
Improved Key Generation For Gentry’s Fully
Homomorphic Encryption Scheme

P. Scholl and N.P. Smart

Dept. Computer Science,
University of Bristol,

Woodland Road,
Bristol, BS8 1UB,
United Kingdom.

Abstract. A key problem with the original implementation of the Gen-
try Fully Homomorphic Encryption scheme was the slow key generation
process. Gentry and Halevi provided a fast technique for 2-power cyclo-
tomic fields. We present an extension of the Gentry–Halevi key genera-
tion technique for arbitrary cyclotomic fields. Our new method is roughly
twice as efficient as the previous best methods. Our estimates are backed
up with experimental data.

The major theoretical cryptographic advance in the last three years was the
discovery by Gentry in 2009 of a fully homomorphic encryption scheme [4, 5].
Gentry’s scheme was initially presented as a completely theoretical construction,
however it was soon realised that by specialising the construction one could ac-
tually obtain a system which could at least be implemented; although not yet
in such a way as to enable practical computations. The first such implementa-
tion was presented by Smart and Vercauteren [10]. The Smart and Vercauteren
implementation used arithmetic of cyclotomic number fields. In particular they
focused on the field generated by the polynomial F (X) = X2n

+ 1, but they
noted that the scheme could be applied with arbitrary (even non-cyclotomic)
number fields. A main problem with the version of Smart and Vercauteren was
that the key generation method was very slow indeed.

In [6] Gentry and Halevi presented a new implementation of the variant of
Smart and Vercauteren, but with a greatly improved key generation phase. In
particular Gentry and Halevi note that key generation (for cyclotomic fields) is
essentially an application of a Discrete Fourier Transform, followed by a small
amount of computation, and then application of the inverse Discrete Fourier
Transform. They then show that one does not even need to perform the DFT’s
if one selects the cyclotomic field to be of the form X2n

+ 1. They do this by
providing a recursive method to deduce two constants, from the secret key, which
enables the key generation algorithm to construct a valid associate public key.
The key generation method of Gentry and Halevi is fast, but appears particularly
tailored to working with two-power roots of unity.

However, the extra speed of their key generation method comes at a cost.
Restricting to two-power roots of unity means that one is precluded from the

type of SIMD operations discussed in [11]. To enable such operations one needs
to be able to deal with general cyclotomic number fields. In [11] it is pointed out
that the DFT/inverse-DFT method can be easily applied to the case of general
cyclotomic fields via the use of the FFT algorithms such as those of Good–
Thomas [7, 12], Rader [9] and others. However, the simple recursive method of
Gentry and Halevi does not seem to apply.

Other works have examined ways of improving key generation, and fully
homomorphic encryption schemes in particular. For example [8] has a method to
construct keys for essentially random number fields by pulling random elements
and analyzing eigenvalues of the corresponding matrices; this method however
does not allow the efficiency improvements of [10] and [6] with respect to reduced
ciphertext sizes etc. More recent fully homomorphic schemes based on the LWE
assumption [3] have more efficient key generation procedures than the original
Gentry scheme; and appear to be more suitable in practice. However for this
work we concentrate purely on the schemes in the “Gentry family”.

In this paper we present an analysis of the key generation algorithm, for Gen-
try based schemes, for general cyclotomic fields, generated by the the primitive
m-th roots of unity. In particular, we show that Gentry and Halevi’s recursive
method can be generalised to deal with prime power values of m, and also any
m with just a few small, repeated prime factors. We also show for general m
that the DFT/inverse-DFT method is sub-optimal, and that an algorithm exists
which requires only a single DFT application to compute the secret key. Our
general key generation method is essentially twice as fast as previous methods;
both theoretically and in practice.

The paper is organized as follows: In Section 1 we present the required math-
ematical background and notation. In Section 2 we present the required infor-
mation about the key generation method for the variant of Gentry’s scheme we
will be discussing. Then in Section 3 we describe how one could execute the
key generation procedure assuming as soon as two coefficients of one associated
polynomial g(X) and one coefficient of another associated polynomial h(X) are
computed. Algorithms to compute these three coefficients are then presented in
Section 4. Finally in Section 5 we present some experimental results.

