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Abstract. We revisit the topic of joint security for combined public key schemes, wherein a single
keypair is used for both encryption and signature primitives in a secure manner. While breaking
the principle of key separation, such schemes have attractive properties and are sometimes used
in practice. We give a general construction for a combined public key scheme having joint security
that uses IBE as a component and that works in the standard model. We provide a more efficient
direct construction, also in the standard model. We then consider the problem of how to build
signcryption schemes from jointly secure combined public key schemes. We provide a construction
that uses any such scheme to produce a triple of schemes – signature, encryption, and signcryption
– that are jointly secure in an appropriate and strong security model.

1 Introduction

Key separation versus key reuse: The folklore principle of key separation dictates using different keys
for different cryptographic operations. While this is well-motivated by real-world, security engineering
concerns, there are still situations where it is desirable to use the same key for multiple operations [19].
In the context of public key cryptography, using the same keypair for both encryption and signature
primitives can reduce storage requirements (for certificates as well as keys), reduce the cost of key
certification and the time taken to verify certificates, and reduce the footprint of cryptographic code.
These savings may be critical in embedded systems and low-end smart card applications. As a prime
example, the globally-deployed EMV standard for authenticating credit and debit card transactions
allows the same keypair to be reused for encryption and signatures for precisely these reasons [15].

However, this approach of reusing keys is not without its problems. For example, there is the issue
that encryption and signature keypairs may have different lifetimes, or that the private keys may require
different levels of protection [19]. Most importantly of all, there is the question of whether it is secure
to use the same keypair in two (or more) different primitives – perhaps the two uses will interact with
one another badly, in such a way as to undermine the security of one or both of the primitives. In the
case of textbook RSA, it is obvious that using the same keypair for decryption and signing is dangerous,
since the signing and decryption functions are so closely related in this case. Security issues may still
arise even if some standardized padding is used prior to encryption and signing [26]. In Section 3 we
will provide another example in the context of encryption and signature primitives, where the individual
components are secure (according to the usual notions of security for encryption and signature) but
become completely insecure as soon as they are used in combination with one another. At the protocol
level, Kelsey, Schneier and Wagner [24] gave examples of protocols that are individually secure, but that
interact badly when a keypair is shared between them.

The formal study of the security of key reuse was initiated by Haber and Pinkas [19]. They introduced
the concept of a combined public key scheme. Here, an encryption scheme and signature scheme are
combined: the existing algorithms to encrypt, decrypt, sign and verify are preserved, but the two key
generation algorithms are modified to produce a single algorithm. This algorithm outputs two keypairs,
one for the encryption scheme and one for the signature scheme, with the keypairs no longer necessarily
being independent. Indeed, under certain conditions, the two keypairs may be identical, in which case
the savings described above may be realised. In other cases, the keypairs are not identical but can have
some shared components, leading to more modest savings. Haber and Pinkas also introduced the natural
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security model for combined public key schemes, where the adversary against the encryption part of the
scheme is equipped with a signature oracle in addition to the usual decryption oracle, and where the
adversary against the signature part of the scheme is given a decryption oracle in addition to the usual
signature oracle. In this setting, we talk about the joint security of the combined scheme.

Setting a benchmark: As we shall see in Section 3, there is a trivial “Cartesian product” construction
for a combined public key scheme with joint security. The construction uses arbitrary encryption and
signature schemes as components, and the combined scheme’s keypair is just a pair of vectors whose com-
ponents are the public/private keys of the component schemes. Thus the Cartesian product construction
merely formalises the principle of key separation. This construction, while extremely simple, provides a
benchmark by which other constructions can be judged. For example, if the objective is to minimise the
public key size in a combined scheme, then any construction should aim to have shorter keys than can
be obtained by instantiating the Cartesian product construction with the best available encryption and
signature schemes.

Re-evaluating Haber-Pinkas: In this respect, we note that, while Haber and Pinkas considered
various well-known concrete schemes and conditions under which their keys could be partially shared,
none of their examples having provable security in the standard model lead to identical keypairs for both
signature and encryption. Indeed, while the approach of Haber and Pinkas can be made to work in the
random oracle model by careful oracle programming and domain separation, their approach does not
naturally extend to the standard model. More specifically, in their approach, to be able to simulate the
signing oracle in the IND-CCA security game, the public key of the combined scheme cannot be exactly
the same as the public key of the underlying encryption scheme (otherwise, successful simulation would
lead to a signature forgery). This makes it hard to achieve full effective overlap between the public keys
for signing and encryption. For the (standard model) schemes considered by Haber and Pinkas this results
in the requirements that part of the public key be specific to the encryption scheme and that another
part of it be specific to the signature scheme. Furthermore, at the time of publication of [19] only a few
secure (IND-CCA2, resp. EUF-CMA) and efficient standard-model schemes were known. Consequently,
no “compatible” signature and encryption schemes were identified in [19] for the standard model.

Combined schemes from trapdoor permutations: The special case of combined schemes built
from trapdoor permutations was considered in [10, 27]. Here, both sets of authors considered the use
of various message padding schemes in conjunction with an arbitrary trapdoor permutation to build
combined public key schemes having joint security. Specifically, Coron et al. [10] considered the case of
PSS-R encoding, while Komano and Ohta [27] considered the cases of OAEP+ and REACT encodings.
All of the results in these two papers are in the random oracle model.

In further related, but distinct, work, Dodis et al. [14] (see also [13]) considered the use of message
padding schemes and trapdoor permutations to build signcryption schemes. These offer the combined
security properties of signature and encryption in a single cryptographic transform (as opposed to the
notion of a combined public key scheme which offers these security properties separately, but with a
common key generation algorithm). Dodis et al. showed, again in the random oracle model, how to
build efficient, secure signcryption schemes in which each user’s keypair, specifying a permutation and
its trapdoor, is used for both signing and encryption purposes. They were careful to point out that the
previous results of [10, 27] concerning combined public key schemes do not immediately imply similar
results in the more complicated signcryption setting, nor can they be immediately applied to construct
secure signcryption schemes via the generic composition methods of Dodis et al. [3].

1.1 Our Contribution

We focus on the problem of how to construct combined public key schemes which are jointly secure in
the standard model, a problem for which, as we have explained above, there currently exist no fully
satisfactory solutions. Naturally, for reasons of practical efficiency, we are interested in minimising the
size of keys (both public and private), ciphertexts, and signatures in such schemes. The complexity of
the various algorithms needed to implement the schemes will also be an important consideration.

As a warm-up, in Section 3, we give the simple Cartesian product construction, as well as a construc-
tion showing that the general problem is not vacuous (i.e. that there exist insecure combined schemes
whose component schemes are secure when used in isolation).
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We then present in Section 4 a construction for a combined public key scheme using an IBE scheme
as a component. The trick here is to use the IBE scheme in the Naor transform and the CHK trans-
form simultaneously to create a combined public key scheme that is jointly secure, under rather weak
requirements on the starting IBE scheme (specifically, the IBE scheme needs to be OW-ID-CPA and
IND-sID-CPA secure). This construction extends easily to the (hierarchical) identity-based setting. In-
stantiating this construction using standard model secure IBE schemes from the literature already yields
rather efficient combined schemes. For example, using an asymmetric pairing version of Gentry’s IBE
scheme [18], we can achieve a combined scheme in which, at the 128-bit security level, the public key size
is 1536 bits, the signature size is 768 bits and the ciphertext size is 2304 bits (plus the size of a signature
and a verification key for a one-time signature scheme), with joint security being based on a q-type
assumption. This is already competitive with schemes arising from the Cartesian product construction.

We then provide a more efficient direct construction for a combined scheme with joint security in
Section 5. This construction is based on the signature scheme of Boneh and Boyen [6] and a KEM
obtained by applying the techniques by Boyen, Mei and Waters [9] to the second IBE scheme of Boneh
and Boyen in [5]. At the 128-bit security level, it enjoys public keys that consist of 1280 bits, signatures
that are 768 bits and a ciphertext overhead of just 512 bits. The signatures can be shrunk at the cost of
increasing the public key size.

The remainder of the paper then concerns the applications of our ideas to signcryption. We show in
Section 7 that a combined public key scheme can be used to construct a signcryption scheme, using a
“sign-then-encrypt” construction, that is secure in the strongest security model for signcryption (achiev-
ing insider confidentiality and insider unforgeability in the multi-user setting). For technical reasons, we
need a tag-based encryption scheme for this construction, so our earlier focus is also on this extended
type of encryption scheme. Instantiating this construction with our concrete combined public key scheme
effectively solves the challenge implicitly laid down by Dodis et al. in [13], to construct an efficient stan-
dard model signcryption scheme in which a single short keypair can securely be used for both sender and
receiver functions. Furthermore, we are able to show that the signcryption scheme we obtain is jointly
secure (in an appropriate sense, to be made precise in Section 7) when used in combination with both its
signature and encryption components. Thus we are able to obtain a triple of functionalities (signcryption,
signature, encryption) which are jointly secure using only a single keypair.

1.2 Further Related Work

Further work on combined public key schemes in the random oracle model, for both the normal public key
setting and the identity-based setting can be found in [38]. In particular, it is proved that the identity-
based signature scheme of Hess [22] and Boneh and Franklin’s identity-based encryption scheme [8] can
be used safely together.

The topic of joint security of combined public key schemes is somewhat linked to the topic of cryp-
tographic agility [2], which considers security when the same key (or key pair) is used simultaneously in
multiple instantiations of the same cryptographic primitive. This contrasts with joint security, where we
are concerned with security when the same key pair is used simultaneously in instantiations of different
cryptographic primitives. The connections between these different but evidently related topics remain to
be explored.

Examples of signcryption schemes making use of a single keypair are known [29–32], but these are all
in the random oracle model.

2 Preliminaries

In our constructions, we will make use of a number of standard primitives, including digital signatures,
(tag-based) public key encryption, identity-based encryption (IBE), a data encapsulation mechanism
(DEM), and an always second-preimage resistant hash function. The definitions and security notions for
these primitives are given in Appendix A. In the following, we briefly recall the properties of bilinear
pairings as well as define the computational assumptions which we will make use of to prove the security
of our concrete constructions.
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Bilinear Pairings: Let G1 = 〈g1〉, G2 = 〈g2〉, GT be groups of prime order p. A pairing is a map
e : G1 ×G2 → GT that satisfies the following properties:

1. Bilinear: For all a, b ∈ Z, e(ga1 , gb2) = e(g1, g2)
ab

.
2. Non-degenerate: e(g1, g2) 6= 1.
3. Computable: There is an efficient algorithm to compute the map e.

