
Complete Tree Subset Difference Broadcast Encryption Scheme

and its Analysis

Sanjay Bhattacherjee
Applied Statistics Unit

Indian Statistical Institute
203, B.T.Road, Kolkata, India - 700108.

sanjayb r@isical.ac.in

Palash Sarkar
Applied Statistics Unit

Indian Statistical Institute
203, B.T.Road, Kolkata, India - 700108.

palash@isical.ac.in

Abstract

The Subset Difference (SD) method proposed by Naor-Naor-Lotspeich is the most popular broadcast en-
cryption (BE) scheme. It is suitable for real-time applications like Pay-TV. It has been suggested for use by
the AACS standard for digital rights management in Blu-Ray and DVD discs. The SD method assumes the
number of users to be a power of two. (1) We propose the Complete Tree Subset Difference (CSD) method that
subsumes the SD method by allowing arbitrary number of users in the system. All the results obtained in this
work for the CSD scheme hold good for the SD scheme by assuming the number of users to be the next power
of two. (2) Given the importance of the SD scheme, its detailed combinatorial analysis is of practical interest.
We find recurrences for the CSD scheme to count the number of possible ways r users in the system of n users
can be revoked to result in a transmission overhead (header length) of h. The header length h of a broadcast
is an important efficiency parameter in BE. The usefulness of these recurrences is demonstrated by generating
exhaustive data of the above count, obtaining bounds on the header length and various other interesting results
some of which are difficult to prove without the recurrences. (3) An O(r log n) time algorithm is proposed to
compute the expected header length in the CSD scheme for n users in the system, r out of which are revoked.
This algorithm is of practical interest in its own right, for efficiency and performance analysis of the CSD
scheme. Using this algorithm, we show that for practical values of n and r, the transmission efficiency of the
CSD scheme is better than the SD scheme. For n a power of two and a fixed r ≥ 2, we obtain an upper bound
on the expected header length and show that this bound is also the limit as n→∞.

1 Introduction

1.1 What is Broadcast Encryption?

The cryptographic method for a centre to efficiently broadcast encrypted digital content to a system of users so
that only an intended subset (the privileged users) can correctly decrypt it is called Broadcast Encryption (BE).
Before the system starts to work, the users are given some secret information (may be the secret keys or some
information from which it can derive the secret keys). A user uses this information for decrypting the encrypted
digital content intended for itself.

In a typical BE scheme, each message (a block of digital content) that is broadcast is encrypted using a
unique key called a session key. The session key in turn, is encrypted a number of times using user keys and
these multiple encryptions of the session key is sent as the header of the encrypted message. The transmission
overhead of the scheme is determined by the header length h (the number of encryptions of the session key in
the header).

In a fully resilient scheme, even if an adversary has the decryption keys of all the remaining non-privileged
users in the system (the revoked users), it will not be able to correctly decrypt the content. A crucial requirement

1



1 INTRODUCTION 2

for a BE scheme is that it should facilitate dynamic revocation of decryption privilege from any subset of users
at any point of time (based on their subscription or privilege status).

Importance of Broadcast Encryption: Copyright protection using Digital Rights Management [DRM]
techniques is an important application of BE. Out of the different facets of copyright protection, BE handles
the content protection part. The application of BE systems is pretty wide in the implementation of [DRM] for
content protection in digital data distribution technologies such as pay-TV, Internet or mobile video broadcast,
optical discs, etcetera.

Requirements from a BE scheme: In real-time scenarios like Pay-TV, Internet or mobile video broadcast,
the number of users can vary from a few thousands to millions. For other real-time applications of BE like
broadcasting secret instructions to military outposts from a base station, the number of users will be much
smaller (maximum of a few hundreds). The BE scheme that is used in real time scenarios as above, has to be
efficient in terms of the transmission overhead associated with each message as also the encryption and decryption
times and storage of user keys.

For non-real-time applications like content protection in Blu-Ray discs and DVDs (optical discs), the require-
ments from a BE scheme are somewhat different. The number of users (disc players) in such scenarios maybe
in millions. The transmission overhead (the additional information stored in the physical media, that is used
for decrypting the content) is not really an issue since storage space in discs is no more a constraint nowadays.
Further, since encryption does not happen in real-time, improving the encryption time is also not very important.
On the other hand, reducing the user storage (number of keys or their equivalent secret to be stored in the player)
and decryption time is still important.

Importance of the [NNL01] SD scheme: Broadcast Encryption was introduced in [Ber91] followed by
[FN93]. There have been several works in this area [Sti97], [SW98] since then, but the most popular scheme out
of these is the tree-based Subset Difference (SD) method of [NNL01]. Since it is a symmetric key based scheme,
it is very efficient in terms of encryption and decryption time. It allows the users to be stateless (users do not
have to update their individual secret information with every session) and also allows dynamic revocation of
users. User storage requirement is O(log2 n) where n is the total number of users and the transmission overhead
is linear in the number of revoked users r. Currently, the SD scheme offers the simplest algorithm and the
best trade-offs for use in both real-time applications like Pay-TV and non-real time applications like content
protection in optical discs [AAC].

1.2 Our Contributions:

Arbitrary number of users: In this paper, we broaden the scope of use of the SD scheme. The SD scheme
and all follow-up works [HS02, PB06, AK08, MMW09] assume the total number of users n to be a power of
two. We relax this restriction to allow any arbitrary number of users in the system by introducing the Complete
Tree Subset Difference (CSD) scheme. The CSD scheme is based on the SD scheme and subsumes it. When the
number of users in the CSD method is a power of two, it becomes exactly the same as the SD scheme.

When implementing the SD scheme for applications such as Pay-TV, it is most likely that the number of users
in the system will not be a power of two. In that case the centre has to assume the existence of dummy users to
make the number of users a power of two. The CSD scheme on the other hand, can accommodate an arbitrary
number of users, thus eliminating the requirement of dummy users in the system.



1 INTRODUCTION 3

Inclusion of dummy users results in the expected header length of the SD scheme to be more than the CSD
scheme for practical values of n and r. This is intuitive and we provide further arguments and supporting data in
Section 3.2 and Section 5.4. In real-time scenarios like Pay-TV, where many messages are transmitted, avoiding
the extra bandwidth arising due to dummy users will be desirable. Consequently, one would prefer to exclude
them and instead work with the actual number of users present in the system.

It is to be noted that an implementation that uses the SD scheme, can easily shift to using the CSD scheme
with minimal change in the software implementation. This is because the internal tree structure used for assigning
keys to subsets of users in the SD scheme remains almost the same in the CSD scheme.

Combinatorial Analysis: The importance of the (C)SD scheme motivates the study of its combinatorial
properties. We use a new approach for a detailed combinatorial study of the CSD scheme. A method is proposed
to count the number of ways that r out of n users can be revoked to get a header length of h in the CSD scheme.
This counting is formulated using two recurrences. Since the SD scheme is a special case of the CSD scheme,
these recurrences hold for the SD scheme too.

Using these recurrences, a dynamic programming based algorithm to do the above counting is developed.
Previous to this work, the only known method to do such counting was to run the SD algorithm itself on all
possible

(
n
r

)
revocation patterns. The resulting time complexity can be exponential in n. In contrast, the running

time of the algorithm proposed here is always polynomial in n. This, by itself, is a significant improvement.

The importance of these recurrences in capturing the detailed combinatorial properties of the CSD scheme is
demonstrated by obtaining important results from them.

1. The worst case header length for a given r in the SD scheme was shown to be 2r− 1 in [NNL01]. We show
that the worst case header length for the CSD scheme is min(2r − 1, dn/2e, n− r).

2. Given r, we characterize the minimum number of users nr (that need to be in a system using the CSD
method), that can give rise to the maximum header length of 2r − 1.

3. For the special case when n is a power of two (i.e., for the SD scheme), we use the recurrences to obtain a
generating function for the sequence. Earlier, a generating function of a slightly different form was obtained
in [PB06] using direct arguments. We did not attempt to find the generating function for the case when n
is not a power of two. This would be quite cumbersome and did not appear to be of much interest.

Probabilistic analysis: We propose a new and efficient O(r log n) algorithm for computing the expected
header length in the CSD method for a given n and r. This algorithm is based on the probabilistic analysis
of revocation of users. It is simple to implement. The crucial importance of the algorithm lies in the fact that
it enables us to explore in depth the behaviour of the expected header length for values of n ranging from a
few hundreds to a million. Examples of outputs obtained by running the algorithm are provided later. We
believe that the algorithm for computing the expected header length will be a very useful tool for practitioners
implementing the (C)SD scheme.

When n is a power of two (i.e., the SD scheme), we show that the expected header length for r revoked users
is bounded above by

(3r − 2)− 3×
r−1∑
i=1

((
−1

2

)i
+

i∑
k=1

(−1)k
(
i

k

)
(2k − 3k)

(2k − 1)

)
.

We further show that as n→∞ through powers of two, this is actually the limiting value of the expected header
length. Computing the above expression for different values of r shows it to be always less than 1.25r.

The previously known upper bound on the expected header length in the SD scheme for r revoked users was
proved to be 1.38r in [NNL01]. They commented that experimental results indicated that the bound is probably



2 THE SUBSET COVER REVOCATION FRAMEWORK 4

1.25r. Our analysis of the expected header length shows the precise limiting upper bound and clarifies the issue
of this value being 1.25r.

1.3 Previous and related works:

The tree-based SD scheme has inspired quite a lot of work in the area of broadcast encryption. Asymptotic
improvements to the user storage parameter of the SD scheme were suggested in the tree-based LSD scheme
of [HS02] with some loss of efficiency in the transmission overhead. Analysis of the combinatorics behind broadcast
encryption schemes and different generic bounds on the efficiency parameters have been done in [LS98, PGM04]
and other works. A generic method for constructing BE schemes from pseudo-random generators was proposed
in [AKI03].

An analysis of the expected header length of the SD and LSD schemes was done in [PB06]. As mentioned
earlier, they proposed generating functions for counting the number of ways p users (out of total n users) can be
given access privilege so that the header length will be h. Using this generating function, they found equations
to compute the expected header length for a given n and r. However, they admitted that their equations were
“complex to compute and difficult to gain insight from”. Consequently they went forward to find approximations
for the same. The analysis of the expected header length in [PB06] was continued in [EOPR] to show that the
standard deviations are small compared to the means as the number of users gets large. Other combinatorial
studies of the SD method has been done in [MMW09, AK08]. In particular, the maximum possible header length
for a given n and r was found accurately in [MMW09].

Extension of [BS11]: This work is the extended and considerably modified version of [BS11]. The work
in [BS11] was the first to propose accommodating arbitrary number of users by modifying the SD method (that
uses a full tree) to use an incomplete tree with the users as its leaves. In the current work, considerable changes
have been made in the structure of the tree underlying the scheme. This constitutes the main difference between
the current work and that in [BS11]. Although the capability of accommodating arbitrary number of users has
been retained, a balanced complete tree structure has been used for assignment of keys to subsets (in place of
the unbalanced incomplete tree used in [BS11]). Recurrences to analyze the CSD method has been found in a
manner similar to the one found in [BS11]. The algorithm to compute the expected header length in [BS11] has
been modified to obtain a similar algorithm for the CSD method of this paper. In Appendix A, we very briefly
describe the results of [BS11].

Other related work: There are several other BE schemes. A family of broadcast encryption schemes using
linear algebraic techniques and hence called linear broadcast encryption schemes was introduced in [PGMM03].
The same authors had also proposed key pre-distribution techniques based on linear algebraic techniques in
[PGMM02]. Another interesting work on BE is [JHC+05]. It works on the idea of “one key per punctured
interval” in which the worst case header length has been brought down to r (or below at the cost of increasing
user storage) for the first time. But, the method is more complicated than the SD scheme and the user storage
requirement is rather high.

Traitor tracing is a related issue. We do not discuss this here, since it is not connected to the contribution of
the paper. We only remark that the traitor tracing method for the SD scheme can be modified to obtain a traitor
tracing method for the CSD scheme. There are several schemes on public-key BE which we do not consider at
all.

2 The Subset Cover Revocation Framework

The Complete Tree Subset Difference method that we propose is based on the Subset Difference method
introduced by Naor Naor Lotspeich in [NNL01]. The Subset Difference algorithm is essentially a key encrypting



2 THE SUBSET COVER REVOCATION FRAMEWORK 5

method that falls under the Subset Cover Revocation Framework that was proposed in the same paper. We
begin with a very short description of this framework.

The Subset Cover Revocation Framework assumes a centre that encrypts a message M and broadcasts it to a
set N of (|N | =) n users. This set of users are all the possible recipients of the broadcast. A subset R (⊆ N ) of
these users are revoked (say non-subscribers of a service). The centre broadcasts using a broadcast encryption
algorithm such that any user belonging to the set N \R should be able to correctly decrypt the message M from
the broadcast, while any coalition of users belonging to the set R should not be able to correctly decrypt it.

A broadcast encryption algorithm under this framework consists of three parts: (1) an initiation scheme -
that assigns user u ∈ N secret information Iu that will allow them to decrypt messages intended for them; (2)
the broadcast algorithm - that takes as input the message M and the set R of revoked users and outputs the
ciphertext C. C is broadcast to all the users in N ; (3) the decryption algorithm - that runs at the user end. It
takes as input the ciphertext C and the secret information Iu that the user u had received during initiation and
attempts to decrypt C. A privileged user should be able to get back the original message M , while a revoked
user should not be able to get back the correct message from C.

During initiation, an algorithm in the framework defines a collection S = {S1, . . . ,Sw} of subsets, where each
Sj ⊆ N . Each subset Sj is assigned a long-lived key Lj . This assignment may not be explicit as we will see in
the Complete Tree Subset Difference algorithm. However, a user u ∈ Sj should be able to deduce Lj from the
secret information Iu it had acquired during initiation. During broadcast, given a set R of revoked users, the
set of privileged users N \R is partitioned into pairwise disjoint subsets Si1 , . . . ,Sih taken from the collection S.
This partition is called the subset cover Sc. In other words,

N \R =
h⋃
j=1

Sij

where each Sij ∈ S and Sc = {Si1 , . . . ,Sih}. The size h of the subset cover is called the header length (we will
soon see why).

