent to a certain
key length of the traditional RSA but utilizing shorter keys. However, in
certain situations where a large block needs to be encrypted, RSA is the
better option than ECC because ECC would need more computational
effort to undergo such a task [10]. Thus, adding another characteris-
tic toward the notion of “cryptographic efficiency” which is it must be
less “computational intensive” and be able to transmit large blocks of
data (when needed). In 1998 the cryptographic scheme known as NTRU
was proposed with better ”cryptographic efficiency” relative to RSA and
ECC [3] [4] [5]. NTRU has a complexity order of O(n2) for both en-
cryption and decryption as compared to DHKE, EL-Gammal, RSA and
ECC (all have a complexity order of O(n3)). As such, in order to design
a state-of-the-art public key mechanism, the following are characteristics
that must be “ideally” achieved (apart from other well known security
issues):

1. Shorter key length. If possible shorter than ECC 160-bits.
2. Speed. To have speed of complexity order O(n2) for both encryption

and decryption.
3. Able to increase data set to be transmitted asymmetrically. That is,

not to be restricted in size because of the mathematical structure.
4. Simple mathematical structure for easy implementation.

The Diophantine Equation Hard Problem (DEHP) as mentioned in this
work has been described as the “worst case scenario” for the RSA, El-
Gammal and DHKE schemes. Each of these schemes have their “worst
case scenario” in some form of Diophantine equation. Observe the fol-
lowing:

1. For the case of the RSA problem, from C = Me − pqj for j ∈ Z,
the DEHP emerges after exponentiation and modular process. The
power modulo complexity is O(n3).

2. The same goes for the DHKE (and El-Gammal). From A = ga − pj
for j ∈ Z, the DEHP also emerges after exponentiation and modular
process. The power modulo complexity is O(n3).

However, in this work the DEHP is utilized in the first instance of the
ciphertext representation without any prior “expensive” mathematical
operation. Only basic multiplication is required without division or mod-
ulo operation.

The layout of this paper is as follows. In Section 2, the DEHP will be
described. The mechanism of the AAβ-cryptosystem will be detailed in
Section 3. In Section 4, the authors detail the decryption process and
provide a proof of correctness. An example will also be presented. Con-
tinuing in Section 5, we will discuss a congruence attack, a Coppersmith
type attack and a Euclidean division attack. An analysis of lattice based
attack will be given in Section 6. Section 7 will be about the underlying
security principles of the AAβ scheme together with security reduction
results. Indistinguishability results of the AAβ scheme will be provided
in Section 8. The ability to transmit large data sets will be described
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in Section 9. A table of comparison between the AAβ scheme against
RSA,ECC and NTRU is given in Section 10. Finally, we shall conclude
in Section 11.

2 The Diophantine Equation Hard Problem

Definition 1. Let Y =
∑u
i=1Aixi be a summation of unknown integers

xi which are of the same bit length and significantly greater than the bit
length of Ai by n-bits where Ai is a public sequence of constants and
gcd(Ai, Aj) = 1 where i 6= j. We define the DEHP is solved when Y is
prf-solved. That is, the preferred integer set x∗i is found from the set of
all possible integers xi such that Y =

∑j
i=1Aixi.

Proposition 1. Consider the linear equation Y = A1x1 + A2x2 and
gcd(A1, A2) = 1. Suppose the bit length of unknown integers x1 and x2
are significantly greater than the bit length of A1 and A2 by at least n-
bits, then there exist exponentially many pairs of (x1, x2) that satisfy the
equation.

Proof. Let x1 and x2 be of length (νn + n)-bits long each and A1 and
A2 be of length νn bits. Let x1 and x2 be the prf -solution for Y =
A1x1 +A2x2 and gcd(A1, A2) = 1. Let

x1 = x01 +A2t (1)

and
x2 = x02 −A1t (2)

for some t ∈ Z. Since gcd(A1, A2) = 1 and Y is of size (2ν + 1)n-bits we
have both x01 and x02 of size (2ν + 1)n-bits. Since both A1 and A2 are
νn-bits and x1 and x2 are (ν+ 1)n-bits, then the best case scenario is to
choose from a set of possible t′s which consists of 2(ν+1)n elements. �

3 The AAβ Public Key Cryptosystem

Let us begin by stating that the communication process is between A
(Along) and B (Busu), where Busu is sending information to Along after
encrypting the plaintext with Along’s public key.