Note that we work exclusively in the setting of asymmetric pairings, whereas schemes are often
presented in the naive setting of symmetric pairings e : G×G→ GT . At higher security levels (128 bits
and above), asymmetric pairings are far more efficient both in terms of computation and in terms of the
size of group elements [17]. As a concrete example, using BN curves [4] and sextic twists, we can attain
the 128-bit security level with elements of G1 being represented by 256 bits and elements of G2 needing
512 bits. By exploiting compression techniques [37], elements of GT in this case can be represented using
1024 bits. For further details on parameter selection for pairings, see [16].

We will make use of the following assumptions in proving the security of our concrete constructions.

Strong Diffie-Hellman (SDH) assumption [6]: Let G1 and G2 be two cyclic groups of prime order
p, respectively generated by g1 and g2. In the bilinear group pair (G1,G2), the q-SDH problem is stated
as follows:

Given as input a (q + 3)-tuple of elements(
g1, g

x
1 , g2, g

x
2 , g

(x2)
2 , . . . , g

(xq)
2

)
∈ G2

1 ×Gq+1
2

output a pair
(
c, g

1/(x+c)
2

)
∈ Zp ×G2 for a freely chosen value c ∈ Zp\{−x}.

An algorithm A solves the q-SDH problem in the bilinear group pair (G1,G2) with advantage ε if

Pr
[
A
(
g1, g

x
1 , g2, g

x
2 , g

(x2)
2 , . . . , g

(xq)
2

)
=
(
c, g

1/(x+c)
2

)]
≥ ε,

where the probability is over the random choice of generators g1 ∈ G1 and g2 ∈ G2, the random choice of
x ∈ Z∗p, and the random bits consumed by A. We say that the (t, q, ε)-SDH assumption holds in (G1,G2)
if no t-time algorithm has advantage at least ε in solving the q-SDH problem in (G1,G2).

Decisional Bilinear Diffie-Hellman Inversion (DBDHI) assumption [5]: Let G1 and G2 be two
cyclic groups of prime order p, respectively generated by g1 and g2. In the bilinear group pair (G1,G2),
the q-DBDHI problem is stated as follows:

Given as input a (q + 4)-tuple of elements(
g1, g

x
1 , g2, g

x
2 , g

(x2)
2 , . . . , g

(xq)
2 , T

)
∈ G2

1 ×Gq+1
2 ×GT

output 0 if T = e(g1, g2)1/x or 1 if T is a random element in GT .

An algorithm A solves the q-DBDHI problem in the bilinear group pair (G1,G2) with advantage ε if∣∣∣Pr
[
A
(
g1, g

x
1 , g2, g

x
2 , g

(x2)
2 , . . . , g

(xq)
2 , e(g1, g2)1/x

)
= 0
]
− Pr

[
A
(
g1, g

x
1 , g2, g

x
2 , g

(x2)
2 , . . . , g

(xq)
2 , T

)
= 0
]∣∣∣ ≥ ε,

where the probability is over the random choice of generators g1 ∈ G1 and g2 ∈ G2, the random choice
of x ∈ Z∗p, the random choice of T ∈ GT , and the random bits consumed by A. We say that the (t, q, ε)-
DBDHI assumption holds in (G1,G2) if no t-time algorithm has advantage at least ε in solving the
q-DBDHI problem in (G1,G2).

3 Combined Signature and Encryption Schemes

A combined signature and encryption scheme is a combination of a signature scheme and a public key
encryption scheme that share a key generation algorithm and hence a keypair (pk, sk). It comprises
a tuple of algorithms (KeyGen, Sign, Verify, Encrypt, Decrypt) such that (KeyGen, Sign, Verify) form a
signature scheme and (KeyGen, Encrypt, Decrypt) form a PKE scheme. Since the signature and PKE
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schemes share a keypair the standard notions of EUF-CMA and IND-CCA security need to be extended
to reflect an adversary’s ability to request both signatures and decryptions under the challenge public
key. When defining a security game against a component of the scheme the nature of any additional
oracles depends on the required security of the other components. For example, if EUF-CMA security of
the signature component of a combined signature and encryption scheme is required, then it is necessary
to provide the adversary with unrestricted access to a signature oracle when proving IND-CCA security
of the encryption component of the scheme. The security definitions given implicitly in [10], considering
IND-CCA security of the encryption component and EUF-CMA security of the signature component,
are stated formally here.

EUF-CMA security in the presence of a decryption oracle: Let (KeyGen,Sign,Verify,Encrypt,
Decrypt) be a combined signature and encryption scheme. Existential unforgeability of the signature
component under an adaptive chosen message attack in the presence of an additional decryption oracle
is defined through the following game between a challenger and an adversary A.

Setup: The challenger generates a keypair (pk, sk)← KeyGen(1k) and gives A the challenge public key
pk.

Query phase: A requests signatures on messages mi of its choice. The challenger responds to each
signature query with a signature σi ← Sign(sk,mi). A also requests decryptions of ciphertexts ci of
its choice. The challenger responds to each decryption query with a message m← Decrypt(sk, ci) or
a failure symbol ⊥.

Forgery: A outputs a message signature pair (σ,m) such that m was not submitted to the signing
oracle, and wins the game if Verify(pk, σ,m) = 1.

The advantage of an adversary A is the probability it wins the above game.
A forgerA (t, qd, qs, ε)-breaks the signature component of a combined signature and encryption scheme

if A runs in time at most t, makes at most qd decryption queries and qs signature queries and has
advantage at least ε. The signature component of a combined signature and encryption scheme is said to
be (t, qd, qs, ε)-EUF-CMA secure in the presence of a decryption oracle if no forger (t, qd, qs, ε)-breaks it.

IND-CCA security in the presence of a signing oracle: Let (KeyGen,Sign,Verify,Encrypt,Decrypt)
be a combined signature and encryption scheme. Indistinguishability of the encryption component under
an adaptive chosen ciphertext attack in the presence of an additional signing oracle is defined through
the following game between a challenger and an adversary A.

Setup: The challenger generates a keypair (pk, sk) ← Keyen(1k) and gives A the challenge public key
pk.

Phase 1: A requests decryptions of ciphertexts ci of its choice. The challenger responds to each decryp-
tion query with a message m ← Decrypt(sk, ci) or a failure symbol ⊥. A also requests signatures
on messages mi of its choice. The challenger responds to each signature query with a signature
σi ← Sign(sk,mi).

Challenge: A chooses two equal length messages m0,m1. The challenger chooses a random bit b, com-
putes c∗ ← Encrypt(pk,mb), and passes c∗ to the adversary.

Phase 2: As Phase 1 but with the restriction that A must not request the decryption of the challenge
ciphertext c∗.

Guess: A outputs a guess b′ for b.

The advantage of A is
∣∣Pr[b′ = b]− 1

2

∣∣.
An adversary A (t, qd, qs, ε)-breaks the encryption component of a combined signature and encryption

scheme if A runs in time at most t, makes at most qd decryption queries and qs signature queries and has
advantage at least ε. The encryption component of a combined signature and encryption scheme is said
to be (t, qd, qs, ε)-IND-CCA secure in the presence of a signing oracle if no adversary (t, qd, qs, ε)-breaks it.

Informally, we say that a combined scheme is jointly secure if it is both EUF-CMA secure in the
presence of a decryption oracle and IND-CCA secure in the presence of a signing oracle.

In addition to a combined public key scheme defined as above, we will consider a scheme in which
the encryption component corresponds to a tag-based encryption scheme (see Appendix A.2). The cor-
responding security notions, which we will refer to as EUF-CMA security in the presence of a tag-based
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decryption oracle and IND-tag-CCA security in the presence of a signing oracle, are simple extensions
of the above definitions in which the decryption oracle takes both a ciphertext c and a tag t as input.
Furthermore, in the challenge phase of the IND-tag-CCA security in the presence of a signing oracle, the
adversary A will submit challenge messages m0,m1 and a challenge tag t∗, and is not allowed to submit
(c∗, t∗) to the decryption oracle in Phase 2. This type of combined public key scheme will be used in the
construction of a joint signcryption, signature and encryption scheme presented in Section 7.

3.1 A Cartesian Product Construction

A trivial way of obtaining a system satisfying the above security properties is to concatenate the keys
of an encryption scheme and signature scheme, then use the appropriate component of the compound
key for each operation. This gives a combined signature and encryption scheme where the signature and
encryption operations are essentially independent. Consequently their respective security properties are
retained in the presence of the additional oracle. This simple construction sets a benchmark in terms
of key size and other performance measures that any bespoke construction should best in one or more
metrics.

Formally, let S = (S.KeyGen,S.Sign,S.Verify) be a signature scheme, and let E = (E .KeyGen, E .Encrypt,
E .Decrypt) be an encryption scheme. Then the Cartesian product combined signature and encryption
scheme CartCSE(E ,S) is constructed as follows:

CartCSE(E ,S).KeyGen(1k): Run S.KeyGen(1k) to get (pks, sks). Run E .KeyGen(1k) to get (pke, ske).
Output the public key pk = (pks, pke) and the private key sk = (sks, ske).

CartCSE(E ,S).Sign(sk,m): Output S.Sign(sks,m).

CartCSE(E ,S).Verify(pk, σ,m): Output S.Verify(pks, σ,m).

CartCSE(E ,S).Encrypt(pk,m): Output E .Encrypt(pke,m).

CartCSE(E ,S).Decrypt(sk, c): Output E .Decrypt(ske, c).

We omit the straightforward proof that this scheme is jointly secure if S is EUF-CMA secure and E
is IND-CCA secure.

3.2 An Insecure CSE Scheme whose Components are Secure

To show that the definitions are not trivially satisfied, we give a pathological example to show that
a PKE scheme and a signature scheme that are individually secure may not be secure when used in
combination. Let S = (S.KeyGen,S.Sign,S.Verify) be an EUF-CMA secure signature scheme, and let
E = (E .KeyGen, E .Encrypt, E .Decrypt) be an IND-CCA secure encryption scheme. A combined signature
and encryption scheme BadCSE(E ,S) can be constructed as follows.

BadCSE(E ,S).KeyGen(1k): Run S.KeyGen(1k) to get (pks, sks). Run E .KeyGen(1k) to get (pke, ske).
Output the public key pk = (pks, pke) and the private key sk = (sks, ske).

BadCSE(E ,S).Sign(sk,m): Compute σ′ = S.Sign(sks,m). Output σ = σ′||ske.
BadCSE(E ,S).Verify(pk, σ,m): Parse σ as σ′||ske. Run S.Verify(pks, σ

′,m) and output the result.

BadCSE(E ,S).Encrypt(pk,m): Output c = E .Encrypt(pke,m).

BadCSE(E ,S).Decrypt(sk, c): Run E .Decrypt(ske, c). If this decryption is successful, output the decrypted
message. Otherwise (if ⊥ was returned), output sks.

