
Close to Uniform Prime Number Generation
With Fewer Random Bits

Pierre-Alain Fouque and Mehdi Tibouchi

École normale supérieure
Département d’informatique, Équipe de cryptographie

45 rue d’Ulm, f-75230 Paris Cedex 05, France
{pierre-alain.fouque,mehdi.tibouchi}@ens.fr

Abstract. In this paper we analyze a simple method for generating prime numbers with
fewer random bits. Assuming the Extended Riemann Hypothesis, we can prove that our
method generates primes according to a distribution that can be made arbitrarily close to
uniform. This is unlike the PRIMEINC algorithm studied by Brandt and Damg̊aard and
its many variants implemented in numerous software packages, which reduce the number of
random bits used at the price of a distribution easily distinguished from uniform.

Our new method is also no more computationally expensive than the ones in current use, and
opens up interesting options for prime number generation in constrained environments.

Keywords: Public-key cryptography, prime number generation, RSA, efficient implemen-
tations, random bits.

1 Introduction

Prime number generation is a very sensitive issue for many public-key schemes and it may
not have received an attention commensurate to its importance from a security standpoint.

There are several ways in which we could assess the quality of a random prime gen-
eration algorithm, such as its speed (time complexity), its accuracy (the probability that
it outputs numbers that are in fact composite), its statistical properties (the regularity of
the output distribution), and the number of bits of randomness it consumes to produce a
prime number (as good randomness is crucial to key generation and not easy to come by
[ESC05]).

In a number of works in the literature, cryptographers have proposed faster prime
generation algorithms [BDL91,BD92,JPV00,JP06] or algorithms providing a proof that
the generated numbers are indeed prime numbers [Mau89,Mau95,Mih94].

A number of these works also prove lower bounds on the entropy of the distribution of
prime numbers they generate, usual based on very strong conjectures on the regularity of
prime numbers, such as the prime r-tuple conjecture of Hardy-Littlewood [HL22]. However,
such bounds on the entropy do not ensure that the resulting distribution is statistically
close to the uniform distribution: for example, they do not preclude the existence of efficient



distinguishers from the uniform distribution, which can indeed be shown to exist in most
cases.

But some cryptographic protocols (including most schemes based on the Strong RSA
assumption, such as Cramer-Shoup signatures [CS00]) specifically require uniformly dis-
tributed prime numbers for the security proofs to go through. Moreover, even for more
common uses of prime number generation, like RSA key generation, it seems preferable to
generate primes that are almost uniform, so as to avoid biases in the RSA moduli them-
selves, even if it is not immediately clear how such biases can help an adversary trying to
factor the moduli.

To the authors’ knowledge, the only known prime generation algorithm for which the
statistical distance to the uniform distribution can be bounded is the trivial one: pick a
random (odd) integer in the desired interval, return it if it is prime, and try again otherwise.
The output distribution of this algorithm is exactly uniform (or at least statistically close,
once one accounts for the compositeness probability of the underlying randomized primality
checking algorithm), but it has the drawback of consuming a very large amount of random
bits, in addition to being rather slow.

By contrast, the PRIMEINC algorithm studied by Brandt and Damg̊ard [BD92] (basi-
cally, pick a random number and increase it until a prime is found) only consumes roughly
as many random bits as the size of the output primes, but we can show that its output
distribution, even if it can be shown to have high entropy if the prime r-tuple conjec-
ture holds, is also provably quite far from uniform, as we demonstrate in Section 3. It is
likely that most algorithms that proceed deterministically beyond an initial random choice,
including those of Joye, Paillier and Vaudenay [JPV00,JP06] or Maurer [Mau89,Mau95]
exhibit similar distributional biases.

The goal of this paper is to achieve in some sense the best of both worlds: construct
a prime generation algorithm that consumes much fewer random bits than the trivial
algorithm while being efficient and having an output distribution that is provably close to
the uniform one.