• Key Generation by Along

INPUT: The size n of the prime numbers.
OUTPUT: A public key tuple (n, eA1, eA2) and a private key pair (pq, d).

1. Generate two random and distinct n-bit strong primes p and q sat-
isfying {

p ≡ 3(mod 4), 2n < p < 2n+1,
q ≡ 3(mod 4), 2n < q < 2n+1.
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2. Choose random d such that d > (p2q)
4
9 .

3. Choose random integer e such that ed ≡ 1(mod pq) and add multi-
ples of pq until 23n+4 < e < 23n+6 (if necessary).

4. Set eA1 = p2q. We have 23n < eA1 < 23n+3.
5. Set eA2 = e.
6. Return the public key tuple (n, eA1, eA2) and a private key pair

(pq, d).

We also have the fact that 22n < pq < 22n+2.

• Encryption by Busu

INPUT: The public key tuple (n, eA1, eA2) and the message M.
OUTPUT: The ciphertext C.

1. Represent the message M as a 4n-bit integerm withm = m1·2n+m2

where m1 is a 3n+ 1-bit integer and m2 is a n− 1-bit integer.
2. Choose a random n-bit integer k1 and compute U = m1 · 2n + k1.

We have 24n < U < 24n+1.
3. Choose a random n-bit integer k2 and compute V = m2 · 2n + k2.

We have 22n−2 < V < 22n−1.
4. Compute C = UeA1 + V 2eA2.
5. Send ciphertext C to Along.

4 Decryption

Proposition 2. Decryption by Along is conducted in the following steps:

INPUT: The private key (pq, d) and the ciphertext C.
OUTPUT: The plaintext M.

1. Compute W ≡ Cd(mod pq).
2. Compute M1 ≡ q−1(mod p) and M2 ≡ p−1(mod q).
3. Compute

xp ≡W
p+1
4 (mod p), xq ≡W

q+1
4 (mod q).

4. Compute
V1 ≡ xpM1q + xqM2p (mod pq),

V2 ≡ xpM1q − xqM2p (mod pq),

V3 ≡ −xpM1q + xqM2p (mod pq),

V4 ≡ −xpM1q − xqM2p (mod pq).

5. For i = 1, 2, 3, 4 compute Ui =
C−V 2

i eA2

eA1
.

6. Sort the pair (Uj , Vj) for integer Uj .

7. Compute integral part m1 = bUj
2n
c.

8. Compute integral part m2 = b Vj
2n
c.

9. Form the integer m = m1 · 2n +m2.
10. Transform the number m to the message M.
11. Return the message M.
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We now proceed to give a proof of correctness.

Along will begin by computing W ≡ Cd ≡ V 2(mod pq). Along will then
have to solve W ≡ V 2(mod pq) using the Chinese Remainder Theorem.

Lemma 1. Let p and q be two different primes such that p ≡ 3(mod 4)
and q ≡ 3(mod 4). Define xp and xq by

xp ≡W
p+1
4 (mod p), xq ≡W

q+1
4 (mod q).

Then the solutions of the equation x2 ≡W (mod p) are ±xp(mod p) and
the solutions of the equation x2 ≡W (mod q) are ±xq(mod q).

Lemma 2. Let p and q be two different primes such that p ≡ 3(mod 4)
and q ≡ 3(mod 4). Define xp and xq by

xp ≡W
p+1
4 (mod p), xq ≡W

q+1
4 (mod q).

Define M1 ≡ q−1(mod p) and M2 ≡ p−1(mod q). Then the solutions of
the equation V 2 ≡W (mod pq) are

V1 ≡ xpM1q + xqM2p (mod pq),

V2 ≡ xpM1q − xqM2p (mod pq),

V3 ≡ −xpM1q + xqM2p (mod pq),

V4 ≡ −xpM1q − xqM2p (mod pq).