From the security of the base schemes it is easy to see that the signature scheme given by the al-
gorithms BadCSE(E ,S).KeyGen, BadCSE(E ,S).Sign, BadCSE(E ,S).Verify is EUF-CMA secure, and the
PKE scheme with algorithms BadCSE(E ,S).KeyGen, BadCSE(E ,S).Encrypt, BadCSE(E ,S).Decrypt is
IND-CCA secure. However when key generation is shared a single signature reveals the PKE scheme’s
private key, and the decryption of a badly formed ciphertext reveals the private key of the signature
scheme. Thus BadCSE(E ,S) is totally insecure, even though its component schemes are secure.
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CSE(I).KeyGen(1k):

(mpk,msk)← I.Setup(1k)
(pk, sk) = (mpk,msk)
return (pk, sk)

CSE(I).Sign(sk,m):
ID = 0||m
σ ← I.Extract(sk, ID)
return σ

CSE(I).Verify(pk, σ,m):
ID = 0||m
x←R M
c← I.Encrypt(pk, ID, x)
if I.Decrypt(pk, σ, c) = x
then return 1
else return 0

CSE(I).Encrypt(pk, t,m):
(vk, sk′)← OT .KeyGen
ID = 1||vk
c′ ← I.Encrypt(pk, ID,m)
σ ← OT .Sign(sk′, c′||t)
return (vk, σ, c′)

CSE(I).Decrypt(sk, t, c):
Parse c as (vk, σ, c′)
if OT .Verify(vk, σ, c′||t) = 1
then ID = 1||vk

skID ← I.Extract(sk, ID)
return I.Decrypt(pk, skID, c′)

else return ⊥

Fig. 1. Generic construction from IBE

4 A Generic Construction from IBE

We show how to build a combined signature and encryption scheme from an IBE scheme I with algorithms
I.Setup, I.Extract, I.Encrypt, I.Decrypt. We make use of a one time strongly secure signature scheme
OT with algorithms OT .KeyGen, OT .Sign(sk,m), OT .Verify(pk, σ,m). The construction is particularly
simple: the signature scheme component is constructed through the Naor transform [8] and the PKE
scheme component through a tag-based version of the CHK transform [7]. Since in the Naor construction
signatures are just private keys from the IBE scheme, and these private keys can be used to decrypt
ciphertexts in the PKE scheme resulting from the CHK transform, we use a bit prefix in the identity
space to provide domain separation between the signatures and private keys.

We assume I has message space M, ciphertext space C and identity space {0, 1}n+1, and that OT
has public key space {0, 1}n. Then the signature scheme component of CSE(I) has message space {0, 1}n
but can be extended to messages of arbitrary length through the use of a collision resistant hash function
H : {0, 1}∗ → {0, 1}n. The PKE component of CSE(I) has message spaceM. The algorithms of CSE(I)
are shown in Figure 1.

Theorem 1 Let I be a (t′, q, ε)-OW-ID-CPA secure IBE scheme. Then the signature component of
CSE(I) is (t, qd, qs, ε)-EUF-CMA secure in the presence of a tag-based decryption oracle provided that

qs + qd ≤ q and t ≤ t′ − qd(Tv + Td)− Td,

where Tv is the maximum time for a verification in OT and Td is the maximum time for a decryption
in I.

Proof of Theorem 1. Suppose there exists a forger F that (t, qd, qs, ε) breaks the EUF-CMA security of
the signature component of CSE(I) in the presence of a decryption oracle. We construct an algorithm A
that interacts with the forger F to (t′, q, ε)-OW-ID-CPA break the IBE scheme I.

Setup: A is given a master public key mpk which it gives to F as the public key.
Signing queries: In response to a request for a signature on message m, A queries its extraction oracle

for the identity ID = 0||m to obtain skID which it returns to F as the signature.
Decryption queries: In response to a decryption query for a ciphertext c = (vk, σ, c′) with tag t, A

verifies that σ is a valid signature on c′||t with verification key vk. If it is not a valid signature, A
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returns ⊥. If the signature is valid, A queries its extraction oracle for the identity ID = 1||vk to
obtain skID which it uses to decrypt c′, returning the output of the decryption operation as the
result of the decryption query.

Forgery: Eventually F will return a forgery (σ∗,m∗) on a message m∗ for which a signing query was
not made. At this point A outputs ID∗ = 0||m∗ as the target identity. This is a valid choice; since
a signing query was not made for message m∗ an extraction query was not made for ID = 0||m∗.

Challenge: A receives a ciphertext c∗, which is the encryption of a random message m for identity ID∗.
If σ∗ is a valid signature for message m∗ then σ∗ is a valid decryption key for identity ID∗. This
allows A to decrypt c∗ using skID∗ = σ∗ to retrieve the message m which it subsequently outputs.

A succeeds precisely when F succeeds, so if F outputs a valid forgery with probability ε in time t then
algorithm A succeeds in time at most t+ qd(Tv + T d) + Td with the same probability ε.

Theorem 2 Let I be an (ti, qi, εi)-IND-sID-CPA secure IBE scheme and let OT be a (ts, εs)-strongly
unforgeable one time signature scheme. Then the encryption component of CSE(I) is (t, qd, qs, ε)-IND-
tag-CCA secure in the presence of a signing oracle provided that

ε >
1

2
εs + εi, qs + qd < qi, and t < ti − Tkg − Tsig − qd(Tv + Td),

where Tkg, Tsig and Tv are the maximum times for key generation, signing and verifying respectively in
OT , and Td is the maximum decryption time in I.

Proof of Theorem 2. The proof follows closely that of Theorem 1 in [7]. Let D be an adversary against the
IND-CCA security of the encryption component of CSE(I) in the presence of a signing oracle running in
time at most t and making at most qs signature queries and qd decryption queries. We use D to build
an IND-sID-CPA adversary B against I as follows.

Setup: B runs OT .KeyGen to obtain a keypair (vk∗, sk∗) then submits ID∗ = 1||vk∗ as the target
identity. B is then given master public key mpk which it gives to D as the challenge public key.

Decryption queries: We partition the decryption queries into three possible cases and show how B re-
sponds to each case. Suppose the query is for ciphertext (vk, σ, c′) with tag t, and letOT .Verify(vk, σ, c′||t) =
validity.

Case 1: vk = vk∗

If validity = 0 then B responds to the decryption query with ⊥. If validity = 1 then a forgery
has been made against OT , call this event Forge. If Forge occurs, B aborts and outputs a random
bit b′.

Case 2: vk 6= vk∗ and validity = 0
B responds to the decryption query with ⊥.

Case 3: vk 6= vk∗ and validity = 1
B queries the extraction oracle for identity ID = 1||vk to obtain skID, then uses skID to decrypt
c′, responding to the decryption query with the output of the decryption operation.

Signature queries: In response to a signature query for message m, B queries its extraction oracle for
identity ID = 0||m to obtain skID which it returns as the signature.

Challenge: Eventually D will output a pair of messages m0,m1 and a tag t∗. B forwards these messages
and receives a challenge ciphertext c∗. B calls OT .Sign(sk∗, c∗||t∗) to obtain σ∗ and sends C =
(vk∗, σ∗, c∗) to D. D may make more signature and decryption queries under the restriction that it
must not submit to the decryption oracle its challenge ciphertext C with tag t∗. D then submits a
guess b′ which B outputs as its guess.

B represents a legal strategy for attacking I, in particular B never requests the private key corre-
sponding to the target identity ID∗. Provided Forge does not occur, B provides a perfect simulation for
D so B succeeds with the same probability as D. If Forge does occur then B outputs a random bit and
succeeds with probability 1

2 . Letting PrBIBE[Succ] denote the probability of B outputting the correct bit

in the IBE security game and PrDPKE[Succ] denote the probability of D outputting the correct bit in the
PKE security game, it can be seen that∣∣∣∣PrDPKE[Succ ∧ Forge] +

1

2
PrDPKE[Forge]− 1

2

∣∣∣∣ =

∣∣∣∣PrBIBE[Succ]− 1

2

∣∣∣∣ .
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Since I is an (ti, qi, εi)-IND-sID-CPA secure IBE scheme,
∣∣PrBIBE[Succ]− 1

2

∣∣ < εi. The event Forge

represents a signature forgery against OT , so PrDPKE[Forge] < εs. It follows that

ε =

∣∣∣∣PrDPKE[Succ]− 1

2

∣∣∣∣
=

∣∣∣∣PrDPKE[Succ ∧ Forge] + PrDPKE[Succ ∧ Forge]− 1

2
PrDPKE[Forge] +

1

2
PrDPKE[Forge]− 1

2

∣∣∣∣
≤
∣∣∣∣PrDPKE[Succ ∧ Forge]− 1

2
PrDPKE[Forge]

∣∣∣∣+

∣∣∣∣PrDPKE[Succ ∧ Forge] +
1

2
PrDPKE[Forge]− 1

2

∣∣∣∣
≤ 1

2
PrDPKE[Forge] +

∣∣∣∣PrDPKE[Succ ∧ Forge] +
1

2
PrDPKE[Forge]− 1

2

∣∣∣∣
=

1

2
PrDPKE[Forge] +

∣∣∣∣PrBIBE[Succ]− 1

2

∣∣∣∣
≤ 1

2
εs + εi.

The running time of B is at most t + Tkg + qd(Tv + Td) + Tsig, and it asks at most qs + qd private key
extraction queries, so the theorem holds. ut

IBE schemes meeting the standard model security requirements include those of Gentry [18] and
Waters [39]. The latter results in a large public key (n+ 3 group elements), though this could be reduced
in practice by generating most of the elements from a seed in a pseudo-random manner. We focus on
the instantiation of our construction using Gentry’s scheme. This scheme was originally presented in
the setting of symmetric pairings. When we translate it to the asymmetric setting (see Appendix C for
details) and apply our construction at the 128-bit security level using BN curves with sextic twists, we
obtain a combined public key scheme in which the public key consists of two elements of G1 and two
elements of G2, giving a public key size of 1536 bits. Ciphertexts encrypt elements of GT and consist of
an element of G1, two elements of GT , and a verification key and signature from OT , so are 2304 bits plus
the bit length of a verification key and signature in OT . Signatures consist of an element of Zp and an
element of G2, so are 768 bits in size. Here we assume that descriptions of groups and pairings are domain
parameters that are omitted from our key size calculations. The security of this scheme depends on an
assumption closely related to the decisional q-augmented bilinear Diffie-Hellman exponent assumption.

This construction could be improved further using the Boneh-Katz [7] alternative to the CHK trans-
form. We omit the details in favour of our next scheme.

