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Abstract

Traditional approaches to secure computation begin by representing the function f being
computed as a circuit. For any function f that depends on each of its inputs, this implies
a protocol with complexity at least linear in the input size. In fact, linear running time is
inherent for secure computation of non-trivial functions, since each party must “touch” every
bit of their input lest information about other party’s input be leaked. This seems to rule out
many interesting applications of secure computation in scenarios where at least one of the inputs
is huge and sublinear-time algorithms can be utilized in the insecure setting; private database
search is a prime example.

We present an approach to secure two-party computation that yields sublinear-time proto-
cols, in an amortized sense, for functions that can be computed in sublinear time on a random
access machine (RAM). Furthermore, a party whose input is “small” is required to maintain
only small state. We provide a generic protocol that achieves the claimed complexity, based on
any oblivious RAM and any protocol for secure two-party computation. We then present an
optimized version of this protocol, where generic secure two-party computation is used only for
evaluating a small number of simple operations.

1 Introduction

Consider the natural task of searching over a sorted database of n elements. Using binary search,
this can be done in time O(log n). Next consider a secure version of this problem where a client
holds an item and wants to learn whether this item is present in a database held by a server, with
neither party learning anything else. Applying standard protocols for secure computation to this
task, we would find that they begin by expressing the computation as a (binary or arithmetic)
circuit of size at least n, resulting in protocols of complexity Ω(n). Moreover, it is well known that
this is inherent. Namely, in any secure protocol for this problem the server must “touch” every
bit of its database; otherwise, the server learns some information about the client’s input from the
portions of its database that were never touched.

Tracing the sources of the inefficiency, one may notice two opportunities for improvement:

• Any circuit computing a non-trivial function f on inputs of length n must have size Ω(n).
On the other hand, many interesting functions can be computed in sublinear time on a
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random-access machine (RAM). Thus, it would be desirable to have protocols for generic
secure computation that use RAMs — rather than circuits — as their starting point.

• The fact that linear work (or more) is inherent for secure computation of any non-trivial
function f only applies when f is computed once. However, it does not rule out the possibility
of doing better, in an amortized sense, when the parties compute the function several times.

Inspired by the above, we explore scenarios in which secure computation with sublinear amor-
tized work is possible. We focus on a setting where a client and server repeatedly evaluate some
function f on their respective inputs, maintaining state across these executions, with the server’s
(huge) input D assumed to be fixed throughout and the client’s (small) input x changing each time
f is evaluated. Our main result is as follows:

Theorem 1 (Informal). Suppose f(x,D) can be computed using time t and space s in the RAM
model of computation. Then there is a secure two-party protocol computing f in which the client
and server run in amortized time O(t) · polylog(s), the client uses space O(log(s)), and the server
uses space O(s · polylog(s)).

We show a generic protocol achieving the above bounds based on any oblivious RAM (ORAM)
construction and any secure two-party computation protocol. The resulting protocol demonstrates
the feasibility of sublinear-complexity secure computation, and serves as a useful template for the
more efficient solution given by our second, optimized construction. In our optimized protocol we
use a specific ORAM construction, and design the protocol so that generic secure computation is
utilized only for a small number of simple operations. The resulting protocol provides a much more
efficient construction.

1.1 Technical Overview

Our starting point is the ORAM primitive [9], which allows a client (with small memory) to perform
RAM computations using the (large) memory of a remote untrusted server. At a high level, the
client stores encrypted memory cells on the server and then emulates a RAM computation of some
function f by replacing each read/write access of the original RAM computation with a series of
read/write accesses of the remote data, such that the actual access pattern of the client remains
hidden from the server. Results of Goldreich and Ostrovsky [9], since improved by others (see
Section 1.2), show that if f can be computed on a RAM in t steps and space s (see Section 2.1 for
our formal model of RAM algorithms), then it can be computed on an ORAM in t ·polylog(s) steps
while using s · polylog(s) space at the server.

In our setting, ORAM suggests a candidate protocol for computing f with sublinear amortized
overhead. Say the server holds input D and the client wants to compute f(x1, D), f(x2, D), . . . for
a sequence of inputs x1, x2, . . .. The client and server (interactively) pre-process D as required for
the ORAM construction. This pre-processing step will take (at least) time linear in |D|, but will
be amortized over several computations of f . In each computation, the client and server run the
ORAM protocol until the client learns the output. If f can be evaluated in t steps on a RAM, then
each such evaluation can be done in time t · polylog(|D|).

The above protocol provides “one-sided security,” in that it ensures privacy of the client’s input
against a semi-honest server. (Though, in fact, it was already shown by Goldreich and Ostrovsky [9]
how malicious behavior by the server can be addressed.) However, it provides no security guarantees
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for the server! We can address this by running each ORAM instruction inside a (standard) secure
two-party computation protocol, with intermediate states being shared between the client and
server. This is the basic idea behind our generic construction, as described in detail in Section 3.

In our second construction, we optimize the efficiency of the above by building on the specific
ORAM construction of Goldreich and Ostrovsky [9] and aiming to minimize our reliance on generic
secure computation. In particular, we make sure that generic secure computation is applied only to
very small circuits. To reduce our reliance on generic secure computation, we design a protocol for
obliviously evaluation of a pseudorandom function (PRF) where both the key and the input/output
are shared. With careful attention to detail, and several important changes to the underlying
ORAM protocol, we end up with a much more efficient protocol. We describe this in detail in
Section 4.

In the course of proving security of our protocol, we identified a security issue with some previous
ORAM constructions; our observations impact the security of the Pinkas-Reinman protocol [26]
as well as the analysis (and the security for some parameter settings) of the Goldreich-Ostrovsky
protocol [9].1 See Section 4.3 for further discussion.

1.2 Related Work

Some previous works achieve amortized sublinear computation for specific problems: e.g., PIR [2,
15], or certain approximation problems [5, 13, 6, 18, 21, 32]. In contrast, we address secure compu-
tation of general functionalities, achieving (amortized) sublinear-time secure computation whenever
sublinear-time algorithms are possible in a RAM model of computation.

As discussed in the introduction, most existing approaches for generic secure computation of
a function f begin by representing f as a boolean or arithmetic circuit. Models of computation
other than circuits have been used previously as the starting point for secure protocols, including
branching programs [24, 16, 14, 7], ordered binary decision diagrams [19], and circuits with lookup
tables [24, 7]. The work of [24, 7], in particular, uses a branching-program representation to
construct protocols with sublinear communication complexity for certain functions. However, they
do not achieve sublinear computational complexity. (In fact, in some cases their protocols require
exponential work.)

Damg̊ard et al. [4] also observe that ORAM can be used for secure computation. In their
approach, which they only briefly sketch, players secret-share the entire (super-linear) state of the
ORAM and execute the ORAM program on their joint state; thus, applying their approach to our
setting would require the client to use an amount of memory equal to that of the server. Most
importantly, they make no attempt to optimize the concrete efficiency of their protocol, which is a
major contribution of our work.

In our efficient solution we build on the Goldreich-Ostrovsky ORAM protocol [9]. The ORAM
constructions of Damg̊ard et al. [4] and of Ajtai [1] focused on removing computational assumptions,
but yield less efficient solutions. The works of Williams and Sion [30] and Williams et al. [31] both
require significant storage at the client, which we consider unacceptable in the applications we
envision. We had initially attempted to build on the Pinkas-Reinman ORAM [26] (which is more
efficient than that of Goldreich-Ostrovsky), but in the course of our work we discovered several
flaws in their protocol, one of which is discussed in Section 4.3. The flaws in their protocol were
independently discovered by other researchers [11, 20], and (subsequent to our work) Pinkas and

1Independent of (but prior to) our work, similar flaws have been pointed out by others [11, 20].
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Reinman have developed a fix for their scheme [27]. Subsequent to our work, several improved
constructions of ORAM have appeared [11, 28, 20, 29, 12] and we have not investigated whether
these would lead to more efficient protocols for our purposes.

2 Preliminaries

2.1 Random Access Machines

In this work, we focus on RAM programs for computing a function f(x,D), where x is a “small”
input that can be read in its entirety and D is a larger array that is accessed via a sequence of
read and write instructions. Any such instruction I ∈ ({read,write} × N × {0, 1}∗) takes the form
(write, v, d) (“write data element d in location/address v”) or (read, v,⊥) (“read the data element
stored at location v”). We also assume a designated “stop” instruction of the form (stop, z) that
indicates termination of the RAM protocol with output z.

Formally, a RAM program is defined by a “next instruction” function Π which, given its current
state and a value d (that will always be equal to the last-read element), outputs the next instruction
and an updated state. Thus if D is an array of n entries, each ` bits long, we can view execution
of a RAM program as follows:

• Set stateΠ = (1logn, 1`, start, x) and d = 0`. Then until termination do:

1. Compute (I, state′Π) = Π(stateΠ, d). Set stateΠ = state′Π.
2. If I = (stop, z) then terminate with output z.
3. If I = (write, v, d′) then set D[v] = d′.
4. If I = (read, v,⊥) then set d = D[v].

(We stress that the contents of D change during the course of the execution.) To make things
non-trivial, we require that the size of stateΠ, and the space required to compute Π, is polynomial
in log n, `, and |x|. (Thus, if we view a client running Π and issuing instructions to a server storing
D, the space used by the client is small.)

We allow the possibility for D to grow beyond n entries, so the RAM program may issue write
(and then read) instructions for indices greater than n. The space complexity of a RAM program
on inputs x,D is the maximum number of entries used by D during the course of the execution.
The time complexity of a RAM program on the same inputs is the number of instructions issued in
the execution as described above. For our application, we do not want the running time of a RAM
program to reveal anything about the inputs. Thus, we will assume that any RAM program has
associated with it a polynomial t such that the running time on x,D is exactly t(n, `, |x|).

2.2 Oblivious RAM

We view an oblivious-RAM (ORAM) construction as a mechanism that simulates read/write access
to an underlying (virtual) array D via accesses to some (real) array D̃; “obliviousness” means that
no information about the virtual accesses to D is leaked by observation of the real accesses to D̃.
An ORAM construction can be used to compile any RAM program into an oblivious version of
that program.