1 Mathematical Background

Let F (X) = Φm(X) denote the m-th cyclotomic polynomial, i.e. the irreducible
polynomial whose roots are the primitive m-th roots of unity. This polynomial
has degree N = φ(m), where φ(·) is Euler’s phi-function. We let the m-th roots
of unity be denoted by ω0

m, . . . , ωm−1
m , which are defined as powers of ωm =

exp(2π
√
−1

m), the principal m-th root of unity. The roots of F (X) are those values
ωi

m where gcd(i,m) = 1. We let ρ0, . . . , ρN−1 denote these primitive m-th roots
of unity (i.e. the roots of F).

If f(X) ∈ Z[X] is an arbitrary polynomial then we let fi denote the coefficient
of Xi in f(X). For a polynomial f(X) we let ‖f‖∞ = maxdeg(f)

i=0 |fi| denote the
infinity-norm (i.e. the max-norm) of its coefficient vector. Given two polynomials

f(X) and g(X) the resultant of f and g is defined to be

resultant(f, g) =
∏
α,β

(α− β)

where α ranges over the roots of f(X) and β ranges over the roots of g(X). We
also have that

resultant(f, g) =
∏
α

g(α). (1)

Given a polynomial x(X) of degree m−1, which is simply a list of coefficients
x0, x1, . . . , xm−1, the Discrete Fourier Transform (DFT) is defined by the evalu-
ation of this polynomial at all of the m-th roots of unity. So the k-th coefficient
of the DFT is then

xk =
m−1∑
i=0

xiω
i·k
m .

Näıve computation of the DFT from this definition takes O(m2) operations. Fast
Fourier Transform (FFT) algorithms reduce this to O(m log m). The inverse-
DFT is the procedure which takes m evaluations of a polynomial at the m-th
roots of unity, and then recovers the polynomial. We write x ← DFT(x) and
x← DFT−1(x).

2 Key Generation for Gentry

Key generation for Gentry’s FHE scheme depends on two parameters m and t.
The value m defines the underlying cyclotomic field as above, and we define N =
φ(m), which is the degree of the cyclotomic polynomial F (X). The parameter t
is used to define how “small” the secret key is. Note that in practice the word
“small” is a relative term and we are not really dealing with small numbers at
all. To generate keys for Gentry’s FHE scheme one can proceed as follows:

– v(X)← Z[X] with ‖v‖∞ ≤ 2t and v(X) ≡ 1 (mod 2).
– Compute w(X) ∈ Z[X] such that

d = v(X) · w(X) (mod F (X))

where d = resultant(v, f).
– If v(X) and w(X) do not have a common root modulo d then return to the

beginning and choose another v(X).
– Let α ∈ Zd denote the common root.
– Set pk← (α, d) and sk← (w(X), d).

Note, there are various minor variations on the above procedure in the literature.
In Smart and Vercauteren [10] the polynomial v(X) is rejected unless d is prime;
this is done due to the method the authors used to compute the common root α.
Gentry and Halevi [6] notice that if v(X) and f(X) have a common root modulo
f(X) then it is given by α = −wN−1/w0 (mod d). Gentry and Halevi, make an

additional modification, in that the condition on v(X) ≡ 1 (mod 2) is dropped,
and replaced by the condition that d ≡ 1 (mod 2); this means the authors only
need to compute one coefficient of w(X) for their application. However, in [11],
the authors show that selecting v(X) ≡ 1 (mod 2) enables SIMD style operations
on data, as long as m 6= 2r. They also show that whilst all coefficients of w(X)
are needed in the secret key, one can generate all of them via the relation

wi =

{
αwi+1 + Fi+1wN−1 (mod d) if 0 ≤ i < N − 1
−αw0 (mod d) if i = N − 1

(2)

The main question is then how to compute w0 and d. In [6, 11] it is pointed out
that the following DFT-based procedure can be applied:

– v← DFT(v(X)).
– d←

∏
gcd(i,m)=1 vi.

– wi ← d/vi.
– w(X)← DFT−1(w).

Gentry and Halevi [6] then go on to notice that one can actually compute w(X)
and d without any need for computing DFTs. They do this, since they solely
focus on the case m = 2r, which enables them to present the calculation of
d and w(X) as the calculation of computing two coefficients of an associated
polynomial g(X).

In this paper we generalise this method of Gentry and Halevi to arbitrary
values of m; for non-prime powers of m we will still require the application
of a single DFT algorithm, but will no longer need the inverse DFT. The key
observation is that d and w(X) are related, for general m, to the coefficients of
two associated polynomials g(X) and h(X). It is to these polynomials, and their
properties, that we now turn.