During broadcast, an algorithm in the framework uses two encryption schemes:

• A function FK : {0, 1}∗ → {0, 1}∗ to encrypt the message M with a session key K. The session key is a
random string chosen afresh for each new message M .

• A function ELj : {0, 1}∗ → {0, 1}∗ to encrypt the session key K with a long-lived key Lj corresponding to
the subset Sj (∈ Sc) of users.

Detailed discussion on the security requirement of these primitives can be found in [NNL01]. Hence, in order to
broadcast the message M , the centre chooses a session key K and encrypts M as FK(M). The centre knows
the set N \ R of privileged users. It finds the cover Sc = {Si1 , . . . ,Sih}. Let Li1 , . . . , Lih be the long-lived keys
that were assigned to each of these subsets in Sc. The centre then encrypts the session key K with each of these
keys Lij . The session key has to be encrypted h times for each set in Sc. The h encryptions of the session key is
sent along with FK(M) as a header for the encrypted message. The header also has information to identify the
subsets Sij that form the cover Sc. The size h of the header is determined by the number of sets in Sc. We are
going to refer to this size as the header length. The encrypted message FK(M) along with the header forms the
ciphertext C.



3 THE COMPLETE TREE SUBSET DIFFERENCE METHOD 6

During decryption, a user u has to identify from the header, the set Sij to which it belongs. It decrypts the
session key K from the portion of the header that has K encrypted for Sij using the long-lived key Lij that it
derives from the secret information Iu it had acquired during initiation. Using K, it can decrypt the message M
from FK(M). In case the user does not belong to any of the sets in Sc (it is a revoked user), it will not be able
to decrypt K or M for that matter.

3 The Complete Tree Subset Difference Method

The Subset Difference (SD) method of [NNL01] and all follow-up work assumes the number of users n to be
a power of two. We propose the Complete Tree Subset Difference (CSD) algorithm that can accommodate any
arbitrary number of users.

1 2

6

107 14

543

0

15 16 17 18 19 20 21 22 23 24

11 12 1398

Figure 1: The complete (non-full) tree T 0 with n = 13 users as its leaves. Privileged users are indicated in green
and the revoked users are indicated in red. Here, r = 3. The tree T 1 is a subtree of T 0 and is a full subtree
having 8 leaf nodes whereas the tree T 2 is a non-full complete subtree of T 0 with 5 leaf nodes.

Our algorithm considers a rooted complete binary tree T 0 with n leaves. (One may note here that a complete
binary tree has leaf nodes only at the bottom-most (last) level and maybe also the last-but-one level. The leaves
in the last level are filled from the left to the right in the tree. In a full binary tree of height ` there are 2` leaves,
all at the last level. A full binary tree is also complete by definition. We will refer to trees that are complete but
not full as non-full.) Each user in N is associated with a leaf of the complete binary tree T 0. There are 2n− 1
nodes (internal and leaf) in T 0. These nodes are labeled with numbers from {0, 1, . . . , 2n − 2}. The root node
of T 0 is labeled as 0. All subsequent nodes are labeled as follows: the left child node of a node i is labeled as
2i + 1 and the right child is labeled as 2i + 2. Hence, the nodes 0 to n − 2 are the internal nodes. The nodes
labeled n− 1 to 2n− 2 are the leaf nodes. The subtree of T 0 rooted at node i is denoted by T i. The number of
leaf nodes in the subtree T i is denoted by λi.

Now that we have attached the users to the tree T 0, we need to define the collection S of subsets. We define
Si,j as the set of users in the subtree T i but not in T j . This set Si,j is also denoted as T i \ T j . All subsets
of users of the form Si,j where node j is a descendant of node i (a node in the subtree T i) is included in the
collection S. The set N of all users is also included in S. Once this collection S has been created, each set Si,j
in S has to be assigned a long-lived key Li,j . We will look at the key assignment later.



3 THE COMPLETE TREE SUBSET DIFFERENCE METHOD 7

6

8 1097 12 13 14

543

0

15 16 17 18 19 20 21 22 23 24

1 2

11

Figure 2: The subset difference subset S1,7 which includes leaves in T 1 but not in T 7 i.e.; S1,7 = T 1 \ T 7 =
{17, 18, 19, 20, 21, 22}.

During broadcast, the centre will know the set R of revoked users and the message M to be broadcast. It has
to find the subset cover Sc for N \R. Sc is a collection of pairwise disjoint sets Si1,j1 , . . . , Sih,jh (each Sik,jk taken

from S) such that Sc =
⋃h
k=1 Sik,jk . If there are no revoked users (R is empty), then the only set in the cover

Sc is N . Otherwise, the following cover-finding algorithm is used: The centre first constructs the Steiner Tree
ST (R) induced by R on T 0. (The Steiner Tree ST (R) is a subgraph of T 0 that only retains the nodes and edges
on paths from the root node 0 to a revoked leaf node. All the other paths in T 0 are deleted.) The cover-finding
algorithm runs iteratively by maintaining a tree T that is a sub-graph of ST (R). It starts by initializing T as
a copy of ST (R). At every iteration, the algorithm keeps removing nodes from T (while adding subsets to Sc)
until T has just one node left. At any point of time in the algorithm, a leaf node in T corresponds to either a
leaf node in T 0 or the root of a subtree in T 0 all whose leaves have already been covered till that iteration. More
precisely:

1. If there is only one leaf node in T , jump to step 6.

2. Find two leaves j1 and j2 of T whose common ancestor i (both j1 and j2 belong to the minimal subtree
T i) does not have any other leaf node in its subtree in T . (Here, out of the many possible such pairs j1 and
j2 one may choose the leftmost to have a specific algorithm. Any other choice would have worked equally
well.)

3. Let i1 (respectively i2) be the immediate child node of i which is an ancestor of j1 (respectively j2) or is
the node j1 (respectively j2) itself. If i1 6= j1 then add the set Si1,j1 to the cover Sc. Similarly, if i2 6= j2
then add the set Si2,j2 to the cover Sc.

4. Delete the paths joining j1 and j2 with their common ancestor i.

5. If there are more than one leaf remaining in T , go back to step 2.

6. If the only leaf node is the node 0 (node corresponding to the root of T 0), then there are no more subsets
to be added to Sc. Else, add the set S0,j (where j is the leaf node remaining in T ) to Sc.

3.1 Key assignment to each subset Si,j in S

Pseudo-random sequence generator G: In order to assign keys to each subset in S, the centre assigns
uniform random seeds to every non-leaf node in T 0 and uses a cryptographic pseudo-random sequence generator



3 THE COMPLETE TREE SUBSET DIFFERENCE METHOD 8

G. The pseudo-random generator G outputs a pseudo-random string that has three times the length of the input
seed. The output string G(seed) is divided into three equal parts GL(seed), GM (seed) and GR(seed). (Hence,
G(seed) = GL(seed) ‖ GM (seed) ‖ GR(seed).) G : {0, 1}k → {0, 1}3k is a pseudo-random sequence generator if
no polynomial time adversary can distinguish between its output for a random seed with a truly random string
of the same length.

Seed assignment to nodes: Every non-leaf node i in T 0 is assigned a uniform random seed LABELi. Every
non-root node j of T 0 is assigned derived seeds from every ancestor i of j. The left child 2i + 1 of node i in
T 0 derives the seed GL(LABELi) from the random seed LABELi of i. All descendants of 2i + 1 further get
derived seeds from this derived seed GL(LABELi) of 2i + 1. Similarly, the right child 2i + 2 of node i in T 0

derives the seed GR(LABELi) from the random seed of i and all descendants of 2i + 2 get derived seeds from
this derived seed GR(LABELi) of 2i + 2. We denote the seed for a node j (that is a descendant of i) derived
from the random seed of node i as LABELi,j . Following such an assignment of random and derived seeds for
nodes in T 0, the long lived key Li,j assigned to the set Si,j is GM (LABELi,j).

Iu for each u ∈ N : Once the centre is done with the assignment of seeds (uniform random as well as derived)
to nodes, it has to distribute the secret information Iu to each user u ∈ N . The user associated with a leaf j of
T 0 must have been revoked when a set Si,j is in the cover Sc. Hence, the user at leaf j should not be able to
compute the Li,j for any of its predecessor i in T 0. In fact, it should not be able to compute any Li,k where k
is also one of its ancestors (k must be a descendant of i though). In other words, a user at leaf j should be able
to compute an Li,k if and only if i is an ancestor of j but k is not (k is not on the path joining the leaf j with
i). In a subtree T i of T 0 to which a user at leaf j belongs, the node i has a random seed LABELi. The user
at j gets the seeds of all nodes adjacent to the path joining i and j that have been derived from LABELi. Say
i1, . . . , im are those nodes “falling off” from the path between node i and leaf j. The user at j will get the derived
seeds LABELi,i1 , LABELi,i2 , . . . , LABELi,im . To summarize, the Iu for a user u at leaf j consists of all derived
seeds LABELi,k such that i is a predecessor of j and k is adjacent to the path joining i and j. As derived in
[NNL01], the number of derived seeds in Iu is 1

2 log2 n+ 1
2 log n+ 1 for n a power of two. For an arbitrary n, one

has to consider the next higher power of two, say 2`0−1 < n ≤ 2`0 . The number of derived seeds in Iu will be
1
2`

2
0 + 1

2`0 + 1.

3.2 Avoiding Dummy Users

The CSD scheme works with the actual number of users that are present in the system. It may be argued that
even if n is not a power of two, the SD scheme can be applied by incorporating dummy users to make the total
number of users to be a power of two. We argue that this impacts the size of the transmission overhead. For an
actual broadcast, there are two ways to handle the dummy users – either consider all of them to be revoked or
consider all of them to be privileged.

Suppose that the dummy users are considered to be distributed randomly among all the users. Then viewing
them as revoked has very serious performance penalties. This is because, the average header length is linear
in the number of revoked users (to be proved later). Having a larger number of randomly distributed revoked
users leads to larger header size. If, on the other hand, the dummy users are viewed as privileged, then the
performance penalty will be lesser. Examples for this situation is provided in Section 5.4 after developing the
algorithm for computing the expected header length.

Assuming the dummy users to be randomly distributed may not be justifiable. In an actual implementation,
they may be considered to be one block. Suppose that 2`−1 < n < 2` and that the users numbered n+ 1, . . . , 2`

are the dummy users and the real users are numbered 1 to n. The actual revoked users will be among the values
1 to n, whereas the users numbered n+ 1, . . . , 2` will be considered to be either all revoked or all privileged.



4 COUNTING REVOCATION PATTERNS IN THE CSD METHOD 9

Consider a particular revocation pattern and a subset cover that corresponds to this revocation pattern. If
there are no dummy users in the system (CSD scheme), then the subset cover must cover all the actual privileged
users. Suppose now that there are dummy users all of which are privileged. Since these occur at the end, the
earlier subset cover will still be required. The cover generation algorithm may introduce a few additional subsets
to cover the dummy privileged users, but, there is no way that a subset from the original cover will be dropped.
Similarly, if the dummy users are considered to be revoked, then the corresponding subset cover must still cover
the actual privileged users and hence will contain all the subsets of the original subset cover. So, in either case,
i.e., whether the dummy users are privileged or revoked, the size of the subset cover cannot be smaller than the
size of the original subset cover.

We ran a few experiments to verify the above argument. The value of n is chosen to vary from 17 to 24
and the value of r is chosen to vary from 2 to 8. Table 1 shows the expected header lengths obtained by the
CSD algorithm. For each value of n, we considered two possible ways of handling dummy users – all of them
privileged and all of them revoked. The results for dummy revoked users is shown in Table 2 and the results for
dummy privileged users is shown in Table 3.

In all cases, we observe that the CSD method is never inferior to the SD method with dummy users. In
certain cases, the drop in the expected header length of the CSD method as compared to SD method with
dummy users can be more than 0.5. While this may not seem very impressive, for actual practical situations,
the number of users will be much more and the corresponding improvements will become noticeable. Later we
use our algorithm for computing expected header lengths to report results for the CSD scheme for large values of
n. But, there is no corresponding algorithm for the SD scheme with dummy revoked or dummy privileged users
with all the dummy users forming a block. One needs to run the SD cover generation algorithm on all possible
revocation patterns. It is not possible to do this for large values of n.

4 Counting Revocation Patterns in the CSD method

A given set of revoked users is called a revocation pattern. We denote a revocation pattern on n users where r
are revoked, as an (n, r)-revocation pattern. The number of possible (n, r)-revocation patterns is

(
n
r

)
. In order to

study the behaviour of the CSD algorithm, we find a method to count the number of (n, r)-revocation patterns
that result in a cover size (header length) of h.

In a subtree T j of T 0 with λj users (leaves), N(λj , r, h) is defined as the number of (λj , r)-revocation patterns
that are covered by exactly h subsets. Similarly, for λj users in T j , T (λj , r, h) is defined as the number of (λj , r)-
revocation patterns that are covered by h subsets such that there is at least one revoked user in both subtrees of
T j . Since the tree T 0 has n (= λ0) leaves, N(n, r, h) = N(λ0, r, h) is the number of (n, r)-revocation patterns
covered by a header length of h. N(n, r, h) is what we intend to find.

4.1 Few notations

Level number and position of nodes: Before we start computing the values of T (n, r, h) and N(n, r, h), we
fix a few notation for the ease of description. A level number of T 0 is indicated by `. At times we will denote
the level of a node i by `i. The root node 0 is at the highest level `0. Hence, ` ∈ {0, . . . , `0}. Since every subtree
T i is a complete binary tree, 2`i−1 < λi ≤ 2`i . For the whole tree T 0, we see that 2`0−1 < n ≤ 2`0 . In other
words, 2`1 < n ≤ 2`1+1 where `1 is the level of node 1 (left child of root node). The number of nodes at level `
of T 0 is denoted by q`. We see that the number of nodes at the last level is q0 = 2(n− 2`1). For ` ∈ {1, . . . , `0},
q` = 2`0−`. The position of a node at a level from the left is denoted by k where k ranges from 1 to q`. Hence, a
node i is uniquely represented by the pair (`i, ki) – the level `i of T 0 to which it belongs and its position ki from
the left at that level. As an example, the root node 0 of T 0 is represented by (`0, 1). We will interchangeably
use both i and (`i, ki) to denote a node.