5 A More Efficient Construction

The following scheme is based on the signature scheme by Boneh and Boyen [6] and a KEM obtained by
applying the techniques by Boyen, Mei and Waters [9] to the second IBE scheme by Boneh and Boyen
in [5]. The schemes make use of a bilinear pairing e : G1 × G2 → GT , where the groups are of order p,
and the KEM furthermore makes use of an always second-preimage resistant (aSec-secure) hash function
H : G1 → {0, 1}n−1 where 2n < p. To obtain a full encryption scheme, the KEM is combined with a
DEM, and we assume for simplicity that the key space of the DEM is K = GT . Where a binary string
is treated as a member of Zp it is implicitly converted in the natural manner. The signature scheme
supports messages in {0, 1}n−1, but can be extended to support message in {0, 1}∗ by using a collision
resistant hash function, while the encryption scheme supports messages of arbitrary length due to the
use of a DEM. Note that to minimize the public key size and ciphertext overhead in the scheme, the
elements of the public key are placed in the group G1. However, this implies that signatures contain an
element of group G2, having larger bit representations of elements.

KeyGen(1k): Choose random generators g1 ∈ G1, g2 ∈ G2 and random integers x, y ∈ Z∗p, and compute
X = gx1 and Y = gy1 . The public key is (g1, g2, X, Y ) and the private key is (x, y).
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Sign(sk,m): To sign a message m ∈ {0, 1}n−1 first prepend a zero to m to give m′ = 0||m ∈ {0, 1}n.

Choose random r ∈ Zp. If x+ry+m′ ≡ 0 mod p then select another r ∈ Zp. Compute σ = g
1

x+m′+yr

2 ∈
G2. The signature is (σ, r) ∈ G2 × Zp.

Verify(pk, σ,m): If e(X · gm′1 · Y r, σ) = e(g1, g2), where m′ = 0||m, then return 1, otherwise return 0.
Encrypt(pk,m): To encrypt a message m ∈ {0, 1}∗, choose random s ∈ Z∗p and compute c1 = Y s and

h = H(c1). Prepend a 1 to h to give h′ = 1||h ∈ {0, 1}n, and compute c2 = Xs ·gs·h′1 . Lastly, compute
the key K = e(g1, g2)s ∈ GT and encrypt the message m using the DEM i.e. c3 = DEnc(K,m). The
ciphertext is c = (c1, c2, c3).

Decrypt(sk, c): To decrypt a ciphertext c = (c1, c2, c3), first compute h = H(c1) and prepend a 1 to h

to get h′ = 1||h. If c
(x+h′)/y
1 6= c2, output ⊥. Otherwise, compute the key K = e(c1, g

1/y
2 ) ∈ GT , and

output the message m = DDec(K, c3).

We note that the computational cost of encryption and signature verification can be reduced by adding
the redundant element v = e(g1, g2) to the public key, but that this will significantly increase the public
key size.

Theorem 3 Suppose the (t′, q, ε′)-SDH assumption holds in (G1,G2). Then the above combined public
key scheme is (t, qd, qs, ε)-EUF-CMA secure in the presence of a decryption oracle given that

qs ≤ q, ε ≥ 2ε′ + qs/p ≈ 2ε′ and t ≤ t′ −Θ(qdTp + (qd + q2)Te),

where Tp is the maximum time for evaluating a pairing and Te is the maximum time for computing an
exponentiation in G1, G2 and Zp.

Proof. See Appendix B.

Theorem 4 Suppose that the hash function H is (th, εh)-aSec secure, that the (tdhi, qdhi, εdhi)-DBDHI
assumption holds in the groups G1,G2, and that the DEM is (tdem, qdem, εdem)-IND-CCA secure. Then
the combined public key scheme above is (t, qd, qs, ε, )-IND-CCA secure in the presence of a signing oracle
given that

qs ≤ qdhi, qd ≤ qdem, ε ≥ εh + εdhi + εdem + qs/p, and t ≤ tmin −Θ(qdTp + (qdhi + qd)Te),

where tmin = min(th, tdhi, tdem), Tp is the maximum time for evaluating a pairing, and Te is the maximum
time for computing an exponentiation in G1,G2.

Proof. See Appendix B.

The above scheme provides public keys consisting of three group elements of G1 and one group
element of G2. If the scheme is instantiated using BN curves with sextic twists mentioned above, this
translates into a public key size of 1280 bits for a 128 bit security level. Furthermore, assuming that the
DEM is redundancy-free (which can be achieved if the DEM is a strong pseudorandom permutation [35]),
the total ciphertext overhead is just two group elements of G1 which translates into 512 bits. Signatures
consist of a single group element of G2 and an element of Zp, and will be 768 bits. Again, we assume
that descriptions of groups and pairings are ignored in these calculations.

5.1 A Tag-based Extension

Unlike the generic construction presented in Section 4, we do not obtain a tag-based encryption com-
ponent directly from the above construction of a combined public key scheme. However, to allow the
scheme to be used to instantiate our combined signcryption, signature and encryption scheme presented
in Section 7, we now show how to extend the scheme to support tag-based encryption.

The extension is based on the construction of a Tag-KEM from an ordinary KEM and a MAC
by Abe, Gennaro and Kurosawa [1]. For this purpose, we furthermore need a key derivation function
KDF : GT → Kd × Km where Kd is the keyspace of the used DEM and Km is the keyspace of the used
MAC. The idea is to derive both a DEM and a MAC key from the original key used for the DEM in the
above construction, and then use the MAC key to authenticate the tag. More specifically, the encryption
component of the above scheme is modified as follows:
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Encrypt(pk, t,m): To encrypt a message m ∈ {0, 1}∗ under the tag t, choose random s ∈ Z∗p and compute

c1 = Y s and h = H(c1). Prepend a 1 to h to give h′ = 1||h ∈ {0, 1}n, and compute c2 = Xs · gs·h′1 .
Lastly, compute K = e(g1, g2)s and the keys (Kd,Km) = KDF(K), encrypt the message m using
the DEM, c3 = DEnc(Kd,m), and compute a MAC of the tag t, τ = MAC(Km, t). The ciphertext is
c = (c1, c2, c3, τ).

Decrypt(sk, t, c): To decrypt a ciphertext c = (c1, c2, c3, τ) under tag t, first compute h = H(c1) and

prepend a 1 to h to get h′ = 1||h. If c
(x+h′)/y
1 6= c2, output ⊥. Otherwise, compute K = e(c1, g

1/y
2 ) and

the keys (Kd,Km) = KDF(K). If MVer(Km, t, τ) = 0, output ⊥, and otherwise output the message
m = DDec(K, c3).

It is relatively easy to confirm that the unforgeability of the combined scheme will not be affected
by the above changes and that the proof of Theorem 3 is still valid for the extended scheme when the
obvious changes are made to the proof. The confidentiality of the extended scheme is guaranteed by the
following theorem.

Theorem 5 Suppose that the hash function H is (th, εh)-aSec secure, that the (tdhi, qdhi, εdhi)-DBDHI
assumption holds in G1,G2, that the key derivation function KDF is (tkdf , εkdf )-secure, that the DEM is
(tdem, qdem, εdem)-IND-CCA secure, and that the MAC is (tmac, εmac)-sUF-OT secure. Then the combined
tag-based public key scheme above is (t, qd, qs, ε)-IND-tag-CCA secure in the presence of a signing oracle
given that

qs ≤ qdhi, qd ≤ qdem, ε ≥ εh + 2εdhi + 2εkdf + εdem + qdεmac + (qd + 2qs)/p, and

t ≤ tmin −Θ(qdTp + (qdhi + qd)Te),

where tmin = min(th, tdhi, tkdf , tdem, tmac), Tp is the maximum time for evaluating a pairing, and Te is
the maximum time for computing an exponentiation in G1 and G2.

Proof. See Appendix B.

The tag-based extension will have the same public key and signature size as the original scheme, but
the ciphertext overhead will be increased with the size of a MAC, which for a 128 bit security level,
means an extra 128 bits. Hence, the total ciphertext overhead will be 640 bits.

6 Comparison of Schemes

In this section, we provide a comparison of the schemes arising from our IBE-based construction, our
more efficient construction in Section 5 and the Cartesian product construction. In our comparison we
will limit ourselves to other discrete-log/pairing-based schemes since provably secure (standard model)
lattice-based schemes with short public keys are still unavailable and factoring-based schemes do not scale
very well (for 128-bit security, the modulus would need to be > 3000 bits which is not competitive).We
will include group generators in public key size calculations as the required number depends on the
scheme, but we allow sharing of generators between signature and encryption component in Cartesian
product instantiations to improve these constructions. Note that it is possible to reduce the private key
of any scheme to a single short random seed by making the following simple modification to the scheme:
to generate a public/private keypair, pick a random seed, generate the randomness required by the key
generation algorithm by applying a pseudorandom generator to the seed, and generate the public/private
keypair using this randomness, but store only the seed as the private key. Whenever the original private
key is needed, re-compute this by applying the pseudorandom generator to the seed and re-run the key
generation algorithm with the resulting randomness. This observation essentially makes the difference in
private key sizes irrelevant, and we will not include this aspect in our comparison. We consider several
instantiations of the Cartesian product construction with standard model secure encryption and signature
schemes and give the results in Figure 2.

We will focus on Cartesian product instantiations using the scheme by Boneh and Boyen [6] as a
signature component. This scheme is among the most efficient signature schemes and additionally has
a short public key. To reduce the public key size even further, we can remove the redundant element
v = e(g1, g2) and place as many elements as possible in the group G1 of the pairing. The latter implies
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Signature PKE Public Key Signature Ciphertext
Scheme Scheme Size Size Overhead

BB [6] BB [5] + BMW [9] 1792 768 512
BB [6] KD [28] 2048 768 640
BB [6] Kiltz [25] 1792 768 512

CSE(Gentry) 1536 768 1280 + |vkOT | + |σOT |
Scheme from Sec. 5 1280 768 512

Fig. 2. Comparison of schemes at the 128-bit security level.

that signatures will be elements of G2×Zp which results in an increase in signature size. However, since
the Cartesian product constructions should compete with the combined public key schemes in terms of
public key size, this tradeoff is desirable. While other signature schemes could be considered, we were
not able to find a scheme providing shorter public keys without a significant disadvantage elsewhere. For
instance, hash-based signature schemes give extremely short public keys (the hash function description
plus the root digest), but result in signatures with length logarithmic in the number of messages to be
signed. The signature scheme by Hofheinz and Kiltz [23] has shorter signatures than the Boneh-Boyen
scheme and a public key consisting of a few group elements plus a hash key, but here the hash key will
be long to achieve provable programmability.

For the encryption component, a relevant option is a DEM combined with the KEM obtained by
applying the techniques by Boyen, Mei and Waters [9] to the second IBE scheme of Boneh and Boyen
in [5], which also forms the basis of our concrete scheme. Combined with the Boneh-Boyen signature
scheme, and assuming the group generators in the two schemes are shared, this yields a very efficient
instantiation of the Cartesian product construction in which public keys consist of five group elements of
G1, one group element of G2 (and a key defining a target collision resistant hash function). This is larger
by two elements of G1 than the public key in our concrete construction from Section 5, which translates
to a difference of 512 bits. Note that signature size, ciphertext overhead and computation costs are the
same for the Cartesian product scheme and our construction.