Proof. To solve the equation V 2 ≡ W (mod pq), we use the Chinese
Remainder Theorem. Consider the equations x2p ≡ W (mod p) and x2q ≡
W (mod q). Then the solution of the equation V 2 ≡W (mod pq) are the
four solutions of the four systems{

V ≡ ±xp(mod p)
V ≡ ±xq(mod q)

Define M1 ≡ q−1(mod p) and M2 ≡ p−1(mod q). We will get explicitly

V1 ≡ xpM1q + xqM2p (mod pq),

V2 ≡ xpM1q − xqM2p (mod pq),

V3 ≡ −xpM1q + xqM2p (mod pq),

V4 ≡ −xpM1q − xqM2p (mod pq).

It can be seen that solving V 2 ≡ W (mod pq), we will get four solutions
Vi for i = 1, 2, 3, 4.

We prove below that only one of them leads to the correct decryption
and consequently, there is no decryption failure.

Lemma 3. Let C be an integer representing a ciphertext encrypted by
the AAβ algorithm. The equation C = UeA1 + V 2eA2 has only one solu-
tion satisfying V < 22n−1.
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Proof. Suppose for contradiction that there are two couples of solutions
(U1, V1) and (U2, V2) of the equation C = UeA1 + V 2eA2 with V1 6= V2

and Vi < 22n−1. Then U1eA1+V 2
1 eA2 = U2eA1+V 2

2 eA2. Using eA1 = p2q,
this leads to

(U2 − U1)p2q = (V1 + V2)(V1 − V2)eA2.

Since gcd(p2q, eA2) = 1, then p2q|(V1 +V2)(V1−V2) and the prime num-
bers p and q satisfy one of the conditions

p2|(V1 ± V2) or

{
pq|(V1 ± V2)
p |(V1 ∓ V2)

Observe that p2 > 22n and pq > 22n while |V1 ± V2| < 2 · 22n−1 = 22n.
This implies that none of these conditions is possible. Hence the equation
C = UeA1 + V 2eA2 has only one solution with the parameters of the
scheme.�

4.1 Example

Let n = 16. Along will choose the primes p = 62683 and q = 62483. The
public keys will be

1. eA1 = 245505609868187
2. eA2 = 4106878163802480

The private keys will be

1. pq = 3916621889
2. d = 2486483

Busu’s message will contain the following parameters

1. m1 = 544644664056570
2. m2 = 21777

Busu will also generate the following ephemeral random session keys

1. k1 = 54433
2. k2 = 33079

Busu will then generate

1. U = 35693832703611425953
2. V = 1427210551 and consequently V 2 = 2036929956885723601

The ciphertext will be C = 17128459327562266456602243879187691.
To decrypt Along will first compute W = 3215349249. Along will then
obtain the following root values

V1 = 318887097,

V2 = 2489411338,

V3 = 1427210551,

and

V4 = 3597734792.

Only U3 =
C−V 2

3 eA2

eA1
will produce an integer value. That is U3 = 35693832703611425953.

Finally, m1 and m2 can be obtained. �
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5 Basic Attacks

5.1 Congruence attack

From C = UeA1 + V 2eA2 and since gcd(eA1, eA2) = 1 we have

U ≡ Ce−1
A1 ≡ a (mod eA2).

Hence U = a+ eA2j for some j ∈ Z. Replacing into C we have

C = UeA1 + V 2eA2 = (a+ eA2j)eA1 + V 2eA2.

Then,

V 2 =
C − (a+ eA2j)eA1

eA2
=
C − eA1a

eA2
− eA1j,

where C−eA1a
eA2

= b ∈ Z. It follows that the equation C = UeA1 + V 2eA2

has the parametric solutions

U = a+ eA2j and V 2 = b− eA1j.

• Computing with U

To find U = a+ eA2j, we should find an integer j such that 24n < U <
24n+1. This gives

24n − a
eA2

< j <
24n+1 − a

eA2
.

We know that 23n+4 < eA2 < 23n+6. Then the difference between the
upper and the lower bound is

24n+1 − a
eA2

− 24n − a
eA2

=
24n

eA2
>

24n

23n+6
= 2n−6.

Hence the difference is very large and finding the correct j is infeasible.

• Computing with V 2

To find V 2 = b − eA1j, we should find an integer j such that 24n−4 <
V < 24n−2. This gives

24n−4 − b
−eA1

> j >
24n−2 − b
−eA1

.

