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Abstract

We provide the first constructions of identity-based (injective) trapdoor functions. Furthermore,
they are lossy. Constructions are given both with pairings (DLIN) and lattices (LWE). Our lossy
identity-based trapdoor functions provide an automatic way to realize, in the identity-based setting,
many functionalities previously known only in the public-key setting. In particular we obtain the first
deterministic and efficiently searchable IBE schemes and the first hedged IBE schemes, which achieve
best possible security in the face of bad randomness. Underlying our constructs is a new definition,
namely partial lossiness, that may be of broader interest.
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1 Introduction

A trapdoor function F specifies, for each public key pk , an injective, deterministic map Fpk that can be
inverted given an associated secret key (trapdoor). The most basic measure of security is one-wayness.
The canonical example is RSA [55].

Suppose there is an algorithm that generates a “fake” public key pk∗ such that Fpk∗ is no longer
injective but has image much smaller than its domain and, moreover, given a public key, you can’t tell
whether it is real or fake. Peikert and Waters [52] call such a TDF lossy. Intuitively, Fpk is close to a
function Fpk∗ that provides information-theoretic security. Lossiness implies one-wayness [52].

Lossy TDFs have quickly proven to be a powerful tool. Applications include IND-CCA [52], de-
terministic [16], hedged [8] and selective-opening secure public-key encryption [10]. Lossy TDFs can be
constructed from DDH [52], QR [35], DLIN [35], DBDH [24], LWE [52] and HPS (hash proof systems) [40].
RSA was shown in [44] to be lossy under the Φ-hiding assumption of [26], leading to the first proof of
security of RSA-OAEP [13] without random oracles.

Lossy TDFs and their benefits belong, so far, to the realm of public-key cryptography. The purpose
of this paper is to bring them to identity-based cryptography, defining and constructing identity-based
TDFs (IB-TDFs), both one-way and lossy. We see this as having two motivations, one more theoretical,
the other more applied, yet admittedly both foundational, as we discuss before moving further.

Theoretical angle. Trapdoor functions are the primitive that began public key cryptography [31, 55].
Public-key encryption was built from TDFs. (Via hardcore bits.) Lossy TDFs enabled the first DDH
and lattice (LWE) based TDFs [52].

It is striking that identity-based cryptography developed entirely differently. The first realizations of
IBE [21, 30, 58] directly used randomization and were neither underlain by, nor gave rise to, any IB-TDFs.

We ask whether this asymmetry between the public-key and identity-based worlds (TDFs in one
but not the other) is inherent. This seems to us a basic question about the nature of identity-based
cryptography that is worth asking and answering.

Application angle. Is there anything here but idle curiosity? IBE has already been achieved without
IB-TDFs, so why go backwards to define and construct the latter? The answer is that losssy IB-TDFs
enable new applications that we do not know how to get in other ways.

Stepping back, identity-based cryptography [59] offers several advantages over its public-key coun-
terpart. Key management is simplified because an entity’s identity functions as their public key. Key
revocation issues that plague PKI can be handled in alternative ways, for example by using identity+date
as the key under which to encrypt to identity [21]. There is thus good motivation to go beyond ba-
sics like IBE [21, 30, 58, 17, 18, 62, 36] and identity-based signatures [11, 32] to provide identity-based
counterparts of other public-key primitives.

Furthermore we would like to do this in a systematic rather than ad hoc way, leading us to seek
tools that enable the transfer of multiple functionalities in relatively blackbox ways. The applications of
lossiness in the public-key realm suggest that lossy IBTDFs will be such a tool also in the identity-based
realm. As evidence we apply them to achieve identity-based deterministic encryption and identity-
based hedged encryption. The first, the counterpart of deterministic public-key encryption [7, 16], allows
efficiently searchable identity-based encryption of database entries while maintaining the maximal possible
privacy, bringing the key-management benefits of the identity-based setting to this application. The
second, counterpart of hedged symmetric and public-key encryption [56, 8], makes IBE as resistant as
possible in the face of low-quality randomness, which is important given the widespread deployment of
IBE and the real danger of bad-randomness based attacks evidenced by the ones on the Sony Playstation
and Debian Linux. We hope that our framework will facilitate further such transfers.

We clarify that the solutions we obtain are not practical but they show that the security goals can be
achieved in principle, which was not at all clear prior to our work. Allowed random oracles, we can give
solutions that are much more efficient and even practical.
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Contributions in brief. We define IB-TDFs and two associated security notions, one-wayness and
lossiness, showing that the second implies the first.

The first wave of IBE schemes was from pairings [21, 58, 17, 18, 62, 61] but another is now emerging
from lattices [36, 29, 2, 3]. We aim accordingly to reach our ends with either route and do so successfully.
We provide lossy IB-TDFs from a standard pairings assumption, namely the Decision Linear (DLIN)
assumption of [19]. We also provide IB-TDFs based on Learning with Errors (LWE) [53], whose hardness
follows from the worst-case hardness of certain lattice-related problems [53, 50]. (The same assumption
underlies lattice-based IBE [36, 29, 2, 3] and public-key lossy TDFs [52].) None of these results relies on
random oracles.

Existing work brought us closer to the door with lattices, where one-way IB-TDFs can be built by
combining ideas from [36, 29, 2]. Based on techniques from [50, 45] we show how to make them lossy.
With pairings, however it was unclear how to even get a one-way IB-TDF, let alone one that is lossy. We
adapt the matrix-based framework of [52] so that by populating matrix entries with ciphertexts of a very
special kind of anonymous IBE scheme it becomes possible to implicitly specify per-identity matrices
defining the function. No existing anonymous IBE has the properties we need but we build one that does
based on methods of [23]. Our results with pairings are stronger because the lossy branches are universal
hash functions which is important for applications.

Public-key lossy TDFs exist aplenty and IBE schemes do as well. It is natural to think one could
easily combine them to get IB-TDFs. We have found no simple way to do this. Ultimately we do draw
from both sources for techniques but our approaches are intrusive. Let us now look at our contributions
in more detail.

New primitives and definitions. Public parameters pars and an associated master secret key having
been chosen, an IB-TDF F associates to any identity a map Fpars ,id , again injective and deterministic,
inversion being possible given a secret key derivable from id via the master secret key. One-wayness means
Fpars ,id∗ is hard to invert on random inputs for an adversary-specified challenge identity id∗. Importantly,
as in IBE, this must hold even when the adversary may obtain, via a key-derivation oracle, a decryption
key for any non-challenge identity of its choice [21]. This key-derivation capability contributes significantly
to the difficulty of realizing the primitive. As with IBE, security may be selective (the adversary must
specify id∗ before seeing pars) [28] or adaptive (no such restriction) [21].

The most direct analog of the definition of lossiness from the public-key setting would ask that there
be a way to generate “fake” parameters pars∗, indistinguishable from the real ones, such that Fpars∗,id∗ is
lossy (has image smaller than domain). In the selective setting, the fake parameter generation algorithm
Pg∗ can take id∗ as input, making the goal achievable at least in principle, but in the adaptive setting it
is impossible to achieve, since, with id∗ not known in advance, Pg∗ is forced to make Fpars∗,id lossy for
all id , something the adversary can immediately detect using its key-derivation oracle.

We ask whether there is an adaptation of the definition of lossiness that is achievable in the adaptive
case while sufficing for applications. Our answer is a definition of δ-lossiness, a metric of partial lossiness
parameterized by the probability δ that Fpars∗,id∗ is lossy. The definition is unusual, involving an adversary
advantage that is the difference, not of two probabilities as is common in cryptographic metrics, but of
two differently weighted ones. We will achieve selective lossiness with degree δ = 1, but in the adaptive
case the best possible is degree 1/poly with the polynomial depending on the number of key-derivation
queries of the adversary, and this what we will achieve. We show that lossiness with degree δ implies
one-wayness, in both the selective and adaptive settings, as long as δ is at least 1/poly.

In summary, in the identity-based setting (ID) there are two notions of security, one-wayness (OW)
and lossiness (LS), each of which could be selective (S) or adaptive (A), giving rise to four kinds of IB-
TDFs. The left side of Figure 1 shows how they relate to each other and to the two kinds of TDFs —OW
and LS— in the public-key setting (PK). The un-annotated implications are trivial, ID-LS-A → ID-LS-S
meaning that δ-lossiness of the first type implies δ-lossiness of the other for all δ. It is not however via
this implication that we achieve ID-LS-S, for, as the table shows, we achieve it with degree higher than
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ID-LS-A ID-OW-A

ID-LS-S ID-OW-S

PK-LS PK-OW

Th 3.2

Th 3.2

[52]

Primitive δ Achieved under

ID-LS-A 1/ poly DLIN, LWE
ID-LS-S 1 DLIN, LWE

Figure 1: Types of TDFs based on setting (PK=Public-key, ID=identity-based), security (OW=one-way, LS=loss)
and whether the latter is selective (S) or adaptive (A). An arrow A → B in the diagram on the left means that
TDF of type B is implied by (can be constructed from) TDF of type A. Boxed TDFs are the ones we define and
construct. The table on the right shows the δ for which we prove δ-lossiness and the assumptions used. In both
the S and A settings the δ we achieve is best possible and suffices for applications.

ID-LS-A.

Closer Look. One’s first attempt may be to build an IB-TDF from an IBE scheme. In the random
oracle (RO) model, this can be done by a method of [9], namely specify the coins for the IBE scheme by
hashing the message with the RO. It is entirely unclear how to turn this into a standard model construct
and it is also unclear how to make it lossy.

To build ID-TDFs from lattices we consider starting from the public-key TDF of [52] (which is already
lossy) and trying to make it identity-based, but it is unclear how to do this. However, Gentry, Peikert and
Vaikuntanathan (GPV) [36] showed that the function gA : Bn+m

α → Z
n
q defined by gA(x, e) = AT · x+ e

is a TDF for appropriate choices of the domain and parameters, where matrix A ∈ Z
n×m
q is a uniformly

random public key which is constructed together with a trapdoor as for example in [4, 5, 46]. We
make this function identity-based using the trapdoor extension and delegation methods introduced by
Cash, Hofheinz, Kiltz and Peikert [29], and improved in efficiency by Agrawal, Boneh and Boyen [2] and
Micciancio and Peikert [46]. Finally, we obtain a lossy IB-TDF by showing that this construction is
already lossy.

With pairings there is no immediate way to get an IB-TDF that is even one-way, let alone lossy. We
aim for the latter, there being no obviously simpler way to get the former. In the selective case we need
to ensure that the function is lossy on the challenge identity id∗ yet injective on others, this setup being
indistinguishable from the one where the function is always injective. Whereas the matrix diagonals in
the construction of [52] consisted of ElGamal ciphertexts, in ours they are ciphertexts for identity id∗

under an anonymous IBE scheme, the salient property being that the “anonymity” property should hide
whether the underlying ciphertext is to id∗ or is a random group element. Existing anonymous IBE
schemes, in particular that of Boyen and Waters (BW) [23], are not conducive and we create a new one.
A side benefit is a new anonymous IBE scheme with ciphertexts and private keys having one less group
element than BW but still proven secure under DLIN.

A method of Boneh and Boyen [17] can be applied to turn selective into adaptive security but the
reduction incurs a factor that is equal to the size of the identity space and thus ultimately exponential
in the security parameter, so that adaptive security according to the standard asymptotic convention
would not have been achieved. To achieve it, we want to be able to “program” the public parameters
so that they will be lossy on about a 1/Q fraction of “random-ish” identities, where Q is the number of
key-derivation queries made by the attacker. Ideally, with probability around 1/Q all of (a successful)
attacker’s queries will land outside the lossy identity-space, but the challenge identity will land inside it
so that we achieve δ-lossiness with δ around 1/Q.

This sounds similar to the approach of Waters [62] for achieving adaptively secure IBE but there are
some important distinctions, most notably that the technique of Waters is information-theoretic while
ours is of necessity computational, relying on the DLIN assumption. In the reduction used by Waters the
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partitioning of the identities into two classes was based solely on the reduction algorithm’s internal view
of the public parameters; the parameters themselves were distributed independently of this partitioning
and thus the adversary view was the same as in a normal setup. In contrast, the partitioning in our
scheme will actually directly affect the parameters and how the system behaves. This is why we must
rely on a computational assumption to show that the partitioning in undetectable. A key novel feature
of our construction is the introduction of a system that will produce lossy public parameters for about a
1/Q fraction of the identities.

Applications. Deterministic PKE is a TDF providing the best possible privacy subject to being deter-
ministic, a notion called PRIV that is much stronger than one-wayness [7]. An application is encryption
of database records in a way that permits logarithmic-time search, improving upon the linear-time search
of PEKS [20]. Boldyreva, Fehr and O’Neill [16] show that lossy TDFs whose lossy branch is a universal
hash (called universal lossy TDFs) achieve (via the LHL [15, 39]) PRIV-security for message sequences
which are blocksources, meaning each message has some min-entropy even given the previous ones, which
remains the best result without ROs. Deterministic IBE and the resulting efficiently-searchable IBE are
attractive due to the key-management benefits. We can achieve them because our DLIN-based lossy
IB-TDFs are also universal lossy. (This is not true, so far, for our LWE based IB-TDFs.)

To provide IND-CPA security in practice, IBE relies crucially on the availability of fresh, high-quality
randomness. This is fine in theory but in practice RNGs (random number generators) fail due to poor
entropy gathering or bugs, leading to prominent security breaches [37, 38, 25, 49, 48, 1, 63, 33]. Expecting
systems to do a better job is unrealistic. Hedged encryption [8] takes poor randomness as a fact of life
and aims to deliver best possible security in the face of it, providing privacy as long as the message
together with the “randomness” have some min-entropy. Hedged PKE was achieved in [8] by combining
IND-CPA PKE with universal lossy TDFs. We can adapt this to IBE and combine existing (randomized)
IBE schemes with our DLIN-based universal lossy IB-TDFs to achieved hedged IBE. This is attractive
given the widespread use of IBE in practice and the real danger of randomness failures.

Both applications are for the case of selective security. We do not achieve them in the adaptive case.

Related Work. A number of papers have studied security notions of trapdoor functions beyond
traditional one-wayness. Besides lossiness [52] there is Rosen and Segev’s notion of correlated-product
security [57], and Canetti and Dakdouk’s extractable trapdoor functions [27]. The notion of adaptive
one-wayness for tag-based trapdoor functions from Kiltz, Mohassel and O’Neill [43] can be seen as the
special case of our selective IB-TDF in which the adversary is denied key-derivation queries. Security in
the face of these queries was one of the main difficulties we faced in realizing IB-TDFs.