An ORAM construction consists of two algorithms OI and OE for initialization and execution,
respectively. OI initializes some state stateoram that is used (and updated by) OE. The second
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algorithm, OE, is used to compile a single read/write instruction I (on the virtual array D) into a
sequence of read/write instructions Ĩ1, Ĩ2, . . . to be executed on (the real array) D̃. The compilation
of an instruction I into Ĩ1, Ĩ2, . . . , can be adaptive; i.e., instruction Ĩj may depend on the values read
in some prior instructions. To capture this, we define an iterative procedure called doInstruction that
makes repeated use of OE. Given a read/write instruction I, we define doInstruction(stateoram, I)
as follows:

• Set d = 0`. Then until termination do:

1. Compute (Ĩ , state′oram)← OE(stateoram, I, d), and set stateoram = state′oram.

2. If Ĩ = (done, z) then terminate with output z.

3. If Ĩ = (write, v, d′) then set D̃[v] = d′.

4. If Ĩ = (read, v,⊥) then set d = D̃[v].

If I was a read instruction with I = (read, v,⊥), then the final output z should be the value
“written” at D[v]. (See below, when we define correctness.)

Correctness. We define correctness of an ORAM construction in the natural way. Let I1, . . . , Ik
be any sequence of instructions with Ik = (read, v,⊥), and Ij = (write, v, d) the last instruction
that writes to address v. If we start with D̃ initialized to empty and then run stateoram ← OI(1κ)
followed by doInstruction(I1), . . . , doInstruction(I1), then the final output will be equal to d with all
but negligible probability.

Security. Intuitively, the security requirement is that for any two equal-length sequences of RAM
instructions, the (real) access patterns generated by those instructions will be indistinguishable. We
will use the standard definition from the literature, which assumes the two instruction sequences
are chosen in advance.2 Formally, let ORAM = 〈OI,OE〉 be an ORAM construction and consider
the following experiment:

Experiment ExpAPHORAM,Adv(κ, b):

1. The adversary Adv outputs two sequences of queries (I0, I1), where I0 = {I0
1 , . . . , I

0
k} and

I1 = {I1
1 , . . . , I

1
k} for arbitrary k.

2. Run stateoram ← OI(1κ); initialize D̃ to empty; and then execute doInstruction(stateoram, I
b
1),

. . . , doInstruction(stateoram, I
b
k) (note that stateoram is updated each time doInstruction is run).

The adversary is allowed to observe D̃ the entire time.

3. Finally, the adversary outputs a guess b′ ∈ {0, 1}. The experiment evaluates to 1 iff b′ = b.

Definition 1. An ORAM construction ORAM = 〈OI,OE〉 is access-pattern hiding against honest-
but-curious adversaries if for every ppt adversary Adv the following probability, taken over the
randomness of the experiment and b ∈R {0, 1}, is negligible:∣∣∣∣Pr

[
ExpAPHORAM,Adv(1κ, b) = 1

]
− 1

2

∣∣∣∣ .
2It appears that existing ORAM constructions are secure even if the adversary is allowed to adaptively choose the

next instruction after observing the access pattern on D̃ caused by the previous instruction. Since this has not been
claimed by any ORAM construction in the literature, we do not define it.
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2.3 Secure Computation

We focus on the setting where a server holds a (large) database D and a client wants to repeatedly
compute f(x,D) for different inputs x; moreover, f may also change the contents of D itself. We
allow the client to keep (short) state between executions, and the server will keep state that reflects
the (updated) contents of D.

For simplicity, we focus only on the two-party (client/server) setting in the semi-honest model
but it is clear that our definitions can be extended to the multi-party case with malicious adversaries.

Definition of security. We use a standard simulation-based definition of secure computation [10],
comparing a real execution to that of an ideal (reactive) functionality F . In the ideal execution,
the functionality maintains the updated state of D on behalf of the server. We also allow F to take
a description of f as input (which allows us to consider a single ideal functionality).

The real-world execution proceeds as follows. An environment Z initially gives the server a
database D = D(1), and the client and server then run protocol Πf (with the client using input init
and the server using input D) that ends with the client and server each storing some state that they
will maintain (and update) throughout the subsequent execution. In the ith iteration (i = 1, . . .),
the environment gives xi to the client; the client and server then run protocol Πf (with the client
using its state and input xi, and the server using its state) with the client receiving output outi.
The client sends outi to Z, thus allowing adaptivity in Z’s next input selection xi+1. At some
point, Z terminates execution by sending a special end message to the players. At this time, an
honest player simply terminates execution; a corrupted player sends its entire view to Z.

For a given environment Z and some fixed value κ for the security parameter, we let realΠf ,Z(κ)
be the random variable denoting the output of Z following the specified execution in the real world.

In the ideal world, we let F be a trusted functionality that maintains state throughout the
execution. An environment Z initially gives the server a database D = D(1), which the server in
turn sends to F . In the ith iteration (i = 1, . . .), the environment gives xi to the client who sends
this value to F . The trusted functionality then computes

(outi, D
(i+1))← f(xi, D(i)),

and sends outi to the client. (Note the server does not learn anything from the execution, neither
about outi nor about the updated contents of D.) The client ends outi to Z. At some point, Z
terminates execution by sending a special end message to the players. The honest player simply
terminates execution; the corrupted player may send an arbitrary function of its entire view to Z.

For a given environment Z, some fixed value κ for the security parameter, and some algorithm
S being run by the corrupted party, we let idealF,S,Z(κ) be the random variable denoting the
output of Z following the specified execution.

Definition 2. We say that protocol Πf securely computes f if there exists a probabilistic polynomial-
time ideal-world adversary S (run by the corrupted player) such that for all non-uniform, polynomial-
time environments Z there exists a negligible function negl such that∣∣Pr

[
realΠf ,Z(κ) = 1

]
− Pr [idealF,S,Z(κ) = 1]

∣∣ ≤ negl(κ).

Remark: “adaptivity” in the choice of the {xi}. In the “standard” ideal-world definition of
reactive computation, a corrupted player (either client or server) would give its entire view to the
environment each time the functionality F is accessed. Here, however, we allow the players to give
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Secure initialization protocol

Input: The server has input D of length n, and the client does not use its input in this stage.

Protocol:
1. The participants run a secure computation of OI(1κ), which results in each party receiving a

secret share of the initial ORAM state. We denote this by [stateoram].

2. For i = 1, . . . , n do

(a) The server creates instruction I = (write, v,D[v])) and secret shares it with the client.
We denote the resulting sharing by [I].

(b) The parties execute ([state′oram], [⊥]) ← doInstruction([stateoram], [I]) (see Figure 3), and
set [stateoram]← [state′oram].

Figure 1: Secure initialization protocol πInit.

its view to the environment only at the end of the entire execution. This seems to be reasonable
in the semi-honest setting we consider, where a subsequent input xi+1 should have no dependence
on the view of the ith protocol execution. (On the other hand, we do allow xi+1 to depend on
out1, . . . , outi, a dependence that is realistic.) In fact, our protocols satisfy the stronger notion
(where a corrupted server gives its view to Z after each execution of the protocol in the real world,
and gives an arbitrary function of its view to Z after each iteration in the ideal world) as long
as the underlying ORAM construction they use satisfies the adaptive notion of security discussed
in footnote 2. (To the best of our knowledge, this property has not been considered in any prior
work on ORAM. Nevertheless, we conjecture that all known constructions are secure even under
adaptive choice of instructions.)

3 Generic Construction

In this section we present our generic solution to the amortized sublinear secure computation
problem. The construction is based in a black-box manner on any ORAM scheme and any secure
two-party computation protocol. While our second protocol, which we present in Section 4, is
substantially more efficient than any specific instantiation of the protocol in this section, this
generic protocol is conceptually simple and clean, demonstrates theoretical feasibility, and provides
a good overview of our overall approach.

Our first observation is that the server can store his own data in his own ORAM structure: the
security definition of ORAM in Section 2 guarantees security against a semi-honest server even
when he knows the data content completely. This allows us to give the client access to the server’s
data without violating client privacy, and without requiring him to store a secret-sharing of the
entire database. We now only need to ensure that the client does not learn any information either.
Our second observation is that this can be achieved, at a cost independent of the size of D, by always
secret-sharing the client’s state with the server (this keeps the client oblivious), and by facilitating
the ORAM operations using standard secure computation techniques on their joint state. More
specifically, we will use MPC to compute each next-instruction function in RAM, and then further
to compile each RAM instruction into a sequence of ORAM instructions. ORAM instructions are
then reconstructed and executed by the server (they can safely be shown to the server), and the
result of the RAM instructions is secret-shared with the client to form part of the updated client’s
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Secure evaluation protocol πf

Inputs: The server has array D̃ and the client has input 1logn, 1`, and x. Also the server and the
client have secret shares of an ORAM state, denoted [stateoram].
Shared input: A RAM program defined by the “next-instruction function” Π.

Protocol:

1. The client sets stateΠ = (1logn, 1`, start, x) and d = 0` and secret shares both values with the
server; we denote the shared values by [stateΠ] and [d], respectively.

2. Do:

(a) The parties securely compute ([I], [state′Π])← Π([stateΠ], [d]), and set [stateΠ] = [state′Π].

(b) The parties perform a secure computation to check whether stateΠ = (stop, z). If so,
break.

(c) The parties execute ([state′oram], [d′]) ← doInstruction([stateoram], [I]). They set
[stateoram] = [state′oram] and [d] = [d′].

3. The server sends its share of [stateΠ] and [d] to the client, who recovers the output z.

Output: The client outputs z.

Figure 2: Secure evaluation of a RAM program.

state. The players then use the updated state to continue with the evaluation of the next RAM
instruction.

In more technical detail, let f , encoded as a RAM next-instruction function Π, be the computed
function. Notation-wise, for value v, let [v] denote a bitwise secret-sharing of v between the two

The doInstruction subroutine

Inputs: The server has array D̃, and the server and the client have secret shares of an ORAM state
(denoted [stateoram]) and a RAM instruction (denoted [I]).

1. The server sets d = 0` and secret shares this value with the client; we denote the shared value
by [d].

2. Do:

(a) The parties securely compute ([Î], [state′oram]) ← OE([stateoram], [I], [d]), and set
[stateoram] = [state′oram].