We present such an algorithm (with several variants) in Section 2. The main result
presents a simple trade-off between the uniformity of the resulting distribution and the
amount of randomness consumed, and shows that statistical indistinguishability can be
achieved with much fewer random bits than required by the trivial algorithm. The proof
is quite elementary (using only some character sum estimates) and only depends on the
Extended Riemann Hypothesis—an assumption much less bold than the likes of the prime
r-tuple conjecture.

We also verify in Section 4 that our prime generation algorithm is quite competitive
performance-wise, both in terms of speed and of required random bits. It is even suitable
for implementation in constrained environments like smart cards.



2 Our method

2.1 Description

Basic Method. A simple method to construct obviously uniformly distributed prime
numbers up to 2n is to pick random numbers in {0, . . . , 2n − 1} and retry until a prime is
found. However, this method consumes n bits of randomness per iteration (not counting
the amount of randomness consumed by primality testing), and hence an expected amount
of n2 log 2 bits of randomness to produce a prime, which is quite large.

A simple way to reduce the amount of randomness consumed is to pick a random
odd number and to simply change the top ` bits until a prime is found. This method,
described in Algorithm 1, consumes only ` bits of randomness per iteration, and an expected
(n − `) + (`n log 2)/2 bits overall. Despite the simplicity of this method, we prove in the
next section that its resulting distribution achieves a statistical distance of less than about
2−`/2 to the uniform distribution.

Algorithm 1 Our basic method

1: b
$← {0, . . . , 2n−`−1 − 1}

2: repeat

3: a
$← {0, . . . , 2` − 1}

4: p← 2n−` · a + 2b + 1
5: until p is prime
6: return p

Note that this method can be combined with efficient trial division to speed up primality
testing, since the reductions of the low-order bits (2b + 1) modulo small primes can be
precomputed. Thus, we only need to carry out trial division on a at each iteration of the
repeat loop.

More efficient version. The previous method starts by fixing the reduction modulo
2n−` of the prime it searches for. But we can improve the odds of finding a prime number
by fixing the reduction b modulo a number m which is a product of many small primes
instead. The number b should then be picked uniformly at random among integers less
than m and coprime to m, which can be achieved using the unit generation algorithm of
Joye and Paillier [JP06].

Including the Joye-Paillier algorithm, the whole prime generation process can be written
as described in Algorithm 2. In this setting, m is usually picked as the product of all small
primes up to a certain bound β chosen such that the bit size of m is n − ` for some
appropriate `.

In Algorithm 2, Steps 1–7 are the Joye-Paillier unit generation technique: at the end
of this loop, b is distributed exactly uniformly at random in (Z/mZ)∗. Then, Steps 8–11



Algorithm 2 More efficient method

1: b
$← {1, . . . ,m− 1}

2: u← (1− bλ(m)) mod m
3: if u 6= 0 then

4: r
$← {1, . . . ,m− 1}

5: b← b + ru mod m
6: goto step 2
7: end if
8: repeat

9: a
$← {0, . . . , b2n/mc − 1}

10: p← am + b
11: until p is prime
12: return p

are exactly analogous to Algorithm 1, but are executed a much smaller number of times
on average.

More precisely, the probability that a number of the form am+b < 2n is prime is about
m

ϕ(m)n log 2 according to the prime number theorem for arithmetic progressions. Therefore,
the expected number of primality testing loops in this case is only:

n log 2 · ϕ(m)

m
= n log 2

∏
p≤β

(
1− 1

p

)
∼ n log 2 · e−γ

log β

by Mertens’ formula (where γ is the Euler-Mascheroni constant). Now, we have logm =∑
p≤β log p ∼ β, so that β ≈ (n − `) log 2. Thus, the number of primality testing loops is

down to about:
n log 2 · e−γ

log(n− `) + log log 2

which, for typical parameter sizes (512 ≤ n ≤ 3072 and 32 ≤ ` ≤ 256, say), is around 5
to 7 times fewer than with the previous approach. Accordingly, this part of the algorithm
consumes 5 to 7 times less randomness, namely about:

`n log 2 · e−γ

log(n− `) + log log 2
bits overall.

