
Practically Efficient Verifiable Delegation of Polynomial

and its Applications

Jia Xu

National University of Singapore
Department of Computer Science

jiaxu2001@gmail.com

Abstract. In this paper, we propose a novel one-way function, which is equivalent to large integer
factorization. From this new one-way function, we construct a novel verifiable delegation scheme for
polynomial. Our contribution is twofold: in the practice aspect, our proposed polynomial delegation
scheme is about 100 times faster than the existing solutions [1, 2] and has constant key size where
the existing works require linear key size w.r.t. the degree of the delegated polynomial; in the theory
part, our proposed scheme is provably secure under large integer factorization, which is a much weaker
assumption than that of existing works. The efficient polynomial delegation scheme can be applied in
constructing proofs of retrievability scheme, verifiable keyword search and verifiable dictionary data
structure and so on. Furthermore, our new one-way function may have independent interests.

Keywords: Cloud Computing, Verifiable Remote Computing, Delegation of Polynomial, Proofs
of Storage, One-way function

1 Introduction

Verifiable remote computing is an important research topic in secure cloud computing. Leveraging
on Gentry’s fully homomorphic encryption scheme [3], Gennaro et al. [4] and Chung et al. [5]
gave two solutions to delegate any polynomial time computable function in the verifiable remote
computing model. Although these two generic solutions are asymptotically efficient, researchers are
still pursuing practically efficient delegation schemes, even for a small class of functions. Recently,
Kate et al. [1] proposed a polynomial commitment scheme with constant proof size. Benabbas et
al. [2] proposed a verifiable remote computing protocol for polynomials. Both schemes are provably
secure under (computational or decisional) Strong Diffie-Hellman Assumption, and requires at least
linear key size and linear number of exponentiation operations w.r.t. the degree of the polynomial.

In this paper, we devise a novel one-way function that is equivalent to the large integer factoriza-
tion. We manage to replace the Strong Diffie-Hellman Assumption with our new one-way function,
and construct a new delegation scheme for polynomial. Compared with the existing works, our
proposed scheme has the following improvements:

– The number of exponentiation operations is reduced from O(d) to O(1), where d is the degree
of the polynomial.

– The key size reduce from O(d) to O(1).
– Our scheme relies on large integer factorization, which is a much weaker assumption compared

with Strong Diffie-Hellman Assumption.

The details of comparison between our scheme and existing works are in Table 1.



Table 1: Comparison of the proposed scheme with state of arts. Suppose ℓ number of polynomial
of degree d are delegated.

Scheme Key Size Storage overhead Computation (Preprocess) Computation (Prover) Computation (Verifier)

PolyCommit [1] O(d) O(ℓ) dℓ exp d exp 1 pairing

PolyDelegation [2] O(d) O(dℓ) dℓ exp d exp 2 exp

This paper O(1) O(ℓ) dℓ mul + ℓ PRF 6 exp + O(d) mul 2 exp

2 New One-Way Functions based on Large Integer Factorization

In this section, we construct several new one-way functions, based on large integer factorization
problem.

Let n = pq be a RSA modulus, where both p and q are safe primes and the bit lengths of p
and q are close. Let α, β be two secret numbers chosen from Z

∗
n at random. For each integer i, we

define gi as below

gi
def
= αi + βi mod n.

It is well known that finding square root modulo a RSA modulus n is equivalent to factorizing
n [6].

2.1 The first one-way function F1

F1(α, β)
def
= (g1, g2) = (α+ β, α2 + β2) (mod n). (1)

Lemma 1 F1 is a (strong) one-way function if it is computationally hard to factorize n.

2.2 The second one-way function F2

Lemma 2 Let us define a function G as below.

G(g1, g2, k,m)
def
=(gk, gk+1, gk+2, . . . , gk+m−1) (mod n), where k,m ∈ Zn. (2)

There exits a deterministic algorithm with O(m+ log k) modular multiplications/additions to com-
pute G.