(b) The parties perform a secure computation to check if [Î] = (done, z). If so, set [d] = [z]
and break.

(c) The client sends its share of [Î] to the server, who reconstructs [Î]. Then:

i. If Î = (write, v, d′) then the server sets D̃[v] = d′ and sets d = d′.
ii. If Î = (read, v,⊥) then the server sets d = D̃[v].

(d) The server secret shares d with the client.

Output: Each player outputs his share of stateoram and his share of [d].

Figure 3: Subroutine for executing one RAM instruction.
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parties. Our secure ORAM protocol proceeds as follows:

1. The parties run a secure computation of OI (Figure 1). This initializes the ORAM structure,
and securely populates it with Server’s data D.

2. The parties securely generate and evaluate the RAM program (Figure 2). That is, the fol-
lowing is repeated until the RAM protocol terminates:

(a) The server and the client use MPC to evaluate Π and obtain shares of the next instruction
I.

(b) I is then compiled, through repeated secure computations of OE, into a sequence of
sub-queries, Î1, . . . Î`, where ` = O(log n).

(c) After the server executes each of the sub-queries, instruction I is complete. (In case of
a read instruction, the resulting data item is secret shared between the server and the
client.)

Again, we stress that, although we do use generic MPC, it is independent of the size of D, and
depends only on the RAM representation of f (i.e., Π), and on the complexity of the OE function.
Of course, using generic MPC creates significant overhead. In Section 4 we present several tailored
MPC protocols for computing the ORAM steps, which greatly improve the performance of our
approach.

3.1 Proof of Security

We now prove that the construction presented in the previous section is a secure MPC protocol
according to Definition 2.

At the very high level, security against the client holds because he only manipulates the data
protected by secret sharing and MPC; the server additionally sees plaintext ORAM instructions –
but they do not reveal anything by the ORAM guarantee. (ORAM security [9] is proven in the
non-adaptive setting only. However, as we will show, our security simulation goes through, since
the adaptive input and function selection by Z does not depend on protocol message view, and
hence the simulators can query the ORAM functions after Z had completed the adaptive selection.)

We start with the descriptions of the Client simulator Scl, who interacts with Z. In i-th
computation, Scl receives xi and yi = f(xi, D

(i−1)), stores them, and postpones it simulation until
he receives the special end symbol from Z.

At this point, Scl outputs entire simulation, as follows:

Pre-processing. Scl simulates pre-processing by generating an appropriate number of random
ORAM state shares:

1. Scl runs the OI(1κ) functionality to obtain an initial state for the ORAM, and generates
a uniformly random share [stateoram]c for the client.

2. Let I1, . . . , I|D(0)| be instructions of the form (write, v, 0̄) for 1 ≤ v ≤ |D(0)|. Scl se-
quentially applies OE to I1, . . . , I|D(0)|, along with the current ORAM state. After each
instruction is submitted, the OE functionality returns an updated state, and the simu-
lator generates a uniformly random share [stateoram]′c of the updated state for the client.
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Computation. For each RAM f to be evaluated, Scl will simulate its execution evaluating the
same number of instructions of the form (read, 0,⊥) using OE. Denote by |f | the execution
length of RAM f . Then, for each functionality f :

1. Scl starts with a previously generated share [stateoram]c of the ORAM state that was
generated during the pre-processing, or during the last computation.

2. Let I1, . . . , I|f | be instructions of the form (read, 0,⊥). As in the pre-processing phase,
Scl sequentially runs OE on I1, . . . , I|f |, along with the current ORAM state. After each
instruction is evaluated, OE returns an updated state, and Scl generates a new uniformly
random state share [stateoram]′c.

3. The output reconstruction is simulated by opening to yi the secret sharing of the output.

The server simulator Sserv proceeds similarly to Scl. The notable difference is that the generated
view additionally contains the instructions issued by OE. Specifically, during pre-processing, OE
is used to evaluate instructions of the form Ij = (write, v, 0̄) for 1 ≤ v ≤ |D(i−1)|. For each such
instruction, OE generates a sequence of subqueries Îj , which are included in the generated view.
Similarly, during the computation of each functionality f , each instruction is converted by OE into
a sequence of subqueries. These subqueries are included in the generated view (in addition to the
state shares).

It is not hard to see that these simulators produce views indistinguishable from real execution.
The reduction to the (non-adaptive) security of ORAM is straightforward, given our prior observa-
tion that the simulators produce their output only after the entire sequence of xi is specified by Z
(and hence the adaptively chosen sequence of xi can be fed non-adaptively into the ORAM security
experiment).

This leads to the following.

Theorem 2. Let ORAM be access-pattern hiding, as defined by Definition 1, and let the underlying
employed MPC be secure according to standard definitions. Then, our generic construction (πf )
described above is a secure protocol (according to Definition 2) for computing f , in the presence of
honest-but-curious adversaries. Furthermore, if f can be computed in time t and space s by a RAM
machine, then πf runs in amortized time t · polylog(s), the client uses space log(s), and the server
uses space s · polylog(s).

4 An Optimized Protocol

In Section 3 we showed that any Oblivious RAM protocol can be combined with any secure two-
party computation scheme to obtain a secure computation scheme with sublinear amortized com-
plexity. This generic solution may be appropriate in many situations, however, current instanti-
ations of the ORAM primitive require us to evaluate complex functions, such as pseudorandom
function (PRF), using a secure two-party computation protocol. For example, the ORAM con-
struction of Goldreich and Ostrovsky [9] requires many encryptions, decryptions and executions
of a PRF. In spite of the fact that recent advances in the latter provide very efficient solutions
for secure joint evaluation of PRFs [8], such secure evaluation is orders of magnitude slower than
simply evaluating a PRF locally.

In this section we present a far more efficient secure computation system with sublinear amor-
tized input access. Specifically, we construct, and prove secure, a new secure computation scheme
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that borrows ideas from ORAM protocols (specifically [9]) and MPC protocols, in order to provide
extreme efficiency. Our resulting protocol uses only a handful of garbled circuits that contain noth-
ing more than a few multiplications, if statements, and XOR operations, and in particular does not
require evaluation of PRFs inside MPC. All other computation is done locally by the parties.

4.1 Technical Overview

Our starting point is the construction of Goldreich and Ostrovsky [9], which we use to store the
server data. We begin with an overview of their ORAM protocol.
An overview of the Goldreich-Ostrovsky (GO) construction. In the GO construction, every
pair (vi, di), where di is a data item stored at index vi in the original RAM protocol, is encrypted
under a private key held by the client. (Recall that their protocol – and the ORAM model – does
not offer privacy from the client.) Each of the N pairs are stored together in a data structure that
has the following properties:

• It consists of L = logN levels for data of size N , though it will grow to size log t if there are
t read and write operations. Level i contains 2i “buckets”, each of which can hold up to m
data elements, where m = max(i, log κ) and κ is the security parameter. The extra allocation
in each bucket will be filled with “dummy” items, which we will explain below. All items
stored in these buckets are encrypted with a key that is held by the client.

• Each level i > 0 has a hash function associated with it, hi, which is chosen by the client. If
an element (v, d) is stored at level i, it will be stored in the bucket having index hi(v).

The execution of a read operation and the execution of a write operation have identical structure,
in order to prevent the server from distinguishing one from the other. The client begins by scanning
the entire bucket at level i = 0, looking for the element of interest. Specifically, he decrypts each
item in the bucket, one at a time, comparing it to the target value v. He then scans exactly one
bucket at each level i > 0: if v was not yet found, the client scans the bucket with index hi(v), and
if v was already found, he simply scans a random bucket. Finally after scanning a bucket at each
level, (v, d) is written to the top level (regardless of whether this is a read or a write operation).

As mentioned above, whenever an item is being read or written, it is placed in the top level of
the data structure. After m operations, this level will fill up. These items are then moved down
a level, and shuffled in with the items below. Similarly, after 2i read and write operations, the
items at level i are moved down and shuffled in with the items at level i+ 1. It follows that after
every 2i read and write operations, level i+ 1 becomes half full, and after another 2i operations, it
becomes full and is immediately emptied. Every time level i is moved down to level i+ 1, a fresh
hash function is chosen for level i + 1, and the items are re-inserted in that level using the new
function. This process of merging two levels is quite complex, and we describe it in the course of
describing our own protocol below. We refer the interested reader to [9] for a proof that this is a
secure ORAM construction.
Extending the protocol to efficient secure computation: In our setting, we are further
restricted in that the content of the RAM and the access pattern must remain unseen by the client
as well as the server (with the exception of the output that is revealed at the very end of the
computation). We have to overcome several challenges:

1) In the protocol of Goldreich and Ostrovsky [9], while the client is reading or writing item (v, d),
he has to compute hi(v) up to d times. In practice, these hash functions would be implemented
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by a pseudo-random function (PRF), since we require hi to be i-wise independent. In our setting,
since the client should not learn the value of v, the naive way of implementing their protocol is to
compute the PRF inside a garbled circuit. The resulting protocol would be extremely inefficient.
Instead, we introduce a new primitive that we call a shared-oblivious-PRF (soPRF). This is a PRF
in which the input and secret key are each shared between two parties, and the (single) recipient
of the pseudo-random output can be designated at the start of the execution.3 Our construction
builds upon the oblivious PRF described by Freedman et al. [8].

2) While scanning each bucket to look for v, the client has to decrypt every ciphertext to see
whether he has found a match. He also has to re-encrypt the value after reading it. We need
to use an encryption scheme that can be efficiently computed inside a secure computation. We
use Enc(m; r) = (FK(r) ⊕m, r), and to ensure that encryption and decryption can be efficiently
computed inside a garbled circuit, we have the client compute FK(r) outside the secure computation.
All that has to be done inside the garbled circuit is boolean XOR. However, this requires care,
since the value r may reveal something about the access pattern to the client. For example,
we perform several oblivious sorts on the data during the shuffle protocol. In doing this, we
repeatedly decrypt two items, decide whether to swap them, and then re-encrypt them. Suppose
the result of one of these operations is (Enc(m0; r0),Enc(m1; r1)) if they are not swapped, and
(Enc(m1; r1),Enc(m0; r0)) if they are. Since we allow the client to choose the randomness used in
re-encryption, he can easily determine whether the values were swapped if (when) he sees these
ciphertexts again at a later time! The solution is to make certain that the position of the randomness
is independent of the outcome of the swap: we use (Enc(m0; r0),Enc(m1; r1)) if they are not swapped,
and (Enc(m1; r0),Enc(m0; r1)) if they are.