Another encryption scheme to consider is that of Kurosawa and Desmedt [28]. Instantiating the
Cartesian product construction with the Kurosawa-Desmedt scheme and the Boneh-Boyen signature
scheme yields a scheme with a public key consisting of six elements of G1, one element of G2 (and a key
defining a target collision resistant hash), assuming that the Kurosawa-Desmedt scheme is implemented
in G1. Hence, the public key will be larger by three group elements of G1 compared to our concrete
construction, which equates to a difference of 768 bits at the 128-bit security level. Signature size and
signing and verification costs will be the same as in our construction, whereas the ciphertext overhead
will be slightly larger (an extra 128 bits) due to the requirement that the symmetric encryption scheme
used in the Kurosawa-Desmedt scheme is authenticated. However, decryption costs will be lower since
no pairing computations are required.

Lastly, the encryption scheme of Kiltz [25] might be considered. Again, combining this with the Boneh-
Boyen signature scheme, and assuming group generators are shared, will yield a Cartesian product scheme
with public keys consisting of five elements of G1 and one element of G2. This is two group elements of
G1 larger than the public key of our concrete construction, which equates to an increase of 512 bits at
the 128-bit security level. Signature size and ciphertext overhead will be the same while decryption in
the Cartesian product scheme will be more efficient, since no pairing computations are required.

In summary, our concrete construction of a combined public key scheme admits shorter public keys
than any instantiation of the Cartesian product construction of Section 3.1 with known standard model
secure encryption and signature schemes, and furthermore enjoys compact ciphertexts and signatures.

7 Signcryption

A signcryption scheme combines the functionality and security properties of signatures and encryption,
and allows users to obtain message confidentiality and origin authentication through one operation.
However, with the exception of a few random oracle model schemes [29–32], most signcryption schemes
define separate key generation algorithms for senders and receivers, or essentially define a public/private
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keypair to consist of the concatenation of separate sender and receiver keypairs. Hence, a user playing
the role of both sender and receiver will have to generate the equivalent of two keypairs. Extending the
ideas of a combined public key scheme, we show how to construct a signcryption scheme which enables
a user to use a single keypair for both sender and receiver roles, and which furthermore allows efficient
instantiations with short public keys in the standard model.

We define a signcryption scheme to consist of the following algorithms:

Setup(1k): This algorithm returns the common parameters of the scheme, cp.
KeyGen(cp): This algorithm returns a keypair (pk, sk) which can be used to both send and receive

messages. To clarify which role a keypair is used in, we attach the subscript r when used as a receiver
keypair, i.e. (pkr, skr), and attach the subscript s when used as a sender keypair, i.e. (pks, sks).

Signcrypt(cp, sks, pkr,m): This algorithm returns a signcryptext of message m from a sender with private
key sks to a receiver with public key pkr.

Unsigncrypt(cp, pks, skr, c): This algorithm returns either the message m from a sender with public key
pks to a receiver with private key skr, or an error symbol ⊥.

Note that any signcryption scheme can be redefined to use a single key generation algorithm as
defined above. More specifically, a signcryption scheme using separate key generation algorithms for
senders and receivers, KeyGens(cp) and KeyGenr(cp), can be redefined to use a single key generation
algorithm which simply runs (pks, sks) ← KeyGens(cp) and (pkr, skr) ← KeyGenr(cp), and returns the
public key pk = pks||pkr and private key sk = sks||skr. When using (pk, sk) as either a sender or receiver
keypair, only the relevant part of the keys are used. This trivial construction can be used as a benchmark
when judging the public key size and other performance measures of concrete signcryption schemes using
a single keypair for both sender and receiver roles.

7.1 Combined Signcryption, Signature and Encryption Scheme

While efficient signcryption schemes using a single short keypair for both sender and receiver roles are
interesting in their own right, we will consider the more extended primitive which additionally allows
users to use their keypair as part of an ordinary signature and encryption scheme, i.e. we consider a
scheme implementing the functionality of signcryption, signature and encryption using a single keypair.
This type of scheme consists of algorithms (Setup, KeyGen, Signcrypt, Unsigncrypt, Encrypt, Decrypt, Sign,
Verify) such that (Setup, KeyGen, Signcrypt, Unsigncrypt) form a signcryption scheme as defined above,
and (Setup, KeyGen, Encrypt, Decrypt) and (Setup, KeyGen, Sign, Verify) form an encryption and signature
scheme in which the key generation is divided into a two-step process consisting of parameter generation
using Setup and actual key generation using KeyGen.

As in the case of a combined public key scheme, a combined signcryption, signature and encryption
scheme which is jointly secure (as defined in the following section) can trivially be constructed by concate-
nating the public keys and private keys of independent signcryption, signature and encryption schemes.
However, as above, we focus on schemes which are more efficient (in terms of public key size and other
measures) than this type of trivial construction. Note also that while an encryption or signature scheme
can be constructed from a signcryption scheme by attaching an honestly generated “dummy” keypair
to the public parameters and using this in combination with the signcrypt and unsigncrypt algorithms,
this construction will not be jointly secure if a single keypair is used for the signcryption, signature and
encryption components.

7.2 Security Model

A number of security models capturing different levels of security have been proposed for signcryption
(e.g. see [33] for an overview). The main differences between these models concern whether or not the
adversary is considered to be an insider with the knowledge of the secret key material of the challenge
sender and challenge receiver in the definition of confidentiality and unforgeability, respectively, and to
what extent the adversary is allowed to maliciously generate the keys of the users in the system. We will
focus on the strongest security model of these which captures the notions of insider confidentiality and
insider unforgeability in the multi-user setting. However, unlike the case of signcryption schemes using
separate keypairs for the sender and receiver roles, we must give an adversary access to a signcryption
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and unsigncryption oracle in both the confidentiality and unforgeability definitions, since the challenge
private key can be used to both send and receive messages. Furthermore, since we are considering a
scheme which additionally implements the functionality of signature and encryption, we must also give
the adversary access to signing and decryption oracles. In the following, we will formally define the se-
curity of the signcryption component of the type of combined scheme we are considering.

MU-IND-iCCA security in the presence of additional oracles: Multi-user indistinguishability
against an insider chosen ciphertext attack (MU-IND-iCCA) in the presence of additional oracles captures
the property that an adversary cannot distinguish between the signcryption of two different messages
for a challenge receiver, even though all other keys in the system are maliciously generated, and the
adversary is given access to signcryption, unsigncryption, signing and decryption oracles. Formally, this
security notion is defined through the following game between a challenger and an adversary:

Setup: The challenger runs Setup(1k) to get the common parameters cp, then runs KeyGen(cp) to
generate a keypair (pk∗, sk∗) and gives pk∗ to the adversary.

Phase 1: The adversary is given access to four oracles
– a signcryption oracle which, given a message m and a public receiver key pkr, returns the sign-

cryptext c = Signcrypt(cp, sk∗, pkr,m),
– an unsigncryption oracle which, given a signcryptext c and a public sender key pks, returns the

output of Unsigncrypt(cp, pks, sk
∗, c),

– a signing oracle which, given a message m, returns the signature σ = Sign(sk∗,m), and
– a decryption oracle which, given a ciphertext c, returns the output of Dec(sk∗, c)

Challenge: The adversary outputs a keypair (pk′s, sk
′
s) and a pair of equal length messages m0,m1. The

challenger chooses a random bit b and computes a signcryptext c∗ = Signcrypt(cp, sk′s, pk
∗,mb) from

the adversary’s chosen user pk′s to the challenger user pk∗, then gives c∗ to the adversary.
Phase 2: As phase 1, with the restriction that the adversary may not submit the challenge signcryptext

and sender (c∗, pk′s) to the unsigncryption oracle. The adversary may however submit signcryp-
texts c 6= c∗ from its chosen challenge user pk′s, and the challenge signcryptext c∗ from other users
pks 6= pk′s. Furthermore, the adversary may use the signing and decryption oracles in an unrestricted
manner.

Guess: The adversary makes a guess b′ for b and wins if b′ = b.

The adversary’s advantage is
∣∣Pr[b′ = b]− 1

2

∣∣.
We say that a signcryption scheme is (t, qsc, qusc, qs, qd, ε)-MU-IND-iCCA secure in the presence of

additional oracles if there exists no adversary running in time at most t and asking at most qsc, qusc,
qs, and qd signcryption, unsigncryption, signature and decryption queries, respectively, and which has
advantage at least ε in the above game.

MU-EUF-iCMA security in the presence of additional oracles: Multi-user existential unforge-
ability against an insider chosen message attack (MU-EUF-iCMA) in the presence of additional oracles
captures the property that an adversary cannot create a valid signcryptext from a challenge sender which
contains a new message, even if all other keys in the system are maliciously generated and the adversary
is given access to signcryption, unsigncryption, signing and decryption oracles. Formally, this security
notion is defined through the following game between an adversary and a challenger:

Setup: The challenger runs Setup to get the common parameters cp, then runs KeyGen(cp) to generate
a keypair (pk∗, sk∗) and gives pk∗ to the adversary.

Query phase: The adversary is given access to the four oracles defined in the MU-IND-iCCA game.
Forgery: The adversary outputs a keypair (pk′r, sk

′
r) and a signcryptext c∗ and wins if Unsigncrypt(cp, pk∗, sk′r, c

∗)
is a valid message m and the adversary never made a query (m, pk′r) to its signcryption oracle.

The adversary’s advantage is defined by Pr[A wins].
We say that a signcryption scheme is (t, qsc, qusc, qs, qd, ε)-MU-EUF-iCCA secure in the presence of

additional oracles if there exists no adversary running in time at most t and asking at most qsc, qusc,
qs, and qd signcryption, unsigncryption, signature and decryption queries, respectively, and which has
advantage at least ε in the above game.
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CSESC(C).KeyGen(1k):

return C.KeyGen(1k)

CSESC(C).Sign(sk,m):
return C.Sign(sk, 0||m)

CSESC(C).Verify(pk,m, σ):
return C.Verify(pk, 0||m,σ)

CSESC(C).Enc(pk,m):
tag = 0
return C.TEnc(pk, tag,m)

CSESC(C).Dec(sk, c):
tag = 0
return C.TDec(sk, tag, c)

CSESC(C).Signcrypt(cp, sks, pkr,m):
σ ← C.Sign(sks, 1||pkr||m)
tag = 1||pks
c← C.TEnc(pkr, tag,m||σ)
return c

CSESC(C).Unsigncrypt(cp, pks, skr, c):
tag = 1||pks
m′ ← C.TDec(skr, tag, c)
if m′ =⊥

return ⊥
m||σ = m′

if 1← C.Verify(pks, 1||pkr||m,σ)
return m

return ⊥

Fig. 3. Combined signcryption, signature and encryption scheme CSESC(C)

The security of the encryption and signature components is defined like the security of the corre-
sponding components of a combined public key scheme (see Section 3), except that the adversary will
additionally have access to a signcryption and unsigncryption oracle defined as in the MU-IND-iCCA
game above. We omit the straightforward definitions of these models.