Organization. We define IB-TDFs, one-wayness and δ-lossiness in Section 2. We also define extended
IB-TDFs, an abstraction that will allow us to unify and shorten the analyses for the selective and adaptive
security cases. In Section 3 we show that δ-lossiness implies one-wayness as long as δ is at least 1/poly.
This allows us to focus on achieving δ-lossiness. In Section 4 we provide our pairing-based schemes and
in Appendix 5 our lattice-based schemes. In Appendix B we sketch how to apply δ-lossy IB-TDFs to
achieve deterministic and hedged IBE.

Subsequent work. Escala, Herranz, Libert and Ráfols [34] provide an alternative definition of partial
lossiness based on which they achieve deterministic, PRIV-secure IBE for blocksources, and hedged IBE,
in the adaptive case, which answers an open question from our work. They also define and construct
hierarchical identity-based (lossy) trapdoor functions.

2 Definitions

Notation and conventions. If x is a vector then |x| denotes the number of its coordiates and x[i]
denotes its i-th coordinate. Coordinates may be numbered 1, . . . , |x| or 0, . . . , |x| − 1 as convenient. A
string x is identified with a vector over {0, 1} so that |x| denotes its length and x[i] its i-th bit. The
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proc Initialize(id) // OWF,RealF

(pars ,msk )
$← F.Pg ; IS ← ∅ ; id∗ ← id

Return pars

proc GetDK(id) // OWF,RealF

IS ← IS ∪ {id}
dk ← F.Kg(pars ,msk , id)
Return dk

proc Ch(id) // OWF

id∗ ← id ; x
$← InSp

y ← F.Ev(pars , id∗, x)
Return y

proc Finalize(x′) // OWF

Return ((x′ = x) and (id∗ 6∈ IS ))

proc Initialize(id) // LossyF,LF,ℓ

(pars ,msk)
$← LF.Pg(id) ; IS ← ∅ ; id∗ ← id

Return pars

proc GetDK(id) // LossyF,LF,ℓ
IS ← IS ∪ {id}
dk ← LF.Kg(pars ,msk , id)
Return dk

proc Ch(id) // RealF,LossyF,LF,ℓ
id∗ ← id

proc Finalize(d′) // RealF
Return ((d′ = 1) and (id∗ 6∈ IS ))

proc Finalize(d′) // LossyF,LF,ℓ
Return ((d′ = 1) and (id∗ 6∈ IS ) and (λ(F.Ev(pars , id∗, ·)) ≥ ℓ))

Figure 2: Games defining one-wayness and δ-lossiness of IBTDF F with associated sibling LF.

empty string is denoted ε. If S is a set then |S| denotes its size, Sa denotes the set of a-vectors over S,
Sa×b denotes the set of a by b matrices with entries in S, and so on. The (i, j)-th entry of a 2 dimensional
matrix M is denoted M[i, j] and the (i, j, k)-th entry of a 3 dimensional matrix M is denoted M[i, j, k].
If M is a n by µ matrix then M[j, ·] denotes the vector (M[j, 1], . . . ,M[j, µ]). If a = (a1, . . . , an)
then (a1, . . . , an) ← a means we parse a as shown. Unless otherwise indicated, an algorithm may be

randomized. By y
$← A(x1, x2, . . .) we denote the operation of running A on inputs x1, x2, . . . and fresh

coins and letting y denote the output. We denote by [A(x1, x2, . . .)] the set of all possible outputs of A
on inputs x1, x2, . . .. The (Kronecker) delta function ∆ is defined by ∆(a, b) = 1 if a = b and 0 otherwise.
If a, b are equal-length vectors of reals then 〈a, b〉 = a[1]b[1]+ · · ·+a[|a|]b[|b|] denotes their inner product.
Games. A game —look at Figure 2 for an example— has an Initialize procedure, procedures to respond
to adversary oracle queries, and a Finalize procedure. To execute a game G is executed with an adversary
A means to run the adversary and answer its oracle queries by the corresponding procedures of G. The
adversary must make exactly one query to Initialize, this being its first oracle query. (This means the
adversary can give Initialize an input, an extension of the usual convention [14].) It must make exactly
one query to Finalize, this being its last oracle query. The reply to this query, denoted GA, is called the
output of the game, and we let “GA” denote the event that this game output takes value true. Boolean
flags are assumed initialized to false.

IBTDFs. An identity-based trapdoor function (IBTDF) is a tuple F = (F.Pg,F.Kg,F.Ev,F.Ev−1) of
algorithms with associated input space InSp and identity space IDSp. The parameter generation algorithm
F.Pg takes no input and returns common parameters pars and a master secret key msk . On input
pars ,msk , id , the key generation algorithm F.Kg produces a decryption key dk for identity id . For any
pars and id ∈ IDSp, the deterministic evaluation algorithm F.Ev defines a function F.Ev(pars , id , ·) with
domain InSp. We require correct inversion: For any pars , any id ∈ IDSp and any dk ∈ [F.Kg(pars , id)],
the deterministic inversion algorithm F.Ev−1 defines a function that is the inverse of F.Ev(pars , id , ·),
meaning F.Ev−1(pars , id , dk ,F.Ev(pars , id , x)) = x for all x ∈ InSp.

E-IBTDF. To unify and shorten the selective and adaptive cases of our analyses it is useful to define
and specify a more general primitive. An extended IBTDF (E-IBTDF) E = (E.Pg,E.Kg,E.Ev,E.Ev−1)
consists of four algorithms that are just like the ones for an IBTDF except that F.Pg takes an additional
auxiliary input from an auxiliary input space AxSp. Fixing a particular auxiliary input aux ∈ AxSp for
F.Pg results in an IBTDF scheme that we denote E(aux ) and call the IBTDF induced by aux . Not all
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these induced schemes need, however, satisfy the correct inversion requirement. If the one induced by
aux does, we say that aux grants invertibility. Looking ahead we will build an E-IBTDF and then obtain
our IBTDF as the one induced by a particular auxiliary input, the other induced schemes being the basis
of the siblings and being used in the proof.

One-wayness. One-wayness of IBTDF F = (F.Pg,F.Kg,F.Ev,F.Ev−1) is defined via game OWF of
Figure 2. The adversary is allowed only one query to its challenge oracle Ch. The advantage of such an
adversary I is Advow

F
(I) = Pr

[

OWI
F

]

.

Selective versus adaptive ID. We are interested in both these variants for all the notions we consider.
To avoid a proliferation of similar definitions, we capture the variants instead via different adversary
classes relative to the same game. To exemplify, consider game OWF of Figure 2. Say that an adversary
A is selective-id if the identity id in its queries to Initialize and Ch is always the same, and say it
is adaptive-id if this is not necessarily true. Selective-id security for one-wayness is thus captured by
restricting attention to selective-id adversaries and full (adaptive-id) security by allowing adaptive-id
adversaries. Now, adopt the same definitions of selective and adaptive adversaries relative to any game
that provides procedures called Initialize and Ch, regardless of how these procedures operate. In this
way, other notions we will introduce, including partial lossiness defined via games also in Figure 2, will
automatically have selective-id and adaptive-id security versions.

Partial lossiness. We first provide the formal definitions and later explain them and their relation
to standard definitions. If f is a function with domain a (non-empty) set Dom(f) then its image is
Im(f) = { f(x) : x ∈ Dom(f) }. We define the lossiness λ(f) of f via

λ(f) = lg
|Dom(f)|
|Im(f)| or equivalently |Im(f)| = |Dom(f)| · 2−λ(f) .

We say that f is ℓ-lossy if λ(f) ≥ ℓ. Let IBTDF F = (F.Pg,F.Kg,F.Ev,F.Ev−1) be an IBTDF with
associated input space InSp and identity space IDSp. A sibling for F is an E-IBTDF LF = (LF.Pg, LF.Kg,
F.Ev,F.Ev−1) whose evaluation and inversion algorithms, as the notation indicates, are those of F and
whose auxiliary input space is IDSp. Algorithm LF.Pg will use this input in the selective-id case and
ignore it in the adaptive-id case. Consider games RealF and LossyF,LF,ℓ of Figure 2. The first uses the
real parameter and key-generation algorithms while the second uses the sibling ones. A los-adversary A
is allowed just one Ch query, and the games do no more than record the challenge identity id∗. The
advantage of the adversary is not, as usual, the difference in the probabilities that the games return true,
but is instead parameterized by a probability δ ∈ [0, 1]and defined via

Advδ-los
F,LF,ℓ(A) = δ · Pr

[

RealAF
]

− Pr
[

LossyAF,LF,ℓ
]

. (1)

Discussion. The PW [52] notion of lossy TDFs in the public-key setting asks for an alternative “sibling”
key-generation algorithm, producing a public key but no secret key, such that two conditions hold. The
first, which is combinatorial, asks that the functions defined by sibling keys are lossy. The second, which is
computational, asks that real and sibling keys are indistinguishable. The first change for the IB setting is
that one needs an alternative parameter generation algorithm which produces not only pars but a master
secret key msk , and an alternative key-generation algorithm that, based on msk , can issue decryption keys
to users. Now we would like to ask that the function F.Ev(pars , id∗, ·) be lossy on the challenge identity
id∗ when pars is generated via LF.Pg, but, in the adaptive-id case, we do not know id∗ in advance. Thus
the requirement is made via the games.

We would like to define the advantage normally, meaning with δ = 1, but the resulting notion is not
achievable in the adaptive-id case. (This can be shown via attack.) With the relaxation, a low (close
to zero) advantage means that the probability that the adversary finds a lossy identity id∗ and then
outputs 1 is less than the probability that it merely outputs 1 by a factor not much less than δ. Roughly,
it means that a δ fraction of identities are lossy. The advantage represents the computational loss while
δ represents a necessary information-theortic loss.
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IBE. Recall that an IBE scheme IBE = (IBE.Pg, IBE.Kg, IBE.Enc, IBE.Dec) is a tuple of algorithms
with associated message space InSp and identity space IDSp. The parameter generation algorithm
IBE.Pg takes no input and returns common parameters pars and a master secret key msk . On in-
put pars ,msk , id , the key generation algorithm IBE.Kg produces a decryption key dk for identity id .
On input pars , id ∈ IDSp and a message M ∈ InSp the encryption algorithm IBE.Enc returns a ci-
phertext. The decryption algorithm IBE.Dec is deterministic. The scheme has decryption error ǫ if
Pr[IBE.Dec(pars , id , dk , IBE.Enc(pars , id ,M)) 6= M ] ≤ ǫ for all pars , all id ∈ IDSp, all dk ∈ [F.Kg(pars , id)]
and allM ∈ InSp. We say that IBE is deterministic if IBE.Enc is deterministic. A deterministic IBE scheme
is identical to an IBTDF.

3 Implications of Partial Lossiness

Theorem 3.2 shows that partial lossiness implies one-wayness. We discuss other applications in Ap-
pendix B. We first need a simple lemma.

Lemma 3.1 Let f be a function with non-empty domain Dom(f). Then for any adversary A

Pr[A(y) = x : x
$← Dom(f) ; y ← f(x)] ≤ 2−λ(f) .

Proof of Lemma 3.1: For y ∈ Im(f) let f−1(y) be the set of all x ∈ Dom(f) such that f(x) = y. The
probability in question is

∑

y∈Im(f)

Pr [ A(y) = x | f(x) = y ] · Pr [ f(x) = y ] ≤
∑

y∈Im(f)

1

|f−1(y)| ·
|f−1(y)|
|Dom(f)| =

|Im(f)|
|Dom(f)| = 2−λ(f)

where the probability is over x chosen at random from Dom(f) and the coins of A if any. (Since A is
unbounded, it can be assumed wlog to be deterministic.)

Theorem 3.2 [ δ-lossiness implies one-wayness ] Let F = (F.Pg,F.Kg,F.Ev,F.Ev−1) be a IBTDF with
associated input space InSp. Let LF = (LF.Pg, LF.Kg,F.Ev,F.Ev−1) be a lossy sibling for F. Let δ > 0 and
let ℓ ≥ 0. Then for any ow-adversary I there is a los-adversary A such that

Advow
F (I) ≤

Advδ-los
F,LF,ℓ(A) + 2−ℓ

δ
. (2)

The running time of A is that if I plus the time for a computation of F.Ev. If I is a selective adversary
then so is A.

In asymptotic terms, the theorem says that δ-lossiness implies one-wayness as long as δ−1 is bounded
above by a polynomial in the security parameter and ℓ is super-logarithmic. This means δ need only be
non-negligible. The last sentence of the theorem, saying that if I is selective then so is A, is important
because it says that the theorem covers both the selective and adaptive security cases, meaning selective
δ-lossiness implies selective one-wayness and adaptive δ-lossiness implies adaptive one-wayness.

Proof of Theorem 3.2: Adversary A runs I. When I makes query Initialize(id), adversary A does
the same, obtaining pars and returning this to I. Adversary A answers I’s queries to its GetDK oracle
via its own oracle of the same name. When I makes its (single) Ch query id∗, adversary A also makes
query Ch(id∗). Additionally, it picks x at random from InSp and returns y = F.Ev(pars , id∗, x) to I.
The latter eventually halts with output x′. Adversary A returns 1 if x′ = x and 0 otherwise. By design
we clearly have Pr

[

RealA
F

]

= Advow
F
(I). But game LossyF,LF,ℓ returns true only if F.Ev(pars , id∗, ·) is

ℓ-lossy, in which case the probability that x = x′ is small by Lemma 3.1. In detail, assuming wlog that I
never queries id∗ to GetDK, we have

Pr
[

LossyAF,LF,ℓ
]

= Pr
[

x = x′ | λ(F.Ev(pars , id∗, ·)) ≥ ℓ
]

· Pr [λ(F.Ev(pars , id∗, ·)) ≥ ℓ ]

≤ Pr
[

x = x′ | λ(F.Ev(pars , id∗, ·)) ≥ ℓ
]

≤ 2−ℓ ,
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the last inequality by Lemma 3.1 applied to the function f = F.Ev(pars , id∗, ·). From Equation (1) we
have

Advδ-los
F,LF,ℓ(A) = δ · Pr

[

RealAF
]

− Pr
[

LossyAF,LF,ℓ
]

≥ δ ·Advow
F (I)− 2−ℓ .