4 COUNTING REVOCATION PATTERNS IN THE CSD METHOD 10

n r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

17 2.34 3.22 3.93 4.49 4.89 5.13 5.21

18 2.36 3.29 4.05 4.67 5.14 5.45 5.60

19 2.37 3.32 4.09 4.73 5.21 5.55 5.74

20 2.39 3.38 4.19 4.86 5.39 5.77 6.02

21 2.40 3.38 4.20 4.88 5.43 5.85 6.15

22 2.42 3.43 4.27 4.98 5.58 6.06 6.42

23 2.43 3.44 4.28 4.99 5.60 6.09 6.48

24 2.45 3.48 4.33 5.07 5.71 6.24 6.67

Table 1: The expected header lengths for 17 ≤ n ≤ 24 and 2 ≤ r ≤ 8 in the CSD method.

n r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

17 3.06 3.87 4.49 4.96 5.29 5.46 5.49

18 3.04 3.88 4.53 5.04 5.41 5.65 5.74

19 3.12 4.01 4.72 5.27 5.69 5.97 6.11

20 2.86 3.70 4.40 4.98 5.44 5.80 6.03

21 3.69 4.44 5.07 5.60 6.02 6.35 6.56

22 3.19 4.09 4.86 5.50 6.01 6.40 6.69

23 3.27 4.20 5.01 5.68 6.23 6.66 6.98

24 2.70 3.54 4.35 5.08 5.71 6.24 6.67

Table 2: The expected header lengths for 17 ≤ n ≤ 24 (in each case 32−n revoked dummy users are added) and
2 ≤ r ≤ 8 in the SD method.

n r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8

17 2.76 3.88 4.66 5.24 5.64 5.87 5.96

18 2.67 3.76 4.53 5.09 5.51 5.78 5.92

19 2.61 3.72 4.52 5.16 5.67 6.07 6.35

20 2.56 3.66 4.48 5.15 5.69 6.12 6.44

21 2.52 3.64 4.52 5.26 5.90 6.43 6.84

22 2.49 3.62 4.53 5.31 5.99 6.56 7.03

23 2.47 3.62 4.58 5.41 6.14 6.77 7.28

24 2.45 3.60 4.59 5.45 6.19 6.83 7.34

Table 3: The expected header lengths for 17 ≤ n ≤ 24 (in each case 32− n privileged dummy users are added)
and 2 ≤ r ≤ 8 in the SD method.



4 COUNTING REVOCATION PATTERNS IN THE CSD METHOD 11

1 2

6

107 14

543

15 16 17 18 19 20 21 22 23 24

11 12 1398

0

l=1

l=0

l=4

l=3

l=2

Figure 3: Level numbers and the path P0 (with blue) in T 0. Nodes coloured blue are at position kP` for the
respective level `.

Non-full subtrees at each level of T 0: Let us take a closer look at the structure of the tree T 0. In case T 0

is full, all its subtrees are also full. In case T 0 is non-full, we observe that every level ` (> 0) of T 0 can have at
most one non-full subtree. To identify these subtrees, we look at the path joining the root node 0 of T 0 with
node n− 2 (the last non-leaf node) and denote it by P0. There is exactly one node on P0 for every level ` (> 0)
of T 0. For level `, the position of the node lying on the path P0 from the left, is denoted by kP` . Let j be a
node on P0, say the node represented by (`, kP` ). The part of the path P0 lying in the subtree T j is denoted as
Pj . For the level `, the subtree T j rooted at node (`, kP` ) is the only possibly non-full subtree rooted at level `.
The subtrees to the left and right of node kP` at level ` are all full. The subtrees to the left (right) of node kP` of
level ` have 2` (respectively 2`−1) leaves. The number of leaves in the only possibly non-full subtree rooted at
level ` (subtree rooted at node (`, kP` ) of level `) is denoted by λ`,P . Hence, 2`−1 < λ`,P ≤ 2`. More specifically,

λ`,P = n− ((kP` −1)×2`)− ((2`0−`−kP` )×2`−1). Also, kP` =
⌈ q0
2`

⌉
. We define k

Pj

` for the path Pj as the position

of the node at level ` on Pj from the left in the subtree T j . Hence, kP` is also denoted as kP0
` . One can see that

k
Pj

` =

⌈
q0−(kP`j−1)×(2

`j )

2`

⌉
=
⌈ q0
2`

⌉
− (kP`j − 1)× (2`j−`).

4.2 Recurrences N(n, r, h) and T (n, r, h)

Theorem 1. For a subtree T i of T 0 with λi (2` < λi ≤ 2`+1) leaves,

N(λi, r1, h1) = T (λi, r1, h1) +
∑

j∈IN(i)

T (λj , r1, h1 − 1) (1)

where IN(i) is the set of all internal nodes in the subtree T i excluding the node i.

Proof. We show that a revocation pattern is counted in N(λi, r1, h1) if and only if it is counted in exactly one
of T (λi, r, h) or T (λj , r, h− 1) for some j ∈ IN(i). First we consider a (λi, r)-revocation pattern that is counted
in N(λi, r, h). There exists a minimal subtree T j (j ∈ IN(i)) of T i that contains all the revoked leaves. If this
subtree is rooted at i itself, then that revocation pattern is counted in T (λi, r, h) and is covered by h subsets of
S. For any other node j ( 6= i), the revocation pattern is counted in T (λj , r, h− 1) and has to be covered by h− 1
subsets of S. The rest of the λi − λj privileged users form one SD subset of the cover. The total cover size will
hence be h. Since a set R of revoked users has a corresponding unique minimal subtree T j of T i containing all
the users in R, hence it is counted exactly once on the right side of Equation (1).



4 COUNTING REVOCATION PATTERNS IN THE CSD METHOD 12

Now, let us consider a (λi, r)-revocation pattern that has been counted in T (λi, r, h). By the definitions of
T and N , the (λi, r)-revocation patterns that are counted in T (λi, r, h) are also counted in N(λi, r, h). For some
other revocation pattern, counted in T (λj , r, h − 1) (for some j ∈ IN(i)), both subtrees of T j contain at least
one revoked user in each. Hence, the minimal subtree of T i containing the r revoked users for such a revocation
pattern is T j . For the revocation patterns counted in T (λj , r, h− 1), the privileged users of the subtree T j have
been covered with h− 1 SD subsets of S. The rest of the λi − λj users are all privileged and are covered by one
more SD subset Si,j . Hence, the corresponding (λi, r)-revocation pattern is counted in N(λi, r, h).

Theorem 2. For a subtree T i of T 0 with λi (2` < λi ≤ 2`+1) leaves,

T (λi, r1, h1) =

r1−1∑
r′=1

h1∑
h′=0

N(λ2i+1, r
′, h′)×N(λ2i+2, r1 − r′, h1 − h′) (2)

where λ2i+1 (respectively λ2i+2) is the number of leaves in the left (respectively right) subtree of T i.

Proof. We show that a revocation pattern is counted in T (λi, r1, h1) if and only if it is counted in the right
hand side of (2). For a given λi, the number of leaves in the left and right subtrees get fixed to λ2i+1 and
λ2i+2 respectively. When a (λi, r1)-revocation pattern is counted in T (λi, r1, h1), both the subtrees of T i must
have at least one revoked user. Assuming the left subtree of T i has r′ revoked users, the right subtree should
have r1 − r′ revoked users since the total number of revoked users is r1. Similarly, assuming that the privileged
users in this left subtree are covered by h′ sets of S, the privileged users in the right subtree should be covered
by h1 − h′ sets of S. The number of (λ2i+1, r

′)-revocation patterns in the left subtree covered by h′ subsets
is N(λ2i+1, r

′, h′). Similarly, the number of (λ2i+2, r1 − r′)-revocation patterns in the right subtree covered by
h1−h′ subsets is N(λ2i+2, r1− r′, h1−h′). Each such (λ2i+1, r

′)-revocation pattern in the left subtree along with
a (λ2i+2, r1 − r′)-revocation pattern in the right subtree gives rise to a (λi, r)-revocation pattern in the tree T i
that is covered by h1 subsets of S. Hence, for all values of r′ ∈ {1, . . . , r1 − 1} and all values of h′ ∈ {0, . . . , h1},
N(λ2i+1, r

′, h′)×N(λ2i+2, r1 − r′, h1 − h′) counts all the possible T (λi, r1, h1).

Any (λi, r1)-revocation pattern covered by h′ subsets will be counted in some N(λ2i+1, r
′, h′)×N(λ2i+2, r1 −

r′, h1−h′). The ones counted in N(λ2i+1, r
′, h′)×N(λ2i+2, r1−r′, h1−h′) for fixed values of r′ and h′ are counted

exactly once in it. For other values of r′ and h′, the corresponding (λi, r1)-revocation patterns will be counted
in the respective N(λ2i+1, r

′, h′) × N(λ2i+2, r1 − r′, h1 − h′). Hence, a (λi, r1)-revocation pattern is counted on
the right hand side of (2) if and only if it is counted in T (λi, r1, h1).

Boundary conditions: The boundary conditions on T (λi, r1, h1) and N(λi, r1, h1) are given in Table 4. Other
than the tabulated values, N(λi, r1, h1) = 0 for λi ≤ 0 and T (λi, r1, h1) = 0 for λi ≤ 1. From recurrences in
Theorems (1) and (2) and the boundary conditions on these recurrences, one can find the value of N(n, r, h) for
any given n, r and h using dynamic programming.

4.3 Algorithms to compute N(n, r, h) and T (n, r, h)

Substituting for j ∈ IN(i): To use these recurrences as an algorithm, the nodes j ∈ IN(i) in (1) for a node
i have to be explicitly identified and the corresponding λjs have to be substituted. As described in section 4.1
before, there are at most three types of subtrees rooted at a level `j of T 0: full subtrees of height `i, full subtrees
of height `i − 1 and a non-full complete subtree of height `i.
(1) For a subtree T i that is full and is of height 2`i (to the left of the node at position kP`i at level `i):

N(λi, r1, h1) = T (λi, r1, h1) +

`i−1∑
`j=1

(2`i−`j )× T (2`j , r1, h1 − 1). (3)



4 COUNTING REVOCATION PATTERNS IN THE CSD METHOD 13

T (λi, r1, h1) r1 < 0 r1 = 0 r1 = 1 2 ≤ r1 < n r1 = n r1 > n

h1 = 0 0 0 0 0 1 0

h1 ≥ 1 0 0 0 from (2) 0 0

N(λi, r1, h1) r1 < 0 r1 = 0 r1 = 1 2 ≤ r1 < n r1 = n r1 > n

h1 = 0 0 0 0 0 1 0

h1 = 1 0 1 n from (1) 0 0

h1 > 1 0 0 0 from (1) 0 0

Table 4: Boundary conditions on T (n, r, h) and N(n, r, h).

(2) For a subtree T i that is full and is of height 2`i−1 (to the right of the node at position kP`i at level `i):

N(λi, r1, h1) = T (λi, r1, h1) +

`i−1∑
`j=2

(2`i−`j )× T (2`j−1, r1, h1 − 1). (4)

(3) For the only possibly non-full subtree T i for i = (`i, k
P
`i

) of height 2`i (at position kP`i at level `i):

N(λi, r1, h1) = T (λi, r1, h1)

+

`i−1∑
`j=2

[(kPi
`j
− 1)× T (2`j , r1, h1 − 1) + T (λ`j ,P , r1, h1 − 1)

+ (2`i−`j − kPi
`j

)× T (2`j−1, r1, h1 − 1)]. (5)

Dynamic Programming: ComputingN(n, r, h) and T (n, r, h) requires computingN(λi, r1, h1) and T (λi, r1, h1)
for some smaller λi, r1 and h1. We use dynamic programming technique where all values of N(λi, r1, h1) and
T (λi, r1, h1) for smaller λi, r1 and h1 are pre-computed. The algorithm to compute T (n, r, h) from these pre-
computed values is obtained from (2) in a straight forward manner. The algorithm to compute N(n, r, h) from
these pre-computed values is obtained from (1) (more specifically from either of (3) or (5)). Level `i of T 0 has
kP`i − 1 full subtrees of height `i, (2`0−`i)− kP`i full subtrees of height `i− 1 and one possibly non-full subtree. For

every level in the tree T 0, T (λi, r, h− 1) is pre-computed once for each of the three types of nodes and used to
compute N(n, r, h).

Space and Time complexity of the algorithm: Using (2) to compute T (n, r, h) from the pre-computed
values of N(·, ·, ·) requires O(rh) memory operations and multiplications. Equation (1) shows how N(n, r, h) is
related to pre-computed values of T (·, ·, ·). Actual computation is done using (3), (4) and (5). This requires
O(1) memory operations and a single addition for each of the dlog ne levels of T 0. Hence, the time complexity
for computing T (n, r, h) and then N(n, r, h) from pre-computed values is O(rh+ log n).

These pre-computed values in turn need to be computed. By the form of (3), (4) and (5) there are log n
subtrees to be considered. For each such subtree, O(rh) values need to be computed and the computation of these
will be based on values computed earlier. A dynamic programming algorithm proceeds in a bottom-up fashion
by computing the O(rh) values corresponding to smaller sub-trees and then using these to compute the values
for progressively larger sub-trees. This takes a total of O(r2h2 log n + rh log2 n) time. The space requirement
is given by the number of pre-computed values that need to be stored to compute N(n, r, h). For each of the
O(log n) sub-trees, a total of O(rh) values need to be stored and so the space complexity is O(rh log n).



4 COUNTING REVOCATION PATTERNS IN THE CSD METHOD 14

n r h N(n, r, h)

126 63 37 7.44× 1035

127 61 37 1.27× 1036

128 64 37 2.96× 1036

131 65 38 2.33× 1037

Table 5: Listing a few values of n, r, h and their corresponding N(n, r, h).