7.3 Construction Based on a Combined Public Key Scheme

We will now show how a (tag-based) combined public key scheme can be used to construct a combined
signcryption, signature and encryption scheme. Our construction is based on the “sign then tag-based
encrypt” (StTE) construction of [33]. The tag-based property of the underlying combined public key
scheme serves a dual purpose: firstly, using the public sender key as a tag in the construction of the
signcryption component allows the signcryptext to be bound to a specific sender/receiver keypair which
is required to achieve security in the multi-user setting, and secondly, separation between the signcryption
and the encryption components of the scheme is ensured by using different tags for the construction of
these.

Given a tag-based combined public key scheme C = (C.KeyGen, C.Sign, C.Verify, C.TEnc, C.TDec), the
combined signcryption, signature and encryption scheme CSESC(C) is defined as shown in Figure 3.
The next four theorems establish the joint security of CSESC(C).

Theorem 6 Let C be a joint signature and tag-based encryption scheme, the signature component of
which is (t, qd, qsε)-EUF-CMA secure in the presence of a decryption oracle. Then the signcryption com-
ponent of CSESC(C) is (t′, q′sc, q

′
usc, q

′
s, q
′
d, ε)-MU-EUF-iCMA secure in the presence of additional oracles,

where qs = q′sc + q′s, qd = q′usc + q′d, t = t′+O(q′scTe + q′uscTv), and Te and Tv are the maximum time for
computing an encryption and verifying a signature in C.

Proof of Theorem 6. Suppose there exists an adversary A breaking the unforgeability in the presence
of additional oracles property of the signcryption component of CSESC(C). We construct an algorithm
B that interacts with A to break the EUF-CMA security in the presence of additional oracles of the
signature component of C.

Setup: B is given public key pk∗ which it passes to A.
Queries: B responds to A’s queries as follows:

– On signcryption query (pkr,m), B submits 1||pkr||m to its signing oracle and is given the signa-
ture σ. B sets tag = 1||pk∗ and computes c← C.TEnc(pkr, tag,m||σ), then returns c to A.
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– On unsigncryption query (pks, c), B sets tag = 1||pks then submits (tag, c) to its decryption
oracle and is given the response m′. If m′ =⊥ then B returns ⊥, otherwise it parses m′ as m||σ
and checks C.Verify(pks, 1||pk∗||m,σ). If the signature verifies it returns m to A, otherwise it
returns ⊥.

– On signing query m, B submits 0||m to its signing oracle and returns the signature to A.
– On decryption query (tag, c), B submits (0||tag, c) to its decryption oracle and returns result to
A.

Forgery: A outputs a keypair (pk′r, sk
′
r) and a signcryptext c∗. B sets tag = 1||pk∗ and computes

m′ ← C.TDec(sk′r, tag, c∗). If A’s forgery is valid then m′ = m||σ and C.Verify(pk∗, 1||pk′r||m,σ) = 1.
In addition, A never made a query (pk′r,m) to its signcryption oracle, so B never queried 1||pk′r||m
to its signing oracle. B outputs message 1||pk′r||m and signature σ and succeeds with the same
probability as A.

ut

Theorem 7 Let C be a joint signature and tag-based encryption scheme, the encryption component of
which is (t, qd, qs, ε)-IND-tag-CCA secure in the presence of additional oracles. Then the signcryption
component of CSESC(C) is (t′, q′sc, q

′
usc, q

′
d, q
′
s, ε)-MU-EUF-iCMA secure in the presence of additional

oracles, where qs = q′sc + q′s, qd = q′usc + q′d, t = t′ +O(q′scTe + q′uscTv), and Te and Tv are the maximum
time for computing an encryption and verifying a signature in C.

Proof of Theorem 7. Suppose there exists an adversary A breaking the confidentiality in the presence of
additional oracles property of the signcryption component of CSESC(C). We construct an algorithm B
that interacts with A to break the joint IND-tag-CCA security in the presence of additional oracles of
the encryption component of C.

Setup: B is given public key pk∗ which it passes to A.
Phase 1: B handles A’s queries as in the proof of Theorem 6.
Challenge: A outputs a keypair (pk′s, sk

′
s) and a pair of equal length messages m0,m1. B submits

1||pk∗||m0 and 1||pk∗||m1 to its signing oracle to get signatures σ0 and σ1, then outputs challenge
messages m0||σ0,m1||σ1 and tag 1||pk′s. B receives in return the challenge ciphertext c∗ which it
passes to A.

Phase 2: B handles queries as in phase 1. A is not permitted to make the query (pk′s, c
∗) to its unsign-

cryption oracle, so B does not submit c∗ with tag 1||pk′s to its decryption oracle.
Guess: A outputs a guess b′ which B outputs as its guess, winning with the same probability as A.

ut

Theorem 8 Let C be a joint signature and tag-based encryption scheme, the signature component of
which is (t, qd, qs, ε)-EUF-CMA secure in the presence of a decryption oracle. Then the signature compo-
nent of CSESC(C) is (t′, q′sc, q

′
usc, q

′
s, q
′
d, ε)-EUF-CMA secure in the presence of additional oracles, where

qs = q′sc + q′s, qd = q′usc + q′d, t = t′ + O(q′scTe + q′uscTv), and Te and Tv are the maximum time for
computing an encryption and verifying a signature in C.

Proof of Theorem 8. Suppose there exists an adversary A breaking the EUF-CMA security in the presence
of additional oracles of the signature component of CSESC(C). We construct an algorithm B that interacts
with A to break the EUF-CMA security in the presence of additional oracles of the signature component
of C.

Setup: B is given public key pk∗ which it passes to A.
Queries: B handles A’s queries as in the proof of Theorem 6.
Forgery: A outputs a messagem∗ and a signature σ∗. IfA’s forgery is valid then C.V erify(pk, 0||m∗, σ∗) =

1 and A never made a query m∗ to its signing oracle, so B never queried 0||m∗ to its signing oracle.
B outputs message 0||m∗ and signature σ∗ and succeeds with the same probability as A.

ut

Theorem 9 Let C be a joint signature and tag-based encryption scheme, the encryption component
of which is (t, qd, qs, ε)-IND-tag-CCA secure in the presence of a signing oracle. Then the encryption
component of CSESC(C) is (t′, q′sc, q

′
usc, q

′
s, q
′
d, ε)-IND-CCA secure in the presence of additional oracles,

where qs = q′sc + q′s, qd = q′usc + q′d, t = t′+O(q′scTe + q′uscTv), and Te and Tv are the maximum time for
computing an encryption and verifying a signature in C.
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Proof of Theorem 9. Suppose there exists an adversary A breaking the IND-tag-CCA security in the
presence of additional oracles of the encryption component of CSESC(C). We construct an algorithm B
that interacts with A to break the IND-tag-CCA security in the presence of additional oracles of the
encryption component of C.

Setup: B is given public key pk∗ which it passes to A.
Phase 1: B handles A’s queries as in the proof of Theorem 6.
Challenge: A outputs a pair of equal length messages m0,m1 and a tag t∗. B outputs challenge messages

m0,m1 and tag 0||t∗. B receives in return the challenge ciphertext c∗ which it passes to A.
Phase 2: B handles queries as in phase 1. A is not permitted to make the query (t∗, c∗) to its decryption

oracle, so B does not submit c∗ with tag 0||t∗ to its decryption oracle.
Guess: A outputs a guess b′ which B outputs as its guess, winning with the same probability as A.

ut

The above combined signcryption, signature and encryption scheme can be instantiated by any com-
bined signature and tag-based encryption scheme. In particular, we can use the tag-based extension of
the concrete scheme presented in Section 5. Note that in this case, the group generators g1, g2 can be
shared among all users and can hence be included in the public parameters. This yields public keys
consisting of only two group elements of G1. Hence, when instantiated with BN curves, public keys will
have a size of 512 bits for a 128 bit security level. Ciphertext overhead and signature size will remain
unchanged from the underlying tag-based extension i.e. 640 and 768 bits, respectively. The signcryptext
overhead corresponds to the sum of the ciphertext overhead and signature size, and will hence be 1408
bits.

8 Conclusions and Future Research

We have revisited the topic of joint security for combined public key schemes, focussing on the construc-
tion of schemes in the standard model, an issue not fully addressed in prior work. We gave a general
construction for combined public key schemes from weakly secure IBE, as well as a more efficient concrete
construction based on pairings. Using BN curves, these can be efficiently instantiated at high security
levels and have performance that is competitive with the best schemes arising from the Cartesian prod-
uct construction. Our results fill the gap left open in the original work of Haber and Pinkas [19], of
constructing standard-model-secure combined public key schemes in which the signature and encryption
components share an identical keypair. An interesting open problem is to construct efficient combined
public key schemes in the standard model not using pairings. For example, is it possible to obtain joint
security in the discrete log or in the RSA setting, in the standard model?

We also considered the construction of signcryption schemes from combined public key schemes,
giving a method to produce a triple of schemes (signature, encryption, and signcryption) that are jointly
secure in an appropriate and strong security model, from any jointly secure tag-based combined public
key scheme. This leads to efficient standard model signcryption schemes in which a single short keypair
can be used for both sender and receiver functions.

Our work points the way to an interesting new research area in cryptography, which closely relates
to and generalises the topic of cryptographic agility [2]. The general question can be posed as follows:
under what conditions is it safe to use the same key (or key pair) across multiple instantiations of the
same or different cryptographic primitives?
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A Definitions and Security Notions of Standard Primitives

A.1 Signature Schemes

A digital signature scheme consists of three algorithms:

KeyGen(1k): A probabilistic key generation algorithm that takes as input a security parameter and
outputs a pair (pk, sk) where pk is the public key and sk the private key.

Sign(sk,m): A signing algorithm, often probabilistic, that takes a message m from some message space
M and a private key sk, and outputs a signature σ from some signature space S.

Verify(pk, σ,m): A verification algorithm, which may be probabilistic, that takes a message signature
pair (σ,m) and a public key pk and outputs 1 or 0.

A signature scheme must be correct, that is Verify(pk, Sign(sk,m),m) = 1 should hold for all messages
m in the message space and all public-private keypairs (pk, sk) generated by KeyGen. If (σ,m) is such
that Verify(pk, σ,m) = 1, then σ is said to be a valid signature for the message m under the public key
pk.