We know that 23n < eA1 < 23n+3. Then the difference between the upper
and the lower bound is

24n−4 − b
−eA1

− 24n−2 − b
−eA1

=
3 · 24n−4

eA1
= 3 · 2n−7.

Hence the difference is very large and finding the correct j is infeasible.
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5.2 Coppersmith type attack

Theorem 1. Let N be an integer of unknown factorization. Further-
more, let fN (x) be an univariate, monic polynomial of degree δ. Then we
can find all solutions x0 for the equation fN (x) ≡ 0(mod N) with

|x0| < N
1
δ .

in time polynomial in (logN, δ).

Theorem 2. Let N be an integer of unknown factorization, which has a
divisor b > Nβ. Furthermore let fb(x) be an univariate, monic polynimial
of degree δ. Then we can find all solutions x0 for the equation fb(x) ≡
0(mod b) with

|x0| ≤
1

2
N

β2

δ
−ε

in polynomial time in (logN, δ, 1
ε
).

• Attacking V

With reference to Theorem 1. Let N = eA1 = p2q and d′ ≡ e−1(mod N).
Compute W ≡ Cd′ ≡ V 2(mod N). Let fN (x) ≡ x2 −W ≡ 0(mod N).

Hence, δ = 2. Thus the root x0 = V can be recovered if V < N
1
2 ≈ 21.5n.

But since V ≈ 22n, this attack is infeasible.

• Attacking d

With reference to Theorem 2. We begin by observing fb(x) = ex − 1 ≡
0(mod pq) where pq in an unknown factor of N = eA1 = p2q. Since

pq > N
2
3 we have β = 2

3
. From fb(x) we also have δ = 1. By the

Coppersmith theorem, the root x0 = d can be found if |x0| < N
4
9 .But

since d > N
4
9 , this attack is infeasible.

5.3 Euclidean division attack

From C = UeA1 +V 2eA2, the size of each public parameter within C en-
sures that Euclidean division attacks does not occur. This can be easily
deduced as follows:

1. b C
eA1
c 6= U

2. b C
eA2
c 6= V 2

6 Analysis on lattice based attack

The square lattice attack has been an efficient and effective means of
attack upon schemes that are designed based on Diophantine equations.
The AAβ scheme has gone through analysis regarding lattice attacks
while it went through the design process. Let C = UeA1 + V 2eA2 be an
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AAβ ciphertext. Consider the diophantine equation eA1x1 + eA2x2 = C.
Introduce the unknown x3 and consider the diophantine equation

eA1x1 + eA2x2 − Cx3 = 0.

Then (U, V 2, 1) is a solution of the equation. Next let T be a number to
fixed later. Consider the lattice L spanned by the matrix:

M =

 1 0 eA1T
0 1 eA2T
0 0 −CT


Observe that

(x1, x2, x3)M = (x1, x2, T (eA1x1 + eA2x2 − Cx3)).

This shows that the lattice L contains the vectors (x1, x2, T (eA1x1 +
eA2x2 − Cx3)) and more precisely the vector-solution V0 = (U, V 2, 0).
Observe that the length of V0 satisfies

‖V0‖ =
√
U2 + V 4 ≈ 24n.

On the other hand, the determinant of the lattice is det(L) = CT and
the Gaussian heuristics for the lattice L asserts that the length of its
shortest non-zero vector is usually approximately σ(L) where

σ(L) =

√
dim(L)

2πe
det(L)

1
dim(L) =

√
3

2πe
(CT )

1
3 .

If we choose T such that σ(L) > ‖V0‖, then V0 can be among the short
non-zero vectors of the lattice L. To this end, T should satisfy

T > (
πe

2
)
3
2 · 212n

C
(3)

Next, if we apply the LLL algorithm to the lattice L, we will find a basis
(b1, b2, b3) such that ‖b1‖ ≤ ‖b2‖ ≤ ‖b3‖ and

bi ≤ 2
n(n−1)

4(n+1−i) det(L)
1

n+1−i , for i = 1, ..., 4 and n = 3.