Equation (2) follows. In Section B we discuss the application to deterministic and hedged IBE.

4 IB-TDFs from pairings

In Section 3 we show that δ-lossiness implies one-wayness in both the selective and adaptive cases. We
now show how to achieve δ-lossiness using pairings.

Setup. Throughout we fix a bilinear map e: G × G → GT where G,GT are groups of prime order p.
By 1,1T we denote the identity elements of G,GT , respectively. By G

∗ = G − {1} we denote the set of
generators of G. The advantage of a dlin-adversary B is

Advdlin(B) = 2Pr[DLINB]− 1 ,

where game DLIN is as follows. The Initialize procedure picks g, ĝ at random from G
∗, s at random

from Z
∗
p, ŝ at random from Zp and X at random from G. It picks a random bit b. If b = 1 it lets

T ← Xs+ŝ and otherwise picks T at random from G. It returns (g, ĝ, gs, ĝŝ,X, T ) to the adversary B.
The adversary outputs a bit b′ and Finalize, given b′ returns true if b = b′ and false otherwise. For
integer µ ≥ 1, vectors U ∈ G

µ+1 and y ∈ Z
µ+1
p , and vector id ∈ Z

µ
p we let

id = (1, id [1], . . . , id [µ]) ∈ Z
µ+1
p and H(U, id) =

∏µ
k=0U[k]id [k] .

H is the BB hash function [17] when µ = 1, and the Waters’ one [23] when IDSp = {0, 1}µ and an
id ∈ IDSp is viewed as a µ-vector over Zp. We also let

f(y, id) =
∑µ

k=0y[k]id [k] and f(y, id ) = f(y, id) mod p .

4.1 Overview

In the Peikert-Waters [52] design, the matrix entries are ciphertexts of an underlying homomorphic
encryption scheme, and the function output is a vector of ciphertexts of the same scheme. We begin
by presenting an IBE scheme, that we call the basic IBE scheme, such that the function outputs of our
eventual IB-TDF will be a vector of ciphertexts of this IBE scheme. Towards building the IB-TDF, the
first difficulty we run into in setting up the matrix is that ciphertexts depend on the identity and we
cannot have a different matrix for every identity. Thus, our approach is more intrusive. We will have many
matrices which contain certain “atoms” from which, given an identity, one can reconstruct ciphertexts
of the IBE scheme. The result of this intrusive approach is that security of the IB-TDF relies on more
than security of the base IBE scheme. Our ciphertext pseudorandomness lemma (Lemma 4.1) shows
something stronger, namely that even the atoms from which the ciphertexts are created look random
under DLIN. This will be used to establish Lemma 4.2, which moves from the real to the lossy setup.
The heart of the argument is the proofs of the lemmas, which are in the appendices.

We introduce a general framework that allows us to treat both the selective-id and adaptive-id cases in
as unified a way as possible. We will first specify an E-IBTDF. The selective-id and adaptive-id IB-TDFs
are obtained via different auxiliary inputs. Furthermore, the siblings used to prove lossiness also emanate
from this E-IBTDF. With this approach, the main lemmas become usable in both the selective-id and
adaptive-id cases with only minor adjustments for the latter due to artifical aborts. This saves us from
repeating similar arguments and significantly compacts the proof.
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4.2 Our basic IBE scheme

We associate to any integer µ ≥ 1 and any identity space IDSp ⊆ Z
µ
p an IBE scheme IBE[µ, IDSp] that

has message space {0, 1} and algorithms as follows:

1. Parameters: Algorithm IBE[µ, IDSp].Pg lets g
$← G

∗ ; t
$← Z

∗
p ; ĝ ← gt. It then lets H, Ĥ

$← G ; U, Û
$←

G
µ+1. It returns pars = (g, ĝ,H, Ĥ,U, Û) as the public parameters and msk = t as the master secret

key.

2. Key generation: Given parameters (g, ĝ,H, Ĥ,U, Û), master secret t and identity id ∈ IDSp, algorithm

IBE[µ, IDSp].Kg returns decryption key (D1,D2,D3,D4) computed by letting r, r̂
$← Zp and setting

D1 ←H(U, id)tr ·Htr̂ ; D2 ←H(Û, id)r · Ĥ r̂ ; D3 ← g−tr ; D4 ← g−tr̂ .

3. Encryption: Given parameters (g, ĝ,H, Ĥ,U, Û), identity id ∈ IDSp and messageM ∈ {0, 1}, algorithm
IBE[µ, IDSp].Enc returns ciphertext (C1, C2, C3, C4) computed as follows. If M = 0 then it lets s, ŝ

$←
Zp and C1 ← gs ; C2 ← ĝŝ ; C3 ←H(U, id)s ·H(Û, id)ŝ ; C4 ← HsĤ ŝ. If M = 1 it lets C1, C2, C3, C4

$←
G.

4. Decryption: Given parameters (g, ĝ,H, Ĥ,U, Û), identity id ∈ IDSp, decryption key (D1,D2,D4,D4)
for id and ciphertext (C1, C2, C3, C4), algorithm IBE[µ, IDSp].Dec returns 0 if e(C1,D1)e(C2,D2)
e(C3,D3)e(C4,D4) = 1T and 1 otherwise.

This scheme has non-zero decryption error (at most 2/p) yet our IBTDF will have zero inversion error.
This scheme turns out to be IND-CPA+ANON-CPA although we will not need this in what follows.
Instead we will have to consider a distinguishing game related to this IBE scheme and our IBTDF. In
Appendix A we give a (more natural) variant of IBE[µ, IDSp] that is more efficient and encrypts strings
rather than bits. The improved IBE scheme can still be proved IND-CPA+ANON-CPA but it cannot be
used for our purpose of building IB-TDFs.

4.3 Our E-IBTDF and IB-TDF

Our E-IBTDF E[n, µ, IDSp] is associated to any integers n, µ ≥ 1 and any identity space IDSp ⊆ Z
µ
p . It

has message space {0, 1}n and auxiliary input space Z
µ+1
p , and the algorithms are as follows:

1. Parameters: Given auxiliary input y, algorithm E[n, µ, IDSp].Pg lets g
$← G

∗ ; t
$← Z

∗
p ; ĝ ← gt ; U

$← G
∗.

It then lets H, Ĥ
$← G

n ; V, V̂
$← G

n×(µ+1) and s
$← (Z∗

p)
n ; ŝ

$← Z
n
p . It returns pars = (g, ĝ,G,

Ĝ,J,W,H, Ĥ,V, V̂, U) as the public parameters and msk = t as the master secret key where for
1 ≤ i, j ≤ n and 0 ≤ k ≤ µ:

G[i]← gs[i] ; Ĝ[i]← ĝŝ[i] ; J[i, j]← H[j]s[i]Ĥ[j]ŝ[i] ; W[i, j, k] ← V[j, k]s[i]V̂[j, k]ŝ[i]U s[i]y[k]∆(i,j) ,

where we recall that ∆(i, j) = 1 if i = j and 0 otherwise is the Kronecker Delta function.

2. Key generation: Given parameters (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U), master secret t and identity id ∈
IDSp, algorithm E[n, µ, IDSp].Kg returns decryption key (D1,D2,D3,D4) where r

$← (Z∗
p)

n ; r̂
$← Z

n
p

and for 1 ≤ i ≤ n

D1[i]←H(V[i, ·], id )tr[i] ·H[i]t̂r[i] ; D2[i]← H(V̂[i, ·], id )r[i] · Ĥ[i]r̂[i] ; D3[i]← g−tr[i] ; D4[i]← g−t̂r[i] .

3. Evaluate: Given parameters (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U), identity id ∈ IDSp and input x ∈
{0, 1}n, algorithm E[n, µ, IDSp].Ev returns (C1, C2,C3,C4) where for 1 ≤ j ≤ n

C1 ←
∏n

i=1G[i]x[i] ; C2 ←
∏n

i=1Ĝ[i]x[i] ; C3[j]←
∏n

i=1

∏µ
k=0W[i, j, k]x[i]id [k] ; C4[j]←

∏n
i=1J[i, j]

x[i]

4. Invert: Given parameters (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U), identity id ∈ IDSp, decryption key (D1,
D2,D3,D4) for id and output (ciphertext) (C1, C2,C3,C4), algorithm E[n, µ, IDSp].Ev−1 returns x ∈
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{0, 1}n where for 1 ≤ j ≤ n it sets x[j] = 0 if e(C1,D1[j])e(C2,D2[j])e(C3[j],D3[j])e(C4[j],D4[j]) =
1T and 1 otherwise.

Invertibility. We observe that if parameters (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U) were generated with
auxiliary input y and (C1, C2,C3,C4) = E[n, µ, IDSp].Ev((g, ĝ,G, Ĝ,J,W), id , x) then for 1 ≤ j ≤ n

C1 =
∏n

i=1g
s[i]x[i] = g〈s,x〉 (3)

C2 =
∏n

i=1ĝ
ŝ[i]x[i] = ĝ〈̂s,x〉 (4)

C3[j] =
∏n

i=1

∏µ
k=0V[j, k]s[i]x[i]id [k]V̂[j, k]ŝ[i]x[i]id[k]U s[i]x[i]y[k]id[k]∆(i,j)

=
∏n

i=1H(V[j, ·], id )s[i]x[i]H(V̂[j, ·], id )ŝ[i]x[i]U s[i]x[i]f(y,id)∆(i,j)

= H(V[j, ·], id )〈s,x〉H(V̂[j, ·], id )〈̂s,x〉U s[j]x[j]f(y,id) (5)

C4[j] =
∏n

i=1H[j]s[i]x[i]Ĥ[j]ŝ[i]x[i] = H[j]〈s,x〉Ĥ[j]〈̂s,x〉 . (6)

Thus if x[j] = 0 then (C1, C2,C3[j],C4[j]) is an encryption, under our base IBE scheme, of the mes-
sage 0, with coins 〈s, x〉 mod p, 〈̂s, x〉 mod p, parameters (g, ĝ,H[j], Ĥ[j],V[j, ·], V̂[j, ·]) and identity id .
The inversion algorithm will thus correctly recover x[j] = 0. On the other hand suppose x[j] =
1. Then e(C1,D1[j])e(C2,D2[j])e(C3[j],D3[j])e(C4[j],D4[j]) = e(U s[j]x[j]f(y,id),D3[j]). Now suppose
f(y, id) mod p 6= 0. Then U s[j]x[j]f(y,id) 6= 1 because we chose s[j] to be non-zero modulo p and D3[j] 6= 1
because we chose r[j] to be non-zero modulo p. So the result of the pairing is never 1T , meaning the
inversion algorithm will again correctly recover x[j] = 1. We have established that auxiliary input y
grants invertibility, meaning induced IBTDF E[n, µ, IDSp](y) satisfies the correct inversion condition, if
f(y, id) mod p 6= 0 for all id ∈ IDSp.

Our IBTDF. We associate to any integers n, µ ≥ 1 and any identity space IDSp ⊆ Z
µ
p the IBTDF

scheme induced by our E-IBTDF E[n, µ, IDSp] via auxiliary input y = (1, 0, . . . , 0) ∈ Z
µ+1
p , and denote

this IBTDF scheme by F[n, µ, IDSp]. This IBTDF satisfies the correct inversion requirement because
f(y, id) = id [0] = 1 6≡ 0 (mod p) for all id . We will show that this IBTDF is selective-id secure when
µ = 1 and IDSp = Zp, and adaptive-id secure when IDSp = {0, 1}µ. In the first case, it is fully lossy
(i.e. 1-lossy) and in the second it is δ-lossy for appropriate δ. First we prove two technical lemmas that
we will use in both cases.

4.4 Ciphertext pseudorandomness lemma

Consider games ReC,RaC of Figure 3 associated to some choice of IDSp ⊆ Z
µ
p . The adversary provides

the Initialize procedure with an auxiliary input y ∈ Z
µ+1
p . Parameters are generated as per our base

IBE scheme with the addition of U . The decryption key for id is computed as per our base IBE scheme
except that the games refuse to provide it when f(y, id) = 0. The challenge oracle, however, does not
return ciphertexts of our IBE scheme. In game ReC, it returns group elements that resemble diagonal
entries of the matrices in the parameters of our E-IBTDF, and in game RaC it returns random group
elements. Notice that the challenge oracle does not take an identity as input. (Indeed, it has no input.)
As usual it must be invoked exactly once. The following lemma says the games are indistinguishable
under DLIN. The proof is in Section 4.7.

Lemma 4.1 Let µ ≥ 1 be an integer and IDSp ⊆ Z
µ
p . Let P be an adversary. Then there is an adversary

B such that

Pr
[

ReCP
]

− Pr
[

RaCP
]

≤ (µ + 2) ·Advdlin(B) . (7)

The running time of B is that of P plus some overhead.

10



proc Initialize(y) // ReC,RaC

(pars ,msk)
$← IBE[µ, IDSp].Pg

(g, ĝ,H, Ĥ,U, Û)← pars

U
$← G

∗

Return (g, ĝ,H, Ĥ,U, Û, U)

proc GetDK(id) // ReC,RaC

If f(y, id) = 0 then dk ← ⊥
Else dk ← IBE[µ, IDSp].Kg(pars ,msk , id)
Return dk

proc Ch() // ReC

s
$← Z

∗
p ; ŝ

$← Zp ; G← gs ; Ĝ← ĝŝ ; S ← HsĤ ŝ

For k = 0, . . . , µ do Z[k]← (Uy[k]U[k])sÛ[k]ŝ

Return (G, Ĝ, S,Z)

proc Ch() // RaC

G, Ĝ, S
$← G ; Z

$← G
µ+1

Return (G, Ĝ, S,Z)

proc Finalize(d′) // ReC,RaC

Return (d′ = 1)

Figure 3: Games ReC (“Real Ciphertexts”) and RaC (“Random Ciphertexts”) associated to IDSp ⊆ Z
µ
p .

proc Initialize(id)

y0
$← Aux(id) ; y1 ← (1, 0, . . . , 0) ; Win← true

g
$← G

∗ ; t
$← Z

∗
p ; ĝ ← gt ; U

$← G
∗

H, Ĥ
$← G

n ; V, V̂
$← G

n×(µ+1) ; s
$← (Z∗

p)
n ; ŝ

$← Z
n
p

For i = 1, . . . , n do

G[i]← gs[i] ; Ĝ[i]← ĝŝ[i]

For j = 1, . . . , n do

J[i, j]← H[j]s[i]Ĥ[j]ŝ[i]

For k = 0, . . . , µ do

If (i = j and i ≤ l) then W[i, j, k]
$← G

Else W[i, j, k] ← V[j, k]s[i]V̂[j, k]ŝ[i]U s[i]yb[k]∆(i,j)

pars ← (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U) ; msk ← t
IS ← ∅ ; id∗ ← id
Return pars

proc GetDK(id)

IS ← IS ∪ {id}
If f(y0, id) = 0 then Win← false ; dk ← ⊥
Else dk ← E[n, µ, IDSp].Kg(pars ,msk , id)
Return dk

proc Ch(id)

id∗ ← id
If f(y0, id) 6= 0 then Win← false

proc Finalize(d′)

Return ((d′ = 1) and (id∗ 6∈ IS ) and Win)

Figure 4: Games RLl,b (0 ≤ l ≤ n and b ∈ {0, 1}) associated to n, µ, IDSp,Aux for proof of Lemma 4.2.

