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Abstract. In this paper, we propose a forward secure ring signature
scheme without random oracles. With forward security, if a secret key
of a corresponding ring member is exposed, all previously signed signa-
tures containing this member remain valid. Yet the one who has stolen
the secret key cannot produce any valid signature belonged to the past
time period. This is especially useful in the case of ring signature, as the
exposure of a single secret key may result in the invalidity of thousands
or even millions ring signatures which contain that particular user. How-
ever, most of the ring signature schemes in the literature do not provide
forward security. The only one with this feature [14] relies on random or-
acles to prove the security. We are the first to construct a forward secure
ring signature scheme that can be proven secure without random ora-
cles. Our scheme can be deployed in many applications, such as wireless
sensor networks and smart grid system.

1 Introduction

Ring signatures [18] allow a member of a group to sign a message on
behalf of the whole group. The verifier does not know who is the real
signer in the group. The group can be set dynamically by the signer and
no collaboration is needed between the members of the group.

In traditional public key cryptography, the security of a cryptosystem
is guaranteed under some intractability assumptions if the secret key is
kept away from the adversary. However, there are many ways that a secret
key may be comprised in the real world. Hackers may steal your secret key
if your computer is infected with trojans, or when you use the secret key
in a phishing website. Therefore, it is important to minimize the damage
even if the entire secret key is lost. When the attacker has full access
to your secret key, he can sign or decrypt on behalf of the victim. The
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situation is even worse for ring signatures, since the attacker can forge
a message on behalf of the whole group. Moreover, the other members
of the group may be completely unaware of such forgery, since they are
unaware of being conscripted into the group.

Forward security for signatures [3] was designed to the key exposure
problem. A forward secure signature in the past remains secure even if the
current secret key is lost. The first solution was designed by Bellare and
Miner [5]. The main idea is to divide the lifetime of the public key into
T intervals, and in each time interval the same public key corresponds
to different secret keys. A current secret key can be used to derive the
secret key in the future, but not the past. Therefore, even a compromise
of the current secret key does not enable the adversary to forge signatures
pertaining to the past.

Forward secure ring signatures were proposed by Liu and Wong [14] to
resolve the key exposure problem in ring signatures. The motivation is to
reduce the damage of exposure of any secret key of users in ring signature.
Even if a secret key is compromised, previously generated ring signatures
remain valid and do not need to be re-generated. They proposed the
security model and gave a concrete construction in the random oracle
model. Here we first review some practical applications of forward secure
ring signatures.

1.1 Applications

Ad-Hoc Networks: The steadily growing importance of portable de-
vices and mobile applications has spawned new types of groups of inter-
acting parties: ad-hoc groups. The highly dynamic nature of such groups
raises new challenges for networking. Ad-hoc networks may be described
as networks with minimal infrastructure, lacking fixed routers or stable
links. Wireless sensor network is a kind of ad-hoc network. Such networks
inherently deal with spontaneous ad-hoc groups: a group of users who
spontaneously wish to communicate sensitive data need a suite of pro-
tocols which do not involve any trusted third party or certification of
any new public keys. Security goals have to be considered in this new
context. Ring signatures are perfectly suited to such a setting, since no
setup protocol is required. Without forward security, the compromise of
a user secret key in the group may result in the invalidity of all previous
ring signatures involved with this user (including this user in the ring).
The consequence is very serious. The whole authentication system may
be suspended if only one user secret key has been compromised. Thus
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forward security is an important addition to ring signature, especially in
the application of ad-hoc group.

Smart Grid: Smart Grid [17] is a form of electricity network utilizing
modern digital technology. The most distinctive feature in smart grid is its
two-way capabilities for data communication: Not only the grid controller
can issue commands to intelligent devices, consumers and devices can also
send data to grid controllers. The ability to access, analyze, and respond
to much more precise and detailed data from all levels of the electric grid is
critical to the major benefits of the Smart Grid. As an example, Microsoft
Hohm [16] provides a platform for consumers to upload energy usage data,
based on which a statistical report is created. The purpose is to encourage
consumers to compare their energy consumption with others (e.g., on the
same street) and thus use electricity more efficiently. Data integrity is a
necessary requirement in those applications since the comparison would
be meaningless if the data is maliciously modified or faked. Privacy, on
the other hand, is also a significant concern: Consumers may not want to
give their identity information to any third-party service providers. Ring
signature is a promising solution on applications (e.g., Microsoft Hohm)
requiring both integrity and privacy. In ring signature, a valid signature
will convince the service provider that the data is uploaded by a consumer
on a certain street, without telling who exactly the consumer is. Forward-
security is certainly desirable in this situation since a compromised private
key within a time period will not have any negative impact on statistical
reports generated previously. In other words, old statistical reports would
remain valid if forward-security is satisfied.

Our Contributions. The security proofs for various cryptosystems used
the random oracle model [6]. Several papers [9, 4] showed that it is possible
to prove a cryptosystem secure in the random oracle while the actual
construction is insecure when the random oracle is instantiated by any
real-world hash function. Thus, it is desirable to design cryptosystems
provably secure without requiring random oracles.

In this paper, we propose the first forward-secure ring signatures with-
out random oracles. The forward secure ring signatures proposed by Liu
and Wong [14] is only secure in the random oracle model. We prove the
security under the CDH and subgroup decision problem.