3) In the original protocol, the client randomly reassigns elements to buckets whenever two levels
are shuffled together (i.e., by choosing a new hash function, and re-hashing all the values). This
is a crucial step for providing privacy, but in our setting we cannot entrust this task to the client,
since we must protect their locations from him as well. Actually, this issue is subtly tied to the
fact that the client knows the encryption randomness. Because he is given the randomness used for
decryption during a lookup, he can easily determine the bucket index of the lookup as well. This
is not in itself a problem: recall that the server also learns the bucket index during lookup, even in
the original ORAM protocol. However, it requires us to hide bucket assignments from the client
during the shuffling. If we did not reveal the bucket index during lookup, we might have hoped
to reveal more to the client during the shuffle. Instead, we use a shared-oblivious-PRF during our
shuffle protocol in order to hide the bucket assignments from both parties.

4.2 Our Construction

Shared-Oblivious PRF: As we mentioned above, our protocol makes use of a new primitive that we
call a shared-oblivious-PRF (soPRF). Our soPRF construction is based on the oblivious PRF of
Freedman et al. [8] (see Figure 6). Our particular construction is a function

soPRF : ZO(logN)
p × ZO(logN)

p × {0, 1}logN × {0, 1}logN → G×G,

where G is a group of prime order p = O(2κ) for which the DDH assumption is expected to hold.
The output are secret shares α and β such that αβ is pseudorandom. For our purposes, this is

3So far we have only hinted at why the input to the soPRF needs to be shared, and we have said nothing about
why the secret key would need to be shared. We explain this when we give the details of the protocol.
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insufficient, because subsequent use of these shares in a Yao garbled circuit will be quite impractical;
even a single exponentiation is more costly than computing AES. We therefore provide a second,
efficient protocol that takes shares of this form, and outputs new multiplicative shares: α′ ·β′ = αβ.
This appears in Figure 7. When we use the soPRF in our protocol, we leave the re-sharing protocol
implicit. In our scheme, the input to the soPRF are secret shares of a virtual address, and the
output are shares of a pseudorandom value, which is used for determining the location of the virtual
address.

Encryption and Decryption: In the protocol that follows, all elements, (v, d), are encrypted using
semantically secure, symmetric key encryption; the key K for a (standard) PRF is stored by the
client and never changes. We will frequently perform secure computations that involve decrypting
a ciphertext, performing an operation, and the re-encrypting the resulting value. As described
above, before performing any such computation, the server first sends the random values r and r′

to the client, where r is the randomness currently being used in the relevant ciphertext, and r′ is
chosen randomly for the re-encryption. The client computes FK(r) and FK(r′) locally, and uses
both values as input to the secure computation. Then, inside the garbled circuit, both decryption
and re-encryption can be achieved with simple XOR operations. The server stores r′, and sends it
again to the client the next time the same value is needed in a secure computation. (This saves the
client from having to store the randomness.) Below, when we describe the protocol, we leave this
step implicit.

Our construction follows along the lines of the general protocol we described in Section 3. The
two difficulties are to build an efficient implementation of the doInstruction function, and to make
the shuffle protocol from [9] secure against the client while maintaining it’s efficiency. We focus on
those two tasks here, and do not repeat the remainder of the protocol. We find the prose that follows
easier to read than would be precise pseudo-code. Although we reference the functionalities that
will be implemented using Yao, and we give precise pseudo-code for each of those functionalities in
Appendix C, we expect the reader will find those descriptions helpful mainly to verify the simplicity
of the garbled circuits that we rely upon. We note that in the proof of security (Section 5), the
interested reader will find a more precise listing of the messages sent to and from each party.

Preprocessing: The players insert the server’s data into the ORAM using a sequence of write
instructions. We describe the process for a write instruction next.

Read/Write: We assume the players each hold a secret share of the instruction being performed,
which includes the virtual address, v ∈ [N ], being sought.

1. The players scan the top layer looking for data item d stored at address v. They
do this by repeatedly performing a secure computation in which they decrypt an element,
compare its virtual address to v, and then re-encrypt it before storing it back. However, the
computation should not reveal to either player whether or not v was found, nor what the
value of d is. Therefore, the output of the secure computation includes a secret sharing of a
state variable that indicates whether v was found, along with shares of d in case v is found.
Both players remain unaware of the values of these variables. They scan the entire level, even
if v is found mid-way through the scan. The secure computation for this step is found in
Figure 8.

2. The players scan exactly one bucket at each level. The index of the bucket scanned
at level i is chosen as follows:

13



(a) First, the players engage in a secure computation in which the output is:

• a secret sharing of v if v was not yet found, and
• a secret sharing of the string “dummy ◦ t” if v was already found.

Here t is a counter stored by the server, and incremented after every read or write
operation. The secure computation for this step is described in Figure 9.

(b) They then compute the soPRF on their shares of v (or on their shares of the dummy
address). The key for the soPRF will have been created and shared when elements were
last inserted into this level. This is described in the shuffle protocol below. The client
sends his share of the soPRF output to the server.

(c) The server maps the output to the integers using the universal hash function hi associated
with level i. He then fetches the corresponding bucket from memory. The players scan
this bucket searching for (v, d), precisely the way they scanned the top layer. They do
this even if v was already found. If (v, d) is found in this bucket, they store the value in
their state (again, unaware that they have done so), and instead of re-encrypting (v, d)
and storing it back in the same location, they replace it with an encryption of an empty
item. We use the same secure computation as above, described in Figure 8.

3. The players write the element back to the top layer. They do this by scanning the
layer as before, using a sequence of secure computations to decrypt, compare, and re-encrypt.
If they come across the previous version of (v, d), they overwrite it with the (possibly) newer
value. (This will happen when (v, d) was first found in the top layer.) If they come across an
empty spot in the layer, they simply store the newly encrypted value there. Either way, they
continue the scan until they have re-encrypted the entire level. The secure computation for
this step is described in Figure 10.

Shuffling. As in the work of Goldreich and Ostrovsky [9], we must occasionally merge a level with
the one below, shuffle together the items, and reinsert them into the data structure. As in their
protocol, we merge level i with level i+ 1 after 2i read or write instructions. We let n = 2i denote
the maximum number of elements in level i. Recall that there are also n buckets at level i, each
of size m. We note that there are at most n elements in level i + 1 at the time of the shuffle; the
capacity is 2n, but as soon as it fills, they are all moved down to level i+ 2. Although there are at
most 2n items in these two levels, there is enough space allocated for 3nm words. The remaining
spaces are filled with encryptions of empty elements, of the form (“empty, empty”), which help hide
how many real elements are currently contained in the level. The goal in the shuffle is to exactly
fill every bucket, while ensuring that neither player learns anything about how the real items are
distributed.

1. The players choose new keys and setup a buffer. They each choose a shared key for the
soPRF. Each player will store their share of the key until the next time these two levels are
merged; the same key will be used while reading and writing elements (as described above).
The server also chooses and stores a universal hash function hi+1, which will be used to map
the output of the soPRF to a bucket index in {1, . . . , 2n}. He stores this along with his share
of the soPRF key. Finally, the server creates a buffer big enough to hold 3nm data elements.
He places all nm elements from level i and all 2nm elements from level i+ 1 in this buffer.
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2. The players assign the real items to buckets. There are 2n (or fewer) items to be put
in the 2n empty buckets of level i+1, and each bucket is of size m. (The remaining 2nm−2n
empty spaces of the will later be filled with (encrypted) empty items.)

(a) They begin this process by (obliviously) sorting the elements, giving priority to real
items. This is done by jointly implementing an oblivious sort over the virtual addresses.
For each comparison of the sort, the players compute a secure computation that recovers
the value of the addresses, compares them, chooses whether to swap them, and finally
re-encrypts both the address and the data element. The secure computation to be
performed is described in Figure 12.

(b) The players then do the following for each of the first 2n elements in the buffer:

• They perform a secure computation of the functionality GetHashInput (Figure 9),
which outputs a secret sharing of v. For empty items (if there are any), the secure
computation simply outputs a random string r ∈ {0, 1}κ.
• They compute the soPRF on this value.
• They perform another secure computation in which both players use the shares

they received from the soPRF as input, and the server uses as additional input the
description of the universal hash function hi+1. Inside the secure computation, the
output shares of the soPRF are reconstructed and then mapped to a bucket index
using the hash function hi+1. The bucket index is encrypted and output to the
server, who stores it with the element (still kept in the buffer). In Figure 11 we
describe the hash function of Mansour et al. [22], which is very simple to compute
inside a Yao circuit.

3. The players assign the empty items to buckets.

(a) They scan the last 2nm elements in the buffer, which are all guaranteed to be empty
(since 2n < mn). The client encrypts a bucket index for each one: the first m items are
mapped to bucket 1, the next m to bucket 2, and so on until exactly m of these empty
elements have been assigned to each of the 2n buckets.

(b) They perform another oblivious sort (again using a sorting network), this time sorting
by bucket index, with priority given to real items. They then scan the items, using a
secure computation to decrypt, increase the count for the current bucket and re-encrypt.
If the counter has exceeded m elements for the current bucket, then the element’s index
is replaced with the symbol ⊥ before re-encryption. The count is kept private (again
by use of encryption). We note that the probability of removing a real element here
is negligible, since the probability that more than m real items fall into one bucket
is negligible. (See Lemma 3.) In case this does occur, we let the output of this secure
computation be a special abort symbol, and the players abort the protocol. The necessary
secure computation is described by the functionality in Figure 13.