4.5 Proof of Lemma 4.2

Consider the games of Figure 4. Game RLl,b makes the diagonal entries of W (namely all the µ + 1
entries with i = j) random for i ≤ l and otherwise makes them using yb. Game RL0,1 is the same as
game RL0 and game RL0,0 is the same as game RLn. Games RLn,0,RLn,1 are identical: both make all
diagonal entries of W (meaning, i = j) random, and when i 6= j we have ∆(i, j) = 0 so yb(k) has no
impact on W[i, j, k] in the Else statement. Thus we have

Pr[RLA
0 ]− Pr[RLA

n ] =
(

Pr[RLA
0,1]− Pr[RLA

n,1]
)

+
(

Pr[RLA
n,0]− Pr[RLA

0,0]
)

.

We will design adversaries P0, P1 so that

Pr[ReCP0 ]− Pr[RaCP0 ] =
1

n
·
(

Pr[RLA
n,0]− Pr[RLA

0,0]
)

(8)

Pr[ReCP1 ]− Pr[RaCP1 ] =
1

n
·
(

Pr[RLA
0,1]− Pr[RLA

n,1]
)

. (9)

Adversary P picks b
$← {0, 1} and runs Pb. This yields Equation (10). Now we present adversary Pb

(b ∈ {0, 1}). It runs adversary A, responding to its oracle queries as follows.
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When A makes query Initialize(id), adversary Pb begins with

l
$← {1, . . . , n} ; y0

$← Aux(id) ; y1 ← (1, 0, . . . , 0) ; WinA ← true ; ISA ← ∅
(g, ĝ,H, Ĥ,U, Û, U)

$← Initialize(yb) ; (G, Ĝ, S,Z)
$← Ch().

Here Pb has called its own Initialize procedure with input yb and then called its Ch procedure. Now it
creates parameters pars for A as follows:

h, ĥ
$← Z

n
p ; v, v̂

$← Z
n×(µ+1)
p ; s

$← (Z∗
p)

n ; ŝ
$← Z

n
p

For i = 1, . . . , n do

If (i = l) then H[i]← H ; Ĥ[i]← Ĥ ; G[i]← G ; Ĝ[i]← Ĝ

If (i 6= l) then H[i]← gh[i] ; Ĥ[i]← ĝĥ[i] ; G[i]← gs[i] ; Ĝ[i]← ĝŝ[i]

For k = 0, . . . , µ do

If (i = l) then V[i, k] ← U[k] ; V̂[i, k]← Û[k]

If (i 6= l) then V[i, k] ← gv[i,k] ; V̂[i, k]← ĝv̂[i,k]

For i = 1, . . . , n do
For j = 1, . . . , n do

If (i = l and j = i) then J[i, j]← S

If (i = l and j 6= i) then J[i, j]← Gh[j]Ĝĥ[j]

If (i 6= l) then J[i, j] ← H[j]s[i]Ĥ[j]ŝ[i]

For k = 0, . . . , µ do

If (i = j and i ≤ l − 1) then W[i, j, k]
$← G

If (i = j and i = l) then W[i, j, k] ← Z[k]

Else W[i, j, k] ← V[j, k]s[i]V̂[j, k]ŝ[i]U s[i]yb[k]∆(i,j)

pars ← (g, ĝ,G, Ĝ,J,W,H, Ĥ,V, V̂, U)

It returns pars to A.

When adversary A makes query GetDK(id), adversary Pb proceeds as follows. In this code, GetDK is
Pb’s own oracle:

ISA ← ISA ∪ {id}
If f(y0, id) = 0 then WinA ← false ; dk ← ⊥
Else

(D1,D2,D3,D4)
$← GetDK(id)

r′
$← (Z∗

p)
n ; r̂′

$← Z
n
p

For i = 1, . . . , n do
If i = l then (D1[i],D2[i],D3[i],D4[i])← (D1,D2,D3,D4)
Else

D1[i]←H(V[i, ·], id )r′[i]H[i]r̂
′[i] ; D2[i]← gf(v̂,id)r

′[i]gĥ[i]̂r[i]

D3[i]← g−r′[i] ; D4[i]← g−r̂′[i]

dk ← (D1,D2,D3,D4)

It returns dk to A. Notice that Pb’s invocation of GetDK will never return ⊥. In the case b = 1 this is
true because f(y1, ·) = 1 6= 0. In the case b = 0 it is true because the case f(y0, id) = 0 was excluded by
the If statement. To justify the above simulation, define r, r̂ by r[i] = r′[i]/t and r̂[i] = r̂′[i]/t for i 6= l
and r[l], r̂[l] as the randomness underlying (D1,D2,D3,D4). Then think of r, r̂ as the randomness used
by the real key generation algorithm. Here t is the secret key, so that ĝ = gt.

When adversary A makes query Ch(id), adversary Pb proceeds as follows:

id∗ ← id
If f(y0, id) 6= 0 then WinA ← false.
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proc Initialize(id) // RL0

y0
$← Aux(id) ; y1 ← (1, 0, . . . , 0)

(pars ,msk )
$← E[n, µ, IDSp].Pg(y1)

IS ← ∅ ; id∗ ← id ; Win← true
Return pars

proc Initialize(id) // RLn

y0
$← Aux(id) ; y1 ← (1, 0, . . . , 0)

(pars ,msk )
$← E[n, µ, IDSp].Pg(y0)

IS ← ∅ ; id∗ ← id ; Win← true
Return pars

proc GetDK(id) // RL0,RLn

IS ← IS ∪ {id}
If f(y0, id) = 0 then Win← false ; dk ← ⊥
Else dk ← E[n, µ, IDSp].Kg(pars ,msk , id)
Return dk

proc Ch(id) // RL0,RLn

id∗ ← id
If f(y0, id) 6= 0 then Win← false

proc Finalize(d′) // RL0,RLn

Return ((d′ = 1) and (id∗ 6∈ IS ) and Win)

Figure 5: Games RL0,RLn (“Real-to-Losssy”) associated to n, µ, IDSp ⊆ Z
µ
p and auxiliary input generator

algorithm Aux.

Finally, A halts with output d′. Adversaries P0, P1 compute their output differently. Adversary P1 returns
1 if

(d′ = 1) and id∗ 6∈ ISA and WinA

and 0 otherwise. Adversary P0 does the opposite, returning 0 if the above condition is true and 1
otherwise. We obtain Equations (8), (9) as follows:

Pr[ReCP1 ]− Pr[RaCP1 ] =
1

n

n
∑

l=1

Pr[RLA
l−1,1]− Pr[RLA

l,1]

= Pr[RLA
0,1]− Pr[RLA

n,1]

Pr[ReCP0 ]− Pr[RaCP0 ] =
1

n

n
∑

l=1

(1− Pr[RLA
l−1,0])− (1− Pr[RLA

l,0])

=
1

n

n
∑

l=1

Pr[RLA
l,0]− Pr[RLA

l−1,0]

= Pr[RLA
n,0]− Pr[RLA

0,0] .

4.6 Real-to-lossy lemma

Consider games RL0,RLn of Figure 5 associated to some choice of n, µ, IDSp ⊆ Z
µ
p and auxiliary input

generator Aux for E[n, µ, IDSp]. The latter is an algorithm that takes input an identity in IDSp and returns
an auxiliary input in Z

µ+1
p . Game RL0 obtains an auxiliary input y0 via Aux but generates parameters

exactly as E[n, µ, IDSp].Pg with the real auxiliary input y1. The game will return true under the same
condition as game Real but additionally requiring that f(y0, id) 6= 0 for all GetDK(id) queries and
f(y0, id) = 0 for the Ch(id) query. Game RLn generates parameters with the auxiliary input provided
by Aux but is otherwise identical to game RL0. The following lemma says it is hard to distinguish these
games. We will apply this by defining Aux in such a way that its output y0 results in a lossy setup. The
proof of the following is in Section 4.5.

Lemma 4.2 Let n, µ ≥ 1 be integers and IDSp ⊆ Z
µ
p . Let Aux be an auxiliary input generator for

E[n, µ, IDSp] and A an adversary. Then there is an adversary P such that

Pr[RLA
0 ]− Pr[RLA

n ] ≤ 2n ·
(

Pr
[

ReCP
]

− Pr
[

RaCP
])

. (10)
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proc Initialize(y) // PC,PCl

(pars ,msk)
$← IBE[µ, IDSp].Pg

(g, ĝ,H, Ĥ,U, Û)← pars

U
$← G

∗

Return (g, ĝ,H, Ĥ,U, Û, U)

proc GetDK(id) // PC,PCl

If f(y, id) = 0 then dk ← ⊥
Else dk ← IBE[µ, IDSp].Kg(pars ,msk , id)
Return dk

proc Ch() // PC

s
$← Z

∗
p ; ŝ

$← Zp ; G← gs ; Ĝ← ĝŝ ; S ← HsĤ ŝ

For k = 0, . . . , µ do Z[k]← (Uy[k]U[k])sÛ[k]ŝ

Return (G, Ĝ, S,Z)

proc Ch() // PCl

s
$← Z

∗
p ; ŝ

$← Zp ; G← gs ; Ĝ← ĝŝ ; S
$← G

For k = 0, . . . , l − 1 do Z[k]
$← G

For k = l, . . . , µ do Z[k]← (Uy[k]U[k])sÛ[k]ŝ

Return (G, Ĝ, S,Z)

proc Finalize(d′) // PC,PCl

Return (d′ = 1)

Figure 6: Games PC,PCl (0 ≤ l ≤ µ+ 1) associated to IDSp ⊆ Z
µ+1
p for the proof of Lemma 4.1.

The running time of P is that of A plus some overhead. If A is selective-id then so is P .

The last statement allows us to use the lemma in both the selective-id and adaptive-id cases.

4.7 Proof of Lemma 4.1

Consider the games of Figure 6. Game PC is the same as game ReC. Game PCl (0 ≤ l ≤ µ + 1) makes
S random and also makes the first l − 1 entries of Z random and the rest real. Thus PCµ+1 is the same
as RaC. We will design adversaries B1, B2 so that

Advdlin(B1) = Pr[PCP ]− Pr[PCP
0 ] (11)

Advdlin(B2) =
1

µ+ 1

(

Pr[PCP
0 ]− Pr[PCP

µ+1]
)

(12)

Adversary B will run B1 with probability 1/(µ+2) and B2 with probability (µ+1)/(µ+2). This yields
Equation (7).

On input (g, ĝ, gs, ĝŝ,H, T ) where T is either Hs+ŝ or random, adversary B1 runs adversary P , responding
to its oracle queries as follows. When P makes query Initialize(y), adversary B1 lets

u, û
$← Z

µ+1
p ; u, v

$← Zp ; Ĥ ← Hĝv ; U ← ĝu

For k = 0, . . . , µ do U[k]← U−y[k]gu[k] ; Û[k]← ĝû[k]

It returns (g, ĝ,H, Ĥ,U, Û, U) to P . When P makes its (single) Ch() query, adversary B1 lets

S ← T ĝvŝ

For k = 0, . . . , µ do Z[k]← gsu[k]ĝŝû[k]

It returns (gs, ĝŝ, S,Z) to P . Notice that for 0 ≤ k ≤ µ

Z[k] = gsu[k]ĝŝû[k] = (Uy[k]−y[k]gu[k])sĝŝû[k] = (Uy[k]U[k])sÛ[k]ŝ .

Also if T = Hs+ŝ then S = T ĝvŝ = Hs(Hĝv)ŝ = HsĤ ŝ as in PC while if T is random, so is S, as in PC0.
When P makes query GetDK(id), adversary B1 does the following:

If f(y, id) = 0 then dk ← ⊥
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Else

r′, r̂′
$← Zp

D1 ← g−f(y,id)ur′gf(u,id)r
′

H−f(u,id)r̂′/f(y,id) ; D2 ← gf(û,id)r
′

H−f(u,id)r̂′/f(y,id)Ĥur̂′

D3 ← H r̂′/f(y,id)g−r′ ; D4 ← ĝ−ur̂′ ; dk ← (D1,D2,D3,D4)

It returns dk to P . We now show this key is properly distributed. Let h be such that H = gh and let

r =
r′

t
− hr̂′

tf(y, id)
mod p and r̂ = ur̂′ mod p .

Since t, f(y, uid) are non-zero modulo p and r′, r̂′ are random, r, r̂ are random as well. The following
computes the correct secret key components with the above randomness and shows that they are the ones
of the simulation:

H(U, id)trHtr̂ = U[0]tr
(

∏µ
k=1U[k]id [k]tr

)

Htr̂

= U−y[0]trgu[0]tr
(

∏µ
k=1U

−y[k]id[k]trgu[k]id [k]tr
)

Htr̂

= U−f(y,id)trgf(u,id)trHtr̂

= U−f(y,id)(r′−hr̂′/f(y,id))gf(u,id)(r
′−hr̂′/f(y,id))Htur̂′

= ĝ−hur̂′g−f(y,id)ur′gf(u,id)r
′

g−f(u,id)hr̂′/f(y,id)ghtur̂
′

= g−f(y,id)ur′gf(u,id)r
′

H−f(u,id)r̂′/f(y,id) = D1

H(Û, id)rĤ r̂ = Û[0]r
(

∏µ
k=1Û[k]id [k]r

)

Ĥ r̂ = ĝû[0]r
(

∏µ
k=1ĝ

û[k]id[k]r
)

Ĥ r̂

= ĝf(û,id)rĤ r̂ = gf(û,id)trĤ r̂

= gf(û,id)(r
′−hr̂′/f(y,id))Ĥur̂′ = gf(û,id)r

′

H−f(u,id)r̂′/f(y,id)Ĥur̂′ = D2

g−tr = ghr̂
′/f(y,id)−r′ = H r̂′/f(y,id)g−r′ = D3

g−tr̂ = g−tur̂′ = ĝ−ur̂′ = D4 .