3 The Polynomials g(X) and h(X)

Before proceeding we introduce Ramanujan sums, for those readers who are not
acquainted with them. A Ramanujan sum is simply a sum of powers of primitive
roots of unity:

Cm(k) :=
m−1∑
i=0

(i,m)=1

ωk
i =

∑
d|(k,m)

µ
(m

d

)
d

where the second sum is over the positive divisors of gcd(k, m), and µ is the
Möbius function. For a proof of this formula see e.g. [2, p. 162]. The Ramanujan
sum can therefore be easily computed provided m can be factored efficiently;
this will always be the case in our applications since m is a small integer. It
is clear from this formula that Cm(−k) = Cm(k). We also have the following
result, which we will need:

Proposition 1. Let Fi denote the i-th coefficient of the m-th cyclotomic poly-
nomial F (X). Then for k = 0, . . . , N − 1,

N−1∑
i=1

Cm(i− k) · Fi+1 = −Cm(−k − 1).

Proof. Suppose that θ is a root of F . Observing that since F is a cyclotomic
polynomial, F0 = FN = 1, and so

−1 =
N∑

i=1

Fiθ
i =

N−1∑
i=0

Fi+1θ
i+1.

This is equivalent to

−θ−k−1 =
N−1∑
i=0

Fi+1θ
i−k.

The above relation can then be applied to the individual summands in Cm(k)
(which are powers of the roots of F) to give the desired result.

We now turn to our key generation method. Given v(X) we define the fol-
lowing polynomials,

g(X) :=
N−1∏
i=0

(v(ρi)−X)

h(X) :=
N−1∏
i=0

(v(ρi)−X/ρi).

The polynomial g here is the same as that defined in [6]. However, when m is
not a power of 2 we also need to introduce h(X) in order to help us find w.

The constant-term and degree one coefficients of these polynomials, i.e. g0,
g1, h0 and h1, must then be computed. We leave discussion of how this step is
done until the next section. In this section we detail how, given these coefficients,
we can compute w(X) and d. Note that because of Equation 1, the values g0

and h0 are both equal to the resultant, d, of v and f .
We also have

g1 = −
N−1∑
i=0

∏
j 6=i

v(ρj) = −
N−1∑
i=0

∏N−1
j=0 v(ρj)
v(ρi)

= −
N−1∑
i=0

d

v(ρi)
= −

N−1∑
i=0

w(ρi) (3)

and similarly,

h1 = −
N−1∑
i=0

w(ρi)
ρi

. (4)

To determine the coefficients of w, we first look at a more general form of the
above expressions for g1 and h1, and show how this relates to w. Define for k ≥ 0
the following sequence of sums

Wk :=
N−1∑
i=0

w(ρi)
ρk

i

.

Our strategy from here onwards is to give a simple expression for Wk in terms
of the coefficients of w, and then show that the values of Wk can be easily
computed independently using the information we already have of g1 and h1.
Next, by looking at successive terms of Wk, a set of simultaneous equations
involving the coefficients of w will arise, and it will be shown that these can be
solved to recover all of w.

Observe that, as a result of Equations 3 and 4, we have W0 = −g1, W1 = −h1.
More generally, we see that

Wk =
N−1∑
i=0

∑N−1
j=0 wj · ρj

i

ρk
i

=
N−1∑
j=0

wj ·
N−1∑
i=0

ρj−k
i =

N−1∑
j=0

Cm(j − k) · wj .

Thus the above equation gives us an expression for Wk as a simple linear com-
bination of the coefficients of w, by the Ramunujan sums Cm(j − k). Applying
Equation 2, this allows us to deduce

Proposition 2.
Wk = α ·Wk+1 (mod d).

Proof.

Wk =
N−1∑
i=0

Cm(i− k) · wi

=
N−2∑
i=0

Cm(i− k) · α · wi+1 + wN−1 ·
N−2∑
i=0

Cm(i− k) · Fi+1

+ Cm(N − k − 1) · wN−1

= α ·
N−2∑
i=0

Cm(i− k) · wi+1 + wN−1 ·
N−1∑
i=0

Cm(i− k) · Fi+1

= α ·
N−1∑
i=1

Cm(i− k − 1) · wi − wN−1 · Cm(−k − 1)

= α ·
N−1∑
i=1

Cm(i− k − 1) · wi + α · w0 · Cm(−k − 1)

= α ·Wk+1

From which comes the following immediate corollary:

Corollary 1.
Wk = −g1 · α−k (mod d).