The above time and space complexities are required for a single set of values of n, r and h. For a fixed n and
r, it may be required to compute the values of N(n, r, h) for all possible values of h. This would be a typical
requirement for a broadcast centre which will have a fixed number of users and for a particular transmission knows
the number of revoked users. The corresponding time and space complexities can be obtained by substituting
an appropriate value for h. A trivial bound is n; but, later we show that h ≤ 2r − 1 which gives the expressions
O(r4 log n + r2 log n) and O(r2 log2 n) for time and space complexities respectively. For large n and moderate
values of r, these are practical complexities.

Further, allowing r to range over all the O(n) possible values leads to O(n4 log n + n2 log2 n) time and
O(n2 log n) space complexities respectively. If we are interested in computing N(i, r, h) for all 2 ≤ i ≤ n and all
possible values of r and h, then the time and space complexities are O(n5 + n3 log n) and O(n3) respectively.

Table 5 lists the values of n, r, h and their corresponding N(n, r, h) for some values of n, r and h. Note
that computing these values would not be possible by direct enumeration. For example, attempting direct
enumeration to tackle the first row of Table 5, would require considering

(
126
63

)
possible revocation patterns which

is way beyond the present computational capabilities.

4.4 Upper Bounds on Header Length of the (C)SD method

We first prove that the header length of the CSD scheme is upper bounded by 2r− 1. For full trees of the SD
method, this bound was proved in [NNL01].

Theorem 3. N(λi, r1, h1) = 0 when h1 > 2r1 − 1. T (λi, r1, h1) = 0 when h1 ≥ 2r1 − 1.

Proof. First we show that T (λi, r1, h1) = 0 when h1 ≥ 2r1 − 1 in (1). We prove this from (2) by induction
on r1. The boundary conditions have been listed in Table 4. We know that, 2`i−1 < λi ≤ 2`i . By induction
hypothesis, when h′ > 2r′ − 1 and 1 ≤ r′ < r1, N(λ2i+1, r

′, h′) = 0. If h′ ≤ 2r′ − 1, then h1 − h′ > 2r1 − 1− h′ ≥
2r1 − 1− 2r′ + 1 = 2(r1 − r′). Then, again by induction hypothesis, N(λ2i+2, r1 − r′, h1 − h′) = 0. Hence, when
h1 ≥ 2r1 − 1, T (λi, r1, h1) = 0.

Now, if h1 > 2r1− 1, the other terms on the right hand side of (1) are T (λi, r1, h1− 1) where h1− 1 ≥ 2r1− 1
for all terms and hence are all 0 as proved above. Hence, when h1 > 2r1 − 1, N(λi, r1, h1) = 0.

We later show that for sufficiently large n, N(n, r, 2r − 1) is positive and also characterize the minimum n
for which this happens.

Next, we show that N(n, r, h) is monotonic on n for fixed r and h. While intuitive, there does not seem to be
an easy way to prove this.

Lemma 4. Let n1 ≥ n2. If N(n2, r, h) 6= 0 then N(n1, r, h) 6= 0. If T (n2, r, h) 6= 0 then T (n1, r, h) 6= 0.



4 COUNTING REVOCATION PATTERNS IN THE CSD METHOD 15

Proof. Let T (n2, r, h) 6= 0. From (2) we get:

T (n2, r, h) =
r−1∑
r′=1

h∑
h′=0

N(λ1, r
′, h′)×N(λ2, r − r′, h− h′).

Let RH = {(r1, h1) . . . , (rs, hs)} be such that both N(λ1, r
′, h′) and N(λ2, r− r′, h−h′) are non-zero (and hence

N(λ1, r
′, h′)×N(λ2, r − r′, h− h′) is non-zero) when (r′, h′) ∈ RH. Hence, we can also write:

T (n2, r, h) =
∑

(r′,h′)∈RH

N(λ1, r
′, h′)×N(λ2, r − r′, h− h′).

Since λ1 < n2 (by the structure of T 0 with n2 leaves), hence by induction hypothesis, for any λ ≥ λ1, N(λ1, r, h) 6=
0 implies N(λ, r, h) 6= 0. Similarly, since λ2 < n2, hence by induction hypothesis, for any λ ≥ λ2, N(λ2, r, h) 6= 0
implies N(λ, r, h) 6= 0. When there are n1 leaves in the tree let there be λ′1 leaves in the left subtree and λ′2
leaves in the right subtree of the root node. Hence, by the construction of T 0, we get λ′1 ≥ λ1 and λ′2 ≥ λ2. In
the expression for T (n1, r, h), for (r′, h′) ∈ RH, by induction hypothesis, N(λ′1, r

′, h′) and N(λ′2, r − r′, h − h′)
are both non-zero. Hence, for at least (r′, h′) ∈ RH, N(λ′1, r

′, h′) × N(λ′2, r − r′, h − h′) is non-zero. Thus,
T (n1, r, h) 6= 0.

Now, let N(n2, r, h) 6= 0. From (1) we get:

N(n2, r, h) = T (n2, r, h) +

n2−2∑
j=1

T (λj , r, h− 1).

Let I = {i1, . . . , it} be the nodes of T 0 (with n2 leaves) such that T (λi, r, h) 6= 0 for i ∈ I. By induction
hypothesis, for any λj < n2 and λi > λj , if T (λj , r, h) 6= 0 then T (λi, r, h) 6= 0. Hence, we can also write:

N(n2, r, h) = T (n2, r, h) +
∑
i∈I

T (λi, r, h− 1).

Here, T (n2, r, h) 6= 0 implies T (n1, r, h) 6= 0 by the first part of this proof. By the construction of the tree T 0,
λ′i ≥ λi where λ′i is the number of leaves (users) in the subtree rooted at node i of the tree T 0 for n1 users. By
induction hypothesis, at least for i ∈ I, since T (λi, r, h− 1) 6= 0, hence T (λ′i, r, h− 1) 6= 0. Thus, N(n1, r, h) 6= 0.

Now, we prove that if r is not small compared to n, then T (n, r, 2r − 2) = 0.

Lemma 5. For n ≤ 22k+1 and r > 2k, T (n, r, 2r − 2) = 0.

Proof. For T (n, r, 2r − 2) in (2), let h′ < 2r′ − 1, then h − h′ = 2r − 2 − h′ > 2r − 2 − 2r′ + 1 = 2(r − r′) − 1.
Hence by Theorem 3, N(λ2, r − r′, h− h′) = 0. Similarly, if h′ > 2r′ − 1, N(λ1, r

′, h′) = 0. So, in the expression
for T (n, r, 2r − 2), the terms on the right hand side of (2) are 0 if h′ 6= 2r′ − 1. Hence,

T (n, r, 2r − 2) =

r−1∑
r′=1

N(λ1, r
′, 2r′ − 1)×N(λ2, r − r′, 2(r − r′)− 1). (6)

Now by induction on λi, we prove that N(λ1, r
′, 2r′ − 1) = 0 and N(λ2, r − r′, 2(r − r′)− 1) = 0. The boundary

conditions have been listed in Table 4. By induction hypothesis, for λi ≤ 22m+1 where m < k and r′ > 2m let us
assume T (λi, r

′, 2r′−2) = 0. In (6), let r′ ≥ r
2 which implies r′ > 2k−1. Hence, for λi ≤ 22k−1, T (λi, r

′, 2r′−2) = 0
by the induction hypothesis. Also, by Theorem 3, T (λ1, r

′, 2r′ − 1) = 0. Putting these values in (1), we get
N(λ1, r

′, 2r′− 1) = 0. Similarly, for r− r′ ≥ r
2 which implies r− r′ > 2k−1, we get N(λ2, r− r′, 2(r− r′)− 1) = 0.

Hence, from (6) T (n, r, 2r − 2) = 0.



4 COUNTING REVOCATION PATTERNS IN THE CSD METHOD 16

Some insight: Given a revocation pattern, if we revoke one more user from it, that can result in either increase,
decrease or no change in the cover size. Increase in cover size mostly happens when the newly revoked user is
not adjacent to any previously revoked user. The cover size remains unchanged or decreases when the newly
revoked user is adjacent to a previously revoked user. Decrease in cover size happens when the user in a singleton
subset of the cover is revoked. As the number of revoked users increase, the maximum possible cover size for that
number of revoked users increases up to a certain point. After that the maximum possible cover size decreases.
One may also observe that for n > 2 (`1 ≥ 1), q0/2 = n− 2`1 . Since 2`1 is even for `1 ≥ 1, hence when n is even
q0/2 is even and when n is odd q0/2 is odd.

Theorem 6. The header length in the CSD method for n users is at most
⌊
n
2

⌋
irrespective of the number of

revoked users.

Proof. First, we show that N(n, r, h) = 0 for h > n
2 for any r. We prove this by induction on n. From (1) we

have:

N(n, r, h) = T (n, r, h) +
n−2∑
i=1

T (λi, r, h− 1)

and hence, T (n, r, h) ≤ N(n, r, h). When λi < n and h−1 ≥
⌊
n
2

⌋
, N(λi, r, h−1) = 0. Thus,

∑n−2
i=1 T (λi, r, h−1) =

0. From (2) we get:

T (n, r, h) =

r−1∑
r′=1

h∑
h′=0

N(λ1, r
′, h′)×N(λ2, r − r′, h− h′).

When h′ > λ1
2 , N(λ1, r

′, h′) = 0 by induction hypothesis. When h′ ≤ λ1
2 , since h > n

2 , h − h′ > n
2 −

λ1
2 = λ2

2 .
Therefore, N(λ2, r − r′, h− h′) = 0 by induction hypothesis. Hence, N(n, r, h) = 0 for h > n

2 for any r.
Next, we show that the upper bound of

⌊
n
2

⌋
is actually achieved. First let us assume that n is even and hence

q0/2 is even. We construct a revocation pattern such that none of the users are revoked initially. Now, let us
form a revocation pattern by revoking one user from each of the q0/2 subtrees rooted at level q1 with leaves at
level q0 and one user each from subtrees rooted at level 2 with leaves at level 1. Since all the privileged users
would form singleton subsets in the cover for this revocation pattern, hence the header length for the revocation
pattern thus constructed is of size q1 (= n

2 ). Now, if we attempt to revoke any other user, then by pigeonhole
principle, one of the sets in the cover gets removed and hence the header length decreases. Hence, for even n,
the maximum header length is n

2 .
For odd n, q0/2 is odd. We construct a revocation pattern similarly by revoking one user from each of the

q0/2 subtrees rooted at level q1 with leaves at level q0 and one user each from subtrees rooted at level 2 with
leaves at level 1. Since q0/2 is odd, there will be one subtree (rooted at the node at position kP2 ) with leaves at
both levels 0 and 1. For this subtree, only one out of the three users in it is revoked. Since all the privileged users
would form singleton subsets (except the one generated from the above subtree) in the cover for this revocation
pattern, hence the cover size for the revocation pattern thus constructed is of size q1 (=

⌊
n
2

⌋
). This is again the

maximum header length by the same argument as above.
Hence, the maximum header length is

⌊
n
2

⌋
for n users.

Theorem 6 gives a bound on the header size. Previously, the bound of 2r − 1 for the header size had been
obtained. The next result completes the picture by obtaining yet another bound on the header size.

Theorem 7. The maximum header length in the CSD method for n users is min(2r − 1,
⌊
n
2

⌋
, n− r).

Proof. The bounds 2r − 1 and dn/2e have already been shown. We show the bound of n− r on the header size.
The proof of this is similar to the first part of the proof of Theorem 6, i.e., we show that N(n, r, h) = 0 for
h > n− r.



4 COUNTING REVOCATION PATTERNS IN THE CSD METHOD 17

For λi < n, we have h− 1 > n− 1− r ≥ λi − r and hence using induction, N(λi, r, h− 1) = 0 which implies
that T (λi, r, h−1) is also zero. Again, consider the value of T (n, r, h) and the recurrence expressing this in terms
of N(λ1, r

′, h′) and N(λ2, r−r′, h−h′), where λ1+λ2 = n. If h′ > λ1−r′, then using induction, N(λ1, r
′, h′) = 0.

So, suppose that h′ ≤ λ1 − r′. Using h > n− r, we have h− h′ > (n− λ1)− (r − r′) = λ2 − (r − r′) and again
using induction, N(λ2, r − r′, h− h′) = 0.

This shows that T (n, r, h) = 0 which combined with the fact that the other relevant values of T (·, ·, ·) are
zero, shows that N(n, r, h) = 0 for h > n− r.

The bound given by Theorem (7) gives a complete picture. If r ≤ n/4, then the bound 2r − 1 is appropriate;
if n/4 < r ≤ n/2, then the bound dn/2e is appropriate; and for r > n/2, the bound (n− r) is appropriate. The
last bound has an important consequence. If the number of revoked users is greater than n/2, it may appear
that using individual transmission to the privileged users would be better than using the CSD method. But,
The bound of (n− r) on the header size shows that this is not true. Using the CSD method is never worse than
individual transmission to privileged users.

The bound of Theorem 7 hold for the SD scheme, i.e., for full trees. We note that the only previously proved
upper bound for the SD scheme is 2r− 1. The other two bounds bounds, while intuitive, do not appear to have
been reported with proofs in the literature. In fact, there does not seem to be an easy way to argue about these
bounds without using the recurrences that we have derived.

Definition 1. nr: For a given r, nr is the minimum number of users required to be in the system so that there
exists an (n, r)-revocation pattern covered by a header length of 2r− 1. In other words, nr is the minimum n for
which N(n, r, 2r − 1) > 0.

Theorem 3 shows that the upper bound on the header length is 2r − 1. By characterizing nr, we show that
this upper bound on h is actually achieved.

Lemma 8. In the CSD method, 2k−1 < r ≤ 2k if and only if 22k < nr < 22k+1.