Finally adversary P outputs d′. Adversary B1 also outputs d′, so we have Equation (11).

On input (g, ĝ, gs, ĝŝ, Û , T ) where T is either Û s+ŝ or random, adversary B2 runs adversary P , responding
to its oracle queries as follows. When P makes query Initialize(y), adversary B1 lets

l
$← {0, . . . , µ} ; u, û $← Z

µ+1
p ; u, h, ĥ

$← Zp ; H ← ĝh ; Ĥ ← ĝĥ ; U ← gu

For k = 0, . . . , µ do U[k]← Û∆(l,k)gu[k] ; Û[k]← Û∆(l,k)ĝû[k]

It returns (g, ĝ,H, Ĥ,U, Û, U) to P . When P makes its (single) Ch() query, adversary B2 lets

S
$← G

For k = 0, . . . , l − 1 do Z[k]
$← G

For k = l, . . . , µ do Z[k]← (gs)uy[k]+u[k](ĝŝ)û[k]T∆(l,k)

It returns (gs, ĝŝ, S,Z) to P . Notice that for l + 1 ≤ k ≤ µ

Z[k] = (gs)uy[k]+u[k](ĝŝ)û[k] = U sy[k]U[k]sÛ[k]ŝ = (Uy[k]U[k])sÛ[k]ŝ .

If T = Û s+ŝ then

Z[l] = (gs)uy[l]+u[l](ĝŝ)û[l]T = U sy[l](Û−1U[l])s(Û−1Û[l])ŝÛ sÛ ŝ = (Uy[l]U[l])sÛ[l]ŝ

as in game PCl. On the other hand if T is random then so is Z[l], as in game PCl+1. When P makes
query GetDK(id), adversary B2 does the following:
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If f(y, id) = 0 then dk ← ⊥
Else

r, r̂′
$← Zp

D1 ← ĝf(u,id)rĝhr̂
′

; D2 ← gf(u,id)rÛ id [l]rgĥr̂
′

Û−ĥid [l]r/h

D3 ← ĝ−r ; D4 ← Û id [l]r/hg−r̂′ ; dk ← (D1,D2,D3,D4)

It returns dk to P . We now show this key is properly distributed. Let û be such that Û = gû and let

r̂ =
r̂′

t
− id [l]ûr

th
mod p .

Since t is non-zero modulo p and r̂′ is random, r̂ is random as well. The following computes the correct
secret key components with the above randomness and shows that they are the ones of the simulation:

H(U, id)trHtr̂ = U[0]tr
(

∏µ
k=1U[k]id [k]tr

)

Htr̂

= gu[0]tr
(

∏µ
k=1Û

id [k]tr∆(l,k)gu[k]id[k]tr
)

ĝhtr̂

= gf(u,id)trÛ id [l]trĝhtr̂ = gf(u,id)trÛ id [l]trĝh(r̂
′−id[l]ûr/h)

= ĝf(u,id)rÛ id [l]trĝhr̂
′

ĝ−id [l]ûr = ĝf(u,id)rgid [l]ûrtĝhr̂
′

ĝ−id [l]ûr

= ĝf(u,id)rĝhr̂
′

= D1

H(Û, id)rĤ r̂ = Û[0]r
(

∏µ
k=1Û[k]id [k]r

)

Ĥ r̂ = gû[0]r
(

∏µ
k=1Û

id[k]r∆(l,k)gû[k]id[k]r
)

ĝĥr̂

= gf(û,id)rÛ id [l]rgtĥr̂ = gf(û,id)rÛ id [l]rgĥ(r̂
′−id[l]ûr/h)

= gf(û,id)rÛ id [l]rgĥr̂
′

g−ĥid [l]ûr/h = gf(u,id)rÛ id [l]rgĥr̂
′

Û−ĥid [l]r/h = D2

g−tr = ĝ−r = D3

g−tr̂ = gûrid [l]/h−r̂′ = Û id [l]r/hg−r̂′ = D4 .

Finally adversary P outputs d′. Adversary B2 also outputs d′. So

Advdlin(B2) =
1

µ+ 1

µ
∑

l=0

Pr[PCP
l ]− Pr[PCP

l+1]

=
1

µ+ 1
Pr[PCP

0 ]− Pr[PCP
µ+1]

and we have Equation (12).

4.8 Selective-id security

We consider IBTDF F[n, 1,Zp], the instance of our construction with µ = 1 and IDSp = Zp. We show
that this IBTDF is selective-id δ-lossy for δ = 1, meaning fully selective-id lossy, and hence selective-id
one-way. To do this we define a sibling LF[n, 1,Zp]. It preserves the key-generation, evaluation and
inversion algorithms of F[n, 1,Zp] and alters parameter generation to

Algorithm LF[n, 1,Zp].Pg(id)

y← (−id , 1) ; (pars ,msk)
$← E[n, 1,Zp].Pg(y) ; Return (pars ,msk)

The following says that our IBTDF is 1-lossy under the DLIN assumption with lossiness ℓ = n− 2 lg(p).
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Theorem 4.3 Let n > 2 lg(p) and let ℓ = n − 2 lg(p). Let F = F[n, 1,Zp] be the IBTDF associated by
our construction to parameters n, µ = 1 and IDSp = Zp. Let LF = LF[n, 1,Zp] be the sibling associated
to it as above. Let δ = 1 and let be A a selective-id adversary. Then there is an adversary B such that

Advδ-los
F,LF,ℓ(A) ≤ 2n(µ+ 2) ·Advdlin(B) . (13)

The running time of B is that of A plus overhead.

Proof of Theorem 4.3: On input id , let algorithm Aux return (−id , 1). Let RL0,RLn be the games
of Figure 5 with µ = 1, IDSp = Zp and this Aux. Then we claim

Pr
[

RealAF
]

= Pr
[

RLA
0

]

and Pr
[

LossyAF,LF,ℓ
]

= Pr
[

RLA
n

]

. (14)

To justify this let id∗ be the identity queried by A to both Initialize and Ch. (These queries are the
same because A is selective-id.) Then y0 = (−id∗, 1) so f(y0, id) = id − id∗. This is 0 iff id = id∗.
This means that the conjunct (id∗ 6∈ IS ) ∧Win is always true. The claim of Equation (14) is now true
because game RL0 generates parameters with the real auxiliary input y1 = (1, 0) ∈ Z

2
p that, via E[n, 1,Zp],

defines F. However game RLn generates parameters with auxiliary input y0. Since f(y0, id
∗) = 0, the

dependency of C3[j] on x[j] in Equation (5) vanishes when id = id∗. Examing equations (3), (4), (5),
(6), we now see that with pars fixed, the values 〈s, x〉, 〈̂s, x〉 determine the ciphertext (C1, C2,C3,C4).
Thus there are at most p2 possible ciphertexts when id = id∗, and 2n possible inputs. This means that
λ(F.Ev(pars , id∗, ·)) ≥ n − lg(p2) = ℓ, which justifies the second claim of Equation (14). Recalling that
δ = 1, Equation (13) follows from Equation (1), Equation (14), Lemma 4.2 and Lemma 4.1.

4.9 Adaptive-id Security

We consider IBTDF F[n, µ, {0, 1}µ ], the instance of our construction with IDSp = {0, 1}µ ⊂ Z
µ
p . We show

that this IBTDF is adaptive-id δ-lossy for δ = (4(µ + 1)Q)−1 where Q is the number of key-derivation
queries of the adversary. By Theorem 3.2 this means F[n, µ, {0, 1}µ] is adaptive-id one-way. To do this
we define a sibling LFQ[n, µ, {0, 1}µ]. It preserves the key-generation, evaluation and inversion algorithms
of F[n, µ, {0, 1}µ ] and alters parameter generation to LF[n, µ, {0, 1}µ].Pg(id) defined via

y← Aux ; (pars ,msk )
$← E[n, µ, {0, 1}µ].Pg(y) ; Return (pars ,msk ) .

where algorithm Aux is defined via

y′[0]
$← {0, . . . , 2Q− 1} ; ℓ $← {0, . . . , µ+ 1} ; y[0]← y′[0]− 2ℓQ

For i = 1 to µ do y[i]
$← {0, . . . , 2Q− 1}

Return y ∈ Z
µ+1
p

The following says that our IBTDF is δ-lossy under the DLIN assumption with lossiness ℓ = n− 2 lg(p).

Theorem 4.4 Let n > 2 lg(p) and let ℓ = n−2 lg(p). Let F = F[n, µ, {0, 1}µ] be the IBTDF associated by
our construction to parameters n, µ and IDSp = {0, 1}µ. Let A be an adaptive-id adversary that makes
a maximal number of Q < p/(3m) queries and let δ = (4(µ + 1)Q)−1. Let LF = LFQ[n, µ, {0, 1}µ] be the
sibling associated to F, A as above. Then there is an adversary B such that

Advδ-los
F,LF,ℓ(A) ≤ 2n(µ+ 2) ·Advdlin(B) . (15)

The running time of B is that of A plus O(µ2ρ−1((µQρ)−1)) overhead, where ρ = 1
2 ·Advδ-los

F,LF,ℓ(A).

Proof of Theorem 4.4: Our proof uses a simulation technique due to Waters [62]. We used a slightly
improved analysis from [42]. Let Q be the number of queries made by A and let algorithm Aux be defined
as above. Let RL0,RLn be the games of Figure 5 with IDSp = {0, 1}µ and this Aux. Let E(IS , id∗) denote
the event that when procFinalize(d′) is called in RLA

0 the flag Win← false is set and id∗ 6∈ IS . (Note
that η(IS , id∗) only depends on IS , id∗ since y0 is exclusively used to set Win← false.) Let η(IS , id∗) be
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the probability that E(IS , id∗) happens. In [42, Lemma 6.2], it was shown (using purely combinatorial
arguments) that λlow := 1

4(µ+1)Q ≤ η(IS , id∗) ≤ 1
2Q := λup. Since RLA

0 and RealA
F

are only different

when E(IS , id∗) happens, one would like to argue that λlow · Pr
[

RealA
F

]

= Pr
[

RLA
0

]

but this is not

true since E(IS , id∗) and RealA
F

may not be independent. To get rid of this unwanted dependence we
consider a modification of RL0 and RLn which adds some artificial abort such that in total it always sets
Win ← false with probability around 1 − λlow, independent of the view of the adversary. (Since, given
IS , id∗, the exact value of η(IS , id∗) cannot be computed efficiently, it needs to be approximated using
sampling.) Concretely, games R̂L0 and R̂Ln are defined as RL0 and RLn, respectively, the only difference
being Finalize which is defined as follows.

proc Finalize(d′) // R̂L0, R̂Ln

Compute an approximation η′(IS , id∗) of η(IS , id∗)
If η′(IS , id∗) > λlow then set Win← false with probability 1− λlow/η

′(IS , id∗)
Return ((d′ = 1) and (id∗ 6∈ IS ) and Win)

We refer to [42] on details how to compute the approximation η′(IS , id∗). Using [42, Lemma 6.3], one
can show that if we use O(µ2ρ−1((µQρ)−1)) samples to compute approximation η′(IS , id∗), then

Pr
[

RealA
F

]

− λ−1
low · Pr

[

R̂L
A
0

]

= ρ. (16)

Setting ρ = 1
2 · Pr

[

RealA
F

]

we obtain

δ · Pr
[

RealAF
]

= Pr
[

R̂L
A
0

]

, (17)

where δ = λlow/2 is as in the theorem statement. As in the proof of Theorem 4.3, we can show that

Pr
[

LossyA
F,LF,ℓ

]

= Pr
[

R̂L
A
n

]

. (18)

Now Equation (15) follows from Equations (1), (17), (18), Lemma 4.2 and (a version incorporating the
artificial abort of) Lemma 4.1.

We remark that we could use the proof technique of [12] which avoids the artificial abort but this increases
the value of δ, making it dependent on the adversary advantage. The proof technique of [41] could be
used to strengthen δ in Theorem 4.4 to O(

√
mQ)−1 which is close to the optimal value Q−1.

5 IB-TDFs from Lattices

Here we give a construction of a lossy IB-TDF from lattices, specifically, the LWE assumption. We note
that a one-way IB-TDF can already be derived by applying methods from [29, 2] to the LWE-based
injective (not identity-based) trapdoor function from [36].

LWE is a particular type of average-case BDD/GapSVP problem. It has been recognized since [50]
that GapSVP (and BDD [45]) induces a form of lossiness. So there is folklore that the GPV LWE-based
TDF can be made to satisfy some meaningful notion of lossiness (specifically, for an appropriate input
distribution, the output does not reveal the entire input statistically) by replacing its normally uniformly
random key with an LWE (BDD/GapSVP) instance. However, a full construction and proof according
to the standard notion of lossiness (which compares the domain and images sizes of the function) have
not yet appeared in the literature, and there are many quantitative issues to address.

In this section we construct an (ID-based) TDF that is lossy for a natural (uniform) input distribution.
We favor simplicity of analysis at the expense of tight bounds, so our construction is highly unoptimized
and should be seen mainly as a proof of feasibility. Much tighter constructions and bounds can be
achieved using more sophisticated machinery from the literature.

18



5.1 Background

For a real matrix X, we let s1(X) denote its largest singular value (also known as spectral norm), i.e.,
s1(X) = maxy 6=0 ‖Xy‖/‖y‖. It is easy to verify that the spectral norm satisfies the triangle inequality
s1(X + Y) ≤ s1(X) + s1(Y) and s1(XY) ≤ s1(X)s1(Y). Throughout this section we let n be the
main security parameter, and let ω(

√
log n) denote a fixed function that grows asymptotically faster than√

log n.

Probability distributions. The discrete Gaussian distribution with parameter s > 0 over the integers
Z, written DZ,s, assigns probability proportional to exp(−πx2/s2) to each x ∈ Z (and probability zero
elsewhere). It is extended to a product distribution over Zn in the natural way, i.e., DZn,s = Dn

Z,s.