Note that Proposition 2 immediately implies that α = g1/h1 mod d, and thus
any value of Wk can be easily determined using the corollary. This allows us to
create a system of linear equations in the coefficients of w, from the values of
W0, . . . ,WN−1, as follows:

Cm(0) Cm(1) · · · Cm(N − 1)
Cm(1) Cm(0) · · · Cm(N − 2)

...
...

. . .
...

Cm(N − 2) Cm(N − 3) · · · Cm(1)
Cm(N − 1) Cm(N − 2) · · · Cm(0)

 ·

w0

w1

...
wN−1

= −g1 ·

1

α−1

α−2

...
α1−N

 (mod d)

We write the above equation as C · w = −g1 · α. The matrix C possesses the
interesting property that every diagonal is constant; as such it is a symmetric
Toeplitz matrix. There is a method to solve such a system of equations in only
O(N2) operations, as opposed to the usual O(N3) required for a general matrix
[13]. We note, that for a given value of m the matrix C is fixed and hence
computing its inverse can be considered as a precomputation. Thus with this
precomputation the cost of computing the key, given the coefficients g0, g1, and
h0, is a linear operation in N .

When it comes to computing the inverse of the matrix C, we note that it
appears experimentally to be of the form, for all m,

C−1 =
1
m

Z,

for some integral N × N matrix Z whose coefficients are bounded in absolute
value by m. However, we were unable to prove this. In any case we can assume
this is true, then efficiently compute the inverse of C by inverting C/m using
standard floating point arithmetic and then rounding the resulting coefficients
to integers. This matrix can then be divided by m, tested for correctness and
stored.

4 Determining g0, g1 and h1

In this section we examine methods to determine the coefficients g0, g1 and h1.
We first present a general method, which works for arbitrary values of m and

leads to key generation that is essentially twice as fast as existing methods. We
then describe a method for “special” values of m, namely those containing a large
number of repeated factors, such as when m is a prime power. By specialising
the results of this section, and the method in the previous section to the case
m = 2r, we obtain the key generation method of Gentry and Halevi.

4.1 General m

We note that the desired coefficients of g and h can be computed directly from
the FFT of v. Thus by applying one FFT and the techniques of the previous
section we can avoid the second inverse-FFT required of the method in Section 2.
Hence, we can obtain a method which is essentially twice as fast as that proposed
in 2.

Recall that the FFT of v gives the values v(ρ0), v(ρ1), . . . , v(ρN−1). With
these computed, g0 is obtained by simply multiplying them together (as is done
in the FFT-based key generation algorithm). Then note that

g1 = −
N−1∑
i=0

g0

v(ρi)

and

h1 = −
N−1∑
i=0

g0

ρi · v(ρi)
.

So the coefficients g1 and h1 can all be computed in O(N) operations (albeit on
numbers of O(N · t) bits in length), once the initial FFT of v is computed. This
may not seem a major improvement, after all we have only really saved one FFT
out of two; but there is a huge implied constant in the big-Oh notation due to
the fact that the coefficients of the polynomial w(X) are all of size around 2N ·t,
which is practice will result in many millions of bits of precision being needed in
the FFT algorithms.

4.2 The case m = pr

We first define the following two polynomials

a(X) =
p−1∏
j=0

v(αj ·X)

b(X) =
p−1∑
j=0

∏
j 6=i

v(αj ·X).

where α0, . . . , αp−1 denote the p-th roots of unity. By elementary Galois theory
we find that the coefficients of a must be rational integers. We observe that
a(αi ·X) = a(X), so it must follow that the i-th coefficient of a will be zero if i

is not a multiple of p. By a similar argument we also deduce that b(X) ∈ Z[X]
and that bi = 0 if i is not a multiple of p.

Our algorithm will depend on starting with the polynomials a(X) and b(X).
These can be easily computed due to the following observations. Firstly, by [1,
Proposition 4.3.4], we have

a(Xp) = p1−p · resultantY (v(Y), p ·X − p · Y p).

where resultantY (f, g) denotes the resultant polynomial in Y of the bivariate
polynomials f and g. Note that when computing this resultant, every occur-
rence of Y p in the polynomial v(Y) can be replaced with X to vastly speed up
computation time.

Now notice also that

b(X) =
p−1∑
i=0

a(X)
v(αi ·X)

=
p−1∑
i=0

a(αi ·X)
v(αi ·X)

=
p−1∑
i=0

(a/v) · (αiX).