Proof. We first prove that if 2k−1 < r ≤ 2k, then 22k < nr ≤ 22k+1 (by showing that N(22k, r, 2r − 1) = 0 and
N(22k+1, r, 2r− 1) 6= 0). Although by Theorem 3, T (22k+1, r, 2r− 1) = 0, we show that T (22k, r, 2r− 2) 6= 0 and
hence at least one of the terms on the right hand side of (1) is non-zero and hence N(22k+1, r, 2r− 1) 6= 0. From
(2) we get:

T (22k, r, 2r − 2) =
r−1∑
r′=1

2r−2∑
h′=0

N(22k−1, r′, h′)×N(22k−1, r − r′, 2r − 2− h′).

When h′ > 2r′−1, N(22k−1, r′, h′) = 0 by Theorem 3. Similarly, when h′ < 2r′−1, 2r−2−h′ > 2r−2−2r′+1 =
2(r − r′)− 1 and hence N(22k−1, r − r′, 2r − 2− h′) = 0. Hence, we get

T (22k, r, 2r − 2) =

r−1∑
r′=1

N(22k−1, r′, 2r′ − 1)×N(22k−1, r − r′, 2(r − r′)− 1).

When r′ = d r2e (2k−2 < r′ ≤ 2k−1) by induction hypothesis, nr′ ≤ 22k−1 and hence by Lemma 4, both
N(22k−1, r′, 2r′ − 1) and N(22k−1, r − r′, 2(r − r′) − 1) are non-zero. Hence, T (22k, r, 2r − 2) 6= 0 which im-
plies N(22k+1, r, 2r − 1) 6= 0. Since T (nr, r, 2r − 1) = 0 and T (22k−1, r, 2r − 2) = 0 hence, nr < 22k+1. Next,
we show that N(22k, r, 2r − 1) = 0. By Theorem 3, T (22k, r, 2r − 1) = 0. By Lemma 5, for all λi ≤ 22k−1 and
r > 2k−1, T (λi, r, 2r − 2) = 0 and hence N(22k, r, 2r − 1) = 0.

Next, we prove that for some 22k < nr ≤ 22k+1, the corresponding r is such that 2k−1 < r ≤ 2k. Let
the corresponding r be such that 2k

′−1 < r ≤ 2k
′

where k 6= k′. Then by the argument above, we know that
22k
′
< nr ≤ 22k

′+1 which is a contradiction since nr is unique for a given r by definition. Hence the corresponding
r is such that 2k−1 < r ≤ 2k.



4 COUNTING REVOCATION PATTERNS IN THE CSD METHOD 18

r 1 2 3 4 5 6 7 8

nr 2 6 18 22 66 70 82 86

Table 6: Listing a few values of r and their corresponding nr.

One may note here that not all n between 2k−1 and 2k is an nr for some r. We list a few r and their
corresponding nr in Table 6. Next, we find an expression for nr.

Theorem 9. In the CSD method, let 2k−1 < r ≤ 2k. When r ≤ 2k−1 + 2k−2, let r1 = 2k−2 and r0 = r − 2k−2

and hence,
nr = nr0 + 22k−2 + 22k−1

and when r > 2k−1 + 2k−2, let r0 = 2k−1 and r1 = r − 2k−1 and hence,

nr = 22k−1 + nr1 + 22k−1.

Proof. From Lemma 8 we know that for 2k−1 < r ≤ 2k, 22k < nr ≤ 22k+1. For such an nr, λ1 = nr − 22k−1 and
λ2 = 22k−1. From (1) we get

N(nr, r, 2r − 1) = T (nr, r, 2r − 1) + T (nr − 22k−1, r, 2r − 2) + T (22k−1, r, 2r − 2) +

nr−2∑
i=3

T (λi, r, 2r − 2).

From Theorem 3 we know that T (nr, r, 2r−1) = 0. From Lemma 5 we know that when r > 2k−1 and λi ≤ 22k−1,
T (λi, r, 2r − 2) = 0. Hence the only non-zero component is T (nr − 22k−1, r, 2r − 2). From (2) we get

N(nr, r, 2r − 1) = T (nr − 22k−1, r, 2r − 2) =

r−1∑
r′=1

2r−2∑
h′=0

N(λ3, r
′, h′)×N(λ4, r − r′, 2r − 2− h′).

By an argument similar to the one used in the proof for Lemma 8, we get

N(nr, r, 2r − 1) = T (nr − 22k−1, r, 2r − 2) =
r−1∑
r′=1

N(λ3, r
′, 2r′ − 1)×N(λ4, r − r′, 2(r − r′)− 1).

By the construction of the complete tree T 0 and the fact that T 2 does not have any revoked user (T (22k−1, r, 2r−
2) = 0) it can be seen that 22k−2 < λ3 ≤ 22k−1 and 22k−2 ≤ λ4 < 22k−1.

When r ≤ 2k−1 + 2k−2, let r′ = r0 = r − 2k−2 and r − r′ = r1 = 2k−2. From the construction of the
complete tree T 0 for (nr0 + 22k−2 + 22k−1) users, it can be seen that λ3 = nr0 and λ4 = 22k−2. Hence,
N(λ3, r

′, 2r′ − 1) = N(nr0 , r0, 2r0 − 1) 6= 0 by the definition of nr. Also, from Lemma 4 and Lemma 8 we know
that for r = 2k (consequently nr < 22k+1) and λ ≥ 22k+1, N(λ, r, 2r − 1) 6= 0. So for r1 = r − r′ = 2k−2 and
λ4 = 22(k−2)+2 we get, N(λ4, r − r′, 2(r − r′) − 1) = N(22k−2, r1, 2r1 − 1) 6= 0. Hence, for r ≤ 2k−1 + 2k−2,
N(nr, r, 2r − 1) 6= 0 where nr = nr0 + 22k−2 + 22k−1.

Now, we show that for 2k−1 < r ≤ 2k−1 + 2k−2 (r0 = r − 2k−2 and r1 = 2k−2), N(nr − 1, r, 2r − 1) = 0.
In the tree T 0 for (nr0 + 22k−2 + 22k−1) − 1 users, λ3 = nr0 − 1 and λ4 = 22k−2. Since there are nr0 − 1
users in T 3, at most r0 − 1 revoked users can be accommodated in T 3 so that N(λ3, r

′, 2r′ − 1) 6= 0 and hence
r′ = r0 − 1 and r − r′ = 2k−2 + 1. By Lemma 8 for r − r′ > 2k−2, nr−r′ > 22k−2. But, λ4 = 22k−2 and hence
N(λ4, r − r′, 2(r − r′)− 1) = 0. Consequently, we get N(nr − 1, r, 2r − 1) = 0.



4 COUNTING REVOCATION PATTERNS IN THE CSD METHOD 19

When r > 2k−1 + 2k−2, let r′ = r0 = 2k−1 and r − r′ = r1 = r − 2k−1. From the construction of the
complete tree T 0 for (22k−1 + nr1 + 22k−1) users, it can be seen that λ3 = 22k−1 and λ4 = nr1 . Hence,
N(λ4, r − r′, 2(r − r′) − 1) = N(nr1 , r1, 2r1 − 1) 6= 0 by the definition of nr. From Lemma 4 and Lemma 8 we
know that for r = 2k (consequently nr < 22k+1) and λ ≥ 22k+1, N(λ, r, 2r − 1) 6= 0. So for r0 = r′ = 2k−1 and
λ3 = 22(k−1)+1 we get, N(λ3, r

′, 2r′−1) = N(22k−1, r0, 2r0−1) 6= 0. Hence, for r > 2k−1+2k−2, N(nr, r, 2r−1) 6= 0
where nr = 22k−1 + nr1 + 22k−1.

Now, we show that for r > 2k−1 + 2k−2 (r0 = 2k−1 and r1 = r − 2k−1), N(nr − 1, r, 2r − 1) = 0. In the tree
T 0 for (22k−1 + nr1 + 22k−1)− 1 users, λ3 = 22k−1 and λ4 = nr1 − 1. Since there are nr1 − 1 users in T 4, at most
r1− 1 revoked users can be accommodated in T 4 so that N(λ4, r− r′, 2(r− r′)− 1) 6= 0 and hence r− r′ = r1− 1
and r′ = 2k−1 + 1. By Lemma 8 for r′ > 2k−1, nr′ > 22k−1. But, λ3 = 22k−1 and hence N(λ3, r

′, 2r′ − 1) = 0.
Consequently, we get N(nr − 1, r, 2r − 1) = 0.

Note that for the SD method, when 2k−1 < r ≤ 2k, the minimum n for which the header length of 2r − 1
occurs is 22k+1. This has been earlier proved in [PB06]. It is because the CSD method allows arbitrary number
of users, the value of n for which the maximum header length of 2r− 1 is achieved for a given r is less than that
of the SD method.

4.5 Generating Function from Recurrences of the CSD scheme for Full Binary trees

Let the number of users be n = 2`0 and hence the tree T 0 is full and of height `0. For a full tree T 0, all subtrees
T i are full and at level `, there are 2`0−` subtrees with 2` leaves in each. We define T`(r, h) = T (2`, r, h) and
N`(r, h) = N(2`, r, h). Then the recurrences (1) and (2) for counting the number of revocation patterns become:

N`0(r, h) = T`0(r, h) +

`0−1∑
`=1

(
2`0−` × T`(r, h− 1)

)
. (7)

T`0(r, h) =
r−1∑
r1=1

h∑
h1=0

N`0−1(r1, h1)×N`0−1(r − r1, h− h1) (8)

where r is the number of revoked users.

Theorem 10. The generating function for the sequence N`0(r, h) of numbers defined in (7) above, is given by
X`0(x, y) where

X`0(x, y) =
(
X`0−1(x, y)− xy2`0−1

)2
+ xy2

`0
+ 2`0x2y2

`0−1 +

`0−1∑
`=1

(
2`0−`xy2

`0−2` ×
(
X`−1(x, y)− xy2`−1

)2)
.

Proof. Let Y`0(x, y) be the generating function for the sequence T`0(2`0 − r, h) defined as follows:

Y`0(x, y) =

2`0∑
r=0

2`0−r∑
h=0

T`0(r, h)xhy2
`0−r (9)



4 COUNTING REVOCATION PATTERNS IN THE CSD METHOD 20

and the generating function X`0(x, y) for the sequence N`0(2`0 − r, h) can be written as:

X`0(x, y) =
2`0∑
r=0

2`0−r∑
h=0

N`0(r, h)xhy2
`0−r. (10)

By definition, when `0 = 0, Y0(x, y) = 0 and X0(x, y) = 1 + xy and when `0 = 1, Y1(x, y) = 1 and X1(x, y) =
1 + 2xy + xy2.

Now, we note that:

X2
`0−1(x, y) =

(2`0−1∑
r1=0

2`0−1−r1∑
h1=0

N`0−1(r1, h1)x
h1y2

`0−1−r1
)
×
(2`0−1∑
r2=0

2`0−1−r2∑
h2=0

N`0−1(r2, h2)x
h2y2

`0−1−r2
)

=
(
N`0−1(0, 1)xy2

`0−1
+

2`0−1∑
r1=1

2`0−1−r1∑
h1=0

N`0−1(r1, h1)x
h1y2

`0−1−r1
)
×

(
N`0−1(0, 1)xy2

`0−1
+

2`0−1∑
r2=1

2`0−1−r2∑
h2=0

N`0−1(r2, h2)x
h2y2

`0−1−r2
)

(11)

Putting N`0−1(0, 1) = 1 in (11) we get:

X2
`0−1(x, y) =

(2`0−1∑
r1=1

2`0−1−r1∑
h1=0

N`0−1(r1, h1)x
h1y2

`0−1−r1
)
×
(2`0−1∑
r2=1

2`0−1−r2∑
h2=0

N`0−1(r2, h2)x
h2y2

`0−1−r2
)

+ xy2
`0−1

(2`0−1∑
r2=1

2`0−1−r2∑
h2=0

N`0−1(r2, h2)x
h2y2

`0−1−r2
)

+ xy2
`0−1

(2`0−1∑
r1=1

2`0−1−r1∑
h1=0

N`0−1(r1, h1)x
h1y2

`0−1−r1
)

+ x2y2
`0

(12)

Let

C`0(x, y) =
(2`0−1∑
r1=1

2`0−1−r1∑
h1=0

N`0−1(r1, h1)x
h1y2

`0−1−r1
)
×
(2`0−1∑
r2=1

2`0−1−r2∑
h2=0

N`0−1(r2, h2)x
h2y2

`0−1−r2
)

=

2`0∑
r=2

2`0−r∑
h=0

xhy2
`0−r

r−1∑
r1=1

h∑
h1=0

N`0−1(r1, h1)×N`0−1(r − r1, h− h1). (13)



4 COUNTING REVOCATION PATTERNS IN THE CSD METHOD 21

Now we take a closer look at the generating function Y`0(x, y) of (9):

Y`0(x, y) =
2`0∑
r=0

2`0−r∑
h=0

T`0(r, h)xhy2
`0−r

=
2`0∑
r=0

2`0−r∑
h=0

xhy2
`0−r

r−1∑
r1=1

h∑
h1=0

N`0−1(r1, h1)×N`0−1(r − r1, h− h1)

=

2`0∑
r=0

2`0−r∑
h=0

xhy2
`0−r

r−1∑
r1=1

h∑
h1=0

N`0−1(r1, h1)×N`0−1(r − r1, h− h1)

=

2`0∑
r=2

2`0−r∑
h=0

xhy2
`0−r

r−1∑
r1=1

h∑
h1=0

N`0−1(r1, h1)×N`0−1(r − r1, h− h1)

+
1∑
r=0

2`0−r∑
h=0

xhy2
`0−r

r−1∑
r1=1

h∑
h1=0

N`0−1(r1, h1)×N`0−1(r − r1, h− h1)

=
2`0∑
r=2

2`0−r∑
h=0

xhy2
`0−r

r−1∑
r1=1

h∑
h1=0

N`0−1(r1, h1)×N`0−1(r − r1, h− h1) (14)

In (14) above,
∑1

r=0

∑2`0−r
h=0 xhy2

`0−r∑r−1
r1=1

∑h
h1=0N`0−1(r1, h1)×N`0−1(r − r1, h− h1) = 0. The minimum

value of r1 or r− r1 is 1. The maximum value for r1 or r− r1 such that xhy2
`0−r will have a non-zero coefficient

N`0−1(r1, h1)×N`0−1(r − r1, h− h1) is 2`0−1.
Hence, C`0(x, y) = Y`0(x, y).