The standard notion of security for signature schemes is that of existential unforgeability under an
adaptive chosen message attack (EUF-CMA). It is defined using the following game between a challenger
and an adversary A.

Setup: The challenger generates a keypair (pk, sk)← KeyGen(1k) and gives A the challenge public key
pk.

Queries: A requests signatures on messages mi of its choice. The challenger responds to each query
with a signature σi ← Sign(sk,mi). These requests may depend not only on the public key pk but
also on previous queries and the signatures obtained in response.

Forgery: Eventually A outputs a message signature pair (σ,m) and wins the game if m is not one of
the queried messages mi and Verify(pk, σ,m) = 1.

The advantage of an adversary A is the probability that it wins the above game.

An adversary A(t, qS , ε)-breaks a signature scheme if A runs in time at most t, makes at most qS
signature queries and has advantage at least ε. A signature scheme is (t, qS , ε)-EUF-CMA secure if no
adversary (t, qS , ε)-breaks it.

Another notion of security is strong existential unforgeability (sEUF-CMA). This captures the idea
that an adversary cannot generate a new signature on a message it already holds a signature for. It is
formalised using the same game as above, but now the adversary wins if its forgery σ is valid and its
output is not one of (σi,mi).

A signature scheme is one-time strongly unforgeable if it is (t, 1, ε)-strongly unforgeable under adaptive
chosen message attacks.
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A.2 Tag-based Encryption

A tag-based encryption (TBE) scheme is a public key encryption (PKE) scheme where the encryption
and decryption operations require an additional binary string, the tag. Such a scheme consists of three
algorithms:

KeyGen(1k): A probabilistic key generation algorithm that takes as input a security parameter and
outputs a pair (pk, sk) where pk is the public key and sk the private key.

Encrypt(pk, t,m): A probabilistic encryption algorithm that takes a public key pk, a tag t and a message
m from some message space M, and outputs a ciphertext c from some ciphertext space C.

Decrypt(sk, t, c): A decryption algorithm, occasionally probabilistic, that takes as input a private key sk,
a tag t and a ciphertext c, and outputs a message m or a failure symbol ⊥.

A TBE scheme should be correct, that is Decrypt(sk, t,Encrypt(pk, t,m)) = m should hold for all
messages m in the message space and all public-private keypairs (pk, sk) generated by KeyGen. The
standard security notion of a tag-based encryption scheme is called IND-tag-CCA security and is captured
by the following game between a challenger and an adversary A.

Setup: The challenger runs KeyGen(1k) to produce a public key pk and a private key sk. The adversary
A is given pk.

Phase 1: A has repeated access to a decryption oracle which it may query on any ciphertext and tag
of its choosing.

Challenge: A chooses two equal length messages m0,m1 and a tag t∗. The challenger chooses a random
bit b, computes c∗ ← Encrypt(pk, t∗,mb), and passes c∗ to the adversary.

Phase 2: A again has repeated access to a decryption oracle, but with the restriction that it may not
submit the challenge ciphertext c∗ with the challenge tag t∗. The adversary may however submit the
challenge ciphertext with a different tag t 6= t∗, or a ciphertext c 6= c∗ with the challenge tag t∗.

Guess: A outputs a guess b′ for bit b.

The adversary’s advantage is
∣∣Pr[b′ = b]− 1

2

∣∣. An adversary A (t, qd, ε)-breaks a TBE scheme if A runs
in time at most t, makes at most qd decryption queries and has advantage at least ε. A TBE scheme is
(t, qd, ε)-IND-tag-CCA secure if no adversary (t, qd, ε)-breaks it.

A.3 Identity-based Encryption

An identity-based encryption (IBE) scheme has the following algorithms:

Setup(1k): A probabilistic setup algorithm that takes as input the security parameter and outputs the
master private key msk and the master public key mpk.

Extract(msk, ID): A private key extraction algorithm, often probabilistic, that takes the master private
key msk and an identity ID, and outputs a corresponding private key skID.

Encrypt(mpk, ID,m): A probabilistic encryption algorithm that takes the master public key mpk, and
identity ID and a message m from some message space M, and outputs a ciphertext c from some
ciphertext space C.

Decrypt(mpk, skID, c): A decryption algorithm, occasionally probabilistic, that takes the master public
key mpk, a private key skID and a ciphertext c, and out puts a message m or a failure symbol ⊥

An IBE scheme should be correct, that is Decrypt(mpk, skID,Encrypt(mpk, ID,m)) = m should hold
for all messages m in the message space whenever skID is a private key output by Extract on input ID.
We recall the standard definitions of correctness, selective-ID (IND-sID-CPA) security and one-wayness
(OW-ID-CPA) for IBE.4 Selective-ID (IND-sID-CPA) security of an IBE scheme is defined through the
following game between a challenger and an adversary A.

Setup: The adversary A chooses a challenge identity ID∗. The challenger runs Setup(1k) to produce a
public key mpk and a private key msk. A is given mpk.

4 Note from [12] that in general achieving IND-ID-CPA security does not imply one-wayness, however for an
IBE scheme with a sufficiently large message space the implication holds. The IBE schemes considered here
all satisfy this property.
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Phase 1: A has repeated access to an extraction oracle which it may query on any identity of its
choosing except the challenge identity ID∗.

Challenge: A outputs two equal length messages m0,m1. The challenger chooses a random bit b,
computes c∗ ← Encrypt(mpk, ID∗,mb), and passes c∗ to the adversary.

Phase 2: A again has repeated access to an extraction oracle which it may query on any identity of its
choosing except the challenge identity ID∗.

Guess: A outputs a guess b′ for bit b.

The adversary’s advantage is
∣∣Pr[b′ = b]− 1

2

∣∣. An adversary A (t, qe, ε)-breaks an IBE scheme if A runs
in time at most t, makes at most qe exrtaction queries and has advantage at least ε. An IBE scheme is
(t, qe, ε)-IND-sID-CPA secure if no adversary (t, qe, ε)-breaks it.

One-wayness of an IBE scheme (OW-ID-CPA) is defined through the following game between a
challenger and an adversary A.

Setup: The challenger runs Setup(1k) to produce a master public key mpk and a master private key
msk. The adversary A is given mpk.

Phase 1: A has repeated access to a private key extraction oracle which it may query on any identity
of its choosing.

Challenge: A outputs an identity ID∗ for which it has not made an extraction query. The challenger
chooses a random message m, computes c∗ ← Encrypt(mpk, ID∗,m), and passes c∗ to the adversary.

Phase 2: A again has repeated access to an extraction oracle, but with the restriction that it may not
submit the challenge identity ID∗.

Guess: A outputs a guess m′ for message m.

The adversary’s advantage is Pr[m′ = m]. An adversary A (t, qe, ε)-breaks an IBE scheme if A runs in
time at most t, makes at most qe extraction queries and has advantage at least ε. An IBE scheme is
(t, qe, ε)-OW-ID-CPA secure if no adversary (t, qe, ε)-breaks it.

A.4 Data Encapsulation Mechanism

A data encapsulation mechanism (DEM) is given by a keyspace K and the following two algorithms:

DEnc(K,m): A deterministic encryption algorithm that takes as input a key K ∈ K and a message m,
and returns a ciphertext c.

DDec(K, c): A deterministic decryption algorithm that takes as input a key K ∈ K and a ciphertext c,
and returns a message m or an error symbol ⊥.

It is required that for all K ∈ K and all messages m, DDec(K,DEnc(K,m)) = m.

Indistinguishability against a chosen ciphertext attack (IND-CCA) for a DEM is defined through the
following game between a challenger and an adversary A.

Setup: The challenger chooses a key K ∈ K uniformly at random.

Phase 1: A can adaptively submit decryption queries c which the challenger responds to by returning
the output of DDec(K, c).

Challenge: A outputs two messages m0, m1 of equal length. The challenger flips a fair coin b← {0, 1},
and returns the challenge ciphertext c∗ = DEnc(K,mb).

Phase 2: As Phase 1, but with the restriction that A cannot submit c∗ to the decryption oracle.

Guess: Eventually, A outputs a bit b′.

The advantage of A is |Pr[b = b′]− 1/2|.
A DEM is said to be (t, q, ε)-IND-CCA secure if there exists no adversary A which runs in time at

most t, makes at most q decryption queries, and has advantage at least ε.
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A.5 Always Second-Preimage Resistant Hash Functions

The construction presented in Section 5 requires the used hash function H to be always second-preimage
resistant (aSec secure). This type of collision resistance, which was named by Rogaway and Shrimpton
[36], informally guarantees that an adversary given a randomly chosen message m from the domain of
the hash function, cannot compute a second message m′ that collides with m when applying the hash
function5. More specifically, we define aSec security as follows:

Let H : D → R be a hash function with domain D and range R. We say that H is (t, ε)-aSec secure
if there exists no adversary A which runs in time at most t, and for which

Pr[m← D;m′ ← A(m) : m 6= m′ ∧ H(m) = H(m′)] ≥ ε.

Note that aSec security is different from the notion of universal one-way hash function family [34]
which allows the adversary to choose the message m, but requires the collision to be found for a randomly
chosen key k defining the hash function (k will only be available to the adversary after m has been chosen).
In the literature, aSec-secure hash functions have also been used under the somewhat ambiguous name
target collision resistance hash functions (e.g. in [11,20,21]).

A.6 Message Authentication Code

A message authentication code (MAC) is given by a keyspace K and the following algorithms:

MAC(K,m): A deterministic algorithm which on input a key K ∈ K and a message m, returns a message
authentication tag τ .

MVer(K,m, τ): A deterministic verification algorithm which on input a key K ∈ K, a message m, and a
message authentication tag τ , returns either 0 or 1.

It is required that for all K ∈ K and all messages m that MVer(K,m,MAC(K,m)) = 1.
Strong unforgeability against a one-time attack (sUF-OT) for a MAC is defined through the following

game between a challenger and an adversary A:

Setup: The challenger chooses a key K ∈ K uniformly at random.
Query: A is allowed to make a single query on a message m, and the challenger responds by returning

τ = MAC(K,m).
Forgery: A returns a message/tag pair (m∗, τ∗).

The advantage of A in the above game is Pr[MVer(K,m∗, τ∗) = 1 ∧ (m∗, τ∗) 6= (m, τ)]
We say that a MAC is (t, ε)-sUF-OT secure if there exists no adversary A which runs in time at most

t and has advantage at least ε in the above game.

A.7 Key Derivation Function

We define a key derivation function (KDF) for a set of keyspaces (K,Kd,Km) as a function KDF : K →
Kd ×Km, and require that the output of a KDF is indistinguishable from a uniformly chosen keypair in
Kd×Km if the input is chosen uniformly in K. More specifically, we define the advantage of an adversary
against a KDF to be

|Pr[K ← K; (Kd,Km) = KDF(K) : A(Kd,Km) = 1]− Pr[(Kd,Km)← Kd ×Kd : A(Kd,Km) = 1]|.