Related Works. There are some ring signature schemes that do not rely
on the random oracles. Xu et al. [23] described a ring signature scheme in
the standard model, but the proof is not rigorous and is apparently flawed
[7]. Chow et al. [11] proposed a ring signature scheme in the standard
model, though it is based on a strong new assumption. Bender et al.
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[7] gave a ring signature secure in the standard model assuming trapdoor
permutations exists. Their scheme uses generic ZAPs for NP as a building
block, which may not be practical. Shacham and Waters [20] presented an
efficient ring signature scheme without random oracles, based on standard
assumption. They rely on composite order pairing that requires a trusted
setup procedure. Schäge and Schwenk [19] gave another ring signature
scheme in the standard model using basic assumption. In contrast to [20],
they used prime order pairing instead. However, their security model does
not allow the adversary to query any private key. All the above schemes
do not provide forward security.

On the other side, the concept of forward secure signatures was first
proposed by Anderson [3] for traditional signatures. It was formalized
by Bellare and Miner [5]. The basic idea is to extend a standard digi-
tal signature algorithm with a key update algorithm, so that the secret
key can be changed frequently while the public key stays the same. The
resulting scheme is forward secure if the knowledge of the secret key at
some point in time does not help forge signatures relative to some pre-
vious time period. The challenge is to design an efficient scheme of this
concept. In particular the size of the secret key, public key and signature
should not be dependent on the number of time period during the lifetime
of the public key. Several schemes [2, 13, 1, 12, 15] have been proposed by
traditional signatures and threshold signatures that satisfy this efficiency
property. In addition, a forward secure group signature scheme and a for-
ward secure identity-based signature scheme are proposed in [21] and [24]
respectively.

2 Preliminaries

2.1 Pairings

We make use of bilinear groups of composite order. Let N be a composite
number with factorization N = pq. We have: (1) G is a multiplicative
cyclic group of order N . (2) Gp is its cyclic order-p subgroup, and Gq is
its cyclic order-q subgroup. (3) g is a generator of G, while h is a generator
of Gq. (4) GT is a multiplicative group of order N . (5) e is a bilinear map
such that e : G×G→ GT with the following properties:

– Bilinearity: For all u, v ∈ G, and a, b ∈ Z, e(ua, vb) = e(u, v)ab.

– Non-degeneracy: 〈e(g, g)〉 = GT whenever 〈g〉 = G.

– Computability: It is efficient to compute e(u, v) for all u, v ∈ G.
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(6) GT,p and GT,q are the GT -subgroups of order p and q, respectively.
(7) The group operations on G and GT can be performed efficiently. (8)
Bit strings corresponding to elements of G and of GT can be recognized
efficiently.

2.2 Mathematical Assumptions

Definition 1. Computational Diffie-Hellman (CDH) in Gp. Given
the tuple (r, ra, rb), where r ∈R Gp, and a, b ∈R Zp, compute and output
rab. In the composite setting one is additionally given the description of
the larger group G, including the factorization (p, q) of its order N .

The CDH assumption is formalized by measuring an adversary’s success
probability for computational Diffie-Hellman, that is,

AdvCDH = Pr[ Adversary outputs rab].

Definition 2. Subgroup Decision. Given w selected at random either
from G (with probability 1/2) or from Gq (with probability 1/2), decide
whether w is in Gq. For this problem one is given the description of G,
but not given the factorization of N .

The assumption is formalized by measuring an adversary’s guessing ad-
vantage for the subgroup decision problem. That is,

AdvSD =

∣∣∣∣Pr[ Adversary guesses correctly ]− 1

2

∣∣∣∣ .
Note that if CDH in Gp is hard then so is CDH in G. The assumption that
the subgroup decision problem is hard is called Subgroup Hiding (SGH)
assumption, and was introduced by Boneh et al [8].

3 Security Model

3.1 Syntax of Forward Secure Ring Signatures

A forward secure ring signature (FSRS) scheme, is a tuple of four algo-
rithms (KeyGen, Sign, Verify and Update).

– (ski,0, pki) ← KeyGen(1λ) is a PPT algorithm which, on input a se-
curity parameter λ ∈ N, outputs a private/public key pair (ski,0, pki)
such that the private key is valid for time t = 0.3 We denote by SK and
PK the domains of possible secret keys and public keys, respectively.

3 We denote ski,t to be the secret key of user i at time t.
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– ski,t+1 ← Update(ski,t, t) is a PPT algorithm which, on input a private
key for a certain time period t, outputs a new private key for the time
period t+ 1.

– σ′t=(n,Y,σ)← Sign(t, n,Y, ski,t,M) is a PPT algorithm which, on in-
put a certain time period t, group size n, a set Y of n public keys in
PK, a secret key ski,t whose corresponding public key pki ∈ Y, and a
message M , produces a signature σ′t.

– 1/0 ← Verify(M,σ′t, t) is a deterministic algorithm which, on input a
message-signature pair (M ,σ′t) and a time t returns 1 or 0 for accept
or reject, resp. If accept, the message-signature pair is valid.

In some cases, we also need to define some system parameters which
might be shared by all users, like the group G, the hash function, etc.
Some parameters may be generated by a trusted authority, like the group
order N = pq whose factorization should not be known by any user.
Therefore, we also define this (optional) algorithm:

– param ← Global Setup(1λ) is a PPT algorithm which, on input a se-
curity parameter λ ∈ N, outputs a system parameter param.

If the algorithm Global Setup exists, then the other algorithms (KeyGen,
Sign, Verify and Update) will take param as an additional input. In the fol-
lowing discussion on the security model, we omit Global Setup and param
for simplicity. We note that the security model in [14] includes Global
Setup (which was named as Init in [14]). We believe that this algorithm
is optional and may not be included. We also observed that the Update
algorithm in [14] is a deterministic algorithm. We think that the Update
algorithm can be probabilistic and it is reflected in our model.