For i = 1, we choose T such that ‖V0‖ ≤ ‖b1‖ ≤ 2
1
2 (CT )

1
3 . Using the

approximation ‖V0‖ ≈ 24n, this is satisfied if

V > 2−
1
2 · 212n

C
,

which follows from the lower bound of equation (3). We experimented
this result to try to find (U, V 2, 0). The LLL algorithm outputs a basis
with a matrix in the form

ML =

a11 a12 0
a21 a22 0
a31 a32 T


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If (U, V 2, 0) is a short vector, then (U, V 2, 0) = (x1, x2, x3)ML for some
short vector (x1, x2, x3). We then deduce the system{

a11x1 + a21x2 = U
a12x1 + a22x2 = V 2

from which we can deduce that x3 = 0. If we compute (UeA1−V 2eA2)/C,
we get x2 = 1 for some x1. It follows that{

a11x1 + a21 = U
a12x1 + a22 = V 2

This situation is similar to the congruence attack. We can also observe
that this is a system of two equations with three unknowns (i.e. x1, U, V ).

6.1 Example with lattice based attack

We will use the parameters in the earlier example in Section 4. Observe
the lattice L spanned by the matrix:

M =

 1 0 eA1T
0 1 eA2T
0 0 −CT


the length of the vector V = (U, V 2, 0) is ‖ V ‖≈ 35751905917344588937.
We will use T = 220n which would result in the length of the vector V is
shorter than the gaussian heuristic of the lattice L.

The LLL algorithm outputs:

ML =

 −4106878163802480 245505609868187 0
247367271832221073 4155888875658045598 0
−1118395942494397 66856738131713 T


Observe that element (1, 1) within the above matrix is −eA2 while ele-
ment (1, 2) is eA1. The rest of the process as observed in Section 6 can
be obtained trivially.

7 Underlying security principles

In this section we will view four underlying security principles applied
either directly or indirectly. We opine that each principle can be viewed
independently from one another.

• The AAβ-DEHP

To find the unknown parameters U and V 2 from the public “summation
composite” C. That is, to prf -solve C.
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• The integer factorization problem

To find the unknown composite p and q such that eA1 = p2q.

• The square root modulo problem

Since gcd(eA1, eA2) = 1, one can obtain V 2 ≡ α(mod eA1). Since eA1 =
p2q, then this is equivalent to calculating square roots modulo composite
integers with unknown factorization which is infeasible.

• The modular reduction problem

Since gcd(eA1, eA2) = 1, one can obtain U ≡ β(mod eA2). Since U �
eA2, to compute U prior to modular reduction by eA2 is infeasible.

7.1 Security Reduction

Proposition 3. Let C be the AAβ ciphertext. Then, decryption≡T prf-
solve C.

Proof. Let θ1 be an oracle that is able to prf -solve C. Call θ1(C) to obtain
U and V 2. Thus, M can be obtained. Hence, decryption has occurred. If
the decryption has occurred then C has been prf -solved.

Corollary 1. prf-solve C ≤T Factoring p2q.

Remark 1. The converse of Corollary 1 is unknown.

7.2 Equivalence with integer factorization

From C = UeA1 + V 2eA2 we have

C ≡ V 2(mod eA1)

where eA1 = p2q is of unknown factorization. We show here that solving
this congruence relation is equivalent to factoring eA1. If we know the
factorization of eA1, then it is easy to solve the congruence relation.
Conversely, suppose that we know all the solutions. By Lemma 2, the
four solutions are

V1 ≡ xpM1q + xqM2p (mod pq),

V2 ≡ xpM1q − xqM2p (mod pq),

V3 ≡ −xpM1q + xqM2p (mod pq),

V4 ≡ −xpM1q − xqM2p (mod pq).

and are such that Vi < pq for i = 1, 2, 3, 4. We have V1 +V3 = 2xqM2p+
αpq for some integer α. Then V1 + V3 ≡ 0(mod p). On the other hand,
V1 + V3 < 2pq < p2q. Hence V1 + V3 6≡ 0(mod p2q). Therefore

p = gcd(eA1, V1 + V3) = gcd(p2q, V1 + V3).

Hence q = p2q
p2

.
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8 Indistinguishability [1]

8.1 IND-CPA

Since the random parameter k1 and k2 are ephemeral keys, we achieve
IND-CPA.