Then by writing (a/v)(X) =
∑N−1

j=0 Bj ·Xj and changing the order of summa-
tions, we obtain:

b(X) =
N−1∑
j=0

Bj ·Xj ·

(
p−1∑
i=0

αj
i

)
= p

N/p−1∑
j=0

Bp·j .

So the polynomial b(x) can be computed from the coefficients of the quotient
polynomial a/v; note that this is an exact polynomial division over Z[X].

Now recall the definition of g, in terms of v evaluated at the primitive roots
of unity:

g(X) :=
N−1∏
i=0

(v(ρi)−X).

Since m = pr, it can be shown that the primitive m-th roots of unity are heavily
related to the p-th roots of unity, α0, . . . , αp−1. For any k ∈ {0, . . . , p− 1},

ρi+k·N/p = αk · ρi.

Using this fact, the length-(N −1) product defining g above can be re-expressed
as a length-(N/p − 1) product of p-products, involving the p-th roots of unity.
Applying this to g and then evaluating modulo X2 (to obtain the lowest two

coefficients) gives

g(X) =
N/p−1∏

i=0

p−1∏
j=0

(v(αj · ρi)−X)

=
N/p−1∏

i=0

(
p−1∏
j=0

v(αj · ρi)︸ ︷︷ ︸
a(ρi)

−X ·
p−1∑
j=0

∏
j 6=i

v(αj · ρi)︸ ︷︷ ︸
b(ρi)

)
(mod X2)

=
N/p−1∏

i=0

(
a(ρi)−X · b(ρi)

)
(mod X2).

Since a(X) and b(X) are integer polynomials whose i-th coefficient is zero if p
does not divide i, and that F (X) (the pr-th cyclotomic polynomial) has non-zero
coefficients only for coefficients of X to the power of some multiple of pr−1, we
have that a′(X) := a(X) (mod F (X)) and b′(X) := b(X) (mod F (X)) will also
be polynomials whose i-th coefficient is zero if p does not divide i.

So, if we define the polynomials V,U , such that V (Xp) = a(X) (mod F (X))
and U(Xp) = b(X) (mod f(X)), then we have reduced the original product of
length N over v of degree N − 1 down to a product of length N/p over the
polynomials V and U , which have degree N/p− 1. This process can be applied
recursively, until we end up with a final product of size N/pr−1 = p−1. This last
product can then be computed in the näıve manner to obtain g(X) (mod X2).
A similar reduction can also be applied to h.

The algorithm in Figure 1 shows how this reduction can be applied to com-
pute g0 and g1. A simple modification to the algorithm will also allow h1 to
be computed at the same time. The proof of correctness for this is an obvious
generalisation of the proof for the Gentry and Halevi reduction [6] and so is
omitted.

4.3 m contains repeated factors

The algorithm described above can be used to speed up computation of g and
h whenever m contains a repeated prime factor. If m = pr1

1 · · · prs
s , then for

every ri > 1, ri − 1 steps of the algorithm in Figure 1 can be carried out. So
after each of these reductions the final product to be computed will be of size
(p1 − 1) · · · (ps − 1). Clearly this speed improvement is most pronounced when
m = pr for some small p, but it is nevertheless useful to note that gains can be
made for any m with repeated prime factors.

5 Experiment Results

We now present some computational results for the relative performance of
our new key generation method compared to the previous version. The orig-
inal method was implemented in C++ using the MPFR library for arbitrary

Compute-g-Coefficients(v, p, r)

1 m← pr

2 F (X)← Φm(X)
3 U(X)← 1
4 V (X)← v(x)
5 while m > p
6 v(X)← V (X) (mod F (X))
7 V (X)← resultantY (v(Y), p ·X − p · Y p)/pp−1

8 q(X)← U(X) · V (Xp)/v(X)
9 for i← 0 to deg(q)/p

10 Ui ← qp·i
11 U(X)← U(X) (mod F (X))

12 U(X)← U(X1/p)
13 m← m/p
14 F (X)← Φm(X)
15 // After the reduction, p− 1 terms are left in the product.

16 ρ← e2·π·
√
−1/p.

17 g0 ←
p−1Y
i=1

V (ρi), g1 ←
p−1X
i=1

U(ρi)
Y
j 6=i

V (ρi)

18 return g0, g1

Fig. 1. Algorithm to compute g0 and g1 when m = pr.

precision floating point arithmetic, compiled using GCC 4.3.5. Our new method
was coded with the computer algebra system Sage. Both algorithms were run
on a high-powered server featuring an Intel Xeon E5620 processor running at
2.4GHz, with a 12MB cache and 48GB of memory.