Correctness. We require that 1 ← Verify(M,Sign(t, n,Y, ski,t,M), t),
where (ski,0, pki)← KeyGen(1λ), pki ∈ Y and

ski,t ← Update(Update(· · · (Update(ski,0, 0) · · · ), t− 2), t− 1)︸ ︷︷ ︸
t Update

.

3.2 Forward-Security

The notion of forward security is similar to the unforgeability of stan-
dard ring signatures. An adversary should not be able to output a sig-
nature σ∗t∗ = (n∗,Y∗, σ∗) for a time t∗ and a message M∗ such that
Verify(M∗, σ∗t∗ , t

∗) = 1 unless either (1) one of the public keys in Y∗ was
generated by the adversary, or (2) a user whose public key is in Y∗ explic-
itly signed M∗ previously (with respect to the same ring Y∗ and time t∗).
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Our model is similar to the unforgeability w.r.t. insider corruption in [7],
which is the strongest security model for unforgeability in [7]. Our model
adds the security related to forward security.

Forward-security for FSRS schemes is defined in the following game
between a challenger and an adversary A:

1. Setup. The challenger runs KeyGen for l times to obtain keypairs
(sk1,0, pk1), . . ., (skn′,0, pkn′). The challenger gives A the set of public
keys S = (pk1, . . . , pkn′).

2. Query. A may adaptively query the following oracles.

– ski,t ← CO(pki, t). The Corruption Oracle, on input a public key
pki ∈ S and a time t, returns the corresponding secret key ski,t.

– σ′t ← SO(t, n,Y, pki,M). The Signing Oracle, on input a time t,
a group size n, a set Y of n public keys, a public key pki ∈ Y and
a message M , returns a valid signature σ′t for time t.

3. Output. A outputs a signature σ∗t∗ = (n∗,Y∗, σ∗), a time t∗ and a
message M∗.

A wins the game if: (1) Verify(M∗,σ∗t∗ ,t
∗)=1, (2) Y∗ ⊆ S, (3) for all

pk∗i ∈ Y∗, there is no CO(pk∗i , t
′) query with time t′ ≤ t∗ and (4) there

is no SO(t∗, n∗,Y∗, ·,M∗) query. We denote by AdvfsA (λ) the probability
of A winning the game.

Definition 3 (forward-secure). An FSRS scheme is forward-secure if

for all PPT adversary A, AdvfsA (λ) is negligible.

3.3 Anonymity

The notion of anonymity is similar to that of standard ring signatures.
Simply speaking, an adversary should not be able to tell which member
of a ring generated a particular ring signature. (We note that anonymity
can be defined in either a computational or an unconditional sense where,
informally, anonymity holds for polynomial-time adversaries in the for-
mer case, and it holds for all-powerful adversaries in the latter case. For
simplicity, we only present the computational version.) In our model, the
adversary is also the given the secret keys of all users at time 0, which
implies the secret keys of all users in the all time intervals. Our model
is similar to the anonymity against full key exposure in [7], which is the
strongest security model for anonymity in [7].

Anonymity for FSRS schemes is defined in the following game between
a challenger and an adversary A:
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1. Setup. The challenger runs KeyGen for n′ times to obtain keypairs
(sk1,0, pk1), . . ., (skn′,0, pkn′). The challenger gives A the set of public
keys S = (pk1, . . . , pkn′) and the set of secret keys (sk1,0, . . . , skn′,0).

2. Query 1. A may query the signing oracle adaptively.
3. Challenge. A gives the challenger a time t∗, a group size n∗, a message
M , a set Y∗ of n∗ public keys, such that two public keys pki0 , pki1 ∈ S
are included in Y∗. The challenger randomly picks a bit b ∈ {0, 1}
and runs σ∗t∗ ← Sign(t∗, n∗,Y∗, skib,t∗ ,M∗). The challenger gives the
signature σ∗t∗ to A.

4. Query 2. A may query the signing oracle adaptively.
5. Output. A returns his guess b′.

A wins the game if b′ = b. Define the advantage as AdvFS−AnonA (λ) =
|Pr[A wins]− 1/2| for security parameter λ.

Definition 4 (FS-Anonymity). A FSRS scheme is anonymous if for
any PPT adversary A, AdvFS−AnonA (λ) is negligible.

4 Our Proposed Forward Secure Ring Signature Scheme

4.1 Intuition

Our construction is motivated from [20]. We add a binary tree key struc-
ture [10] to provide forward security. We first explain the intuition of our
binary tree key structure here.

We use binary tree to evolve the secret key. In order to represent
T = 2` time periods, we use a full binary tree with depth `. We associate
each time period with each leaf of tree from left to right. The leftmost
leaf node denotes time period 0 and the rightmost leaf node denotes time
period T − 1.

At the beginning, it stores the leftmost leaf node, and the right-child
nodes (“1” node) starting from its parent node. That is, assume ` = 4,
the secret key for T = 0 contains the nodes 0000, 0001, 001, 01, 1. (We put
the current node as the first position.)

When it performs the first update, as the current node is a left-child
(“0” node), we just delete the current node and move forward to its right-
child (“1” node) under the same parent. In the above example, the secret
key for T = 1 contains the nodes 0001, 001, 01, 1.