Let A`0−1(x, y) =
(∑2`0−1

r=1

∑2`0−1−r
h=0 N`0−1(r, h)xhy2

`0−1−r
)

. It can be easily seen that

X`0−1(x, y) =
2`0−1∑
r=0

2`0−1−r∑
h=0

N`0−1(r, h)xhy2
`0−1−r

=
2`0−1∑
h=0

N`0−1(0, h)xhy2
`0−1

+
2`0−1∑
r=1

2`0−1−r∑
h=0

N`0−1(r, h)xhy2
`0−1−r

= xy2
`0−1

+A`0−1(x, y) (15)

Putting the value of A`0−1(x, y) from (15) and the value of Y`0 from (14) into (12), we get:

Y`0(x, y) = X2
`0−1(x, y)− 2xy2

`0−1
X`0−1(x, y)− x2y2`0

=
(
X`0−1(x, y)− xy2`0−1

)2
. (16)

Now, to find another relation between the generating functions X`0(x, y) and Y`0(x, y), we multiply both sides

of (7) with xhy2
`0−r and sum both sides over 2 ≤ r ≤ 2`0 and 0 ≤ h ≤ 2`0 :

2`0∑
r=2

2`0−r∑
h=1

N`0(r, h)xhy2
`0−r =

2`0∑
r=2

2`0−r∑
h=1

T`0(r, h)xhy2
`0−r +

2`0∑
r=2

2`0−r∑
h=1

`0−1∑
`=1

(
2`0−`xhy2

`0−r × T`(r, h− 1)
)
. (17)



5 EXPECTED HEADER LENGTH IN THE CSD METHOD 22

Adding the values of N`0(r, h) and T`0(r, h)(= 0) for r < 2 and h ≥ 1 to both sides of the (17) above, we get:

2`0∑
r=0

2`0−r∑
h=1

N`0(r, h)xhy2
`0−r = xy2

`0
+ 2`0x2y2

`0−1

+
2`0∑
r=0

2`0−r∑
h=1

T`0(r, h)xhy2
`0−r +

2`0∑
r=0

2`0−r∑
h=1

`0−1∑
`=1

(
2`0−`xhy2

`0−r × T`(r, h− 1)
)
.

Since for h = 0, N`0(2`0 , 0) = 1 (T`0(2`0 , 0) = 1) and for any r < 2`0 , N`0(r, 0) = 0 (T`0(r, 0) = 0),

X`0(x, y)− 1 = xy2
`0

+ 2`0x2y2
`0−1 + Y`0(x, y)− 1 +

`0−1∑
`=1

2`0−` ×
2`0∑
r=0

2`0−r∑
h=1

T`(r, h− 1)xhy2
`0−r


= xy2

`0
+ 2`0x2y2

`0−1 + Y`0(x, y)− 1 +

`0−1∑
`=1

2`0−`xy2
`0−2` ×

2`∑
r=0

2`0−r−1∑
h=0

T`(r, h)xhy2
`−r

 . (18)

Since 2`0 − r − 1 > 2` − r for 1 ≤ ` ≤ `0 − 1, hence we get:

X`0(x, y) = xy2
`0

+ 2`0x2y2
`0−1 + Y`0(x, y) +

`0−1∑
`=1

(
2`0−`xy2

`0−2` × Y`(x, y)
)
. (19)

From (16) and (19) above, we get:

X`0(x, y) =
(
X`0−1(x, y)− xy2`0−1

)2
+ xy2

`0
+ 2`0x2y2

`0−1 +

`0−1∑
`=1

(
2`0−`xy2

`0−2` ×
(
X`−1(x, y)− xy2`−1

)2)
.

(20)

A similar generating function was found by Park and Blake in [PB06]. It was derived based on the structural
properties of the tree used in creating the subsets of the subset difference method. We have taken a different
approach of first finding the recurrence relations for the sequence N(n, r, h) and then deriving the generating
function from it. Our generating function is of a slightly different form.

5 Expected Header Length in the CSD method

Given the number of users n (2`1 < n ≤ 2`1+1), and the number of revoked users r, there are
(
n
r

)
possible

revocation patterns. Each such revocation pattern gives rise to a subset cover for the privileged users and hence
a header in the ciphertext C. We now find the expected value of the header length h for a given n and r.

5.1 Basic Analysis

The Random Experiment: We consider the random experiment where r out of the n initially un-revoked
leaves of the tree T 0 are chosen uniformly at random without replacement and revoked. This gives rise to an (n, r)-
revocation pattern and hence a corresponding subset cover Sc and its header length h. Let Xn,r be the random
variable taking the value of the header length h due to the (n, r)-revocation pattern of the above experiment.
Next, we associate a random variable with each node of the tree T 0. Let Xi

n,r ∈ {0, 1} be a random variable



5 EXPECTED HEADER LENGTH IN THE CSD METHOD 23

associated with node i of T 0. (X0
n,r is associated with the root of T 0.) Xi

n,r = 1 denotes the event that the cover
contains a subset Si,j (T i \ T j) where j is some node in the subtree T i (j is a descendant of i). In other words,
when Xi

n,r = 1 we say that node i generates a subset for the cover. Similarly, Xi
n,r = 0 denotes the event that

there is no subset Si,j in the cover (i does not generate a subset for the cover). Xi
n,r for node i (represented by

(`i, ki)) will also be written as X`i,ki
n,r .

The Expected Header Length: We have Xn,r = X0
n,r +X1

n,r + . . .+Xn−2
n,r . By linearity of expectation:

E[Xn,r] = E[X0
n,r] + E[X1

n,r] + . . .+ E[Xn−2
n,r ]. (21)

Since all the random variables Xt
n,r follow Bernoulli distribution with probability Pr[Xt

n,r = 1], we get:

E[Xn,r] = Pr[X0
n,r = 1] + Pr[X1

n,r = 1] + . . .+ Pr[Xn−2
n,r = 1]. (22)

Recall that P0 is the unique path from the root to a leaf node which contains the nodes at which the non-full
subtrees of T 0 are rooted. As we had discussed before, the subtrees T i for which i is not on P0 are full. For a
level ` of T 0 the subtrees to the left of P0 are identical in structure (they are all full and have equal number of
leaves). Hence, Pr[Xi

n,r = 1] needs to be computed only once for every such node i to the left of P0 at level `.
Similarly for nodes to the right of P0. Hence, efficient computation of E[Xn,r] using (22), boils down to finding

Pr[Xj
n,r = 1] level-wise. There are q` (internal) nodes at all levels ` ≥ 2. At level 1, there are n − 2`1 (= q0/2)

internal nodes. The other q1 − (n− 2`1) nodes at level 1 are leaves. Hence, (22) can also be written as:

E[Xn,r] =

`0∑
`=2

q∑̀
k=1

Pr[X`,k
n,r = 1] +

q0/2∑
k=1

Pr[X1,k
n,r = 1]. (23)

When r = 0, there is only one set N in the cover Sc. Hence, E[Xn,r] = 1. Here on, we will consider r ≥ 1.

Pr[X0
n,r = 1] (= Pr[X`0,1

n,r = 1]) for the root node: We start with finding the probability that the root node
generates a subset S0,j for the cover Sc. We define events R0

lt and R0
rt with respect to our random experiment

defined above. R0
lt (respectively R0

rt) is the event that there is at least one revoked user in the left (respectively

right) subtree of T 0. Hence, R0
lt (respectively R0

rt) is the event that there is no revoked user in the left (respectively
right) subtree of T 0. The event X0

n,r = 1 occurs when exactly one of the two subtrees of T 0 contains all the

r revoked users. If all the revoked users are in the left subtree, then the event R0
rt occurs and similarly if all

the revoked users are in the right subtree the event R0
lt occurs. Further, for r ≥ 1, the events R0

lt and R0
rt are

disjoint. Hence, Pr[X0
n,r = 1] = Pr[R0

lt] + Pr[R0
rt].

To simplify the computation of these probabilities, we define a new notation ηr(α, β) to indicate the probability
of choosing r elements from a set of α elements such that β out of these α elements are never chosen. So, if
β ≥ α− r + 1, then ηr(α, β) = 0 by definition. Else, for 0 < β < α− r + 1,

ηr(α, β) =

(
1− β

α

)(
1− β

α− 1

)(
1− β

α− 2

)
. . .

(
1− β

α− r + 1

)
=

(α− β)r
(β)r

. (24)

With this definition of ηr(α, β) in mind, we proceed to compute Pr[R0
lt]. In the above random experiment, let

Q0
k be the event that no user from the left subtree of T 0 (having λ1 leaves) is chosen in the kth trial (out of the r



5 EXPECTED HEADER LENGTH IN THE CSD METHOD 24

trials). One can see that Pr[R0
lt = 0] = Pr[Q0

1 ∧Q0
2 ∧ . . .∧Q0

r ] and Pr[Q0
k|Q0

k−1 ∧ . . .∧Q0
1] = (1− λ1

n−k+1). Hence,
we get:

Pr[R0
lt] = Pr[Q0

1 ∧Q0
2 ∧ . . . ∧Q0

r ]

= Pr[Q0
1]× Pr[Q0

2|Q0
1]× Pr[Q0

3|Q0
2 ∧Q0

1]× Pr[Q0
r |Q0

r−1 ∧ . . . ∧Q0
1]

=

(
1− λ1

n

)(
1− λ1

n− 1

)(
1− λ1

n− 2

)
. . .

(
1− λ1

n− r + 1

)
= ηr(n, λ1) (25)

where λ1 is the number of nodes in the left subtree of T 0. Similarly, for the right subtree of T 0, we get
Pr[R0

rt] = ηr(n, λ2) where λ2 is the number of nodes in the right subtree of T 0. Consequently,

Pr[X0
n,r = 1] = ηr(n, λ1) + ηr(n, λ2). (26)

Pr[Xi
n,r(= X`i,ki

n,r ) = 1] for the node i of T i: Next, we find the probability that node i generates a subset
Si,j for the cover. This event Xi

n,r = 1 occurs when the sibling subtree T s of i (T s = T i−1 or T i+1) has at
least one revoked node and exactly one of the subtrees of i has at least one revoked user. We define the events
Risb, R

i
lt and Rirt for node i with respect to our random experiment. Risb denotes the event that the number of

revoked nodes in the sibling subtree of T i is non-zero. Rilt (respectively Rirt) denotes the event that the number
of revoked nodes in the left (respectively right) subtree T 2i+1 (respectively T 2i+2) is non-zero.

lt rt sb

i

2i+1 2i+2

sb

i

2i+1 2i+2

rtlt

Figure 4: Figures demonstrating the events Risb∧Rirt∧Rilt and Risb∧Rilt∧Rirt respectively. The triangles represent
subtrees rooted at the respective nodes. White denotes that the subtree has no revoked user in it. Gray denotes
that the subtree has at least one revoked user in it. (The sizes of the subtrees are not up to the scale of the
number of users in them.)

Lemma 11. For an internal non-root node i in T 0, the probability that the cover Sc contains a set of the form
T i \ T j (where j is some node in the subtree T i), is given by Pr[Xi

n,r = 1] where

Pr[Xi
n,r = 1] = Pr[Risb ∧Rirt ∧Rilt] + Pr[Risb ∧Rilt ∧Rirt].

Proof. For a subset Si,j to occur in the cover (where j is some node in the subtree T i), there should be at least
one revoked user in exactly one of the subtrees (T 2i+1 or T 2i+2) of the node i. The sibling subtree T s should
also have at least one revoked user. Hence the event Xi

n,r = 1 can be divided into two mutually exclusive and
exhaustive events. First, when the sibling subtree and the right subtree of T i have at least one revoked user in
each and the left subtree does not have any: (Risb ∧ Rirt ∧ Rilt). Second, when the sibling subtree and the left

subtree of T i have at least one revoked user in each and the right subtree does not have any: (Risb ∧Rilt ∧Rirt).
Hence the lemma.



5 EXPECTED HEADER LENGTH IN THE CSD METHOD 25

Theorem 12. For an internal non-root node i of T 0 whose sibling subtree has λs leaves,

Pr[Xi
n,r = 1] = ηr(n, λ2i+1) + ηr(n, λ2i+2)− ηr(n, λs + λ2i+1)− ηr(n, λs + λ2i+2)

− 2ηr(n, λ2i+1 + λ2i+2) + 2ηr(n, λs + λ2i+1 + λ2i+2). (27)

For the root node 0 of T 0,

Pr[X0
n,r = 1] = ηr(n, λ1) + ηr(n, λ2). (28)

Proof. Let us look at Pr[Risb ∧Rirt ∧Rilt] from Lemma 11.

Pr[Risb ∧Rirt ∧Rilt] = Pr[Risb ∧Rirt|Rilt]× Pr[Rilt]

=
(

1− Pr[Risb ∧Rirt|Rilt]
)
× Pr[Rilt]

=
(

1− Pr[Risb|Rilt]− Pr[Rirt|Rilt] + Pr[Risb ∧Rirt|Rilt]
)
× Pr[Rilt]

= Pr[Rilt]− Pr[Risb ∧Rilt]− Pr[Rirt ∧Rilt] + Pr[Risb ∧Rirt ∧Rilt]. (29)

It can be verified that (29) holds even if Pr[Rilt] = 0. Similarly, Pr[Risb ∧Rilt ∧Rirt] of Lemma 11 can be written
as:

Pr[Risb ∧Rilt ∧Rirt] = Pr[Rirt]− Pr[Risb ∧Rirt]− Pr[Rilt ∧Rirt] + Pr[Risb ∧Rilt ∧Rirt]. (30)

Next, we deduce the expression for finding Pr[Risb∧Rilt∧Rirt] in terms of ηr(·, ·). Let Qik be the event that no user
from the left, right or sibling subtrees of T i is chosen in the kth trial (out of the r trials) of the random experiment.