We say that a random variable X over R is subgaussian with parameter s if for all t ≥ 0, we
have Pr[|X| ≥ t] ≤ 2 exp(−πt2/s2). More generally, we say that a random vector x (respectively, a
random matrix X) or its distribution is subgaussian of parameter s if all its one-dimensional marginals
〈x,u〉 (respectively, utXv) for unit vectors u,v are subgaussian of parameter s. The concatenation of n
independent subgaussian variables with common parameter s, interpreted as either a vector or matrix, is
also subgaussian with parameter s. It is also known that DZ,s is subgaussian with parameter s (see [46,
Lemma 2.8]). We need the following standard fact from random matrix theory (see, e.g., [60]).

Lemma 5.1 For a random matrix X ∈ R
h×w that is subgaussian with parameter s, we have s1(X) =

s ·O(
√
h+
√
w) except with probability 2−Ω(h+w).

Lattices and LWE. Throughout the remainder of this section we let q = q(n) denote a prime, and Zq

denote the ring of integers modulo q. It is possible to generalize our constructions to moduli of other forms
(e.g., prime powers) using known facts from the literature (see, e.g., [46]), but this somewhat complicates
the constructions and the statements of the bounds we use, so we stick with prime moduli for simplicity.

As in many recent papers, we work with a family of “q-ary” lattices (and their cosets), represented by
parity-check matrices A ∈ Z

n×m
q . The precise definition of these lattices will not be needed in this work,

so we omit it and refer the interested reader to, e.g., [36] for details. The following lemma is special case
of [36, Lemma 5.3] and [46, Lemma 2.4], and the properties of the “smoothing parameter” (see [47, 36]).

Lemma 5.2 For prime q and integer b ≥ 2, let m̄ ≥ n logb q + ω(log n). With overwhelming proba-
bility over the uniformly random choice of Ā ∈ Z

n×m̄
q , the following holds: for r ← Dm̄

Z,b·ω(
√
logn)

, the

distribution of Ar ∈ Z
n
q is negl(n)-far from uniform.

Note that by the triangle inequality for statistical distance, the above statement also holds where r is
replaced by R← Dm̄×w

Z,b·ω(
√
logn)

, and Ar ∈ Z
n
q with AR ∈ Z

n×w
q , for any w = poly(n).

The (decisional) learning with errors (LWE) problem [54] in dimension n with error rate α ∈ (0, 1),
stated in matrix form, is: given an input (A,b) ∈ Z

n×m
q ×Zm

q (for any m = poly(n)) whereA is uniformly

random, and b is either of the form bt = xt
[

Im
A

]

mod q for x ← Dm+n
Z,αq , or is uniformly random and

independent of A, distinguish which is the case with non-negligible advantage.1 By a routine hybrid
argument, replacing x with a matrix X having any number w = poly(n) of independent columns (each
drawn from Dm+n

Z,αq ), and replacing bt with either Bt = Xt
[

I
A

]

mod q or a uniformly random B of the
same dimension, yields an equivalent problem (up to a w factor in the adversary’s advantage). When
αq > 2

√
n, this decision problem is at least as hard as approximating several problems on n-dimensional

lattices in the worst case to within Õ(n/α) factors with a quantum algorithm [54], or via a classical
algorithm for a subset of these problems [50].

1This is actually the “normal form” of the LWE problem, which is equivalent to the one from [54] in which the portion
of x that is multiplied by A

t is uniformly random in Z
n
q ; see, e.g., [6]. In addition, for simplicity of analysis we use a true

discrete Gaussian error distribution DZ,αq instead of a “rounded” continuous Gaussian as in [54]; hardness for this error
distribution is implied by the results of [51].
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Trapdoors for lattices. We recall the notion and efficient construction of a (strong) trapdoor for q-ary
lattices, due recently to Micciancio and Peikert [46]. This construction uses a public “gadget” matrix G
over Zq, defined as

G = In ⊗ [1, b, b2, . . . , bw−1] ∈ Z
n×nw
q (19)

for some integer base b ≥ 2 and w = ⌈logb q⌉. (Note that [46] mainly focuses on the case b = 2; in our
constructions we will need to take b to be larger, but still constant.)

Following [46], we say that an integer matrix R ∈ Z
(m−nw)×nw is a trapdoor with tag H ∈ Z

n×n
q for

A ∈ Z
n×m
q if A

[

R
I

]

= H ·G. In our constructions, H will always be either an invertible matrix, or the
zero matrix. The trapdoor generation algorithm of [46] works for any m ≥ n(logb q + w) + ω(log n) and
generates a nearly uniform A ∈ Z

n×m
q , together with a trapdoor R (with a desired tag H) for A. Letting

m̄ = m−nw ≥ n logb q+ω(log n), it chooses Ā ∈ Z
n×m̄
q uniformly at random, chooses R← Dm̄×nw

Z,b·ω(
√
logn)

,

and lets A = [Ā | H ·G− ĀR]. It is clear by inspection that R is a trapdoor for A, and by Lemma 5.2
the distribution of A is negl(n)-far from uniform.

We recall two of the main operations enabled by a trapdoor: inversion of the (injective) LWE function
gA(x) := xt

[

I
A

]

mod q for “short” integer vectors x, and delegation of a trapdoor for an extended parity-
check matrix.

Lemma 5.3 ([46]) Let R be a trapdoor with any invertible tag H ∈ Z
n×n
q for A ∈ Z

n×m
q , using a gadget

matrix G with base b ≥ 2. There are efficient algorithms Invert and DelTrap that do the following:

1. For bt = gA(x) := xt
[

Im
A

]

mod q where x ∈ Z
m+n is such that ‖x‖ ≤ q/Θ(b · s1(R)), the algorithm

Invert(R,A,b) outputs x.

2. For any invertible tag H′, matrix A′ ∈ Z
n×nw
q , and any sufficiently large s = Ω(b·s1(R))·ω(√log n),

the algorithm DelTrap(R, [A | A′],H′, s) outputs a trapdoor R′ with tag H′ for [A | A′], where R′

has the same distribution (up to negl(n) statistical distance) for any trapdoor R satisfying the above
bound on s1(R), and s1(R

′) = O(
√
m) with overwhelming probability.

5.2 Our basic trapdoor function

Let c > 1 and integer base b ≥ 2 be constants to be determined later in the analysis, and let n̂ = cn,
m ≥ n̂ logb q = cn logb q be integers. Define Iβ = {0, 1, . . . , β−1} and Iγ similarly for some positive integers
β ≥ γ to be determined later. (The analysis also goes through unchanged for Iβ = [−β, . . . , β − 1) and
Iγ defined similarly.)

1. Parameters: The public parameter pars is a matrix A ∈ Z
n̂×m
q (which will be close to uniform, either

statistically or computationally), and the trapdoormsk is a trapdoorR (for any invertible tagH) forA
with bounded s1(R). For a sufficiently large m = Ω(n̂ logb q), these can be created using the trapdoor
generation algorithm described above, or via the DelTrap algorithm from Item 2 of Lemma 5.3.

2. Evaluate: Given parameter A and input x ∈ Im+n
β × I n̂−n

γ , algorithm LWE.Ev outputs

bt = gA(x) := xt

[

Im
At

]

mod q.

3. Invert: Given parameter A, trapdoor R and output b, algorithm LWE.Ev−1 returns x using the
inversion algorithm from Item 1 of Lemma 5.3.

The next lemma shows that when A has a particular non-uniform structure (without a trapdoor R),
the function gA is lossy when the parameters are set appropriately; we show how to do so after the proof.

Lemma 5.4 Suppose that A ∈ Z
n̂×m
q is such that

[

Im
A

]

=

[

Im+n

Et

] [

Im
Ā

]
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for some Ā ∈ Z
n×m
q and Et ∈ Z

(n̂−n)×(m+n). Then for x ∈ Im+n
β × I n̂−n

γ , the number of distinct output

values gA(x) is at most O(β + γ · s1(E))m+n.

In particular, for large enough γc−1 ≥ 2Ω(m/n) and β ≥ γ · s1(E), the function gA is Ω(m)-lossy.

Proof: Notice that

gA(x) = xt

[

Im
A

]

= (xt

[

Im+n

Et

]

)

[

Im
Ā

]

mod q.

It therefore suffices to bound the number of possible values of the form xt
[

I
Et

]

∈ Z
m+n. By the triangle

inequality, we have

∥

∥xt
[

I
Et

] ∥

∥ ≤ β
√
m+ n+ s1(E) · γ

√
n̂− n ≤

√
m+ n · (β + γ · s1(E)).

Define Nd(r) to be the number of integer points in a d-dimensional Euclidean ball of radius r. For r ≥
√
d,

from the volume of the ball and Stirling’s approximation, we have Nd(r) = O(r/
√
d)d. Therefore, the

number of possible values of the form xt
[

I
Et

]

∈ Z
m+n is O(β + γ · s1(E))m+n, as claimed.

For lossiness, observe that for our choice of γ, the base-2 logarithm of the domain size of gA is

(m+ n) lg β + n lg γc−1 ≥ (m+ n) lg β +Ω(m).

Whereas by the above, for β ≥ γ · s1(E) the base-2 logarithm of the image size of gA is at most

(m+ n) lgO(β + γ · s1(E)) = (m+ n) lg β +O(m).

By choosing a sufficiently large universal constant in the above Ω(·) expression, we have that the two
quantities above differ by Ω(m), as desired.

We now discuss the constraints on the parameters and show how they can be instantiated. The
constant c, base b, and integer γ are chosen based on the relationship between m and n. First, we
need γc−1 ≥ 2Ω(m/n) as required by Lemma 5.4. In order to generate A with a trapdoor, we will have
m = Θ(n̂ logb q) = Θ(cn logb q), so we need γ ≥ qΘ(1/ log b)·c/(c−1). For any desired constant C > 1, we can
choose constants c > 1 and b ≥ 2 so that γ ≤ q1/C . Next, we choose β: to accommodate both the upper
bound that suffices for invertibility (Item 1 of Lemma 5.3), and the lower bound on β that suffices for
Ω(m)-lossiness (Lemma 5.4), it suffices to take

q1/C · s1(E) ≤ β ≤ q/Θ(s1(R) · √m). (20)

These constraints can be satisfied for sufficiently large

q1−1/C ≥ Ω(s1(R) · s1(E) · √m). (21)

In all our instantiations, we will have (with 1 − negl(n) probability) s1(R) = poly(n) by the use of
the trapdoor generation or delegation algorithms, and s1(E) = poly(n) by the use of LWE with error
distribution DZ,αq for αq = Θ(

√
n) to generate a pseudorandom matrix A. Because 1 − 1/C > 0 is a

constant (which may even be chosen arbitrarily close to 1), we can choose a sufficiently large q = poly(n)
so as to satisfy Equation (21), and can use an error rate of α = Θ(

√
n)/q = 1/poly(n).

Remark 5.5 As a concrete (but non-identity-based) instantiation, consider a matrix A having the form
described in Lemma 5.4, where Ā ∈ Z

n×m
q is uniformly random and the entries of E are chosen inde-

pendently from DZ,αq, where αq = Θ(
√
n) so that we can invoke known worst-case hardness results for

LWE. Then we have s1(R) = O(
√
m) · ω(√log n) = Õ(

√
n) and s1(E) = O(

√
mn) = Õ(n) with over-

whelming probability, by subgaussianity of DZ,αq and Lemma 5.1. Moreover, under the LWE assumption
(in dimension n) with noise rate α, such an A is indistinguishable from uniform, which makes the lossy
function gA indistinguishable from an invertible one.
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Remark 5.6 Our constructions of ID-based lossy TDFs below involve two small variations on the above
example. First, the trapdoor D(id) for an identity will be delegated (using the DelTrap algorithm) from
a trapdoor R(id), derived from the master trapdoor R, for which s1(R(id)) ≤ poly(n). So we will still
have s1(D(id)) ≤ s1(R(id)) · poly(n) = poly(n). Second, in the lossy case, the hidden matrix E in the
structured matrix A will no longer be Gaussian itself, but will be the product of some Gaussian E′ (of
parameter αq) and another matrix X with s1(X) = poly(n), so we will still have s1(E) = poly(n) and
can still instantiate all the parameters so that q, 1/α = poly(n).

5.3 Our id-based lossy trapdoor function

Setup. As above, let c > 1 and integer base b ≥ 2 be constants to be determined later, and let
n̂ = cn, m̄ = n̂ logb q + ω(log n), and m = m̄ + 2n̂w where w = ⌈logb q⌉. For integer µ ≥ 1, let
C : IDSp → Z

n̂×n̂
q × {0, 1}µ denote an injective encoding of identities that will be instantiated for a

specific scheme.
Our E-IBTDF. Our E-IBTDF L[µ, IDSp,C] is associated with an integer µ ≥ 1, an identity space IDSp
and an injective encoding C. It has domain InSp = Im+n

β × I n̂−n
γ and auxiliary input space (Zn̂×n̂

q )µ, and
is given by the following algorithms.

1. Parameters: Given input A ∈ Z
n̂×m̄
q and auxiliary input H = (H[1], . . . ,H[µ]) ∈ (Zn̂×n̂

q )µ, algorithm

L[µ, IDSp,C].Pg chooses R = (R[1], . . . ,R[µ]) ← (Dm̄×n̂w
Z,b·ω(

√
logn)

)µ, and lets U = (U[1], . . . ,U[µ]) ∈
(Zn̂×n̂w

q )µ, where
U[i] := H[i] ·G−AR[i].

It also chooses R′ ← Dm̄×n̂w
Z,b·ω(

√
logn)

and lets A′ = AR′. It returns pars = (A,A′,U) as the public

parameters and msk = (R,H) as the master secret key.
Note that R[i] is a trapdoor with tag H[i] for [A | U[i]]. Moreover, since each R[i] is subgaussian

with parameter b · ω(√log n), we have (by Lemma 5.1) s1(R[i]) = O(b
√
m) · ω(√log n) for all i, with

overwhelming probability.
For pars = (A,A′,U) and a user identity id with C(id) = (H[0], c ∈ {0, 1}µ), define

A(id) :=
[

A | H[0] ·G+

µ
∑

i=1

c[i]U[i]
]

.