When it performs the next update, as the current node is a right-child
(“1” node), it first finds the last “0” node along the path. Extract the
corresponding right-child (“1” node), generate the nodes under this node
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as in the beginning and delete the current node and its parent node. In
the above example, the current node is 0001. The last “0” node is 000. Its
corresponding right-child is 001. Thus we generate the nodes under the
node 001. In this case, we just need to generate the node 0010 and 0011.
Finally, the secret key for T = 2 contains the nodes 0010, 0011, 01, 1.

Similarly, the next update is simple, by just deleting 0010 and replaced
by 0011. The secret key for T = 3 contains the nodes 0011, 01, 1.

For the next update, find the last “0” node, which is 00 in this case.
Extract the corresponding right-child node, which is 01. Perform another
node generation process under this node 01 and delete the current node
and this node. The new nodes generated are 0100, 0101, 011. Thus the
secret key for T = 4 contains the nodes 0100, 0101, 011, 1.

After a few updates, assume the current time period is T = 7. That
is, the current node is 0111. For this update, first find the last “0” node,
which is 0. Extract the corresponding right-child node, which is 1. Perform
a node generation process under this node 1. Thus the secret key for T = 8
contains the nodes 1000, 1001, 101, 11.

We hope by presenting this example, readers may now know the in-
tuition and concept of our binary key structure for secret key and key
update process.

4.2 Construction

In our ring signature all the users keys must be defined in a group G
of composite order. That group must be set up by a trusted authority,
since the factorization of its order N must be kept secret. In addition
to setting up the group G, the setup authority must also set up some
additional parameters, using a global setup algorithm we now describe.

Global Setup. Let λ, κ be a security parameter and the total number of

time periods T = 2`. The setup algorithm runs the bilinear group gener-
ator (N = pq,G,GT , e)← G(1λ). Let H : {0, 1}∗ → {0, 1}κ be a collision
resistant hash function. Suppose the group generator G also gives the gen-
erators g1, B0, u, u1, . . . , uκ, v, v1, . . . , v` ∈ G, h1 ∈ Gq and α ∈ ZN . Set
g2 = gα1 and h2 = hα1 . The public parameters are (N,G,GT , e, g1, g2, B0, h1,
h2, u, u1, . . . , uκ, v, v1, . . . , v`, H). Everyone can check the validity of g1, g2,
h1, h2 using pairings.

KeyGen. Choose a random s, ru0 , ru1 ∈ ZN . First compute

SK0 =
(
gs2v

ru0 , g
ru0
1 , v

ru0
2 , . . . , v

ru0
`

)
,

SK1 =
(
gs2(vv1)ru1 , g

ru1
1 , v

ru1
2 , . . . , v

ru1
`

)
.
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Then for k = 2 to ` do
BEGIN

Parse (
a0, a1, bk, . . . , b`

)
=
(
gs2v

r′ , gr
′

1 , v
r′
k , . . . , v

r′
`

)
← SK0k−1 ,

for some r′ ∈ ZN , where 0k−1 = 0 . . . 0︸ ︷︷ ︸
k−1

.

Select t0, t1 ∈R∈ ZN and compute

SK0k =
(
a0v

t0 , a1g
t0
1 , bk+1vk+1

t0 , . . . , b`v
t0
`

)
=
(
gs2v

r0 , gr01 , vk+1
r0 , . . . , vr0`

)
,

where r0 = r′ + t0, and

SK0k−11 =
(
a0v

t1vt1k v
r′
k , a1g

t1
1 , bk+1vk+1

t1 , . . . , b`v
t1
`

)
=
(
gs2v

r1vr1k , g
r1
1 , vk+1

r1 , . . . , vr1`

)
,

where r1 = r′ + t1.

END

Set pki = gs1 be the public key of user i and ski,0 =
{
SK0` , (SK1, SK01,

. . . , SK0`−11)
}

be the secret key of user i in time period 0.

Update. On input a secret key ski,j for user i and current time period j,
if j < T the user updates the secret key as follow:

1. Let 〈j〉 = j1 . . . j` be the binary representation of j and let bl ∈ {0, 1}
be a bit, for l = 1, . . . , `. We also define j0 = ε and b0 = ε to be empty
strings. Parse{

SK〈j〉,
(
{SKb0...bk−11}`k=1 : jk=0

)}
← ski,j .

2. If j` = 0, the new secret key is

ski,j+1 =

{
SKj0...j`−11,

(
{SKb0...bk−11}`−1

k=1 : jk=0

)}
.
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3. If j` = 1, find the largest integer φ such that jφ = 0. Let cl ∈ {0, 1}
be a bit, for l = 1, . . . , φ. We define c0 = j0 = ε to be an empty string
and also define c0 = j0 = ε, c1 = j1, . . . , cφ−1 = jφ−1, cφ = 1. Then
for k = φ+ 1 to ` do
BEGIN

Parse(
a0, a1, bk, . . . , b`

)
=

(
gs2

(
v

k−1∏
δ=1

vcδδ

)r′
, gr
′

1 , v
r′
k , . . . , v

r′
`

)
← SKc1...ck−1

,

(1)
for some r′ ∈ ZN .