(c) Finally, they perform one more oblivious sort on the bucket index, treating ⊥ as the
largest index. In the end, the buffer contains m items per bucket, ordered by bucket
index. The server simply copies these directly back into level i+1 in their current order,
ignoring the leftover items labeled with ⊥. They again use a secure computation for the
functionality described in Figure 12.
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4.3 Discussion: Bucket Size

As we will see below, the size of each bucket will play an important role in the proof of security.
In particular, we claimed above in Step 3b that if we map n items to n buckets, the probability of
overflowing a bucket of size m is negligible in the security parameter. Suppose this were not the
case: that we instead use a smaller bucket size, and that we simply sample a new hash function if
our elements overflow a bucket during insertion. This admits the following attack: consider a server
that is trying to distinguish between two different search sequences by the client, X = (x1, . . . , xn)
and Y = (y1, . . . , yn). Assume further that he knows all elements in search pattern X are found in
level i, while all elements in Y are found at (say) level i+ 1. We note that security must hold even
in such a situation. With non-negligible probability, while the client is searching for the elements of
Y , he will query the same bucket at level i at least m+1 times. On the other hand, if his search was
for items in list X, this could not happen, because, by our assumption, the hash function assigned
to level i was chosen to map no more than m items to any one bucket. Put another way, we can
ensure that the hash function for level i never overflows when mapping elements in level i, but we
cannot ensure that it doesn’t overflow when mapping elements that are not in level i. Therefore,
we choose bucket sizes that are large enough to guarantee a negligible probability of overflow for
any 2i elements.

This issue affects security of previous ORAM constructions as well, including [26], and [9] when
the buckets are small ([9] say that any bucket size will do). Indeed, [26] suffers from this issue
(and a related one that stems from its use of cuckoo hashing) in a way that we were not able to
repair (unless we increase their log2 overhead to log3).4 However, for the [9] protocol, security is
maintained for the parameters they suggest as most practical (logarithmic bucket size).

5 Proof Sketch

The security of the protocol that we presented in the previous section is captured by the following
theorem (the performance is analyzed in detail in Section 6).

Theorem 3. Assuming that the Decisional Diffie-Hellman (DDH) assumption holds, the protocol
described in Section 4.2 (ΠF ) is a secure protocol for computing F in the presence of honest-but-
curious adversaries. Furthermore, if F can be computed in time t and space s by a RAM machine,
then ΠF runs in amortized time t ·polylog(s), the client uses space log(s), and the server uses space
s · polylog(s).

Proof. To prove security of the protocol against honest-but-curious players, we analyze our protocol
in the hybrid model, in which we replace all secure computations used during the read and write
operations with ideal executions of their corresponding functionalities. It follows from a well known
result of Canetti [3] that if the resulting protocol is secure in this hybrid world, then the protocol
remains secure in the real world as well.

We start with the following lemma which will be an important part of our proof.

Lemma 1. In an honest-but-curious execution of protocol ΠF (as described in Section 4), for all
soPRF keys k and for all inputs v, the probability that the players compute soPRF(k, v) in Step 2b
more than one time is less than negl(κ), where negl is some negligible function.

4As mentioned in Section 1.2, these insecurities were independently discovered by others, and potential fixes as
well as alternative schemes have since been suggested.
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Proof. We consider two types of inputs: v ∈ [N ], and dummy inputs of the form dummy ◦ t. For
inputs of the latter form, note that this particular input can only be used in the tth operation, since
t is incremented with every operation. The only way soPRF(k, dummy ◦ t) can be computed more
than once, therefore, is if the same key k is assigned to two different levels at the same time. Since
the number of levels is bound by some polynomial (in κ), and there are an exponential number of
keys, this is negligibly likely to occur. Consider a pair (k, v) where v is of the first form. In this
case, the proof follows from three properties of the protocol: a) elements are moved to the top layer
once they are found. b) Whenever we have found an element at some level i, we query dummy◦ t at
all levels j > i, where t is uniquely chosen in each operation. c) Whenever an item is moved down
to a lower level, a new soPRF key is assigned to the lower level. If we assume that keys are chosen
without replacement (i.e. that we never choose the same key more than once), then the lemma
clearly follows from these three properties. Since the total number of keys chosen is bounded by
some polynomial in κ, the probability that the same key is chosen more than once is negligible.

Lemma 2. For every non-uniform, polynomial time adversary A corrupting the server in a hybrid-
world execution of the secure computation described in Section 4.2, there exists a non-uniform,
polynomial time adversary S corrupting the server in the ideal world execution F , and a negligible
function neg(·), such that for all κ ∈ N:

|Pr[Real(1κ,Π,A) = 1]− Pr[Ideal(1κ, F,S) = 1]| ≤ neg(κ)

Proof. We begin by describing the simulation of the shuffle protocol. We will then describe the
simulation of a single read/write operation. In the end we will put these together to argue that
sequences of read/write operations and shuffles remain secure.

In simulating the shuffle protocol, recall that S is simulating the hybrid world in which the
players have access to ideal executions of the functionalities described in Figures 12, 9, 6, 7, 11,
and 13. We outline the hybrid world protocol in Figure 4.

We note that in this hybrid world, almost the entire shuffle protocol proceeds through a sequence
of ideal function calls; the players rarely interact outside of these ideal executions. With a few
exceptions (described below), the simulator only needs to simulate the output of each of these
ideal functionalities. Furthermore, the output from these ideal functionalities is always either a
ciphertext, or a random secret sharing. The simulation is therefore quite straightforward: the
output of each functionality is simulated with a random string. When the output is supposed to be
a ciphertext, the indistinguishability of the simulation follows from the security of the PRF used
in the encryption scheme. When the output is supposed to be a secret share, the simulation is
distributed identically to the output of the hybrid world. As we will see, the messages that are sent
from the client (i.e. that are not communicated through an ideal function call) are always either
the random string used in some ciphertext, or a complete ciphertext. Both can again be simulated
with random strings.

Simulating oblivious sort: Since oblivious sort is performed three different times, we describe the
simulation separately. We note that each oblivious sort in the hybrid world proceeds through a
sequence of calls to the ideal instance of the swap functionality (Figure 12), each preceded by
the exchange of four encryption and decryption strings. (In Figure 4, we have only depicted a
single call in order to save space.) As described above, we simulate (r′1, r

′
2, r
′
3, r
′
4), which are sent
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Figure 4: The shuffle protocol in the hybrid world.

from the client before each ideal function call, with random strings. We let α denote the output
of the Oblivious Swap functionality; α is a group of four ciphertexts, which are also simulated
with random strings. The security of the PRF used in the encryption scheme guarantees that the
simulated ciphertexts are indistinguishable from the actual output of the trusted swap functionality.

Step 2a only contains an oblivious sort. In Step 2b, the players make three calls to ideal
functionalities (again, engaging in no other communication). To simulate βs, the output of the
ideal functionality of Figure 9, and γs, the output of the ideal soPRF, the simulator simply outputs
a random string. In the hybrid world, βs and γs are random secret shares, so the simulated output
is identically distributed to the hybrid world output. (We note that even if the input to the soPRF
is identical in two sequential executions, the output is still a fresh pair of secret shares. Therefore,
the simulator does not need to do any “book keeping” regarding previous inputs to the soPRF.)
The random value r′5 is used in constructing the ciphertext δ, and can be simulated with a random
string. Finally, the last ideal call in this step is to an ideal functionality that takes the output
of the soPRF, along with the description of a hash function, and outputs an encryption, δ of the
bucket index that results from applying hi to the output of the PRF (Figure 11). Since the output
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is a ciphertext, the simulation simply proceeds as above, outputting a random string.
Step 3a proceeds without any ideal function calls. Here, the client sends exactly 2nm ciphertexts

to the server, each an encryption of a random bucket index, which is to be assigned to an empty
element. The simulator simply sends random strings, which are again indistinguishable from the
messages sent by the client in the hybrid world, due to the security of the PRF used in encryption.
In Step 3b, the simulator has to simulate the output of the ideal function described in Figure 13. In
the hybrid world, when fewer than m real items are mapped to each bucket, the output of this ideal
function call is a pair of ciphertexts, which can be simulated as usual. However, the simulator will
not attempt to simulate the bad event in which more than m real items are mapped to a particular
bucket. Instead, we rely on Lemma 3, which proves that this is negligibly likely to occur, and we
allow our simulation to fail with his negligible probability. The final step of the shuffle contains
another oblivious sort, which is handled as described above.
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Figure 5: The read and write protocol in the hybrid world.

Simulating read/write: We proceed now to describe the simulation of a single read or write op-
eration. With one important exception, the simulation of the server view during read and write
executions is very similar to the simulation used in the shuffle protocol. The only message sent
directly from the client to the server is the client’s secret share of the soPRF output, sent in Step 2b
(message γc in Figure 5). The rest of the protocol proceeds through the execution of ideal function
calls, and, as before, simulating the output of these functions is straightforward. This is because
the outputs of these computations are all either random secret shares, or ciphertexts, both of which
can be simulated with random strings. The output from CheckData (messages αS and δS) contain
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two secret shares which are uniformly distributed, and one ciphertext. βS is a secret sharing, and
ζS contains one secret sharing and one ciphertext.

The most difficult part of the security proof is to simulate the secret share of the soPRF that
is sent from the client to the server (γc) in Step 2b. In the shuffle protocol, the players keep their
output from the soPRF private, using them as input to another secure computation. This simplified
the simulation, since it allowed us to simulate just one share of the pseudorandom value, which is
distributed uniformly. Here, since the client sends his share in the clear, we have to simulate the
reconstructed output of the PRF, and not just a secret sharing of that output.5

To simulate the client’s share of the soPRF output, we simply send a random group element.
We stress that the simulator does not try to simulate a random function, because he has no idea
what the input to the soPRF is; in particular, if the same input were used twice, he is very unlikely
to output the same value both times. To claim that this simulation is indistinguishable from the
real execution, therefore, we rely on Lemma 1, where we demonstrated that the players never reuse
the same input to the soPRF in between two shuffles. (Recall that when a level is shuffled, the
players refresh the key for the soPRF, so at that point it is irrelevant if they reuse an input that
was used prior to the shuffle.) If they did reuse the same input, the simulation of the soPRF would
be easily distinguished from the real execution.