For U as constructed by L[µ, IDSp,C].Pg, we have

A(id) =
[

A | (H[0] +

µ
∑

i=1

c[i]H[i]) ·G−A ·
µ
∑

i=1

c[i]R[i]
]

. (22)

Define
R(id) :=

∑

i

c[i]R[i] and H(id) := H[0] +
∑

i

c[i]H[i],

and note that R(id) is a trapdoor with tag H(id) for A(id). Moreover, by the above bound on
s1(R[i]) and the triangle inequality, we have s1(R(id)) = O(µb

√
m) · ω(√log n) = poly(n) for all id ,

with overwhelming probability. In what follows we assume that this bound holds.

2. Key generation: Given public parameters pars = (A,A′,U), master secret (R,H) and identity id ∈
IDSp with C(id) = (H[0], c ∈ {0, 1}µ), algorithm L[µ, IDSp,C].Kg proceeds as follows. It computes
A(id), R(id), and H(id) as defined above. Define

A′(id) := [A(id) | A′].

If H(id) is invertible, it runs DelTrap(R(id),A′(id),H′ = I, s) from Item 2 of Lemma 5.3 to generate
a trapdoor D(id) with tag I for A′(id), for a sufficiently large s = Θ(µb2

√
m) · ω(√log n)2.
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proc Initialize(id) // RL1

H1
$← Aux1(id) ; Win← true

Ā
$← Z

n×m̄
q ; Et $← D

(n̂−n)×(m̄+n)
Z,αq ;

[

I
A

]

=
[

I
Et

] [

I
Ā

]

(pars ,msk )
$← L[µ, IDSp,C].Pg(A,H1)

IS ← ∅ ; id∗ ← id
Return pars

proc Initialize(id) // Ri (i ∈ {0, 1})
H0

$← Aux0(id) ; H1
$← Aux1(id) ; Win← true

A
$← Z

n̂×m̄
q

(pars ,msk )
$← L[µ, IDSp,C].Pg(A,Hi)

IS ← ∅ ; id∗ ← id
Return pars

proc GetDK(id) // RL1,R0,R1

IS ← IS ∪ {id}
If either H0(id) or H1(id) is not invertible

then Win← false ; dk ← ⊥
Else dk ← L[µ, IDSp,C].Kg(pars ,msk , id)
Return dk

proc Ch(id) // RL1,R0,R1

id∗ ← id
If H0(id) 6= 0n̂×n̂ or H1(id) 6= 0n̂×n̂

then Win← false

proc Finalize(d′) // RL1,R0,R1

Return ((d′ = 1) and (id∗ 6∈ IS ) and Win)

Figure 7: Games RL1 (“Real-to-Losssy”) and R0,R1 associated to n, µ, IDSp and auxiliary input generator
algorithms Aux0 and Aux1.

Note that s = Ω(b · s1(R(id))) ·ω(√log n) as required by Lemma 5.3, and that with overwhelming
probability,

s1(D(id)) = s ·O(
√
m) = O(µb2m) · ω(

√

log n)2 = poly(n).

3. Evaluate: Given public parameters pars = (A,A′,U), identity id ∈ IDSp and input x ∈ Im+n
β × I n̂−n

γ ,

algorithm L[µ, IDSp,C].Ev computes A′(id) = [A(id) | A′] as above, and outputs y = gA′(id)(x).

4. Invert: Given parameters (A,A′,U) and identity id ∈ IDSp determining A′(id) as above, trapdoor
Did (with tag I) for A′(id), and value y = gA′(id)(x) as above, algorithm L[µ, IDSp,C].Ev−1 returns x
using the inversion algorithm from Item 1 of Lemma 5.3.

Key generation, invertibility, and lossiness. The choice of auxiliary input H determines the
ability to generate keys for identities, i.e., the induced IBTDF L[µ, IDSp,C](H) can generate a key Did

for any id such that H(id) is invertible. By the upper bound on β from Equation (20), inversion is correct
as long as β ≤ q/Θ(s1(Did ) ·

√
m).

By contrast, suppose that the A ∈ Z
n̂×m̄
q given to L[µ, IDSp,C].Pg is such that

[

I
A

]

=
[

I
Et

] [

I
Ā

]

for

some Ā ∈ Z
n×m̄
q and Et = [Et

1 | Et
2] ∈ Z

(n̂−n)×m̄×Z
(n̂−n)×n. (I.e., A is a structured matrix that satisfies

the hypothesis of Lemma 5.4.) Then if H(id) = 0, it can be verified that A(id) is such that

[

Im̄+n̂w

A(id)

]

=









Im̄
In̂w

In
Et

1 −Et
1 ·R(id) Et

2













Im̄
In̂w

Ā −Ā ·R(id)



 ,

which satisfies the hypothesis of Lemma 5.4 with [Ā | −A·R(id)] in place of Ā and Ẽt = [Et
1 | −Et

1·R(id) |
Et

2] in place of Et. Observe that by the triangle inequality, s1(Ẽ) ≤ s1(E)(1+s1(R(id))) ≤ s1(E) poly(n).
In particular, if we have a known poly(n) upper bound on s1(E), then as described in the analysis
following the proof of Lemma 5.4, we can instantiate the parameters to have correct inversion when
H(id) is invertible, and Ω(m)-lossiness when H(id) = 0.

In what follows we show security of the scheme in the selective-id and adaptive models, under the
LWE assumption.
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5.4 Real-to-lossy lemma

Consider game RL1 which is defined as in Figure 7, where A is such that
[

I
A

]

=
[

I
Et

] [

I
Ā

]

for uni-

formly random Ā ∈ Z
n×m̄
q and Et ← D

(n̂−n)×(m̄+n)
Z,αq . Games R0 and R1 are defined similarly, where the

distribution of A is uniformly random.
The following lemma says it is hard to distinguish game R0 from RL1. We will apply this by defining

Aux0 and Aux1 in such a way that the output of Aux0 results in the real scheme and the output of Aux1
results in a lossy setup.

Lemma 5.7 Let n, µ ≥ 1 be integers and IDSp. Let Aux0 and Aux1 be auxiliary input generators for
L[µ, IDSp,C] and A an adversary. Then there is an adversary B such that

Pr[RA
0 ]− Pr[RLA

1 ] ≤ Advlwe
n,α(B) + negl(n) . (23)

The running time of B is that of A plus some overhead. If A is selective-id then so is B.

The last statement allows us to use the lemma in both the selective-id and adaptive-id cases.

Proof: By Remark 5.5 we have that

Pr[RA
1 ]− Pr[RLA

1 ] ≤ Advlwe
n,α(B) . (24)

We claim that in R0 and R1 (where A is uniformly random) the values H0 and H1 are statistically hidden
from A’s view. By Lemma 5.2, the tuple (A,AR[1], . . . ,AR[µ]) is negl(n)-far from uniformly random.
Hence the public parameters (Ā,A′,U) are negl(n)-far from uniform for any fixed choice of the auxiliary
input H. Since the execution of the remaining game is independent of whether H comes from Aux0 or
Aux1, we obtain

Pr[RA
0 ]− Pr[RA

1 ] ≤ negl(n) . (25)

which concludes the proof.

5.5 Selective-id Security

We consider IBTDF L[µ = 1,Zn̂
q \{0},C′

FRD], the instance of our construction with identity space IDSp =

Z
n̂
q \ {0}, uniformly random input A ∈ Z

n̂×m̄
q , auxiliary input H0 = H0[1] = −CFRD(0) ∈ Z

n̂×n̂
q , and

identity encoding C′
FRD(id) = (CFRD(id), 1) ∈ Z

n̂×n̂
q × {0, 1}, where CFRD : Zn̂

q → Z
n̂×n̂
q is an “invertible

differences” encoding as constructed in [2]. (I.e., for each x 6= x′, the matrix CFRD(x) − CFRD(x
′) is

invertible over Zq.)
Note that our scheme satisfies the correct inversion requirement becauseH0(id) = CFRD(id)−CFRD(0)

is invertible for all id ∈ IDSp = Z
n̂
q \ {0}. We show that this IBTDF is selective-id δ-lossy for δ = 1,

meaning fully selective-id lossy, and hence selective-id one-way. To do this we define a sibling LF[µ =
1,Zn̂

q \ {0},C′
FRD]. It preserves the key-generation, evaluation and inversion algorithms of L[1,Zn̂

q \
{0},C′

FRD] and alters parameter generation to

Algorithm LF[1,Zn̂
q \ {0},C′

FRD].Pg(id) :

Ā
$← Z

n×m̄
q ; Et $← D

(n̂−n)×(m̄+n)
Z,αq ;

[

I
A

]

=
[

I
Et

] [

I
Ā

]

H1[1] = −CFRD(id) ; (pars ,msk )
$← L[1,Zn̂

q \ {0},C′
FRD].Pg(A,H1) ; Return (pars ,msk ) .

The following says that our IBTDF is 1-lossy with lossiness Ω(m), under the LWE assumption.

Theorem 5.8 Let m = c2n > c1n = n̂ and ℓ = 2m. Let L = L[1,Zn̂
q \ {0},C′

FRD] be the IBTDF

associated by our construction to parameters µ = 1 and IDSp = Z
n̂
q \ {0}. Let LF = LF[1,Zn̂

q \ {0},C′
FRD]

be the sibling associated to it as above. Let δ = 1 and let be A a selective-id adversary. Then there is an
adversary B such that

Advδ-los
L,LF,ℓ(A) ≤ Advlwe

n,α(B) + negl . (26)

24



The running time of B is that of A plus overhead.

Proof: On input id , let algorithm Aux0 return −CFRD(0) and algorithm Aux1 return −CFRD(id). Let
R0,RL1 be the games of Figure 7 with µ = 1, IDSp = Z

n̂
q \ {0} and auxiliary input generators Aux0 and

Aux1, respectively. Then we claim

Pr
[

RealAL
]

= Pr
[

RA
0

]

and Pr
[

LossyAL,LF,ℓ
]

= Pr
[

RLA
1

]

. (27)

To justify this let id∗ be the identity queried by A to both Initialize and Ch. (These queries are the
same because A is selective-id.) Then H1 = −CFRD(id

∗) so H1(id) = CFRD(id)−CFRD(id
∗). Since CFRD

is an encoding with invertible differences, this is invertible iff id 6= id∗. This means that the conjunct
(id∗ 6∈ IS ) ∧Win is always true. The claim of Equation (27) is now true because game R0 generates
parameters with uniform A and auxiliary input H0 = −CFRD(0) ∈ Z

n̂×n̂
q that, via L[1,Zn̂

q \ {0},C′
FRD],

defines L. However game RL1 generates parameters with auxiliary input H1. Since H1(id
∗) = 0, the

function gA′(id) is Ω(m)-lossy, as argued immediately following the description of the scheme.

5.6 Full Security

We consider IBTDF L[µ, {0, 1}µ,C′], the instance of our construction with IDSp = {0, 1}µ, uniformly
random input A ∈ Z

n̂×m̄
q , auxiliary input H0 = (H0[1], . . . ,H0[µ]) := (0n̂×n̂, . . . ,0n̂×n̂) and C′(id) =

(1n̂×n̂,Cf (id)), where Cf : {0, 1}µ → Z
n̂×n̂
q maps x ∈ {0, 1}µ into a vector X of matrices such that

X[i] = (−1)x[i] · 1n̂×n̂ ∈ Z
n̂×n̂
q .

Note that our scheme satisfies the correct inversion requirement because H0(id) = 1n̂×n̂ is invertible
for all id ∈ IDSp. We show that this IBTDF is adaptive-id δ-lossy for δ = (8Q)−1 where Q is the number
of key-derivation queries of the adversary. By Theorem 3.2 this means L[µ, {0, 1}µ ,C′] is adaptive-id
one-way. To do this we define a sibling LFQ[µ, {0, 1}µ,C′]. It preserves the key-generation, evaluation
and inversion algorithms of L[µ, {0, 1}µ,Cf ] and alters parameter generation to

Algorithm LFQ[µ, {0, 1}µ ,C′].Pg(id) :

Ā
$← Z

n×m̄
q ; Et $← D

(n̂−n)×(m̄+n)
Z,αq ;

[

I
A

]

=
[

I
Et

] [

I
Ā

]

H1
$← Aux1 ; (pars ,msk)

$← L[µ, {0, 1}µ,C′].Pg(A,H1) ; Return (pars ,msk ) .

where Aux1 is a randomized algorithm from [2, 22] that generates H1 ∈ (Zn̂×n̂
q )µ such that the image of

H1(·) is either 0n̂×n̂ or invertible andH1(·) is “pairwise independent”, i.e, for all id 6= id ′, PrAux1 [H1(id) =
0n̂×n̂ | H1(id

′) = 0n̂×n̂] = 1/(2Q). The following says that our IBTDF is δ-lossy under the LWE
assumption with lossiness ℓ = 2m.

Theorem 5.9 Let m = c2n > c1n = n̂ and ℓ = 2m. Let L = L[µ, {0, 1}µ,C′] be the IBTDF associated
by our construction to parameters µ and IDSp = {0, 1}µ. Let A be an adaptive-id adversary that makes
a maximal number of Q queries and let δ = (8Q)−1. Let LF = LFQ[µ, {0, 1}µ,C′] be the sibling associated
to L as above. Then there is an adversary B such that

Advδ-los
L,LF,ℓ(A) ≤ Advlwe

n,α(B) + negl(n) . (28)

The running time of B is that of A plus polynomial overhead.