Select t0, t1 ∈R∈ ZN and compute

SKc1...ck−10 =

(
a0

(
v

k−1∏
δ=1

vcδδ

)t0
, a1g

t0
1 , bk+1vk+1

t0 , . . . , b`v
t0
`

)

=

(
gs2

(
v
k−1∏
δ=1

vcδδ

)r0
, gr01 , vk+1

r0 , . . . , vr0`

)
,

where r0 = r′ + t0, and

SKc1...ck−11 =

(
a0

(
v

k∏
δ=1

vcδδ

)t1
vr
′
k , a1g

t1
1 , bk+1vk+1

t1 , . . . , b`v
t1
`

)

=

(
gs2

(
v

k∏
δ=1

vcδδ

)r1
, gr11 , vk+1

r1 , . . . , vr1`

)
,

where r1 = r′ + t1.
We define a new bit ck and set ck = 0 at this stage. (Note that
currently only c0, . . . , ck−1 are well defined, but not ck. We define
ck in this stage, as in the next loop, k will be increment by 1, this
bit will be used as the last bit of the subscript notation in SK in
equation(1).)

END

Return

ski,j+1 =

{
SKj0...jφ−110`−φ ,

(
{SKj0...jφ−110k1}

`−φ−1
k=0

)
,

(
∀ {SKb} ∈ ski,j : |b| ≤ φ− 1

)}
.

where b is a binary string.
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4. Erase ski,j .

Sign. To sign a message M ∈ {0, 1}∗ in time period j, where 0 ≤ j < T ,
let 〈j〉 = j1 . . . j` be the binary representation of j. On behalf of a list
of distinct public keys Y = {pk1, . . . , pkn} = {gs11 , . . . , g

sn
1 }, a user with

secret key skτ,j , where τ ∈ {1, . . . , n} computes the follow:

1. Compute (m1, . . . ,mκ) = H(Y,M, j).
2. Without loss of generality, suppose that τ is the index of the actual

signer. Define fi such that fi = 1 if i = τ . Otherwise fi = 0.

3. For i = 1, . . . , n, choose xi ∈R ZN and set Ci =
(
g
si
1
B0

)fi
hxi1 and

πi =

((
g
si
1
B0

)2fi−1
hxi1

)xi
. Here the value πi acts as a proof that Ci

is well-formed. Let C =
∏n
i=1Ci and x =

∑n
i=1 xi. Then we have

B0C = hx1g
sτ
1 .

4. Extract SK〈j〉 ← skτ,j and parse

(a0, a1)←

(
gsτ2

(
v
∏̀
δ=1

vjδδ

)r′
, gr
′

1

)
for some r′ ∈ ZN .

5. Choose r`, rκ ∈R ZN and compute

S1 = a0·
(
v
∏̀
δ=1

vjδδ

)r`
·
(
u

κ∏
δ=1

umδδ

)rκ
·hx2 , S2 = grκ1 S3 = a1·gr`1 .

The signature σ is
(
S1, S2, S3, {Ci, πi}ni=1

)
.

Verify. To verify a signature σ for a message M , a list of public keys Y
where |Y| = n and the time period j, first let 〈j〉 = j1 . . . j` be the binary
representation of j. Then:

1. Verify that no element is repeated in Y and output invalid otherwise.
2. Compute (m1, . . . ,mκ) = H(Y,M, j).
3. For i = 1, . . . , n, check if

e

(
Ci,

Ci(
g
si
1
B0

)) = e(h1, πi).

4. Compute C =
∏n
i=1Ci and check if:

e(S1, g1) = e
(
S2, u

κ∏
δ=1

umδδ

)
· e
(
g2, B0C

)
· e
(
S3, v

∏̀
δ=1

vjδδ

)
.

Output valid if all equalities hold. Otherwise output invalid.
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Correctness:

e
(
S2, u

κ∏
δ=1

umδδ

)
· e
(
g2, B0C

)
· e
(
S3, v

∏̀
δ=1

vjδδ

)
= e
(
S2, u

κ∏
δ=1

umδδ

)
· e
(
g2, h

x
1g
sτ
1

)
· e
(
S3, v

∏̀
δ=1

vjδδ

)
= e
(
grκ1 , u

κ∏
δ=1

umδδ

)
· e(g2, g

sτ
1 ) · e(g2, h

x
1) · e

(
gr
′+r`

1 , v
∏̀
δ=1

vjδδ

)
= e

(
g1, g

sτ
2 ·

(
u

κ∏
δ=1

umδδ

)rκ
·
(
v
∏̀
δ=1

vjδδ

)r′+r`)
· e(g1, h

x
2)

= e(g1, S1).

Theorem 1. Our scheme is forward-secure against insider corruption if
the CDH assumption holds in Gp.

Theorem 2. Our scheme is anonymous if the Subgroup Decision as-
sumption holds in G.

Details of the security analysis of our scheme can be found in the
appendix.

4.3 Comparison

We compare our scheme with some ring signature schemes in the literature
in Table 1. Denote the number of users in the group as n and the number
of bits of the message as κ. The time of an exponentiation in a group G
is expG, and the time of a multiplication in a group G is mulG. The time
of a pairing operation is pair.

Note that the Schäge-Schwenk scheme [19] is the most efficient ring
signature scheme in the standard model. However, it is only secure in
the weaker chosen subring model for unforgeability. The first forward
secure ring signatures by Liu-Wong [14] is only secure in random oracle
model (ROM). Our scheme has a small overhead comparing with the
Shacham-Waters scheme [20], while providing the extra forward security
(FS) property in the standard model.

5 Conclusion

In this paper, we presented a forward secure ring signature scheme. Our
construction is the first in the literature that can be proven secure without
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Table 1. Comparison

Scheme Signature Size Sign Time Verify Time Model Assumption FS

Shacham - (2n+ 2)G 3n+ 2 expG, 2n+ 3 pair, Full CDH, Subgp ×
Waters [20] 2n+ κ+ 2 mulG 2n+ κ+ 1 mulG

1 mulGT .