One can see that Pr[Risb ∧Rilt ∧Rirt] = Pr[Qi1 ∧Qi2 ∧ . . .∧Qir] and Pr[Qik|Qik−1 ∧ . . .∧Qi1] =
(

1− λs+λ2i+1+λ2i+2

n−k+1

)
.

Consequently, Pr[Risb ∧Rilt ∧Rirt] = ηr(n, λs + λ2i+1 + λ2i+2). The other probabilities on the right hand sides of
(29) and (30) can be found similarly by defining the corresponding event Qik to exclude the users in the respective
subtrees from being chosen in the kth trial of the random experiment. From Lemma 11, and substituting the
probabilities on the right hand sides of (29) and (30) with their corresponding ηr(·, ·) equivalents, we get:

P in,r , Pr[Xi
n,r = 1] = ηr(n, λ2i+1) + ηr(n, λ2i+2)− ηr(n, λs + λ2i+1)− ηr(n, λs + λ2i+2)

− 2ηr(n, λ2i+1 + λ2i+2) + 2ηr(n, λs + λ2i+1 + λ2i+2). (31)

For the root node, Pr[X0
n,r = 1] = Pr[R0

lt] + Pr[R0
rt] where Pr[R0

lt] = ηr(n, λ1) and Pr[R0
rt] = ηr(n, λ2). Hence,

P 0
n,r , Pr[X0

n,r = 1] = ηr(n, λ1) + ηr(n, λ2). (32)

5.2 The Algorithm

Computing E[Xn,r]: Now that we have the expressions to find Pr[Xi
n,r = 1] for all i ∈ {0, . . . , n−2} in Theorem

12, the values for λs, λ2i+1 and λ2i+2 for node i have to substituted appropriately in (31) and (32). By doing
these substitutions for nodes at each level ` ∈ {1, . . . , `0} of T 0, we get Algorithm 1. For level ` ∈ {2, . . . , `0−1},
this computation is done in four steps: (1) for the node kP` of level `, (2) its sibling subtree, (3) all subtrees (full)
to the left of the above two subtrees, and (4) all subtrees (full) to the right of the two subtrees in 1 and 2. The
subtree at position kP` at level ` is the only possible non-full subtree for level ` and is of height `. If kP` is odd,
its sibling (full) subtree is of height ` − 1. If kP` is even, its sibling (full) subtree is of height `. The subtree at
node kP`−1 of level `− 1 is always a subtree of the tree rooted at node kP` of level `. When kP`−1 is odd, the right

subtree of the tree rooted at node kP` of level ` is full. When kP`−1 is even, the left subtree of the tree rooted at

node kP` of level ` is full. For the root node 0 and the nodes at level 1, the substitutions are more simple.



5 EXPECTED HEADER LENGTH IN THE CSD METHOD 26

n r E[Xn,r]
E[Xn,r]

r

106 2 2.5 1.250

106 10 12.48 1.248

106 100 124.54 1.248

106 1000 1243.77 1.244

106 10000 12313.53 1.231

Table 7:
E[Xn,r]

r for given n and r computed using Algorithm 1 for the CSD scheme.

Time and Space Complexity: To analyze the running time of the algorithm, we observe that each com-
putation of ηr(α, β) involves O(r) multiplications and there are a constant number of computations of ηr(α, β)
for each level of the tree. Hence, Algorithm 1 requires O(r log n) multiplications. Algorithm 1 runs using O(1)
space. Table 7 lists some values of E[Xn,r] for n = 106 and different values of r.

5.3 Asymptotic Analysis Of E[Xn,r] for Full Binary trees

For n = 2`0 , for any internal node i ∈ {0, . . . , n − 2}, λ2i+1 = λ2i+2 = 2`i−1. For any node at level `i > 0,
λs = 2`i+1. Substituting these values for a node (`, k), (31) becomes:

Pr[X`,k
n,r = 1] = 2[ηr(n, 2

`−1)− ηr(n, 2× 2`−1)− ηr(n, 3× 2`−1) + ηr(n, 4× 2`−1)]. (33)

This probability is independent of k. In other words, the probability of generating a subset for the cover is equal
for all nodes at level `. Hence, we define the following:

Definition 2. B
(`)
n,r: Let `(1 ≤ ` ≤ `0) be a level number of the tree T 0 and n = 2`0. B

(`)
n,r is defined as

Pr[X`,k
n,r = 1] of (33) for the node (`, k) of T 0. Hence,

B(`)
n,r = 2[ηr(n, 2

`−1)− ηr(n, 2× 2`−1)− ηr(n, 3× 2`−1) + ηr(n, 4× 2`−1)].

Note that by this definition, for the only node (the root node) at level `0, B
(`0)
n,r = 2ηr(n, 2

`0−1) which is
consistent with (32) for n = 2`0 . Hence, we define the following:

Definition 3. Hn,r: For a given n = 2`0 and r, the expected header length Hn,r due to the subset cover algorithm
of the CSD scheme is defined as:

Hn,r = E[Xn,r] =

`0∑
`=1

2`0−`B(`)
n,r.

Definition 4. Dn,r: For a given n = 2`0, the difference between the expected header lengths for the number of
revoked users being r and r − 1 is defined as Dn,r. Hence,

Dn,r = Hn,r −Hn,r−1.



5 EXPECTED HEADER LENGTH IN THE CSD METHOD 27

Algorithm 1 Find E[Xn,r] for the CSD scheme.

Require: n ≥ 1; 0 ≤ r ≤ n;
Function ηr(·, ·) is defined in (24);
Function P in,r(λ2i+1, λ2i+2, λs) is defined in (31).

Ensure: Output E[Xn,r] computed in result.
Compute `0 such that 2`0−1 < n ≤ 2`0

q0 ← 2× (n− 2`0−1) {The number of leaves at level 0}
{For the root node 0:}
if q0 ≤ 2`0−1 then

result← ηr(n, n− 2`0−2) + ηr(n, 2
`0−2)

else
result← ηr(n, 2

`0−1) + ηr(n, n− 2`0−1)
end if
{For the nodes at levels ` ∈ {1, . . . , `1}:}
for ` = (`0 − 1) down to 2 do

q` ← 2`0−` {The number of nodes at level `}
kP` ←

⌈ q0
2`

⌉
{The position of the unique node at level ` on path P0}

λ`,P ← n− (kP` − 1)× 2` − (q` − kP` )× 2`−1 {# leaves in the only possibly non-full subtree of level `}
if kP` is odd then

result← result+ (kP` − 1)× P in,r(2`−1, 2`−1, 2`)
if kP`−1 is odd then

result← result+ P in,r(λ
`,P − 2`−2, 2`−2, 2`−1)

else
result← result+ P in,r(2

`−1, λ`,P − 2`−1, 2`−1)
end if
result← result+ P in,r(2

`−2, 2`−2, λ`,P)

result← result+ (q` − (kP` + 1))× P in,r(2`−2, 2`−2, 2`−1)
else

result← result+ (kP` − 2)× P in,r(2`−1, 2`−1, 2`)
result← result+ P in,r(2

`−1, 2`−1, λ`,P)

if kP`−1 is odd then

result← result+ P in,r(λ
`,P − 2`−2, 2`−2, 2`)

else
result← result+ P in,r(2

`−1, λ`,P − 2`−1, 2`)
end if
result← result+ (q` − kP` )× P in,r(2`−2, 2`−2, 2`−1)

end if
end for
{For the nodes at level ` = 1:}
if q0

2 is odd then
result← result+ ( q02 − 1)× P in,r(1, 1, 2) + P in,r(1, 1, 1)

else
result← result+ ( q02 )× P in,r(1, 1, 2)

end if
return result.



5 EXPECTED HEADER LENGTH IN THE CSD METHOD 28

We further observe that:

Hn,r = Hn,r−1 +Dn,r

= Hn,r−2 +Dn,r +Dn,r−1

= Hn,r−3 +Dn,r +Dn,r−1 +Dn,r−2

= . . .

= H1 +
r∑
i=2

Dn,i

= 1 +

r∑
i=2

Dn,i. (34)

Using the definition of B
(`)
n,r we also get:

Dn,r = Hn,r −Hn,r−1

=

`0∑
`=1

2`0−`
(
B(`)
n,r −B

(`)
n,r−1

)
. (35)

In (35), ηr(n,m)− ηr−1(n,m) can be rewritten as follows:

ηr(n,m)− ηr−1(n,m) =
(n−m)r

(n)r
−

(n−m)r−1
(n)r−1

=
(n−m)(n−m− 1) . . . (n−m− r + 2)

n(n− 1) . . . (n− r + 2)
×

(
n−m− r + 1

n− r + 1
− 1

)

=
(n−m)(n−m− 1) . . . (n−m− r + 2)

n(n− 1) . . . (n− r + 2)
× −m
n− r + 1

=
(n−m)r−1

(n)r−1
× −m
n− r + 1

= −ηr−1(n,m)× m

n− r + 1
. (36)

Hence from (35) and (36) we get:

Dn,r+1 =

`0∑
`=1

2`0−`
(
B

(`)
n,r+1 −B

(`)
n,r

)

=
2n

n− r

`0∑
`=1

1

2`

(
− 2`−1ηr(n, 2

`−1) + 2× 2`−1ηr(n, 2× 2`−1)

+ 3× 2`−1ηr(n, 3× 2`−1)− 4× 2`−1ηr(n, 4× 2`−1)
)

=
n

n− r

[
−ηr(n, 1) + ηr(n, 2) + 3ηr(n, 3)− 3

`0−1∑
`=1

(
ηr(n, 2× 2`)− ηr(n, 3× 2`)

)]
. (37)

Here, we have made use of the fact that ηr(α, β) = 0 when β ≥ α − r + 1. From (37), we calculate the value of



5 EXPECTED HEADER LENGTH IN THE CSD METHOD 29

Hn,2 as follows:

Hn,2 = Hn,1 +
n

n− 1

[
−η1(n, 1) + η1(n, 2) + 3η1(n, 3)− 3

`0−1∑
`=1

(
η1(n, 2× 2`)− η1(n, 3× 2`)

)]

= 1 +
n

n− 1

[
3(n− 3)

n
+
n− 2

n
− n− 1

n
− 3

`0−2∑
`=1

(
n− 2× 2`

n
− n− 3× 2`

n

)]

= 1 +
n

n− 1

[
3(n− 3)

n
+
n− 2

n
− n− 1

n
− 3(n− 2)

2n

]

= 1 +
n

n− 1

[
3n− 14

2n

]

= 1 +
3− 14

n

2(1− 1
n)
. (38)

Note that limn→∞Hn,2 = 5
2 = 1.25× 2.

Now we analyze Dn,r+1 in (37) for r > 2. We use the notation x ↑ a to indicate that x increases to a and x ↓ a
to indicate that x decreases to a.

Lemma 13. ηr(n, 3) = (n−3)r
(n)r

↑ 1 as n ↑ ∞.

Proof. For any given n, (n−3)r
(n)r

< 1.

lim
n→∞

ηr(n, 3) = lim
n→∞

(n− 3)r
(n)r

= lim
n→∞

(n− 3)(n− 2) . . . (n− 3− r + 1)

n(n− 1) . . . (n− r + 1)

= lim
n→∞

(1− 3
n)(1− 2

n) . . . (1− r+2
n )

(1)(1− 1
n) . . . (1− r−1

n )

= 1. (39)

Hence, 3ηr(n, 3) ↑ 3 as n ↑ ∞.

Lemma 14. ηr(n, 2)− ηr(n, 1) ↑ 0 as n ↑ ∞.

Proof. For any given n, ηr(n, 2)− ηr(n, 1) < 0.

lim
n→∞

ηr(n, 2)− ηr(n, 1) = lim
n→∞

[(
1− 2

n

)
. . .

(
1− 2

n− r + 1

)
−
(

1− 1

n

)
. . .

(
1− 1

n− r + 1

)]
= 0. (40)



5 EXPECTED HEADER LENGTH IN THE CSD METHOD 30

Hence, we claim that (−ηr(n, 1) + ηr(n, 2) + 3ηr(n, 3)) ↑ 3 as n ↑ ∞. n
n−r ↑ 1 as n ↑ ∞. Finally, we look at∑`0−2

`=1

(
ηr(n, 2× 2` − ηr(n, 3× 2`)

)
to complete the analysis.

`0−2∑
`=1

(
ηr(n, 2× 2`)− ηr(n, 3× 2`)

)
=

`0−2∑
`=1

(
(n− 2× 2`)r

(n)r
− (n− 3× 2`)r

(n)r

)

≥ 1

(n)r

`0−2∑
`=1

(
(n− r + 1− 2× 2`)r − (n− 3× 2`)r

)

=
1

(n)r

`0−2∑
`=1

(
(2`0 − 2`+1 − r + 1)r − (2`0 − 3× 2`)r

)

=
1

(n)r

`0−1∑
`=2

(
(2`0 − 2`0−`+1 − r + 1)r − (2`0 − 3× 2`)r

)

=
1

(n)r

`0−1∑
`=2

(((2` − 2

2`

)
n− r + 1

)r
−
((2` − 3

2`

)
n
)r)

≥ 1

nr

`0−1∑
`=2

(((2` − 2

2`

)
n− r + 1

)r
−
((2` − 3

2`

)
n
)r)

=

`0−1∑
`=2

((2` − 2

2`
− r − 1

n

)r
−
(2` − 3

2`

)r)
. (41)

We define Kr as follows:

Definition 5. Kr:

Kr = lim
n→∞

∑
`≥2

((2` − 2

2`
− r − 1

n

)r
−
(2` − 3

2`

)r)
Hence,

Kr = lim
n→∞

∑
`≥2

((2` − 2

2`
− r − 1

n

)r
−
(2` − 3

2`

)r)
=
∑
`≥2

((2` − 2

2`

)r
−
(2` − 3

2`

)r)

=
∑
`≥2

1

2r`

((
2` − 2

)r
−
(

2` − 3
)r)

=
r∑

k=1

(−1)k
(
r

k

)
(2k − 3k)

∑
`≥2

2`(r−k)

2r`

=
r∑

k=1

(−1)k
(
r

k

)
(2k − 3k)

∑
`≥2

1

2`k
. (42)

Since
∑

`≥2
1
2`k

= 1
2k(2k−1) , we get

Kr =

r∑
k=1

(−1)k
(
r

k

)
(2k − 3k)

2k(2k − 1)

=

r∑
k=1

(−1)k
(
r

k

)
(2k − 3k)

(2k − 1)
−

r∑
k=1

(−1)k
(
r

k

)
(2k − 3k)

(2k)

=
(
− 1

2

)r
+

r∑
k=1

(−1)k
(
r

k

)
(2k − 3k)

(2k − 1)
. (43)



5 EXPECTED HEADER LENGTH IN THE CSD METHOD 31

r Dr
Hr
r

2 3
2 1.25

3 5
4 1.25

4 69
56 1.24553571

5 417
336 1.24464285

6 25953
20832 1.24483967

Table 8: Ratio Hr
r for different values of r.

r n = 200 n = 256 Extra Bytes

10 12 12 0

20 23 23 0

30 32 33 16

40 40 42 32

50 46 50 64

Table 9: The expected header lengths for n = 200 and n = 256 for different r and the number of extra bytes
needed per message of broadcast (assuming each session key is 128-bit long).