This technique can also lead to significantly faster prime generation compared to an ap-
proach which uses trial division to reduce calls to the more costly primality testing algo-
rithm, depending on how efficient modular reductions are in the environment of interest—
for example, Joye and Paillier report speed-ups of one order of magnitude on smart cards
using their algorithm [JP06, Fig. 2], which is slightly more computationally demanding
than ours since it requires a large modular multiplication at each iteration, instead of the
small integer multiplication from Step 10.



On the other hand, the unit generation part of the algorithm does consume more
randomness than the single-step generation of b in Algorithm 1. This has limited influence,
however, since the number of iterations in this part is quite small. Indeed, it is easy to
see that b is relatively prime to some p|m as soon as one of the random elements of
Z/mZ returned by the random number generator is itself coprime to p (more precisely: the
assignment b← b+ur preserves coprimality with p, since (b, p) = 1 implies u ≡ 0 (mod p);
but when b ≡ 0 (mod p), then u is invertible mod p, and thus b becomes non zero mod
p if r is). As a result, the probability that this part of the algorithm takes ≤ k iterations
(including the initial random assignment of b) is exactly zk =

∏
p≤β(1 − p−k), which

converges rapidly to 1. The expected number of iterations is thus Eβ =
∑

k≥1 k(zk − zk−1)
which we can evaluate numerically for any given β. An upper bound is given by the limit
as β → +∞, namely:

E∞ =
∑
k≥2

k

(
1

ζ(k)
− 1

ζ(k − 1)

)
≤ 2.71 (1)

This means in particular that the amount of randomness required by unit generation,
(n − `) · Eβ, is reasonably small (and typically small enough that this method is better
than the previous one in terms of random bits).

An added benefit of this approach is that the bound on the statistical distance to the
uniform distribution is expressed in terms of ϕ(m) rather than m itself: this is smaller
when m is a product of many small primes than when m is a power of two as before.

2.2 Main result

Both of the previous methods generate primes of the form am + b where b is first picked
uniformly at random among integers less than m and coprime to m: in the first method,
m is a power of two, whereas in the second method, it is a product of small primes, but
the principle remains the same.

We now prove that the distribution of primes generated in this fashion is close to
the uniform distribution among all primes in the allowable interval {1, . . . , x − 1} with
x = m · b2n/mc ≈ 2n.

Theorem 1. Assume the Extended Riemann Hypothesis. Suppose further that x ≥ 17
and x/m ≥ e (the base of natural logarithms). Then the statistical distance ∆ between
the uniform distribution over primes less than x and the distribution resulting from the
previous method is bounded as:

∆ < 3 log2 x ·
√
ϕ(m)

x



The rest of this section is devoted to the proof of this theorem. As usual, note π(x) the
number of primes up to x, and π(x,m, b) the number of primes p up to x such that p ≡ b
(mod m). Furthermore, for any Dirichlet character χ modulo m, let:

π(x, χ) =
∑
p≤x

χ(x)

(where the sum is over prime numbers p, as will be the case for all sums over p henceforth).
Then clearly, for any b coprime to m, we have:

π(x,m, b) =
1

ϕ(m)

∑
χ mod m

χ(b) · π(x, χ)

and in this sum, the contribution of the trivial character χ0 is:

1

ϕ(m)
π(x, χ0) =

π(x)− s(m)

ϕ(m)

where s(m) is the sum of all distinct prime divisors of m. Hence:

1

ϕ(m)

∑
χ 6=χ0

χ(b) · π(x, χ) = π(x,m, b)− π(x)− s(m)

ϕ(m)
(2)

Therefore, we obtain the following result.