Schäge - (n+ 1)G n+ 2 expG, n+ 2 pair, Chosen CDH ×
Schwenk [19] n+ κ mulG. κ mulG Subring

n mulGT .

Liu - (2n+ 1)ZN 3n expZN , 3n expZN , ROM Factorization
√

Wong [14] n mulZN n mulZN

Our scheme (2n+ 3)G 3n+ 4 expG, 2n+ 5 pair, Full CDH, Subgp
√

4n+ κ+ 3 mulG. 3n+ κ+ 1 mulG
3 mulGT .

random oracles. The security relies on the CDH and subgroup decision
problem. We believe there are a number of useful applications of forward
secure ring signature scheme, such as wireless sensor networks and smart
grid system.
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A Security Analysis

Theorem 3. Assume the CDH assumption holds in Gp. If there is a
PPT adversary A that can break the forward-security against insider cor-
ruption with non-negligible advantage ε′ and running time t′, we can con-
struct another PPT B that can solve the CDH problem with probability
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ε ≥ ε′

8T (κ+1)qsn∗
(1 − qc

n′ ), using time at most t′ + O
(
T`2(qc + n′qs)

)
te +

O
(
T`2(qc + n′qs) + (κ + `)n′qs

)
tm, where qs, qc are the numbers of SO

and CO respectively, n′ is the number of public keys A allows to have,
n∗ is the number of users included in the forged signature produced by A,
T is the total number of time period, κ is the number of bits the hash
function H outputs, te is the time for running an exponentiation and tm
is the time for running a multiplication.

Proof. Setup. The simulator B runs the bilinear group generator (N =
pq,G,GT , e)← G(1λ). B is given the CDH problem instance (g, ga, gb) ∈
G3
p and is asked to output gab. B first sets an integer, µ = 4qs, and chooses

an integer, κ′, uniformly at random between 0 and κ. B picks x′, x1, . . . , xκ
uniformly at random between 0 and µ − 1. B randomly picks a γ ∈ ZN
and sets z1 = g

pγ
q . Since g ∈ Gp, z1 is in Gq. Also zb1 can be computed

from gb.
B randomly picks a generator h1 ∈ Gq. B randomly picks y′, y1, . . . , yκ,

ṽ, ṽ1, . . . , ṽ`, α, β ∈ ZN and sets

g1 = gz1, g2 = gazα1 , u = gN−κ
′µ+x′

2 gy
′
, u1 = gx12 gy1 , . . . , uκ = gxκ2 gyκ ,

h2 = hα1 , B0 = hβ1 , v = g1
ṽ, v1 = g1

ṽ1 , . . . , v` = g1
ṽ` .

Note that
e(g1, h2) = e(z1, h

α
1 ) = e(zα1 , h1) = e(g2, h1, )

since e(g, h1) = 1. Finally, B randomly chooses a collision resistant hash
function H : {0, 1}∗ → {0, 1}κ.

Then B gives the public parameters (N,G,GT , e, g1, g2, B0, h1, h2, u, u1,
. . . , uk, v, v1, . . . , v`, H)] to the adversary A.

We define j∗ be the breakin period such that A is not allowed to
query CO for any public key included in Y∗ (the set of public keys of the
forged signature output by A), while there is no limitation for time input
parameter j′ ≥ j∗. A is allowed to choose any j∗ ≤ T . B needs to guess
the breakin period j∗ chosen by A. B randomly chooses ĵ, 1 < ĵ ≤ T ,
hoping that the breakin period falls at ĵ or later, so that the forgery will
be for a time period earlier than ĵ.

Assume B picks τ ∈ {1, . . . , n′} as his guess for the challenge signer.
For i = 1, . . . , n′, B picks random si ∈ ZN and sets:

pki =

{
gsi1 if i 6= τ ,

gbzb1 if i = τ .
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B stores the set of public keys S = {pki}n
′
i=1 and gives them to A.

For a message m = {m1, . . . ,mκ}, we define

F (m) = (N − µκ′) + x′ +
κ∑
i=1

ximi, J(m) = y′ +
κ∑
i=1

yimi.

Oracle Simulation. B simulates the oracles as follows:

– CO(pki, j): If pki /∈ S or i = τ , B declares failure and exits. Otherwise,
B chooses random ru0 , ru1 ∈ ZN , computes α̃ = gsi2 and

SK0 =
(
α̃vru0 , g

ru0
1 , v

ru0
2 , . . . , v

ru0
`

)
,

SK1 =
(
α̃(vv1)ru1 , g

ru1
1 , v

ru1
2 , . . . , v

ru1
`

)
.

Then B computes the ski,0 as secret key for user i in the time period
0 according to the KeyGen algorithm. If j 6= 0, B performs Update
algorithm until it gets ski,j , the secret key for the time period j. B
outputs ski,j .

– SO(j, n,Y, pki′ ,M): On input a message M , a set of n public keys
Y = {pki′}ni′=1 where Y ⊆ S, and the public key of a signer pki′ , B
calculates (Ci′ , πi′) according to the Sign algorithm. Note that no se-
cret key is required to generate (Ci′ , πi′). Then we have B0C = hx1g

si
1 .