As mentioned in the discussion of Section 4, another key lemma in the proof demonstrates
that the buckets are large enough that they are negligibly likely to overflow during the shuffle.
If this were not the case, the simulation of the soPRF would be distinguishable from the hybrid-
world execution of the soPRF. Note that in the hybrid world protocol, we abort if m + 1 inputs
from the same level collide under the choice of soPRF key (See Figure 13). Therefore, the output
of the soPRF in the real execution is pseudorandom, conditioned on the fact that buckets do not
overflow. In contrast, the simulated output of the soPRF is truly random. Put more formally,
for any N inputs, v1, . . . , vN , let goodk denote the set of soPRF keys that map no more than m
elements in v1, . . . , vN to the same value. Then we require that the following two distributions are
indistinguishable:

{soPRF(k, v1), . . . , soPRF(k, vN ) | k R← K} c= {soPRF(k, v1), . . . , soPRF(k, vN ) | k R← goodk}

It follows that these distributions are indistinguishable if the probability of overflow is negligible
(i.e. if the set goodk contains most of the keyspace). We prove now that the buckets are unlikely to
overflow if the soPRF is replaced with a random function. It follows from a hybrid argument that
the simulation of message γc is indistinguishable from the hybrid-world soPRF.

Lemma 3 ([23]). Let Y be a Poisson random variable with parameter (and mean) µ. If y > µ

then Pr[Y ≥ y] ≤ e−µ(eµ)y

yy .

Lemma 4 ([23]). Let X(m)
i , 1 ≤ i ≤ n, be a random variable representing the number of balls in

the ith bin when m balls are randomly thrown into n bins. Let Y (m)
1 , . . . , Y

(m)
n be Poisson random

variables with mean m/n. Then, any event that takes place with probability p in the Poisson case,
takes place with probability at most pe

√
m in the exact case.

5We note that we could change the protocol to match the shuffling protocol, having the players use their output
from the soPRF in a secure computation of the functionality depicted in Figure 11. However, it is much more efficient
to send the value in the clear. The reason we don’t do the same thing when shuffling is that the protocol becomes
insecure if the server sees the reconstructed output of the soPRF both during shuffling and during lookup.
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Corollary 1. Suppose that n balls are thrown into n bins. Then, the probability that in the end

there is a bin that contains more than z = max(log(n), log(κ)) balls is at most n1/2 max
1

ln(2) (n,κ)
zz .

Proof. Let z = max(log(n), log(κ)). When n balls are thrown into n bins, the expected number
of balls in each bin is 1. Now consider Poisson variables Y1, . . . , Yn with parameter µ = 1. From
Lemmas 3 and 4 we obtain that for all 1 ≤ i ≤ n:

Pr[Yi ≥ z] ≤
ez−1

zz
=⇒ Pr[Xi ≥ z] ≤

ezn1/2

zz

n1/2 max
1

ln(2) (n, κ)
zz

We now put together the pieces and consider the full simulation of the server. Since we are
in a semi-honest setting, the simulator can begin by submitting the server’s input to the trusted
party. The output of the honest player is always correct, and is distributed identically to the hybrid
world execution. (We leave the correctness of the hybrid world protocol for the reader to verify.)
Since the server receives no output, it remains only to argue that the complete view of the server in
the ideal world is indistinguishable from that in the hybrid world. We have already argued above
that the simulation of a single shuffle, or a single read write execution, is indistinguishable from
the hybrid-world execution of the same protocol. We now need to argue that a sequence of such
simulations remains indistinguishable. Again, the only subtlety arises with the soPRF output; all
other messages are clearly independent of one another, even across multiple shuffles, reads and
writes. Given Corollary 1 and Lemma 1, it follows that the output of the soPRF in the hybrid
world is indistinguishable from a random sequence of group elements, each chosen independently.
This is precisely how we have simulated the soPRF, so this concludes the proof of Lemma 2.

2

Lemma 5. For every non-uniform, polynomial time adversary A corrupting the client in a hybrid-
world execution of the secure computation described in Section 4.2, there exists a non-uniform,
polynomial time adversary S corrupting the client in the ideal world execution F , and a negligible
function neg(·), such that for all κ ∈ N:

|Pr[Real(1κ,Π,A) = 1]− Pr[Ideal(1κ, F,S) = 1]| ≤ neg(κ)

Proof. Simulating encryption and decryption: In many of the ideal function calls, the server pro-
vides input FK(r)⊕ v, while the client provides FK(r) for decryption, and FK(r′) for re-encryption
(see the discussion in Section 4.2). In every such case, the server sends r, r′ to the client before
they call the ideal function. We need to describe how to simulate these random strings sent by
the server. The simulator has to do some book-keeping to be sure the appropriate random strings
are sent. (Recall, the client saw the random string needed for decryption at some prior time when
it was used for encryption, so the randomness sent by the simulator must remain consistent with
those values.) Specifically, the simulator keeps an array of size N to store random strings. He keeps
track of the randomness currently being used to encrypt each item at each location in the ORAM
structure. We stress that this book-keeping succeeds only because our functionalities all maintain
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the ordering of the randomness provided by the client. For example, in Figure 12, note that re-
gardless of whether the items are swapped, the ordering of the randomness provided by the client
remains fixed. If this were not the case, not only would the simulation fail (because it could not
know what order to place the random strings in), but the client would easily learn something about
the outcome of the oblivious sort by observing the final ordering of the randomness he provided.

In the hybrid world protocol, the only messages the client receives from the server are the random
strings that we have just finished discussing (see Figure 4). Everything else is done through the
execution of ideal functionalities. In the shuffle protocol, the simulation of these functionalities is
actually a bit simpler than it was in the case of the server, because the client does not receive any
output from the swap functionality used in oblivious sort (Figure 12), from the functionality that
computes an encryption of the bucket index (Figure 11), or from the functionality that skims empty
items from over-full buckets (Figure 13). The outputs that the client receives from the remaining
ideal functionalities are random secret shares of various values: βc from GetHashInput, and γc from
the soPRF. The simulator simply outputs random strings to simulate each of these ideal function
calls. In the read/write protocol, the same is true: the reader can verify that client output from all
functionalities are secert-shares of state variables (i.e. messages αc, βc, γc, δc and ζc). All can be
easily simulated with random secret shares.

To put these pieces together, when the simulator receives xi from the environment, he imme-
diately submits them to the trusted functionality and stores the output. He simulates the view of
the client through the appropriate number of read/write executions and shuffles, until the RAM
protocol terminates.6 He then sends a second secret share of the output to the client, allowing him
to reconstruct the correct output value, sends the output value to the environment, and waits for
the next input to arrive from the environment. We note that the server has no output, so we do
not need to worry about the joint distribution over the client’s view and the server’s output. When
we consider the simulation of a sequence of read and write executions, we have to describe how the
simulator chooses which random values to send to the client (i.e. which buckets should be read).
We claim that choosing a random bucket at each level suffices. This follows from two facts: a) the
client’s view during the shuffle protocol reveals no information about how items have been mapped
to buckets, and b) as proven in Lemma 1, with overwhelming probability, the same input is never
used twice in the soPRF.

This completes the proof of Theorem 3.

6 Performance

We evaluate the performance of our protocol and compare it with the state-of-the-art solutions.
First, recall our notation: N is the number of records in the database (each of length m), k is the
security parameter for underlying DDH groups (k ≈ 256). While we use big-O notation in our
analysis, we stress that we do not hide any large constants; in fact we keep the constants of the
higher-order terms.

Each ORAM read/write has complexity O(4m log2N+ m logN+ 3 log3N). Additionally, amor-
tized per read/write shuffling has complexity O((log logN)3 + klog2 3 log logN). The amortized
shuffling terms are of low order and may be dropped in further analysis, possibly except for the

6As mentioned in Section 2.1, we assume that the runtime of the RAM protocol is independent of the inputs.
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term klog2 3 log logN , (here klog2 3 ≈ k1.6 is the size of boolean circuit implementing Karatsuba
multiplication [17]).

While each step of ORAM is relatively costly, our solution is orders of magnitude faster than
existing solutions (which are all linear in input size) for important functions such as binary search
on large DB (or its derivative, location-based service provision). To illustrate the costs relationship
for today’s medium-size DB of 107 records, each of size 105, our solution performs ≈ 5 · 109 basic
operations (comparable to Yao-gate evaluations), vs standard solution’s cost of ≈ 1012 of same
operations. In general, our approach will likely be advantageous when server’s input is large, and
ORAM program length is short (it is logarithmic for search).

Most importantly, as DB sizes grow with time, the performance advantage of our approach will
increase (as much as exponentially, for binary search).
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A Shared Oblivious PRF

Definition 3. Let F be some pseudorandom function (PRF) with key-space K and input domain
X. Let [k] denote a 2-out-of-2 secret of k ∈ K, and let [x] be the same for input x ∈ X. We say
that the function soPRF is a shared oblivious pseudorandom function (soPRF) built on F if for
any k ∈ K, and any x ∈ X, soPRF([x], [k]) outputs a secret sharing of F (k;x).

We note that we can trivially build an soPRF from any PRF by using Yao’s protocol. However,
the goal is to give more efficient construction. Our construction of an soPRF is built on the Naor-
Reingold PRF [25]. We review this PRF here. Let G be some prime order group for which the
DDH assumption is expected to hold, and let g be a generator for G. The Naor-Reingold PRF
has input domain X = {0, 1}κ, key-space K = Gκ, and output space G. The function is defined as
F (k;x) = gr0Πixiri , where ri ∈ G makeup the key, and xi ∈ {0, 1} the input.

Theorem 4. Assuming DDH is hard in G, and secure OT exists, the protocol described in Figure
6 computes an soPRF, and is secure against semi-honest, polynomial time adversaries.

Proof. Let I = {i1, . . . , i|I|} denote the set of indices such that vc[ij ] ⊕ vs[ij ] = 1. We prove our
theorem in the standard way, comparing a real execution of π (in the OT-hybrid world) with an
ideal function that outputs frc,rs(vc, vs) = g(r0c ·r0s)·Πi∈I(ric·ris). We define our ideal world functionality
as the following randomized functionality:

Ideal functionality F computing an soPRF:
Server input: (r0

s , r
1
s , . . . , r

m
s , vs).