We also define:

Definition 6. Hr and Dr:
Hr = lim

n→∞
Hn,r

Dr = lim
n→∞

Dn,r

The next result summarizes the above analysis.

Theorem 15. For all n ≥ 1, r ≥ 1, the expected header length Hn,r ↑ Hr, as n increases through powers of two,
where

Hr = 3r − 2− 3×
r−1∑
i=1

((
− 1

2

)i
+

i∑
k=1

(−1)k
(
i

k

)
(2k − 3k)

(2k − 1)

)
.

Proof. From (34), we get Hr = 1 +
∑r

i=2Di. Further, from (37), (41) and (43), we get Dr+1 = 3 − 3Kr where
Kr is given by (43).

Table 8 lists the values of Dr and Hr
r for small values of r. This table shows the ratio Hr

r is always less than
1.25r.

In [NNL01], it was proved that for the SD scheme, the expected header length was bounded above by 1.38r.
They also mentioned that simulation results have shown a tighter upper bound of 1.25r. Our analysis gives
theoretical support for this observation.

5.4 Other Experimental Results

We return to the issue of comparing the CSD method to that of the SD method with dummy users. The situation
where the dummy users form a block has been discussed in details in Section 3.2. Let us consider the situation



5 EXPECTED HEADER LENGTH IN THE CSD METHOD 32

r n = 1500 n = 2048 Extra Bytes

50 61 61 0

100 116 118 32

150 167 172 80

200 213 223 160

250 255 270 240

300 293 314 336

Table 10: The expected header lengths for n = 1500 and n = 2048 for different r and the number of extra bytes
needed per message of broadcast (assuming each session key is 128-bit long).

r n = 10000 n = 16384 Extra Bytes

500 589 602 208

1000 1109 1162 848

1500 1561 1680 1904

2000 1947 2157 3360

2500 2267 2593 5216

3000 2521 2988 7472

Table 11: The expected header lengths for n = 10000 and n = 16384 for different r and the number of extra
bytes needed per message of broadcast (assuming each session key is 128-bit long).

n 16 17 18 19 20 21 22 23
E[Xn,r]

2 1.167 1.169 1.180 1.184 1.195 1.200 1.210 1.215

n 24 25 26 27 28 29 30 31
E[Xn,r]

2 1.225 1.217 1.214 1.209 1.208 1.207 1.208 1.207

Table 12:
E[Xn,r]

r for r = 2, 16 ≤ n < 32 from Algorithm 1 for the CSD scheme.



6 CONCLUSION 33

where the dummy users are randomly distributed. If these are all considered to be revoked, then there is a large
penalty on the transmission overhead. This is because the expected header length is linear in the number of
revoked users. So, suppose that the randomly distributed dummy users are viewed as being privileged by the
cover generation algorithm.

Running Algorithm 1 for different values of n and r we compare the transmission efficiency of the CSD
method with the SD method with dummy users. Additionally, we report other observations on the expected
header length of the CSD method.

1. For a fixed n < 2`0 , as r goes above a certain minimum, the expected header length of the CSD method is
significantly better than the corresponding instantiation of the SD method. As an example, for n = 10000,
the expected header length is 1561 for r = 1500 while for the corresponding n = 16384 of the SD method,
the expected header length is 1680 for the same r. Assuming the function FK used for encrypting each block
of digital data is AES-128, this difference of 119 in the expected header length causes an extra bandwidth
consumption of 1904 (= 119× 16) bytes per message on an average. Tables 9, 10 and 11 list the expected
header lengths for n = 200, 1500 and 10000 and the corresponding next powers of two for different values
of r.

2. For n = 200, by running the algorithm for computing the expected header length, we observe that the
expected header lengths are better compared to n = 256 for all r > 5. Thus, CSD is more efficient in
terms of the transmission overhead efficiency for all r > 5 for n = 200. Similarly, CSD gains over SD when
n = 1500 for all r > 7 and when n = 10000, it gains for all r > 28. For real-time scenarios like Pay-TV,
n = 10000 and r > 28 are practical numbers. Thus, the CSD method will provide better transmission
efficiency than SD for many practical purposes.

3. For full binary trees, we know from (38) that for r = 2, the limiting value of
E[Xn,r]

2 is 1.25. By running our
algorithm, we also observe that for n a power of two, the expected header length increases with increasing
n for all r ≥ 2.

4. For r = 2, as we keep increasing n from 2` to 2`+1−1, the ratio
E[Xn,r]

r increases almost uniformly to reach
a local maximum at n = 2` + 2`−1 and then decreases. The data in Table 12 demonstrates this behaviour
for 16 ≤ n < 32. For 32 ≤ n < 64, the maximum value of

E[Xn,r]
r is 1.225 observed at n = 24 and for

128 ≤ n < 256, the maximum value is 1.271 and is observed at n = 192. However, as r increases, the
behaviour of the above ratio changes, with local glitches disrupting the uniformity at most places.

6 Conclusion

We have proposed a new BE scheme which extends the tree-based SD scheme of [NNL01]. The new Complete
Tree Subset Difference method is capable of accommodating any arbitrary number of users (may not be a power
of two) and hence subsumes the SD scheme of [NNL01]. All results of the CSD scheme that we subsequently
prove also hold for the SD scheme.

Detailed combinatorial analysis of the CSD scheme is done by finding two recurrences to count the number
of ways r out of n users can be revoked to result in a subset cover size of h in the CSD method. Using these
recurrences, it is proved that the maximum possible header length for a given r is 2r− 1 (no worse than the SD
scheme even though arbitrary number of users are accommodated) and the maximum header length for all r is⌊
n
2

⌋
. The recurrences are the most efficient tool as per our knowledge to generate exhaustive data for the above

count and also the only tool to find and prove the expression for the minimum number of users required to be in
a system so that for a given r, the maximum cover size would reach 2r − 1. For n a power of two, a generating
function is found for generating the same sequence as the recurrences.



REFERENCES 34

Probabilistic analysis of the revocation patterns in the CSD scheme gives the most important result of this
work: an efficient algorithm to compute the expected header length for a given n and r. Using this algorithm, it
is shown that for practical values of n and r, the CSD scheme provides better transmission efficiency as compared
to the SD scheme.

References

[AAC] AACS. Advanced access content system, http://www.aacsla.com. aacsla.

[AK08] Per Austrin and Gunnar Kreitz. Lower bounds for subset cover based broadcast encryption. In
Proceedings of the Cryptology in Africa 1st international conference on Progress in cryptology,
AFRICACRYPT’08, pages 343–356, Berlin, Heidelberg, 2008. Springer-Verlag.

[AKI03] Nuttapong Attrapadung, Kazukuni Kobara, and Hideki Imai. Sequential key derivation patterns
for broadcast encryption and key predistribution schemes. In Chi-Sung Laih, editor, ASIACRYPT,
volume 2894 of Lecture Notes in Computer Science, pages 374–391. Springer, 2003.

[Ber91] Shimshon Berkovits. How to broadcast a secret. In EUROCRYPT, pages 535–541, 1991.

[BS11] Sanjay Bhattacherjee and Palash Sarkar. An analysis of the Naor-Naor-Lotspeich Subset Difference
algorithm (for possibly incomplete binary trees). In Daniel Augot and Anne Canteaut, editors,
Workshop on Coding and Cryptography, pages 483–492, April 11-15, 2011.

[DRM] DRM. Digital rights management, http://en.wikipedia.org/wiki/DRM\_(computing). wikipedia.

[EOPR] Christopher Eagle, Mohamed Omar, Daniel Panario, and Bruce Richmond. Average-case analysis
of two revocation schemes for stateless receivers.

[FN93] Amos Fiat and Moni Naor. Broadcast encryption. In Douglas R. Stinson, editor, CRYPTO, volume
773 of Lecture Notes in Computer Science, pages 480–491. Springer, 1993.

[HS02] Dani Halevy and Adi Shamir. The LSD broadcast encryption scheme. In Moti Yung, editor,
CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages 47–60. Springer, 2002.

[JHC+05] Nam-Su Jho, Jung Yeon Hwang, Jung Hee Cheon, Myung-Hwan Kim, Dong Hoon Lee, and Eun Sun
Yoo. One-way chain based broadcast encryption schemes. In Ronald Cramer, editor, EUROCRYPT,
volume 3494 of Lecture Notes in Computer Science, pages 559–574. Springer, 2005.

[LS98] Michael Luby and Jessica Staddon. Combinatorial bounds for broadcast encryption. In EURO-
CRYPT, pages 512–526, 1998.

[MMW09] Thomas Martin, Keith M. Martin, and Peter R. Wild. Establishing the broadcast efficiency of the
subset difference revocation scheme. Des. Codes Cryptography, 51(3):315–334, 2009.

[NNL01] Dalit Naor, Moni Naor, and Jeffery Lotspiech. Revocation and tracing schemes for stateless receivers.
In Joe Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 41–62.
Springer, 2001.

[PB06] E. C. Park and Ian F. Blake. On the mean number of encryptions for tree-based broadcast encryption
schemes. J. Discrete Algorithms, 4(2):215–238, 2006.



35

[PGM04] Carles Padró, Ignacio Gracia, and Sebastià Mart́ın Mollev́ı. Improving the trade-off between storage
and communication in broadcast encryption schemes. Discrete Applied Mathematics, 143(1-3):213–
220, 2004.

[PGMM02] Carles Padró, Ignacio Gracia, Sebastià Mart́ın Mollev́ı, and Paz Morillo. Linear key predistribution
schemes. Designs, Codes and Cryptography, 25:281–298, 2002. 10.1023/A:1014939630572.

[PGMM03] Carles Padró, Ignacio Gracia, Sebastià Mart́ın Mollev́ı, and Paz Morillo. Linear broadcast encryption
schemes. Discrete Applied Mathematics, 128(1):223–238, 2003.

[Sti97] Douglas R. Stinson. On some methods for unconditionally secure key distribution and broadcast
encryption. Des. Codes Cryptography, 12(3):215–243, 1997.

[SW98] D. R. Stinson and R. Wei. Combinatorial properties and constructions of traceability schemes and
frameproof codes. SIAM J. Discret. Math., 11:41–53, February 1998.

Appendices

A The Subset Difference Method (For Possibly Incomplete Binary Trees)

This paper is a modified and an extended version of our work on the SD Method for possibly incomplete binary
trees [BS11]. We proposed a modification to the SD method in order to accommodate arbitrary number of users
n (not a power of two). These n users were accommodated in the leaves of an incomplete tree. The structure of
the tree was such that when 2t < n ≤ 2t+1, the left subtree of the root node had 2t leaves and the right subtree
had n− 2t leaves. Hence, the tree was unbalanced.

In [BS11], we had formulated the corresponding recurrences N(n, r, h) and T (n, r, h) for counting the number
of (n, r)-revocation patterns that resulted in a header length of h. For an arbitrary n (2t0 < n ≤ 2t0+1 for some
t0), T (n, r, h) and N(n, r, h) were given by the following recurrences:

T (n, r, h) =

r−1∑
r1=1

h∑
h1=0

N(2t0 , r1, h1)×N(n− 2t0 , r − r1, h− h1) (44)

N(n, r, h) = T (n, r, h) +

t0∑
`=1

(
q` × T (2`, r, h− 1)

)
+

t0∑
`=1

(⌊
ρ` − 1

2`−1

⌋
× T (ρ`, r, h− 1)

)
(45)

where q` =
⌊
n
2`

⌋
and ρ` = n− (q` × 2`). Boundary values remain unaffected by the change in the tree structure.

We had considered the same random experiment as we did in this paper and had computed the probability
that a node (`, k) of the tree gives rise to a set for the cover.

Pr[X`,k
n,r = 1] = ηr(n, n`) + ηr(n, nr)− ηr(n, ns + n`)− ηr(n, ns + nr)

− 2ηr(n, n` + nr) + 2ηr(n, ns + n` + nr) (46)



A THE SUBSET DIFFERENCE METHOD (FOR POSSIBLY INCOMPLETE BINARY TREES) 36

Using this expression to compute the probability for each node and then computing the sum of the probabilities
of each internal node in the tree from the following equation, we had obtained the expected header length for
the tree structure considered in [BS11].

E[Xn,r] =

t0+1∑
`=1

q∑̀
k=1

Pr[X`,k
n,r = 1] +

t0∑
`=1

⌊
ρ` − 1

2`−1

⌋
× Pr[X`,q`+1

n,r = 1]. (47)

Using this algorithm, we observed that the expected header length took values around 1.5r for large n (compared
to r) of the form 2t0 + 1. This was a sharp rise from the observed value of 1.25r for the SD scheme. We analyzed
and understood that this deviation was because of the unbalanced nature of the tree. This motivated us to work
on a balanced tree scheme that we have presented in this paper.