Denote m = H(Y,M, j). We also write m into κ bits {m1, . . . ,mκ}.
If

x′ +
κ∑
i=1

ximi ≡ 0 mod µ,

then B aborts. If i′ 6= τ , B calculates all (S1,i, S2,i, S3,i) according
to the Sign algorithm. If i′ = τ , B chooses random rτ , r` ∈ ZN and
calculates

S1,τ = (gb)
−J(m)
F (m)

(
u

κ∏
δ=1

umδδ

)rτ(
v
∏̀
δ=1

vjδδ

)r`
,

S2,τ = (gbzb1)
−1
F (m) (gz1)rτ , S3,τ = g1

r` .
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Let r̄ = rτ − b
F (m) , then

S1,τ = (gb)
−J(m)
F (m)

(
u

κ∏
δ=1

umδδ

)rτ(
v
∏̀
δ=1

vjδδ

)r`
= gb2

(
g
F (m)
2 gJ(m)

)rτ− b
F (m)

(
v
∏̀
δ=1

vjδδ

)r`
= gb2

(
u

κ∏
δ=1

umδδ

)r̄(
v
∏̀
δ=1

vjδδ

)r`
.

The simulator will be able to perform this computation if and only
if F (m) 6= 0 mod N . For ease of analysis the simulator will only
continue in the sufficient condition where x′+

∑κ
i=1 ximi 6= 0 mod µ.

(If we have x′+
∑κ

i=1 ximi 6= 0 mod µ, this implies F (m) 6= 0 mod N
since we can assume N > κµ for any reasonable values of N,κ, and
µ).
Finally, B calculates the rest of the signature according to the Sign
algorithm.

Output. Assume A chooses a breakin period j∗ ≤ ĵ. That is, the forged
signature σ∗ is valid for time period j < ĵ. A returns (n∗,Y∗, j∗,M∗, σ∗).
Denote

m∗ = (m∗1, . . . ,m
∗
κ) = H(Y∗,M∗, j∗) and 〈j∗〉 = j∗1 . . . j

∗
` .

Note that this hash value is different from previous m in various SO
queries, since (j∗, n∗,Y∗,M∗) cannot be the input of previous SO queries
and H is a collision resistant hash function. If

pkτ /∈ Y∗ and x′ +
κ∑
i=1

xim
∗
i 6= µκ′.

then B aborts. Otherwise, WLOG, we assume that pkτ is at the position
τ of the signature σ∗. Since σ∗ is a valid signature, then

e(S∗1 , g1) = e
(
S∗2 , u

κ∏
δ=1

u
m∗δ
δ

)
· e
(
g2, B0

n∗∏
δ=1

C∗δ

)
· e
(
S∗3 , v

∏̀
δ=1

v
j∗δ
δ

)
,

(2)

e

(
C∗i ,

C∗i(
pki
B0

)) = e(h1, π
∗
i ). (3)
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for i = 1, . . . , n∗. Since ê(h1, π
∗
i ) has order q in GT , therefore either C∗i or

B0C∗i
pki

has order q from equation (3). B checks if (C∗i )q = 0. If it is true,

then C∗i has order q and then B sets fi = 0. Otherwise,
B0C∗i
pki

has order q

and then B sets fi = 1. It follows that C∗i = (pkiB0
)fiz

r′i
1 for some unknown

r′i, no matter fi = 0/1. If fτ = 0, B aborts.
Let δ′ ∈ ZN such that δ′ = 0 mod q and δ′ = 1 mod p. If we raise

equation (2) to the δ′-th power, then we have

e(S∗1 , g1)δ
′

=e
(
S∗2 , u

κ∏
δ=1

u
m∗δ
δ

)δ′
· e
(
g2, B0

∏
i|pki∈Y∗

C∗i

)δ′
· e
(
S∗3 , v

∏̀
δ=1

v
j∗δ
δ

)δ′
,

e(S∗1 , gz1)δ
′

=e
(
S∗2 , g

J(m∗)
)δ′
· e
(
gazα1 , B0

∏
i|pki∈Y∗

(
pki
B0

)fiz
r′i
1

)δ′
· e
(
S∗3 , (gz1)ṽ+

∑`
δ=1 ṽδj

∗
δ

)δ′
, (4)

e(S∗1 , g)δ
′

=e
(
S∗2 , g

J(m∗)
)δ′
· e
(
ga, B0

∏
i|pki∈Y∗

(
pki
B0

)fi
)δ′

· e
(
S∗3 , g

ṽ+
∑`
δ=1 ṽδj

∗
δ

)δ′
, (5)

e(S∗1 , g)δ
′

=e
(
S∗2 , g

J(m∗)
)δ′
· e
(
ga, B0(

pkτ
B0

)
∏

i|pki∈Y∗,i 6=τ

(gsi)fi
)δ′

· e
(
S∗3 , g

ṽ+
∑`
δ=1 ṽδj

∗
δ

)δ′
, (6)

e(S∗1 , g)δ
′

= e
(
S∗2 , g

J(m∗)
)δ′
· e
(
ga, gb

)δ′
· e
(
S∗3 , g

ṽ+
∑`
δ=1 ṽδj

∗
δ

)δ′
. (7)

For equation (4), note that

u

κ∏
j=1

u
m∗j
j = g

F (m∗)
2 gJ(m∗) = gJ(m∗), since x′ +

κ∑
i=1

xim
∗
i = µκ′.

For equation (5), as δ′ = 0 mod q, all terms which are in Gq are
cancelled. Thus

C∗i
δ′ =

((pki
B0

)fi
z
r′i
1

)δ′
=
(pki
B0

)fiδ′
, since z1 ∈ Gq.