Proof (of Lemma 4). We can compute gk recursively. Let us define three functions f1, f2, f3 as
below.

f1(gk, α
kβk) = (g2k, α

2kβ2k) (mod n) (3)

f2(g1, gk, gk+1, αβ) = (g1, gk+1, gk+2, αβ) (mod n) (4)

f3(gk, gk+1, α
kβk) = (g2k, g2k+1, α

2kβ2k) (mod n) (5)

It is easy to verify that all functions f1 and f2 and f3 can be computed in O(1) multiplica-
tions/additions. With function f2 and f3, one can compute (gk, gk+1, gk+2, . . . , gk+m−1) in O(m+
log k) number of multiplications/additions.

Corollary 3 The function F2 defined as below is a (strong) one-way function, if it is computation-
ally hard to factorize n.

F2(α, β, k,m)
def
= (k,m, gk, gk+1, . . . , gk+m−1) (mod n) (6)

Corollary 4 For each integer c ≥ 1, there is an efficient deterministic algorithm with complexity
in O(m+ log k) to compute {gck : k ∈ [3,m + 2]} given gc, g2c as input.
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2.3 The third one-way function F3

Let us define function F3 as below

F3(g1, g2)
def
= (g2, g4) (mod n). (7)

Lemma 5 F3 is a (strong) one-way function, if it is computationally hard to factorize n.

2.4 The fourth one-way function

More generally, for each integer c ≥ 2, we have G(c)

G(c)(g1, g2, k,m) = {gck : c ≥ 2, k ∈ [1,m]}. (8)

Lemma 6 G(c) is a (strong) one-way function, if it is computationally hard to factorize n.

2.5 Sequence 〈gi〉

For any a ∈ Z
∗
n, let ordn(a) denote the multiplicative order of a modulo n, i.e. ordn(a) is the smallest

positive integer k such that
ak = 1 mod n.

Lemma 7 Let set G1 = {gi : i ∈ N} and set G2 = {(gi, gi+1) : i ∈ N}. We have

– Both G1 and G2 are finite sets.
– The size of finite set G2 is |G2| = lcm(ordn(α), ordn(β)), where lcm(·, ·) denotes the least

common multiplier.
– The size of finite set G1 satisfies: |G1| ≥

√

|G2|.

Proof (of Lemma 7).

Part I of Proof of Lemma 7: First of all, the sizes of sets G1 and G2 are finite:

|G1| ≤ lcm(ordn(α), ordn(β)); |G2| ≤ lcm(ordn(α), ordn(β)).

Part II of Proof of Lemma 7: For any x ∈ N, gx = αx + βx = αx · αlcm(ordn(α), ordn(β)) +
βx · βlcm(ordn(α), ordn(β)) = gx+lcm(ordn(α), ordn(β)). Thus, if y = x + lcm(ordn(α), ordn(β)), then
(gx, gx+1) = (gy, gy+1).

On the other hand, we want to show that for any two distinct elements x, y ∈ Zn, if (gx, gx+1) =
(gy, gy+1), then lcm(ordn(α), ordn(β))|(y − x).

Let ∆ = αx − αy.From αx + βx = gx = gy = αy + βy, we have βx = βy −∆.

gx+1 = αx+1 + βx+1 = (αy +∆)α+ (βy −∆)β = αy+1 + βy+1 +∆(α− β) = gy+1 +∆(α− β).(9)

Since gx+1 = gy+1, we have ∆(α− β) = 0 mod n. Hence, either ∆ = 0 or α = β.

In the case that ∆ = 0: αx = αy ⇒ αy−x = 1 ⇒ ordn(α)|(y − x). For the similar reason,
ordn(β)|(y − x). Thus, lcm(ordn(α), ordn(β))|(y − x).