Proof: (Sketch) Let Q be the number of queries made by A and let algorithm Aux be defined as above.
Let R0,RL1 be the games of Figure 7 with IDSp = {0, 1}µ and this Aux0 and Aux1. Let E(IS , id

∗) denote
the event that when Finalize(d′) is called in RA

0 the flag Win ← false is set and id∗ 6∈ IS . (Note that
η(IS , id∗) only depends on IS , id∗.) Let η(IS , id∗) be the probability that E(IS , id∗) happens. In [2],
it was shown that λlow := 1

4Q ≤ η(IS , id∗) ≤ 1
2Q := λup. Since RA

0 and RealA
L

are only different when

E(IS , id∗) happens, one would like to argue that λlow · Pr
[

RealA
L

]

= Pr
[

RA
0

]

but this is not true since

E(IS , id∗) and RealA
L

may not be independent. To get rid of this unwanted dependence we consider a
modification of R0 and RL1 which adds some artificial abort such that in total it always sets Win← false
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with probability around 1 − λlow, independent of the view of the adversary. (Since, given IS , id∗, the
exact value of η(IS , id∗) cannot be computed efficiently, it needs to be approximated using sampling.)
Concretely, games R̂0 and R̂L1 are defined as R0 and RL1, respectively, the only difference being Finalize
which is defined as follows.

proc Finalize(d′) // R̂0, R̂L1

Compute an approximation η′(IS , id∗) of η(IS , id∗)
If η′(IS , id∗) > λlow then set Win← false with probability 1− λlow/η

′(IS , id∗)
Return ((d′ = 1) and (id∗ 6∈ IS ) and Win)

One can again show that with a polynomial number of samples to compute approximation η′(IS , id∗),

δ · Pr
[

RealAL
]

= Pr
[

R̂A
0

]

, (29)

where δ = λlow/2 is as in the theorem statement. Similar to the proof of Theorem 5.8, we can show that

Pr
[

LossyAL,LF,ℓ
]

= Pr
[

R̂L
A
1

]

. (30)

Now Equation (28) follows from Equation (1), Equation (29), Equation (30) and Lemma 5.7.
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[15] C. Bennet, G. Brassard, C. Crépeau, and U. Maurer. Generalized privacy amplification. IEEE
Transactions on Information Theory, 41(6), 1995. 4, 31

[16] A. Boldyreva, S. Fehr, and A. O’Neill. On notions of security for deterministic encryption, and
efficient constructions without random oracles. In D. Wagner, editor, CRYPTO 2008, volume 5157
of LNCS, pages 335–359. Springer, Aug. 2008. 1, 4, 31

[17] D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption without random
oracles. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages
223–238. Springer, May 2004. 1, 2, 3, 8

[18] D. Boneh and X. Boyen. Secure identity based encryption without random oracles. In M. Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 443–459. Springer, Aug. 2004. 1, 2

[19] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In M. Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Aug. 2004. 2

[20] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with keyword
search. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages
506–522. Springer, May 2004. 4, 31

[21] D. Boneh and M. K. Franklin. Identity based encryption from the Weil pairing. SIAM Journal on
Computing, 32(3):586–615, 2003. 1, 2

[22] X. Boyen. Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures
and more. In P. Q. Nguyen and D. Pointcheval, editors, PKC 2010, volume 6056 of LNCS, pages
499–517. Springer, May 2010. 25

[23] X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (without random ora-
cles). In C. Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 290–307. Springer, Aug.
2006. 2, 3, 8

[24] X. Boyen and B. Waters. Shrinking the keys of discrete-log-type lossy trapdoor functions. In J. Zhou
and M. Yung, editors, ACNS 10, volume 6123 of LNCS, pages 35–52. Springer, June 2010. 1

27



[25] D. R. Brown. A weak randomizer attack on RSA-OAEP with e=3. IACR ePrint Archive, Report
2005/189, 2005. http://eprint.iacr.org/. 4

[26] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with polyloga-
rithmic communication. In J. Stern, editor, EUROCRYPT’99, volume 1592 of LNCS, pages 402–414.
Springer, May 1999. 1

[27] R. Canetti and R. R. Dakdouk. Towards a theory of extractable functions. In O. Reingold, editor,
TCC 2009, volume 5444 of LNCS, pages 595–613. Springer, Mar. 2009. 4

[28] R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme. In E. Biham,
editor, EUROCRYPT 2003, volume 2656 of LNCS, pages 255–271. Springer, May 2003. 2

[29] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. In
H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 523–552. Springer, May 2010.
2, 3, 18

[30] C. Cocks. An identity based encryption scheme based on quadratic residues. In B. Honary, editor, 8th
IMA International Conference on Cryptography and Coding, volume 2260 of LNCS, pages 360–363.
Springer, Dec. 2001. 1

[31] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976. 1

[32] Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong key-insulated signature schemes. In Y. Desmedt,
editor, PKC 2003, volume 2567 of LNCS, pages 130–144. Springer, Jan. 2003. 1

[33] L. Dorrendorf, Z. Gutterman, and B. Pinkas. Cryptanalysis of the windows random number gener-
ator. In P. Ning, S. D. C. di Vimercati, and P. F. Syverson, editors, ACM CCS 07, pages 476–485.
ACM Press, Oct. 2007. 4

[34] A. Escala, J. Herranz, B. Libert, and C. Ráfols. Hierarchical identity-based (lossy) trapdoor func-
tions, May 2012. Manuscript. 4

[35] D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev. More constructions of lossy and
correlation-secure trapdoor functions. In P. Q. Nguyen and D. Pointcheval, editors, PKC 2010,
volume 6056 of LNCS, pages 279–295. Springer, May 2010. 1

[36] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In R. E. Ladner and C. Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press,
May 2008. 1, 2, 3, 18, 19

[37] I. Goldberg and D. Wagner. Randomness in the Netscape browser. Dr. Dobb’s Journal, January
1996. 4

[38] Z. Gutterman and D. Malkhi. Hold your sessions: An attack on Java session-id generation. In
A. Menezes, editor, CT-RSA 2005, volume 3376 of LNCS, pages 44–57. Springer, Feb. 2005. 4

[39] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any one-way
function. SIAM Journal on Computing, 28(4):1364–1396, 1999. 4, 31

[40] B. Hemenway and R. Ostrovsky. Lossy trapdoor functions from smooth homomorphic hash proof
systems. Electronic Colloquium on Computational Complexity TR09-127, 2009. 1

[41] D. Hofheinz and E. Kiltz. Programmable hash functions and their applications. In D. Wagner,
editor, CRYPTO 2008, volume 5157 of LNCS, pages 21–38. Springer, Aug. 2008. 18

28

http://eprint.iacr.org/


[42] E. Kiltz and D. Galindo. Direct chosen-ciphertext secure identity-based key encapsulation without
random oracles. Theor. Comput. Sci., 410(47-49):5093–5111, 2009. 17, 18

[43] E. Kiltz, P. Mohassel, and A. O’Neill. Adaptive trapdoor functions and chosen-ciphertext security.
In H. Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 673–692. Springer, May
2010. 4

[44] E. Kiltz, A. O’Neill, and A. Smith. Instantiability of RSA-OAEP under chosen-plaintext attack. In
T. Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages 295–313. Springer, Aug. 2010. 1

[45] V. Lyubashevsky and D. Micciancio. On bounded distance decoding, unique shortest vectors, and
the minimum distance problem. In S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages
577–594. Springer, Aug. 2009. 2, 18

[46] D. Micciancio and C. Peikert. Trapdoors for lattices: simpler, tighter, faster, smaller. In EURO-
CRYPT 2012, LNCS. Springer, 2012. 3, 19, 20

[47] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures. In
45th FOCS, pages 372–381. IEEE Computer Society Press, Oct. 2004. 19

[48] M. Mueller. Debian OpenSSL predictable PRNG bruteforce SSH exploit, May 2008.
http://milw0rm.com/exploits/5622. 4

[49] K. Ouafi and S. Vaudenay. Smashing SQUASH-0. In A. Joux, editor, EUROCRYPT 2009, volume
5479 of LNCS, pages 300–312. Springer, Apr. 2009. 4

[50] C. Peikert. Public-key cryptosystems from the worst-case shortest vector problem: extended abstract.
In M. Mitzenmacher, editor, 41st ACM STOC, pages 333–342. ACM Press, May / June 2009. 2, 18,
19

[51] C. Peikert. An efficient and parallel gaussian sampler for lattices. In T. Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 80–97. Springer, Aug. 2010. 19

[52] C. Peikert and B. Waters. Lossy trapdoor functions and their applications. In R. E. Ladner and
C. Dwork, editors, 40th ACM STOC, pages 187–196. ACM Press, May 2008. 1, 2, 3, 4, 6, 8

[53] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In H. N. Gabow
and R. Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May 2005. 2

[54] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. J. ACM,
56(6):1–40, 2009. Preliminary version in STOC 2005. 19

[55] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signature and public-
key cryptosystems. Communications of the Association for Computing Machinery, 21(2):120–126,
1978. 1

[56] P. Rogaway and T. Shrimpton. A provable-security treatment of the key-wrap problem. In S. Vaude-
nay, editor, EUROCRYPT 2006, volume 4004 of LNCS, pages 373–390. Springer, May / June 2006.
1

[57] A. Rosen and G. Segev. Chosen-ciphertext security via correlated products. In O. Reingold, editor,
TCC 2009, volume 5444 of LNCS, pages 419–436. Springer, Mar. 2009. 4

[58] R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In SCIS 2000, Okinawa,
Japan, Jan. 2000. 1, 2

29

http://milw0rm.com/exploits/5622


[59] A. Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and D. Chaum,
editors, CRYPTO’84, volume 196 of LNCS, pages 47–53. Springer, Aug. 1985. 1

[60] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices, January 2011. Avail-
able at http://www-personal.umich.edu/~romanv/papers/non-asymptotic-rmt-plain.pdf,
last accessed 4 Feb 2011. 19

[61] B. Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions.
In S. Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 619–636. Springer, Aug. 2009. 2

[62] B. R. Waters. Efficient identity-based encryption without random oracles. In R. Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 114–127. Springer, May 2005. 1, 2, 3, 17

[63] S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage. When private keys are public: Results
from the 2008 Debian OpenSSL vulnerability. In IMC 2009. ACM, 2009. 4

A Anonymous IBE

In this section we describe an IBE scheme that is similar to IBE from Section 4 with the difference that
it encrypts group elements (rather than bits) and it is slightly more efficient. We associate to any integer
µ ≥ 1 and any identity space IDSp ⊆ Z

µ
p an IBE scheme IBE′[µ, IDSp] that has message space G

∗
T and

algorithms as follows:

1. Parameters: Algorithm IBE[µ, IDSp].Pg lets g
$← G

∗ ; t, z
$← Z

∗
p ; ĝ ← gt ; Z ← e(g, g)z . It then lets

H, Ĥ, U
$← G ; U

$← G
µ+1. It returns pars = (g, ĝ,H,U, Ĥ,U, Z) as the public parameters and

msk = (t, z) as the master secret key.

2. Key generation: Given parameters (g, ĝ,H,U,U, Z), master secret (t, z) and identity id ∈ IDSp, al-

gorithm IBE′[µ, IDSp].Kg returns decryption key (D1,D2,D3,D4) computed by letting r, r̂
$← Zp and

setting

D1 ← gz · H(U, id)tr ·Htr̂ ; D2 ← U r ·H r̂ ; D3 ← g−tr ; D4 ← g−tr̂ .

3. Encryption: Given parameters (g, ĝ,H,U,U, Z), identity id ∈ IDSp and message M ∈ G
∗
T , algorithm

IBE[µ, IDSp].Enc returns ciphertext (C1, C2, C3, C4, C5) computed as follows. It lets s, ŝ
$← Zp and

C1 ← gs ; C2 ← ĝŝ ; C3 ←H(U, id)s · U ŝ ; C4 ← Hs+ŝ ; C5 ← Z−s ·M .

4. Decryption: Given parameters (g, ĝ,H,U,U, Z), identity id ∈ IDSp, decryption key (D1,D2,D4,D4)
for id and ciphertext (C1, C2, C3, C4, C5), algorithm IBE[µ, IDSp].Dec returns

M = e(C1,D1)e(C2,D2)e(C3,D3)e(C4,D4)C5 .

Compared to IBE[µ, IDSp] from Section 4 , the efficiency improvement consists of replacing H(Û, id) by
U in the computation of D2 and C3 and of setting Ĥ := H. Using the techniques of the ciphertext
pseudorandomness lemma (Lemma 4.1) one can show that the elements (C1, C2, C3, C4) of the ciphertext
are pseudorandom. (Here the reduction knows the secret z.) In a final similar hybrid step one can also
show that, under the Bilinear Diffie-Hellman assumption (which is implied by the DLIN assumption), the
element C5 is also pseudorandom. (Here is reduction knows the secret t.) As our main ID-based TDF
result uses anonymous IBE techniques, the main ideas of this systems security is implicit in our main
proof. A formal proof of the above stand alone system is deferred to the full version.

B Applications

We expand first on the application to achieving deterministic IBE and then on achieving hedged IBE.
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D-PKE. Deterministic PKE (D-PKE) cannot achieve IND-CPA security. Bellare, Boldyreva and
O’Neill [7] defined a target notion PRIV for it that captures the best possible security under the condition
that encryption is deterministic. D-PKE provides a way to do fast (logarithmic time) search on encrypted
data. PEKS [20] offers higher security but takes linear time, and trading some security for a significant
increase in searching speed is attractive for large databases.

Achieving PRIV for D-PKE has been (and remains) a challenge. It is possible in the RO model [7].
The best results without ROs are due to Boldyreva, Fehr and O’Neill [16], who show how to achieve
PRIV without random oracles for message sequences which are blocksources, meaning each message has
some min-entropy even given the previous ones. Using the Leftover Hash Lemma (LHL) [15, 39], they
show that any LTDF is a D-PKE scheme that is PRIV-secure for blocksources as long as the lossy branch
is a universal hash function.

D-IBE. We introduce deterministic IBE (D-IBE). The PRIV definition is easily extended to this setting.
D-IBE offers, over D-PKE, the same advantages that IBE offers over PKE, for example that there are no
certificates and encryption depends only on the identity of the receiver. Again, D-IBE can be achieved
in the RO model by setting the coins of an IBE scheme to the RO-hash of the message. (This is how
PKE is turned into D-PKE in the RO model in [9, 7].) We ask what can be done without ROs.

We show that our constructions of DLIN-based lossy IB-TDFs have the properties necessary to obtain
PRIV-secure D-IBE schemes for blocksources under the paradigm of [16] in the selective case. We start
by observing that the lossy branches are universal hash functions. This can be seen from Equations (3),
(4), (5) and (6). In the lossy case, f(y, id) = 0, and the function has a range R of size p2. Now if x1, x2
are distinct inputs, then the outputs of the function on them collide exactly when (〈s, x1〉, 〈̂s, x1〉) =
(〈s, x2〉, 〈̂s, x2〉). The probability that this happens when s, ŝ are chosen at random from Z

n
p is 1/p2 =

1/|R|.
Hedged IBE. The definitions and methods of [8] can be extended to the identity-based setting in
a straightforward way in the selective setting once we have universal lossy IB-TDFs. There are two
approaches. One is generic composition of an IBE scheme with a IB-TDF. The other is to first pad the
message with randomness and then apply the IB-TDF.

Adaptive setting. It remains open to achieve deterministic or hedged IBE in the adaptive security
setting.
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