We first describe the performance at four different values of m, each with
different factorization properties. Namely, m = 4391, 5555, 6561 and 10125,
which result in values of n = φ(m) in the range [4000, 5400]. The results (in
minutes) for a value of t = 400 are given in Table 1.

m 4391 5555 (= 5 · 11 · 101) 6561 (= 38) 10125 (= 34 · 53)

φ(m) 4390 4000 4374 5400

Original Method 274 137 204 451
New Method 164 67 30 123
% Improvement 40% 51% 85% 72%

Table 1. Comparison of key generation methods for t = 400 and various values of m.
Times are in minutes.

In Figure 2, we show how the performance of each algorithm as affected by
t, for a fixed choice of m. We test each m with several different choices of the
parameter t, the bit size of the generated coefficients. The bit length of a key will
be approximately t ·φ(m), so increasing t increases the size of the numbers being
computed on, and also requires a greater precision for any necessary floating
point operations.

It is clear that our new method is significantly faster than the FFT method
for all choices of m. In particular, when m contains many small repeated factors
(here, for m = 6561 and 10125) the improvement gained is almost an order of
magnitude. When the hybrid approach is taken, we see that the cost of recovering
the key by inverting the matrix is far lower than that of using the second (inverse)
FFT in the standard FFT method, and results in a speed increase of around 40-
50%, as expected.

100 200 400 600 800
0

200

400

t

T
im

e
ta

k
en

(m
in

)

FFT based, m = 4391 FFT based, m = 5555

FFT based, m = 6561 FFT based, m = 10125

New Method, m = 4391 New Method, m = 5555

New Method, m = 6561 New Method, m = 10125

Fig. 2. Comparison of methods for various different values of m, as the parameter t
increases.

6 Acknowledgements

The second author was supported by the European Commission through the
ICT Programme under Contract ICT-2007-216676 ECRYPT II and via an ERC
Advanced Grant ERC-2010-AdG-267188-CRIPTO, by EPSRC via grant COED–
EP/I03126X, the Defense Advanced Research Projects Agency (DARPA) and

the Air Force Research Laboratory (AFRL) under agreement number FA8750-
11-2-0079, and by a Royal Society Wolfson Merit Award. The US Government
is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation thereon. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of
DARPA, AFRL, the U.S. Government, the European Commission or EPSRC.

References

1. H. Cohen. A Course in Computational Algebraic Number Theory. Springer GTM
138, 1993.

2. T.M. Apostol Introduction to Analytic Number Theory. Springer-Verlag, New
York, 1976.

3. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-
LWE and security for key dependent messages. Advances in Cryptology – Crypto
2011, Springer LNCS 6841, 505–524, 2011.

4. C. Gentry. Fully homomorphic encryption using ideal lattices. Symposium on
Theory of Computing – STOC 2009, ACM, 169–178, 2009.

5. C. Gentry. A fully homomorphic encryption scheme. PhD, Stanford University,
2009.

6. C. Gentry and S. Halevi. Implementing Gentry’s fully-homomorphic encryption
scheme. Advances in Cryptology – Eurocrypt 2011, Springer LNCS 6632, 129–148,
2011.

7. I.J. Good. The interaction algorithm and practical Fourier analysis. J.R. Stat.
Soc., 20, 361–372, 1958.

8. N. Ogura, G. Yamamoto, T. Kobayashi and S. Uchiyama. An improvement of key
generation algorithm for Gentry’s homomorphic encryption scheme. Advances in
Information and Computer Security – IWSEC 2010, Springer LNCS 6434, 70–83,
2010.

9. C.M. Rader. Discrete Fourier transforms when the number of data samples is
prime. Proc. IEEE, 56, 1107–1108, 1968.

10. N.P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. Public Key Cryptography – PKC 2010, Springer
LNCS 6056, 420–443, 2010

11. N.P. Smart and F. Vercauteren. Fully Homomorphic SIMD Operations. IACR
e-print 2011/133.

12. L.H. Thomas. Using a computer to solve problems in physics. Application of
Digital Computers, 1963.

13. W.F. Trench. An algorithm for the inversion of finite Toeplitz matrices. J. SIAM,
12, 515-522, 1964.