In the case that α = β: 2αx = gx = gy = 2αy ⇒ αy−x = 1 ⇒ ordn(α)|(y − x). Thus,
lcm(ordn(α), ordn(β)) = ordn(α)|(y − x).
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Part III of Proof of Lemma 7 Each element in G2 is a pair of elements in the set G1. The number
of all distinct pairs of elements from a set G1 is bounded by |G1|

2. Therefore, we have

|G2| ≤ |G1|
2.

⊓⊔

Example 1 If β = −α, the sequence gi is

2, 0, 2α2, 0, 2α4, 0, 2α6, 0, 2α8, 0, . . . ,

3 Delegation of Polynomial

In this section, we construct a new verifiable delegation scheme for polynomial, by employing
the newly constructed one-way functions. Our construction also utilizes an intriguing algebraic
property of polynomial: for any polynomial f(x) and scalar input r, the polynomial (x− r) divides
the polynomial f(x)− f(r).

3.1 Construction

KeyGen(1λ) → (pk, sk)

Find a λ bits long RSA modulus n = pq, where both p and q are safe primes. Choose α, β, τ
at random from Z

∗
n. Choose a random PRF key and denote the key as seed. Let gi := αi + βi

mod n for each integer i ≥ 0. The public key is pk = (n, g1, g2) and the private key is sk =
(n, α, β, τ, seed).

Setup(sk, ~m) → (id, σ)

The input is the coefficient vector ~m = (m0,m1, . . . ,md−1) of the polynomial that is to be
delegated. Choose a unique identifier id from {0, 1}160. Compute σ as below:

σ := PRFseed(id) + τf ~m(α) mod n (10)

Output (id, σ).

〈Eval(pk, id, ~m, σ), Verify(sk, r)〉 → accept or reject

Round 1:

– The verifier: Set r0 := r, and choose r1 at random from Z
∗
n: r1

$
←− Z

∗
n, and sends r0, r1

to the prover.
– The prover: For each ι ∈ {0, 1}, generate (yι, ψι,0) as below. Compute yι := f ~m(rι). Di-

vide the polynomial f ~m(x)−f ~m(rι) with polynomial x−rι using polynomial long division,
and denote the resulting quotient polynomial as f~wι

(x), where ~wι = (wι,0, wι,1, . . . , wι,d−1).
Compute ψι,0

ψι,0 :=
d−1
∑

j=0

wι,jgj =
d−1
∑

j=0

wι,j(α
j + βj) mod n. (11)

Send σ and {(yι, ψι,0) : ι ∈ {0, 1}} to the verifier.
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Round 2:

– The verifier: Choose k from Zφ(n) at random: k
$
←− Zφ(n). Send k to the verifier.

– The prover: For each ι ∈ {0, 1} and ν ∈ {k, k + 1}, compute ψι,ν as below

ψι,ν :=
d−1
∑

j=0

wι,jgj+ν =
d−1
∑

j=0

wι,j(α
j+ν + βj+ν) mod n. (12)

Send {ψι,ν : ι ∈ {0, 1}, ν ∈ {k, k + 1}} to verifier.
– The verifier: For each ι ∈ {0, 1} and each ν ∈ {k, k + 1}, verify whether the following

equality holds:

τ−1 (σ − PRFseed(id)) − yι

α− rι

?
=

ψι,0β
ν − ψι,ν

βν − αν
mod n (13)

If all verifications succeed, output accept; otherwise, output reject.

3.2 Security

The security can be proved under quadratic residue hard problem modulo n, which is equivalent
to factorization of n.

3.2.1 Completeness

Lemma 8 The above polynomial delegation scheme is complete with overwhelming high probability.

Proof (of Lemma 8). Let ι ∈ {0, 1} and Aι = f~wι
(α) and Bι = f~wι

(β).
From Equation (11), we have

ψι,0 =
d−1
∑

j=0

wι,jgj =
d−1
∑

j=0

wι,j(α
j+βj) =

d−1
∑

j=0

wι,jα
j +

d−1
∑

j=0

wι,jβ
j = f~wι

(α)+f~wι
(β) = Aι+Bι mod n.

