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Abstract

In [BKT11] Baba, Kotyada and Teja introduced the FACTOR problem
over non-abelian groups as base of an ElGamal-like cryptosystem. They
conjectured that there is no better method than the naive one to solve
the FACTOR problem in a general group. Shortly afterwards Stanek
published an extension of the baby-step giant-step algorithm disproving
this conjecture [Sta11]. Since baby-step giant-step methods are limited
in practice because of memory requirements we present a modification of
Pollard’s kangaroo algorithm that solves the FACTOR problem requiring
only negligible memory.

1 Introduction
Let n ≥ 2 and (G, ·) be a non-abelian finite group with identity element e.
Suppose g1, . . . , gn ∈ G with 〈g1, . . . , gi〉 ∩ 〈gi+1〉 = {e} for all i ≤ n− 1 and let
x1, . . . , xn ∈ Z. Given an element

h = gx1
1 · . . . · gxn

n

we wish to determine gx1
1 , . . . , gxn

n (we note that the conditions on g1, . . . , gn
imply the uniqueness of the solution). This is called generalized FACTOR
problem or n-FACTOR problem. In case n = 2 we also say FACTOR problem
instead of 2-FACTOR problem.

The cryptosystems in [BKT11] are based on the 2-FACTOR problem. Stanek’s
modification of Shank’s baby-step giant-step algorithm solves this problem us-
ing time and memory O(

√
ord(g1)ord(g2)). For practical purposes it is desirable

to reduce at least the memory requirements. This can be achieved by a simple
modification of Pollard’s kangaroo method presented in the next section.
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2 Kangaroos solving the FACTOR problem
The connection between the discrete logarithm problem (DLP) and the FAC-
TOR problem was already brought up in [BKT11]. At least after Stanek’s work
it is natural to look at other generic DLP-algorithms for possible adaptability
to the FACTOR problem. Since the iteration function in Pollard’s rho method
requires the calculation of powers of h = gx1

1 gx2
2 we are stuck because of non-

commutativity1. But we have better luck with Pollard’s kangaroo algorithm.
For a detailed description of the original kangaroo algorithm see [Pol78].

We now describe the modified version (where we have no additional infor-
mation about the exponents x1 and x2, see remarks below).

• Phase 0 - initialization:
Calculate ord(g1) and ord(g2), fix s ∈ N (in practice s ≈ 20) and define
(pseudorandom) partition functions

p1 : G→ {1, . . . , s}

and
p2 : G→ {1, . . . , s}

Choose random constants u1, . . . , us ≈
√

ord(g1) and v1, . . . , vs ≈
√

ord(g2).

• Phase 1 - tame kangaroo:
Set T = e = g01g

0
2 and dt1 = 0, dt2 = 0.

Repeat d
√

ord(g1)ord(g2)e times:

1. dt1 ← dt1 + up1(T ) mod ord(g1)
2. dt2 ← dt2 + vp2(T ) mod ord(g2)

3. T ← g
up1(T )

1 · T · gvp2(T )

2 = g
dt1
1 · g

dt2
2

• Phase 2 - wild kangaroo:
Set W = h = gx1

1 gx2
2 and dw1 = 0, dw2 = 0.

While W 6= T do

1. dw1 ← dw1 + up1(W ) mod ord(g1)
2. dw2 ← dw2 + vp2(W ) mod ord(g2)

3. W ← g
up1(W )

1 ·W · gvp2(W )

2 = g
dw1 +x1

1 · gd
w
2 +x2

2

• Phase 3 - kangaroo collision:
If T =W we have

g
dt1
1 · g

dt2
2 = T =W = g

dw1 +x1

1 · gd
w
2 +x2

2 .

Thus x1 = dt1− dw1 and x2 = dt2− dw2 , so g
x1
1 and gx2

2 are easily calculated.

Remark. • We note that the kangaroo method is a probabilistic algorithm.
If there is no collision after e.g. 3d

√
ord(g1)ord(g2)e steps in phase 2,

the attack should be restarted with different initialization values and/or
a different starting value for T .

1There is a Pollard-rho-like algorithm of Bisson and Sutherland that can be used to solve
the FACTOR problem, see the remark at the end of this section.
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• The original kangaroo method solves the discrete logarithm problem z =
yβ in expected running time O(

√
ord(y)) or even O(

√
γ − α) if it is known

that β ∈ [α, γ]. The analysis of our modified version can be done as in
[Pol78] yielding an expected running time of O(

√
ord(g1)ord(g2)), where

the algorithm can be improved in an obvious way if it is known that
x1 ∈ [α1, γ1] and/or x2 ∈ [α2, γ2].

• Revealing x1 and x2 the algorithm delivers more than we asked for.2

Remark. In an earlier version of this paper we claimed that there is no direct
way to extend both attacks, Stanek’s and ours, to solve the general FACTOR
problem. In fact this does not hold for the baby-step giant-step algorithm as
the version of Bisson and Sutherland in [BS11] shows. In the very same paper
Bisson and Sutherland also present a Pollard-rho-like algorithm for finding short
product representations in finite groups. The setting is as follows.

Let S = (s1, . . . , st) be a (random) sequence of elements of a group G and
let z ∈ G. If the sequence S satisfies t ≥ 2 log2 |G| the Pollard-rho algorithm of
Bisson and Sutherland finds a subsequence (si1 , . . . , sir ) of S with z = si1 · . . . ·
sir in expected running time O(

√
|G| log2 |G|) using negligible memory. This

method can be applied to solve the general FACTOR problem if we choose S
the following way:

• For all i assemble a sequence Si from gi, g
2
i , . . . g

2bi
i where bi = dlog2(ord(gi))e

(to make sure that there is a solution) and sufficiently many random pow-
ers of gi .

• For all i permute the elements of Si in a random way.

• Build S by concatenation of S1, . . . , Sn.
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