Lemma 1. The statistical distance ∆ satisfies:

∆ ≤ 1

π(x)

(
2s(m) +

1

ϕ(m)

∑
b∈(Z/mZ)∗

∣∣∣∣ ∑
χ 6=χ0

χ(b)π(x, χ)

∣∣∣∣
)

Proof. Indeed, the probability that a given prime p ≤ x is chosen by our algorithm is 0 if
p divides m, and 1/(ϕ(m)π(x,m, b)) if p ≡ b (mod m) for b coprime to m (b is first chosen
uniformly among the ϕ(m) classes in (Z/mZ)∗, and p is then chosen uniformly among the
π(x,m, b) possible primes of the form am+ b). Thus:

∆ =
s(m)

π(x)
+

∑
b∈(Z/mZ)∗

π(x,m, b) ·
∣∣∣∣ 1

ϕ(m)π(x,m, b)
− 1

π(x)

∣∣∣∣
=

1

π(x)

(
s(m) +

∑
b∈(Z/mZ)∗

∣∣∣∣ π(x)

ϕ(m)
− π(x,m, b)

∣∣∣∣
)

=
1

π(x)

(
s(m) +

∑
b∈(Z/mZ)∗

∣∣∣∣ s(m)

ϕ(m)
− 1

ϕ(m)

∑
χ 6=χ0

χ(b)π(x, χ)

∣∣∣∣
)

by (2)

≤ 1

π(x)

(
2s(m) +

1

ϕ(m)

∑
b∈(Z/mZ)∗

∣∣∣∣ ∑
χ 6=χ0

χ(b)π(x, χ)

∣∣∣∣
)

as required. ut



We can now estimate the sum over b ∈ (Z/mZ)∗ using the Cauchy-Schwarz inequality.
Indeed, let:

S(x) =
1

ϕ(m)

∑
b∈(Z/mZ)∗

∣∣∣∣ ∑
χ 6=χ0

χ(b)π(x, χ)

∣∣∣∣
Applying Cauchy-Schwarz, we get:

S(x) ≤ 1

ϕ(m)
·
√
ϕ(m)

√√√√ ∑
b∈(Z/mZ)∗

∣∣∣∣ ∑
χ 6=χ0

χ(b)π(x, χ)

∣∣∣∣2
≤ 1√

ϕ(m)

√ ∑
b∈(Z/mZ)∗

∑
χ,χ′ 6=χ0

χ(b)χ′(b) · π(x, χ)π(x, χ′)

But the sum over b ∈ (Z/mZ)∗ of χ(b)χ′(b) is ϕ(m) if χ = χ′ and vanishes otherwise. Thus:

S(x) ≤
√∑
χ 6=χ0

∣∣π(x, χ)
∣∣2 (3)

We can thus derive a bound on S(x), and hence on ∆, from an estimate of π(x, χ) for non
trivial Dirichlet characters χ. Such an estimate can be obtained by locating the zeros of
the L-function L(s, χ) in the critical strip (see e.g. [Dav80, Chapter 20]). In particular, a
well-known consequence of the Extended Riemann Hypothesis, due to Titchmarsh, is that
π(x, χ) = O

(√
x log(mx)

)
, where the implied constant is absolute. One can actually give

an effective version of this estimate:

Lemma 2 (Oesterlé, [Oes79]). Assuming the Extended Riemann Hypothesis, we have,
for all x ≥ 2 and all non trivial Dirichlet characters χ modulo m:∣∣π(x, χ)

∣∣ ≤ √x(log x+ 2 logm)

Therefore, under ERH, estimate (3) becomes:

S(x) ≤
√
ϕ(m)x(log x+ 2 logm)

since m ≤ x. Putting this together with the result of Lemma 1, we get:

∆ ≤
2s(m) +

(
3 log x− 2 log(x/m)

)√
ϕ(m)x

π(x)

≤
3 log x

√
ϕ(m)x

π(x)
+

2

π(x)

(
s(m)−

√
e · ϕ(m)m

)
≤

3 log x
√
ϕ(m)x

π(x)



since it is easy to check that s(m) ≤
√
e · ϕ(m)m. Finally, a classical estimate [BS96, Th.