From Equation (12), we have

ψι,ν =
d−1
∑

j=0

wι,jgj+ν =
d−1
∑

j=0

wι,j(α
j+ν + βj+ν) = αν

d−1
∑

j=0

wι,jα
j + βν

d−1
∑

j=0

wι,jβ
j

= ανf~wι
(α) + βνf~wι

(β) = ανAι + βνBι mod n.

As a result, we have the linear equation system
{

Aι +Bι = ψι,0 mod n (i ∈ {0, 1})
ανAι + βνBι = ψι,ν mod n (ν ∈ {k, k + 1})

(14)

Solving the above linear system, we find

{

Aι =
ψι,0β

ν−ψι,ν

βν−αν mod n

Bι =
ψι,0α

ν−ψι,ν

αν+βν mod n
(15)

Note that f~wι
(x) satisfies

f ~m(x)− f ~m(rι)

x− rι
= f~wι

(x) (16)
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By substituting x = α and yι = f ~m(rι) and f ~m(α) = τ−1(σ − PRFseed(id)) and Aι = f~wι
(α) into

the above equation, we have

τ−1 (σ − PRFseed(id)) − yι

α− rι
≡

ψι,0β
ν − ψι,ν

βν − αν
mod n (17)

⊓⊔

3.2.2 Soundness

Theorem 9 The proposed delegation of polynomial scheme is sound.

Proof (of Theorem 9). Let (σ, {(yι, ψι,0, ψι,k, ψι,k+1) : ι ∈ {0, 1}}) be the correct proof. Suppose the

adversary forges a valid but not correct proof (σ̂, {(ŷι, ψ̂ι,0, ψ̂ι,k, ψ̂ι,k+1) : i ∈ {0, 1}}).

If σ̂ 6= σ, then the adversary can find the value of τ , which is protected by the PRF. That is,
such adversary can break the PRF.

If σ̂ = σ, then the adversary can find ∆y,ι = yι − ŷι,∆ι,0 = ψι,0 − ψ̂ι,0,∆ι,ν = ψι,ν − ψ̂ι,ν ,
ν ∈ {k, k + 1} such that

−∆y,ι

α− rι
=
∆ι,0β

ν −∆ι,ν

βν − αν
mod n (18)

We substitute βν = gν − α
ν into the above equation and obtain

∆ι,0α
ν+1 + (2∆y,ι − rι∆ι,0)α

ν + (∆ι,ν −∆ι,0gν)α = ∆y,ιgν + rι∆ι,ν − rι∆ι,0gν mod n (19)

By replacing (αk+2, αk+1, αk, α) with (x1, x2, x3, x4) respectively, we obtain a a linear system in
field Z

∗
n in unknowns (x1, x2, x3, x4) as below:











0 ∆0,0 (2∆y,0 − r0∆0,0) (∆0,k −∆0,0gk)
0 ∆1,0 (2∆y,1 − r1∆1,0) (∆1,k −∆1,0gk)

∆0,0 (2∆y,0 − r0∆0,0) 0 (∆0,k+1 −∆0,0gk+1)
∆1,0 (2∆y,1 − r1∆1,0) 0 (∆1,k+1 −∆1,0gk+1)











×











x1

x2

x3

x4











=











∆y,0gk + r0∆0,k − r0∆0,0gk
∆y,1gk + r1∆1,k − r1∆1,0gk

∆y,0gk+1 + r0∆0,k+1 − r0∆0,0gk+1

∆y,1gk+1 + r1∆1,k+1 − r1∆1,0gk+1











(20)
To simplify the notations, we write the above linear system as below











0 M0,1 M0,2 M0,3

0 M1,1 M1,2 M1,3

M2,0 M2,1 0 M2,3

M3,0 M3,1 0 M3,3











×











x1

x2

x3

x4











=











D0

D1

D2

D3











(21)

Our goal is to prove that: if adversary wins, that is (∆y,0,∆y,1,∆0,0,∆1,0,∆0,k,∆1,k,∆0,k+1,∆1,k+1) 6=
~0, then the above linear system has a unique solution. In that case, the adversary can solve the
linear system to find α—Contradiction!