From equation (7), we can see that

S∗1 = S∗2
J(m∗) · gab · S∗3

ṽ+
∑`
δ=1 ṽδj

∗
δ .
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Therefore B can output

A = S∗1 · (S∗2)−J(m∗) · (S∗3)−(ṽ+
∑`
δ=1 ṽδj

∗
δ ),

as the solution to the CDH problem.

Probability Analysis. Following the probability analysis of Waters signature
[22], the probability of F (m) 6= 0 mod N during signing oracle query and
x +

∑κ
i=1 xim

∗
i = µκ′ is at least 1

8(κ+1)qs
. The probability of not asking

pkτ in the corruption oracle is 1 − qc
n′ . The probability of fτ = 1 in the

output phase is 1
n∗ . In additional, S also needs to guess the breaking

period correctly. The probability is at least 1
T . Therefore if A outputs

a forged signature with probability ε′, B solves the CDH problem with
probability ε ≥ ε′

8T (κ+1)qsn∗
(1 − qc

n′ ), where qs, qc are the numbers of SO
and CO respectively, n′ is the number of public keys A allows to have, n∗

is the number of users included in the forged signature produced by A, T
is the total number of time period and κ is the number of bits the hash
function H outputs.

Time Analysis. The running time is dominated by the operations of ex-
ponentiation and multiplication in the corruption oracle and the signing
oracle. There are at most O(T`2qc) exponentiations and O(T`2qc) multi-
plications in all corruption oracle queries. There at at most O(T`2n′qs)
exponentiations and O((T`2 + κ + `)n′qs) multiplications in all signing
oracle queries. As the total running time for A is t′, the running time for

B is at most t′+O
(
T`2(qc+n′qs)

)
te+O

(
T`2(qc+n′qs)+(κ+`)n′qs

)
tm.

where qs, qc are the numbers of SO and CO respectively, n′ is the number
of public keys A allows to have, te is the time for running an exponenti-
ation and tm is the time for running a multiplication. ut

Theorem 4. Assume the Subgroup Decision assumption holds in G. If
there is a PPT adversary A that can break the anonymity with non-
negligible advantage ε′ and running time t′, we can construct another PPT
B that can solve the Subgroup Decision problem with advantage ε ≥ ε′ and
running time at most t′+O(T`2qs)te+O(T`2n′qs+ (κ+ `)n′qs)tm. where
qs is the numbers of SO respectively, n′ is the number of public keys A al-
lows to have, T is the total number of time period, κ is the number of bits
the hash function H outputs, te is the time for running an exponentiation
and tm is the time for running a multiplication.

Proof. Setup. The simulator B is given the subgroup decision problem
instance (N,G,GT , e, g, h). B is asked to determine whether h ∈ G or
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h ∈ Gq. B randomly picks the generators u, u1, . . . uκ, v, v1, . . . , v`, B0 ∈ G
and α ∈ ZN . B sets

g1 = g, g2 = gα1 , h1 = h, h2 = hα.

Finally, B randomly chooses a collision resistant hash functionH : {0, 1}∗ →
{0, 1}κ. Then B gives the public parameters (N,G,GT , e, g1, g2, B0, h1, h2

, u, u1, . . . , uk, v, v1, . . . , v`, H) to the adversary A.
For i = 1, . . . , n′, B generates the public key and secret key of each

user according to the KeyGen algorithm. B stores the set of public keys
and secret keys {pki, ski,0}n

′
i=1 and sends them to A.

Oracle Simulation. B simulates the SO(n, j,Y, pki,M) by running the Sign
algorithm honestly.

Challenge. At some point, A outputs a message M∗, a set of n∗ public
keys Y∗, two indexes i0, i1 ∈ {1, . . . , n} such that pki0 , pki1 ∈ Y∗ and a
time j∗. B picks a random bit b ∈ {0, 1} and uses the secret keys of skib,j∗

to run the Sign algorithm to obtain the signature σ∗. B gives σ∗ to A.

Output. A continues to query and finally outputs a bit b′. If b′ = b, then
B outputs h ∈ Gq. Otherwise, B outputs h ∈ G.

Analysis. Suppose the challenge signature is (S∗1 , S
∗
2 , S

∗
3 , {C∗i , π∗i }n

∗
i=1) and

Y∗ = {pk∗1, . . . , pk∗n∗}. If h1 is a generator of G, there exist xi, x̄i ∈ ZN
such that C∗i = (

pk∗i
B0

)hxi1 = hx̄i1 . Then xi, x̄i correspond to the case f∗i = 0
or 1 respectively. Denote by (π∗i |f∗i = b) the value of π∗i if fi is set to
b ∈ {0, 1}. Then

(π∗i |f∗i = 0) =
(
(
pk∗i
B0

)hxi1

)xi = (hx̄i1 )xi = (hxi1 )x̄i

=
(
(
pk∗i
B0

)−1hx̄i1

)x̄i = (π∗i |f∗i = 1).

Therefore {C∗i , π∗i }n
∗
i=1 has no information about the real signer if h ∈ G.

On the other hand, S∗2 and S∗3 are computed by random numbers
only and do not have information about the real signer. Finally, S∗1 is
determined by the verification equation

e(S∗1 , g1) = e
(
S∗2 , u

κ∏
δ=1

u
m∗δ
δ

)
· e
(
g2, B0

n∗∏
i=1

C∗i

)
· e
(
S∗3 , v

∏̀
δ=1

v
j∗δ
δ

)
.

Hence, it leaks no useful information about the public key pkib . Therefore
if A wins the game, B outputs h ∈ Gq. The advantage of B is at least ε′.
The running time of B should be similar to the proof of Theorem 3 and
we skip here. ut