8.8.1] states that π(x) > x/ log x for x ≥ 17. Therefore, we obtain the stated bound on ∆:

∆ < 3 log2 x ·
√
ϕ(m)

x

ut

Remark 1. 1. Perhaps surprisingly, while the Extended Riemann Hypothesis provides
strong enough bounds to obtain this non trivial estimate for the statistical distance,
it is not actually sufficient to prove that the algorithm as presented above terminates
in all cases. Indeed, the best bound that can be established with ERH (e.g. using
Lemma 2) for the smallest prime p in the arithmetic progression am+ b is of the form
p < C · (m logm)2 for some constant C (C = 2 is enough). In particular, ERH isn’t
sufficient to prove that π(x,m, b) 6= 0 unless x � m2, which is not usually the case in
our setting, where we would like to choose m only a few bits shorter than x.
However, a conjecture by Wagstaff [Wag79], made more precise by McCurley [McC86],
ensures that the algorithm terminates on any input provided that m is chosen such
that x > (2+ε) ·ϕ(m) log2m. This is satisfied, in particular, whenever the bound given
in Theorem 1 is non trivial! An alternate way to avoid this problem without relying
on assumptions stronger than ERH is to modify the algorithm slightly by starting over
if finding a prime appears to take significantly longer than the expected number of
iterations.

2. The analysis above assumes that the primality testing algorithm used in the algorithm
checks for exact primality. In practice, however, efficiency reasons make probabilistic
algorithms like Miller-Rabin, which have a small probability of returning true on input
of a composite number, much more suitable for actual implementations. However, the
number of Miller-Rabin rounds carried out ensures that this probability of erroneously
recognizing a composite as prime is negligible. This means that the actual output
distribution is in fact statistically close to the ideal distribution for which the primality
testing algorithm is perfect. The “real” ∆ is thus at most negligibly larger than the
ideal one considered in this section.

3. For simplicity, we have only considered the generation of primes smaller than a given
bound, but it is not difficult to extend our algorithms to the generation of primes in a
fixed interval, using the same approach as [JP06].

3 Why entropy bounds may not be good enough

Previous works on the generation of prime numbers, such as [BD92,Mau95,JP06], provide a
proof (based on rather strong assumptions) that the output distribution of their algorithm
has an entropy not much smaller than the entropy of the uniform distribution. This is a
reasonable measure of the inability of an adversary to guess which particular prime was



output by the algorithm, but it doesn’t rule out the possibility of gaining some information
about the generated primes. In particular, it doesn’t rule out the existence of an efficient
distinguisher between the output distribution and the uniform one.

Consider for example the PRIMEINC algorithm studied by Brandt and Damg̊aard
in [BD92]. In essence, it consists in picking a random integer y < x and returning the
smallest prime greater or equal to y. There are some slight technical differences between
this description and the actual PRIMEINC1, but they have essentially no bearing on the
following discussion, so we can safely ignore them.

It is natural to suspect that the distribution of the output of this algorithm is quite
different from the uniform distribution: for example, generating the second prime of a twin
prime pair, i.e. a prime p such that p−2 is also prime, is abnormally unlikely. More precisely,
if one believes the twin prime conjecture, the proportion of primes of that form among all
primes up to x should be ∼ 2c2/ log x, where c2 ≈ 0.66 is the twin prime constant. On the
other hand, PRIMEINC outputs such a p if and only if it initially picks y as p or p − 1.
Therefore, we expect the frequency of such primes p in the output of PRIMEINC to be
much smaller, about 4c2/(log x)2. This is indeed well verified in practice, as seen in Table 1,
where we also check that our proposed algorithm doesn’t exhibit such a bias.

n 64 128 256 512

Expected number 298 149 74 37

PRIMEINC 13 2 1 1

Trivial algorithm 275 129 76 34

Algorithm 1 with ` = n/8 299 158 86 35

Table 1. Number of n-bit primes p such that p− 2 is also prime output among 10000 primes generated by
PRIMEINC, compared to the expected amount and the amount returned by more “uniform” algorithms.
PRIMEINC is clearly an outlier.

More generally, it is easy to see that the method used in [BD92] to obtain the lower
bound on the entropy of the output distribution of PRIMEINC can also provide a rela-
tively large constant lower bound on the statistical distance to the uniform distribution!
Indeed, the method relies on the following result, obtained by a technique first proposed
by Gallagher [Gal76].