Since the above linear system has at least one solution (x1, x2, x3, x4) = (αk+1, αk+1, αk, α), the
linear system has either unique solution or many (about φ(n)) solutions.

We assume the linear system has many solutions. By Cramer’s Rule, five determinants have to
equal to 0:
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0 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 M0,1 M0,2 M0,3

0 M1,1 M1,2 M1,3

M2,0 M2,1 0 M2,3

M3,0 M3,1 0 M3,3

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

D0 M0,1 M0,2 M0,3

D1 M1,1 M1,2 M1,3

D2 M2,1 0 M2,3

D3 M3,1 0 M3,3

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 D0 M0,2 M0,3

0 D1 M1,2 M1,3

M2,0 D2 0 M2,3

M3,0 D3 0 M3,3

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 M0,1 D0 M0,3

0 M1,1 D1 M1,3

M2,0 M2,1 D2 M2,3

M3,0 M3,1 D3 M3,3

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 M0,1 M0,2 D0

0 M1,1 M1,2 D1

M2,0 M2,1 0 D2

M3,0 M3,1 0 D3

∣

∣

∣

∣

∣

∣

∣

∣

∣

(22)

In the Round 2, all variables are fixed except gk, gk+1 and ∆ι,ν ,i ∈ {0, 1}, ν ∈ {k, k + 1}. Upon
receiving a random k from the verifier, the adversary can compute the values of gk, gk+1. Next, the
adversary has to find four values ∆ι,ν,i ∈ {0, 1}, ν ∈ {k, k+1}, such that the above five determinants
equal to 0 (Note this is the necessary but insufficient condition to allow the above linear system has
many solutions), where these determinants are determined by the value of (gk, gk+1) ∈ G2. That
is, the adversary has to solve an equation system in four unknowns with five equations, of which
three are quadratic equations and two are linear equations. Since |G2| = lcm(ordn(α), ordn(β)) is
exponentially large and |G1| ≥

√

|G2|, the chance that such solution exists is negligible.

4 Homomorphism and Two-Variable Polynomial

The proposed polynomial delegation scheme is homomorphic and this homomorphic property will
lead a solution for delegating two-variable polynomial and an efficient proofs of retrievability scheme.

Suppose ℓ polynomials f ~mi
, i ∈ [ℓ], are delegated, and denote with (idi, σi) the output of Setup

on polynomial f ~mi
.

4.1 Homomorphism

HomEval

Receive input (~c, r) from the verifier. Parse the received vector ~c as (c0, c1, . . . , cℓ−1). Compute
~m :=

∑ℓ−1
i=0 ci ~mi and σ :=

∑ℓ−1
i=0 ciσi. Then treat σ as the authentication tag of the polynomial

f ~m and run the polynomial delegation scheme to evaluate f ~m(r).

4.2 Two-Variable Polynomial

A two variable polynomial can be written as

f(x, y) = (1, y, y2, . . . , yℓ−1)×













~m0

~m1
...

~mℓ−1













× (1, x, x2, . . . , xd)⊤

Delegate uni-variable polynomial f ~mi
, i ∈ [ℓ − 1]. To evaluate the two-variable polynomial

f(x, y) at point (x0, y0) Run the algorithm HomEval with coefficient ~c = (1, y0, y
2
0 , . . . , y

ℓ−1
0 )

and r = x0.
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5 Privacy Preserving

We can encrypt each coefficient mi,j of the delegated polynomial as mi,j + PRF(id, i, j) mod n.
The homomorphism of this encryption method ensures that the evaluation result can be extracted
from the server’s authenticated response.

6 Conclusion

In this paper, we proposed a new one-way function based on large integer factorization. From this
one-way function, we constructed a new verifiable delegation scheme for polynomial, which improves
the existing works in both practice and theory aspects.
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