Client input: (r0
c , r

1
c , . . . , r

m
c , vc)

The functionality F chooses b1, . . . , bm uniformly and independently at random from Z∗p.
Server output: α = r0

s(
∏m
i=1 bi)(

∏
i∈I r

i
cr
i
s)

Client output: β = g
r0c∏m
i=1

bi and Πm
i=1bi.

Note that in the ideal functionality, we include Πbi in the output of the server. Although this
is not obviously necessary, it turns out that it is important for the simulation; in the real world
protocol, the server chooses the bi values himself, so leaking this information is not “harmful”.

25

http://eprint.iacr.org/


Shared Oblivious PRF

Let g be a generator of a group G of prime order p for which the DDH assumption holds. Let rs, rc
be the shares of the PRF key.

Inputs: Server: vs ∈ {0, 1}m, rs = (r0
s , r

1
s , . . . , r

m
s ), where each ris ∈ Z∗p

Client: vc ∈ {0, 1}m, rc = (r0
c , r

1
c , . . . , r

m
c ), where each ric ∈ Z∗p

Protocol:

1. The server samples m values a1, . . . , am in Z∗p uniformly at random.

2. The client samples m values b1, . . . , bm in Z∗p uniformly at random.

3. For each 1 ≤ i ≤ m:

(a) The client and the server run an oblivious transfer protocol, with the server as sender
and the client as receiver, using the following inputs:

• If vs[i] = 0, the server’s input is (ai, ai·ris). Otherwise the server’s input is (ai·ris, ai).
• The client’s input is vc[i].

Let xi be the output value that the client receives from the OT execution.

(b) The client and the server run an oblivious transfer protocol, with the client as sender
and the server as receiver, using the following inputs:

• If vc[i] = 0, the client’s input is (bi · xi, bi · xi · ric). Otherwise the client’s input is
(bi · xi · ric, bi · xi).

• The server’s input is vs[i].

Let yi be the output value that the server receives from the OT execution.

4. Let I ⊆ [m] denote the set of indices such that vc[ij ]⊕ vs[ij ] = 1.
The server computes

α = r0
s

(
m∏
i=1

yi
ai

)
= r0

s

(
m∏
i=1

bi

)(∏
i∈I

ricr
i
s

)
.

The client computes β = g
r0

c∏m
i=1 bi . These are secret shares of the pseudorandom value

βα =
(
g

r0
c∏m

i=1 bi

)r0s(∏m
i=1 bi)(

∏
i∈I r

i
cr

i
s)

= gr
0
cr

0
s

∏
i∈I r

i
cr

i
s .

Outputs: The server outputs α, and the client outputs β.

Figure 6: A construction of a Shared Oblivious PRF

However, we note that this has some implications about the pseudo-randomness of the output if a
player is given both shares. We will return to discuss this further below.

We begin our security proof by assuming that an adversary A controls the client in the protocol.
We construct a simulator S which interacts with the adversary and simulates the execution of the
protocol in the semi-honest setting.

Lemma 6. Let F denote an ideal execution of the soPRF as described above, and let πOT denote
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an execution of the protocol in Figure 6 in the OT-hybrid world. For any semi-honest, polynomial
time adversary A with auxiliary input z ∈ {0, 1}∗ that corrupts the server in the OT-hybrid world,
there exists a semi-honest, polynomial time adversary S with auxiliary input z ∈ {0, 1}∗ corrupting
the server in the ideal world such that

ideal
(i)
F,S(z)(κ, (r

0
s , r

1
s , . . . , r

m
s , vs))

c= real
(i)

πOT,A(z)
(κ, (r0

s , r
1
s , . . . , r

m
s , vs)).

Proof. The simulator S acts as follows:

1. S submits the server’s input to the ideal functionality and receives output α.

2. S receives A’s input for the m ideal executions of OT in Step 3a. From these inputs, he
computes and stores the value Πm

i=1ai.

3. For i ∈ {1, . . . ,m−1}, S simulates the output of the ith execution of the ideal OT in Step 3b
by choosing ci ∈ Z∗p uniformly at random, and sending it to the server. He then simulates the
mth ideal OT in Step 3b by computing and sending

cm =
α ·Πm

i=1ai

r0
s ·Πm−1

i=1 ci

The only messages the server receives in the OT-hybrid world are the outputs of the m OTs in
Step 3b. Therefore, the view of A in the hybrid world is {(y1, . . . , ym), α}, where yi is the output
received in the ith execution of OT. In the ideal world, these messages are replaced by (c1, . . . , cm),
so the view of the adversary is instead {(c1, . . . , cm), α}. We must argue that these distributions
are indistinguishable, when taken jointly with the output of the honest client:

{(y1, . . . , ym), α, β,Πm
i=1bi}

c= {(c1, . . . , cm), α, β,Πm
i=1bi}

where the first distribution is over the random coins of the two parties in the hybrid world, and
the second distribution is over the coins of the ideal party and of S in the ideal world. The
distributions on α, β and Πm

i=1bi are clearly identical in both worlds, so we are really concerned
only with the distributions on (y1, . . . , ym) and on (c1, . . . , cm) given α, β and Πm

i=1bi. Consider first
the distributions on (y1, . . . , ym−1) and (c1, . . . , cm−1). Since the value of Πm

i=1bi does not restrict
the value of any m − 1 size subset of the bi values, and, by extension, neither does the value of α
or β, it follows that both (y1, . . . , ym−1) and (c1, . . . , cm−1) are uniformly distributed over {Z∗p}m−1

given α, β and Πm
i=1bi. In the hybrid world, recall that α is computed by the server as:

α =
r0
s ·Πm

i=1yi
Πm
i=1ai

.

Therefore, given (y1, . . . , ym−1) and α, the value of ym is fully determined by

ym =
α ·Πm

i=1ai

r0
s ·Πm−1

i=1 yi
.

Since the simulator chooses cm in precisely this manner, we conclude that the distributions are
identical.

2
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Lemma 7. Let F denote an ideal execution of the soPRF as described above, and let πOT denote
an execution of the protocol in Figure 6 in the OT-hybrid world. For any semi-honest, polynomial
time adversary A with auxiliary input z ∈ {0, 1}∗ that corrupts the client in the OT-hybrid world,
there exists a semi-honest, polynomial time adversary S with auxiliary input z ∈ {0, 1}∗ corrupting
the client in the ideal world such that

ideal
(i)
F,S(z)(κ, (r

0
c , r

1
c , . . . , r

m
c , vc))

c= real
(i)

πOT,A(z)
(κ, (r0

c , r
1
c , . . . , r

m
c , vc)).

Proof. The only messages received by the client are the outputs from the first m executions of OT
in Step 3a, (x1, . . . , xm). The simulator simulates these m outputs with random, independently
chosen group elements from Z∗p: (d1, . . . , dm). As before, we need to prove that the distributions

{(y1, . . . , ym), α, β,Πm
i=1bi}

c= {(d1, . . . , dm), α, β,Πm
i=1bi}

Here the proof is immediate, since the values of ai are never known to the distinguisher. It follows
that the xi are each independent, random values in Z∗p, even when the output of each party is given.
Therefore the simulated distribution, (d1, . . . , dm), and the hybrid world distribution are identically
distributed.

2

We now argue that our construction has an additional property: given the output γ = frc,rs(vc, vs),
and the server’s share of the secret key, rs = (r0

s , r
1
s , . . . , r

m
c ), we can generate shares α and β from

the appropriate (random) distribution such that βα = γ. The implication is that the client can
safely send β to the server, who holds α, while still ensuring that βα looks random. We note that
this property does not have to hold, because our definition of an soPRF allows α and β to contain
information about the shares of the secret key. To make this issue more explicit, consider an soPRF
that includes player i’s share of the secret key (entirely) within i’s output share. The output could
still be pseudorandom given one of the two shares, but it is certainly not pseudorandom when one
player holds both shares. We remark that we did not require this property in our definition because
an soPRF may be useful even without it. For example, in our shuffle protocol, neither player ever
obtains both output shares. Instead, the shares are used directly as input to a secure computation,
which yields encrypted output.

We argue that our protocol remains secure if β = gr
0
c/
∏m
i=1 bi is sent to the player holding

α = r0
s(
∏m
i=1 bi)(

∏
i∈I r

i
cr
i
s), but we note that this is not true if the share α is sent to the player

holding (β,Πm
i=1bi). To see that it is secure when β is sent to the player holding α, note that given

a pseudo-random value γ and the secret key (r0
s , . . . , r

i
s), we can easily simulate shares α and β such

that βα = γ, even without knowing r0
c , . . . , r

m
c . The simulator simply chooses a random α, and

then computes β = γ−α. Since Πbi is not yet fixed, the simulated shares are always consistent with
the correct values of ric for some choice of Πbi. However, note that this simulation fails when Πbi is
already known and fixed. More specifically, without knowing r0

s , . . . , r
m
s , given (γ,Πbi, r0

c , . . . r
m
c ),

β is already well defined, and finding α that is consistent with β and γ requires solving an instance
of the discrete log problem. Due to this discussion, in our protocol we will always assign β to the
client, since he will occasionally send his share of the soPRF output to the server. We leave it as
an open problem to find an efficient soPRF that allows either party to send their secret share to
the other.
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B A Secret Re-Sharing Scheme

We describe a secret re-sharing protocol between two parties C and S. The protocol implements
(under the DDH assumption) an ideal functionality which, given group elements α, β that are
the inputs of S,C respectively, outputs uniformly distributed group elements uS , uC such that
ucus = αβ.

Recall that we use this protocol to reshare an soPRF value that was shared through exponen-
tiation, obtaining multiplicative shares instead. However, we note that the protocol works for any
α, β, and does not rely on the pseudorandomness of αβ.

The protocol. The protocol starts with S choosing random α1, α2 such that their product is α,
and C choosing random β1, β2 such that their sum is β. S sends α1 to C, who can now compute
his output, αβ1

1 . The rest of the protocol is designed to allow S to compute his output, αβ2α
β2
1 ,

without revealing any extra information. This is done by using blinding (raising to a random
power, or multiplying by a random number), and by El-Gamal encryption (and its multiplicative
homomorphic properties). The details are described in Figure 7.