8.2 IND-CCA2

• IND-CCA2 Design - Encryption

Let E and D denote the encryption and decryption oracles respectively.
Also let H be a random oracle where it is a mapping from j0+j1 to j2 bit
strings and j2 < j0 + j1. Prior to sending the ciphertext, the encryption
oracle will compute:

1. C1 = E(M) = UeA1 + V 2eA2

2. C2 = H(U + V )
3. The ciphertext to be sent is (C1, C2).

• IND-CCA2 Design - Decryption

The decryption oracle will begin by computing D(C) = M . From M
the decryption oracle can obtain U and V . The random oracle will then
compute h = H(U + V ). If h⊕ C2 6= 0 then output ⊥ which means the
ciphertext is illegal. Otherwise, the decryption oracle outputs the correct
plaintext.

Remark 2. In order to successfully to substitute C2 the adversary has to
be able to prf -solve C1 successfully in order to obtain (U, V ).

9 Secure Transmission of large data sets

9.1 Motivation

Initially, key distribution issues surrounding the implementation of sym-
metric cryptographic solutions triggered research for an asymmetric model.
However, since the first asymmetric cryptographic model was first dis-
covered, it has been the traditional role of the asymmetric scheme to
encrypt the session key to be utilize by its corresponding symmetric
scheme. While this seems practical, the authors opine that the initial ob-
jective to design an asymmetric cryptosystem to encrypt data has only
been partially achieved.
Embedded within the construction of the RSA is the condition that the
message, M∈ ZN . As for the DHKE, El-Gammal and ECC, the message
is an element of Zp (where p is referring to their respective prime struc-
tures). This means, the amount of data to be transmitted securely is
limited. Thus, the objective to design an asymmetric scheme that could
overcome this barrier.
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9.2 Transmitting large data asymmetrically

From the LLL algorithm, the vector λ1 = (−eA2, eA1, 0) is produced
(see Section 6). Let V = (v1, v2, 0) ∈ L be an arbitrary vector. We
also can see that the vector λ2 = (v1 − teA2, v2 − teA1, 0) ∈ L and
‖ λ2 ‖<‖ (v1, v2, 0) ‖. This implies:

e2A1 + e2A2 +
2eA2

t
v2 <

2eA1

t
v1

For |t| ≈ 2n and the fact that eA1 ≈ 23n, v1 should be ≥ 24n for the
above inequality to hold. Hence, U could be as large as possible, which
in turn implies that m1 can be as large as possible. The above inequality
also implies that there exists vector shorter than (U, V 2, 0). Hence, the
inability of the LLL algorithm to detect the vector (U, V 2, 0).

10 Table of Comparison

The following is a table of comparison between RSA, ECC, NTRU and
AAβ . Let |E| denote public key size. The AAβ cryptosystem has the abil-
ity to encrypt large data sets (i.e. arbitrary size). The ratio of M : |E|
suggests better economical value per public key bit being used. At the
same time the ratio between the message and the ciphertext is ≈ 1 : 1
which implies that message expansion due to encryption is negligible.

Algorithm Encryption Speed Decryption Speed Ratio M : C Ratio M : |E|
RSA O(n3) O(n3) 1 : 1 1 :≈ 1

ECC O(n3) O(n3) 1 : 2 1 : 1

NTRU O(n2) O(n2) Varies [4] N/A

AAβ O(n2) O(n3) ≈ 1 : 1 t : 6 where t ≥ 4

Table 1. Comparison table for input block of length n

11 Conclusion

The DEHP, is proposed to be another source of cryptographic primitive,
that if utilized correctly could give rise to other possible asymmetric
algorithms differing from classical algorithms based on the difficulty of
solving the integer factorization problem, discrete log problem (DLP), el-
liptic curve discrete log problem (ECDLP), e-th root modulo N , square
root problem and others. The AAβ cryptosystem is capable of encrypting
large data sets using a fixed key size. This will give a significant contri-
bution in a niche area for implementation of asymmetric type security
in transmitting large data sets.
The scheme is also comparable to the Rabin cryptosystem with the ad-
vantage of having a unique decryption result. It has achieved an en-
cryption speed with complexity order of O(n2) and it also has a simple
mathematical structure for easy implementation.
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