Lemma 3 ([BD92, Lemma 5]). Assume the prime r-tuple conjecture, and let Fh(x)
denote the number of primes p ≤ x such that the largest prime less than p satisfies p−q ≤ h.

1 To wit, Brandt and Damg̊aard restrict their attention to odd numbers x/2 < y < x, and set an upper
bound to the number of iterations in the algorithm



Then for any constant λ,

Fλ log x(x) =
x

log x

(
1− e−λ

)
(1 + o(1))

as x→ +∞.

Now, the probability that the PRIMEINC algorithm outputs a fixed p can clearly be
written as d(p)/x, where d(p) is the distance between p and the prime that immediately
precedes it. Let∆′ be the statistical distance between the output distribution of PRIMEINC
and the uniform distribution. We have:

∆′ =
∑
p≤x

∣∣∣∣d(p)

x
− 1

π(x)

∣∣∣∣ > ∑
p≤x

d(p)>2 log x

∣∣∣∣2 log x

x
− log x

x

∣∣∣∣
for x ≥ 17 in view of the already mentioned classical bound π(x) > x/ log x for x ≥ 17. By
Lemma 3, this gives:

∆′ >
log x

x
F2 log x(x) =

(
1− e−2

)
(1 + o(1)) > 0.86 + o(1)

as x→ +∞, and in particular, ∆′ admits a relatively large constant lower bound (at least
if one believes the prime r-tuple conjecture on which the entropy bound is based).

Since the entropy lower bounds for other prime generation algorithms like [JP06] are
based on the same techniques, it is very likely that their output distributions can similarly
be shown to be quite far from uniform. However, we have not been able to obtain the proof
of the lower bounds stated in that paper to check whether the approach above generalizes
to that setting.

4 Performance comparison

Let us simplify and summarize the performance estimates of Section 2.1 by giving asymp-
totic formulas for the efficiency of the various algorithms mentioned above, in terms of
number of primality tests, random bits used, and statistical distance to the uniform distri-
bution. These formulas are collected in Table 2.

Concretely speaking, we can precisely compute those efficiency parameters for the
generation of, say, 512 or 1024-bit primes. We report those numbers in Table 3 and
4, together with timings for straightforward implementations of these algorithms using
PARI/GP [PAR06].

Note that there is, of course, a trade-off between the number of random bits used and
the uniformity of the distribution: both increase with ` (resp. m). A reasonable compromise
is probably to choose ` just under the number of bits produced by each call to the random
number generator of the system, so that a single word of randomness is produced for each



Trivial PRIMEINC Joye-Paillier Algorithm 1 Algorithm 2

Expected primality tests log 2
2
· n log 2

2
· n e−γ log 2 · n

logn
log 2
2
· n e−γ log 2 · n

logn

Expected random bits log 2
2
· n2 n E∞ · n log 2

2
· n` e−γ log 2 · n`

logn

Statistical distance = 0 & 0.86 > constant? < 1.02n2 · 2−`/2 < 1.09n2

logn
· 2−`/2

Table 2. Comparison of the asymptotic efficiencies of the previous algorithms (assuming 1� `� n). The
constant E∞ ≈ 2.7 is defined in Equation (1).

Trivial PRIMEINC Joye-Paillier Algorithm 1 Algorithm 2

Expected primality tests 177 177 35 177 35

Expected random bits 90,852 512 1098 11,805 3320

Statistical distance = 0 & 0.86 > constant? < 2−12.9 < 2−13.3

Average CPU time 0.19 s 0.20 s 0.04 s 0.19 s 0.04 s

Table 3. Practical efficiency of the various algorithms for the generation of 512-bit primes.