Multiplicative Re-Sharing

Let G be a group of prime order p for which the DDH assumption holds.
Inputs: Server (S): α; Client (C): β.
Outputs: Server: us; Client: uc; where us, uc are uniformly distributed subject to ucus = αβ .
Protocol:

1. The server chooses random α1, α2 ← G such that α1 ·α2 = α. The server also chooses random
r ← Zp. The server sends α1, α

r
2 to the client.

2. The client chooses random β1, β2, x ← Zp such that β1 + β2 = β. The client also chooses
random g ← G and sets h = gx. We let [[W ]] denote an El Gamal encryption of W with
respect to the public key (g, h). The client sends g, h, [[αrβ2 ]], and [[αβ2

1 ]] to the server.

3. The server chooses random r2 ← Zp. Using the homomorphic properties of El Gamal encryp-
tion, the server computes [[αβ2α

β2
1 gr2 ]] and sends it to the client.

4. The client decrypts the ciphertext sent in the last round, and sends the result αβ2α
β2
1 gr2 back

to the server. The client outputs uc = αβ1
1 .

5. The server divides by gr2 and outputs us = αβ2α
β2
1 .

Figure 7: A protocol for converting exponentiation-based shares to multiplicative shares

Analysis. Correctness follows straightforwardly: ucus = αβ1
1 α

β
2α

β2
1 = αβ1+β2

1 αβ2 = αβ1α
β
2 = αβ.

Security for one side is information theoretic, and for the other side is based on DDH assumption.
A simulator that gets only the input and output of one of the parties, can simulate the entire view
by using random values for the incoming messages, subject to the correct output being computed.
Specifically, a simulator getting only the input β and output uc of the client can simulate the entire

view by choosing a random β1, β2 that sum up to β, then choosing α1 = u
β−1
1
c when simulating the

first message. All the other values on incoming messages are chosen randomly (and all values sent
out are computed honestly). It is easy to see that this simulated view is statistically close to the
real view (as all messages sent to the client in the protocol are blinded by a random number, and
since the output uc is random). A simulator getting only the input α and output us of the server

29



can simulate the entire view by using random values for the incoming message in step 2 (while
computing step 1 and 3 honestly), and then sending usgr2 in step 4 (for the corresponding values
g, r2 from steps 2, 3). Using the semantic security of the El Gamal encryption (based on the DDH
assumption), it is easy to see that this view is indistinguishable from the view in the real protocol.

2

C Supporting Subprotocols

Notation: In the protocols presented in this section we use the following variables:

• vC and vS are shares from the virtual address vC ⊕ vS being sought;

• virC and virS are shares of virC ⊕ virS , which is either the real or the dummy address searched
in some level;

• doneC and doneS are shares of doneC ⊕ doneS , which indicates whether the virtual address
has already been found;

• dC and dS are shares of dC ⊕dS , which stores the retrieved data when the the virtual address
has been found;

• F (r) denotes PRF value used for encryption.

• (cV , cD) are the ciphertexts (encryptions of the virtual address and the data) stored in a
physical position in the ORAM structure;
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CheckData

Here we check whether a ciphertext (c1, c2) matches the input value v = vC ⊕ vS . If it does, then we
share the corresponding data between the client and the server as dC ⊕ dS . If the virtual address
was already found, i.e. doneC ⊕ doneS = 1, we ignore the check. If the virtual address is just
matched, we appropriately set the check bit done′C ⊕ done′S = 1, re-encrypt the ciphertext as (c′1, c

′
2)

to be stored at the server.

Inputs: Client: vC , rwC , dC , doneC , FK(r1), FK(r2), FK(r3), FK(r4)
Server: vS , rwS , dS , doneS , (c1, c2)

Protocol:

1. Decrypt the ciphertext (c1, c2) to recover the values v = c1 ⊕ FK(r1) and d = c2 ⊕ FK(r2).

2. Check whether the data value needs to be retrieved:

• If doneC ⊕ doneS = 1, compute two shares done′S and done′C of 1, and two new shares
d′S and d′C of the data dS ⊕ dC .

• Else if doneC ⊕ doneS = 0 and v = vC ⊕ vS , compute two shares done′S and done′C of 1.
If rwC ⊕ rwS = read, compute two shares d′S and d′C of the retrieved data d.

• Else compute shares done′S and done′C of 0, and another set of shares of 0: d′S and d′C .

3. Compute encryptions to be written back:

• If doneC⊕doneS = 0 and v = vC⊕vS , set c′ = (”dummy”⊕FK(r3), ”dummy”⊕FK(r4)).

• Else c′ = (v ⊕ FK(r3), d⊕ FK(r4)).

Outputs: Client: done′C , d
′
C

Server: done′S , d
′
S , c
′

Figure 8: A functionality that enables the players to obliviously check whether a data item matches
the target.

GetHashInput

We compute the virtual address that will next be looked-up in a level: the real virtual address, if
there was no match so far, or a dummy address depending on the counter t, if the item was already
found.

Inputs: Client: doneC , virC , t
Server: doneS , virS

Protocol:

1. If doneC ⊕ doneS = 0, create a random secret sharing vS ⊕ vC = virC ⊕ virS .

2. If doneC ⊕ doneS 6= 0, create a random secret sharing vS ⊕ vC = (”dummy” ◦ t).
Outputs: Client: vC

Server: vS

Figure 9: A functionality that determines whether a real or a dummy look-up should be performed
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DataWrite

We check whether the matched item stored in virC ⊕ virS and dC ⊕ dS should be used to over-write
the current position in the top level, which currently stores ciphertext (c1, c2). We overwrite if these
are empty encryptions, or an older encryption of the same virtual address.

Inputs: Client: doneC , virC , dC , doneC , FK(r1), FK(r2), FK(r3), FK(r4)
Server: doneS , virS , dS , doneS , (c1, c2)

Protocol:

1. Decrypt the ciphertext (c1, c2) to recover the values v = c1 ⊕ FK(r1) and d = c2 ⊕ FK(r2).

2. Compute v′ = virC ⊕ virS and d′ = dC ⊕ dS .

3. Check whether this is the right place to write an encryption of (v′, d′):

• If doneC ⊕ doneS = 1, compute two random shares done′S and done′C of 1, and set
(c′1, c

′
2) = (v ⊕ FK(r3), d⊕ FK(r4)).

• Else if v = virC ⊕ virS or v = 0, compute two random shares done′S and done′C of 1, and
set (c′1, c

′
2) = (v′ ⊕ FK(r3), d′ ⊕ FK(r4)).

• Else, compute two random shares done′S and done′C of 0, and set (c′1, c
′
2) = (v⊕FK(r3), d⊕

FK(r4)).

Outputs: Client: doneC
Server: done′S , (c

′
1, c
′
2)

Figure 10: A functionality for determining whether a value should be written to a given position
in the top level.

Distributed Universal Hash Function

We compute a universal hash of a value shared between the client and the server as uC · uS , and
send the encrypted output c to the server. Let G be a prime order group. Let a and b be parameters
defining the universal hash function from [22].

Inputs: Client: uC ∈ G, F (r) ∈ {0, 1}m
Server: uS ∈ G, a ∈ {0, 1}n+m−1, b ∈ {0, 1}m

Protocol:

1. Set u = ucuS , and “cast” u as an integer.

2. For 1 ≤ i ≤ m compute the i-th bit of the hash as yi = (⊕nj=1(uj AND ai+j−1))⊕ bi.

3. Let y = y1||y2|| . . . ||ym and c = y ⊕ F (r).

Outputs: Client: no output
Server: c

Figure 11: A functionality for the distributed computation of a universal hash function.
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Oblivious Swap

We re-order two encrypted values (v1, d1) and (v2, d2) by their virtual address by decrypting, com-
paring (according to some criteria, described in Section 4, swapping if necessary, and re-encrypting.

Inputs: Client: FK(r1), FK(r2), FK(r3), FK(r4), FK(r′1), FK(r′2), FK(r′3), FK(r′4)
Server: (v1 ⊕ FK(r1), d1 ⊕ FK(r2)), (v2 ⊕ FK(r3), d2 ⊕ FK(r4))

Computation:

1. Decrypt the input ciphertexts to recover the values v1 = (v1 ⊕ FK(r1)) ⊕ FK(r1) and v2 =
(v2 ⊕ FK(r3))⊕ FK(r3).

2. Compare the values v1 and v2 :

• If v1 ≤ v2: set b = 0, (c′1, c
′
2) = (v1 ⊕ FK(r′1), d1 ⊕ FK(r′2)), and (c′3, c

′
4) = (v2 ⊕

FK(r′3), d2 ⊕ FK(r′4)).

• If v1 > v2: set b = 1, (c′1, c
′
2) = (v2 ⊕ FK(r′1), d2 ⊕ FK(r′2)), and (c′3, c

′
4) = (v1 ⊕

FK(r′3), d1 ⊕ FK(r′4)).

Outputs: Client: no output
Server: (c′1, c

′
2) and (c′3, c

′
4)

Figure 12: A Functionality that enables the players to obliviously compare and swap two elements.
This is used repeatedly for an oblivious sort.

Remove Excess Empties

Let count be an array of n counter variables ranging from 1 to m. Let index be a bucket index
from 1 to n. Let real be a boolean flag indicating whether index is associated with a real item or an
empty item.

Inputs: Server: index⊕ FK(r1), count⊕ FK(r2), real
Client: FK(r1), FK(r2), FK(r3), FK(r4)

Computation:

1. Recover the values of count and index by computing (index⊕ FK(r1))⊕ FK(r1) and (count⊕
FK(r2))⊕ FK(r2).

2. If (count[index] < m)

• count[index] ++;

• let (c1, c2) = (index⊕ FK(r3), count⊕ FK(r4))

3. Else if (count[index] == m and real == false)

• let (c1, c2) = (⊥⊕ FK(r3), count⊕ FK(r4))

4. Else if (count[index] == m and real == true)

• let (c1, c2) = (abort!, abort!)

Outputs: The output (c1, c2) is sent to the server.

Figure 13: A functionality for counting m items in each bucket and removing excess empty items.
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