Trivial PRIMEINC Joye-Paillier Algorithm 1 Algorithm 2

Expected primality tests 355 355 61 355 61

Expected random bits 363,409 1024 2405 22,965 6205

Statistical distance = 0 & 0.86 > constant? < 2−10.9 < 2−11.4

Average CPU time 2.03 s 2.02 s 0.44 s 1.92 s 0.41 s

Table 4. Practical efficiency of the various algorithms for the generation of 1024-bit primes.



iteration of the algorithm. In our case, we picked ` = 64 in Algorithm 1, and chose m as
the product of all primes up to 337 or 691 (for 512 and 1024 bits) in Algorithm 2 (b2n/mc
is then 62 bit long in both cases).

As we can see, our algorithms are as efficient as comparable ones in terms of speed,
and achieve provable bounds on the statistical distance at a much smaller cost than the
only other such example, the trivial uniform generator. In fact, Algorithm 2 is as fast as
the Joye-Paillier algorithm and has provably good statistical properties at a mere threefold
increase in random bits requirement (as opposed to thousandfold for the trivial uniform
generator).

References

BD92. Jørgen Brandt and Ivan Damg̊ard. On generation of probable primes by incremental search. In
Ernest F. Brickell, editor, CRYPTO, volume 740 of Lecture Notes in Computer Science, pages
358–370. Springer, 1992.

BDL91. Jørgen Brandt, Ivan Damg̊ard, and Peter Landrock. Speeding up prime number generation. In
Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, ASIACRYPT, volume 739 of
Lecture Notes in Computer Science, pages 440–449. Springer, 1991.

BS96. Eric Bach and Jeffrey Shallit. Algorithmic Number Theory, volume 1. MIT Press, 1996.
CS00. Ronald Cramer and Victor Shoup. Signature schemes based on the strong rsa assumption. ACM

Trans. Inf. Syst. Secur., 3(3):161–185, 2000.
Dav80. Harold Davenport. Multiplicative Number Theory, volume 74 of Graduate Texts in Mathematics.

Springer, 2nd edition, 1980.
ESC05. D. Eastlake 3rd, J. Schiller, and S. Crocker. Randomness Requirements for Security. RFC 4086

(Best Current Practice), June 2005.
Gal76. Patrick X. Gallagher. On the distribution of primes in short intervals. 23:4–9, 1976.
HL22. Godfrey H. Hardy and John E. Littlewood. Some problems of ‘partitio numerorum’: III. on the

expression of a number as a sum of primes. 44:1–70, 1922.
JP06. Marc Joye and Pascal Paillier. Fast generation of prime numbers on portable devices: An update.

In Louis Goubin and Mitsuru Matsui, editors, CHES, volume 4249 of Lecture Notes in Computer
Science, pages 160–173. Springer, 2006.

JPV00. Marc Joye, Pascal Paillier, and Serge Vaudenay. Efficient generation of prime numbers. In Çetin
Kaya Koç and Christof Paar, editors, CHES, volume 1965 of Lecture Notes in Computer Science,
pages 340–354. Springer, 2000.

Mau89. Ueli M. Maurer. Fast generation of secure rsa-moduli with almost maximal diversity. In EURO-
CRYPT, pages 636–647, 1989.

Mau95. Ueli M. Maurer. Fast generation of prime numbers and secure public-key cryptographic parameters.
J. Cryptology, 8(3):123–155, 1995.

McC86. Kevin S. McCurley. The least r-free number in an arithmetic progression. Trans. Amer. Math.
Soc., 293:467–475, 1986.

Mih94. Preda Mihailescu. Fast generation of provable primes using search in arithmetic progressions. In
Yvo Desmedt, editor, CRYPTO, volume 839 of Lecture Notes in Computer Science, pages 282–293.
Springer, 1994.

Oes79. Joseph Oesterlé. Versions effectives du théorème de Chebotarev sous l’hypothèse de Riemann
généralisée. Astérisque, 61:165–167, 1979.

PAR06. The PARI Group, Bordeaux. PARI/GP, version 2.3.5, 2006. Available from http://pari.math.

u-bordeaux.fr/.
Wag79. Samuel S. Wagstaff, Jr. Greatest of the least primes in arithmetic progressions having a given

modulus. Math. Comp., 33:1073–1080, 1979.

http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

	Close to Uniform Prime Number Generation With Fewer Random Bits