A KDF is said to be (t, ε)-secure if there exists no adversary A which runs in time at most t and has
advantage at least ε against the KDF.

In our concrete construction, we will make use of a KDF to generate the keys of a DEM with keyspace
Kd and a MAC with keyspace Km.

5 Note that [36] defines aSec security for a family of hash functions indexed by a key, but requires the described
collision property to hold for all keys. Like [11,20,21], we will take a slightly simpler approach and define aSec
security for a single hash function.

22



B Proofs of Security of More Efficient Combined Scheme Construction

Proof of Theorem 3: We follow the proof of Lemma 10 in [6].
Firstly, we recall the basic Boneh-Boyen signature scheme defined in groups (G1,G2) equipped with

a paring e : G1 × G2 → GT , but which has signatures in G2. This scheme has public keys of the form
(g1, g2, u = gx1 , v = e(g1, g2)) where g1 and g2 are generators of G1 and G2, respectively. Signatures are

of the form σ = g
1/(x+m)
2 except if m = −x in which case the signature on m is defined to be σ = 1.

Lastly, verification of a signature σ 6= 1 consists of checking that e(u · gm1 , σ) = v, and verification of
σ = 1 consists of checking that ugm1 = 1.

Lemma 9 of [6] implies that if the (t′, q, ε)-SDH assumption holds in (G1,G2), then the above basic
Boneh-Boyen signature scheme is (t, qs, ε)-secure against existential forgery under a weak chosen message
attack (EUF-wCMA) provided that

qs ≤ q, and t ≤ t′ −Θ(q2T ),

where T is the maximum time for an exponentiation in G1,G2, and Zp.
Given an sEUF-CMA in the presence of a decryption oracle adversaryA against the combined scheme,

we will construct an algorithm B that breaks the EUF-wCMA security of the above basic Boneh-Boyen
signature scheme. More specifically, we will distinguish between two types of adversaries A1, A2, and for
each type, we will define a separate breaking algorithm B1, B2. The two types of adversaries are defined
as follows: Let m1, . . . ,mqs be the messages A adaptively queries to his signing oracle, and let (σi, ri) be
the signature returned in response to the ith query. Furthermore, let wi = 0||mi + yri for each i, and let
(m∗, σ∗, r∗) be the forgery output by A. We say that A is a type 1 adversary if

– A makes a decryption query on a ciphertext c = (c1, c2, c3) such that 1||h = −x, where h = H(c1), or
– A makes a signature query on a message m such that 0||m = −x, or
– A outputs a forgery on a message m∗ such that 0||m∗ + yr∗ 6∈ {w1, . . . , wqs}

On the other hand, we say that A is a type 2 adversary if

– A never makes a decryption query on a ciphertext c = (c1, c2, c3) such that 1||h = −x where
h = H(c1), and

– A never makes a signature query on a message m such that 0||m = −x, and
– A outputs a forgery on a message m∗ such that 0||m∗ + yr∗ ∈ {w1, . . . , wqs}

It should be clear that a successful adversary against the combined scheme will either play the role of a
type 1 or a type 2 adversary. We proceed by describing the breaking algorithm B1, B2 for each type of
adversary.

Type 1 adversary. The algorithm B1 interacting with a type 1 adversary A1 is defined as follows:

Setup: Initially, B1 selects and outputs random w1, . . . , wq ∈ Zp. B1 then receives a public key (g1, g2, u, v)
and signatures σ1, . . . , σqs . Let u = gx1 where x ∈ Zp. If σi = 1 for any i, B1 would have learned
the private key x = −wi corresponding to (g1, g2, u, v), and will trivially be able to construct a
valid forgery of the basic Boneh-Boyen signature scheme. Otherwise, we have that wi is uniformly
distributed in Zp \ {−x} and that e(gwi

1 u, σi) = v = e(g1, g2) for all i = 1, . . . , q. Lastly, B1 selects
random y ∈ Zp, sets X = u and Y = gy1 , and passes the public key (g1, g2, X, Y ) to A1.

Signing queries: In A1’s ith signature query on message mi ∈ {0, 1}n−1, B1 prepends a 0 to mi to get
m′i = 0||mi. Since A1 is a type 1 adversary, it might occur that m′i = −x which B1 can detect by
checking that g−mi

1 = u. In this case, B1 has learned the private key corresponding to (g1, g2, u, v),
and no further interaction with A1 is needed since B1 can forge a signature on any message of his
choice. Otherwise, B1 sets ri = (wi − m′i)/y, and returns the signature (σi, ri) to A1. Note that
(σi, ri) is a valid signature on mi since

e(X · gm
′
i

1 · Y ri , σi) = e(u · gm
′
i+riy

1 , σi) = e(u · gwi
1 , σi) = v = e(g1, g2),

and that ri is uniformly distributed in Zp \ {−x+m
′
i

y } since wi is uniformly distributed in Zp \ {−x}.
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Decryption queries: Given a ciphertext c = (c1, c3, c3), B1 first computes h = H(c1), and prepends a
1 to h to get h′ = 1||h. Then B1 checks if the equation

e(c2c
y−1(w1−h′)
1 , σ1) = e(cy

−1

1 , g2) (1)

holds. If this is the case, then, due to the properties of the pairing and that σ1 = g
1/(x+w1)
2 , we must

have that (
c2c

y−1(w1−h′)
1

)1/(x+w1)

= cy
−1

1

which implies that c2 = c
(x+h′)y−1

1 i.e. c1, c2 must be of the form c1 = Y s, c2 = Xsgs·h
′

2 for some
s ∈ Zp. Hence, B1 computes the key

K = e(cy
−1

1 , g2) = e(gs1, g2) = e(g1, g2)s

and returns the message m = DDec(K, c3). Otherwise, if equation (1) does not hold, it must be the

case that c2 6= c
(x+h′)y−1

1 , and B1 returns ⊥ to A1.
Forgery: Eventually,A1 outputs a forgery (σ∗, r∗) on a messagem∗. IfA1 is successful, then (m∗, σ∗, r∗) 6=

(mi, σi, ri) for all i, and

z = e(g1, g2) = e(Xg
0||m∗
1 Y r∗ , σ∗) = e(u · g0||m∗+yr∗1 , σ∗).

Since A1 is a type 1 adversary, it must furthermore be the case that 0||m∗ + yr∗ 6∈ {w1, . . . , wqs}.
Hence, B1 outputs σ∗ as a forgery on the message 0||m∗ + yr∗.

From the above description, it should be clear that if A1 is successful with probability ε and has running
time t, then B1 will succeed with probability ε in time t+Θ(qdTp+(qs+qd)Te) where Tp is the maximum
time for evaluating a pairing, and Te is the maximum time for computing an exponentiation in G2.

Type 2 adversary. The algorithm B2 which interacts with a type 2 adversary A2 is defined as follows:

Setup: Initially, B2 selects and outputs random w1, . . . , wqs ∈ Z∗p (note that B2 selects wi 6= 0 for all i),
and receives a public key (g1, g2, u, v) and signatures σ1, . . . , σqs . Let u = gy1 . Like B1, B2 checks that
σi 6= 1 for all i. If this is not the case, there must be an i such that wi = −y, and B2 will trivially

be able to construct a valid signature σ = g
1/(y+m)
2 on any message m of its choice. B2 then picks

random x ∈ Z∗p, sets X = gx1 and Y = u, and passes the public key (g1, g2, X, Y ) to A2.
Signing queries: In A2’s ith signing query on the message mi, B2 sets m′i = 0||mi and computes

ri = (x+m′i)/wi. Note that ri 6= 0 since a type 2 adversary will only submit messages m′i 6= −x. B2
then stores the tuple (mi, ri) for later use, and returns the signature (σ

1/ri
i , ri). Note that this is a

valid signature since

e(Xg
m′i
1 Y ri , σ

1/ri
i ) = e(g

x+m′i
1 uri , σ

1/ri
i ) = e(g

(x+m)/ri
1 u, σi) = e(gwi

1 u, σi) = v = e(g1, g2)

and that ri is uniform in Z∗p \ {−x+my } since wi is uniform in Z∗p \ {−y}. However, since ri would be

distributed uniformly in Zp \ {−x+my } in a real interaction, there is a statistical distance of 1/p from
the correct distribution. Hence, B2’s simulation of all signature queries will at most have a statistical
distance of qs/p from the correct distribution.

Decryption queries: Given a ciphertext c = (c1, c2, c3), B2 computes h = H(c1), prepends a 1 to h to
get h′ = 1||h. Note that since A2 is a type 2 adversary, h′ 6= −x. B2 then checks that the equation

e(c
(x+h′)
1 cw1

2 , σ1) = e(c2, g2) (2)

holds. If this is the case, then, due to the properties of the pairing and that σ1 = g
1/(y+w1)
2 , we must

have (
c
(x+h′)
1 cw1

2

)1/(y+w1)

= c2
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which implies that c2 = c
(x+h′)/y
1 and that c1, c2 are of the form c1 = Y s, c2 = Xsgh

′s
1 for some

s ∈ Zp. In this case, B2 computes the key

K = e(c
(x+h′)−1

2 , g2) = e(gs1, g2) = e(g1, g2)s

and returns the message m = DDec(K, c3). Otherwise, if equation (2) does not hold, then c2 6=
c
(x+h′)/y
1 , and B2 returns ⊥ to A2.

Forgery: Eventually, A2 returns a forgery (σ∗, r∗) on a message m∗. If A2 is successful, we must have
that (m∗, σ∗, r∗) 6= (mi, σi, ri) for all i which implies that (m∗, r∗) 6= (mi, ri) for all i. Furthermore,
since A2 is a type 2 adversary, we must have that 0||m∗ + yr∗ = 0||mi + yri for some i. Hence, B2
can recover y = (0||m∗ − 0||mi)/(ri − r∗) which is the private key corresponding to the given public
key (g1, g2, u, v), and B2 will therefore be able to construct a forgery on any message of its choice.

From the above description it should be clear that if A2 succeeds with probability ε, then B2 succeeds
with probability at least ε− qs/p, and if A2 runs in time t, then B2 runs in time t+Θ(qdTp+(qs+ qd)Te)
where Tp is the maximum time for evaluating a pairing and Te is the maximum time of computing an
exponentiation in G1 and G2.

To obtain an algorithm B which breaks the basic Boneh-Boyen signature scheme using an arbitrary
adversary A whose type is unknown, it is sufficient to let B run either B1 or B2 with equal probability.
Assuming A breaks the (t, qd, qs, ε)-security of the combined scheme, this will yield an algorithm B with
running time t+Θ(qdTp + (qs + qd)Te) and success probability at least 1

2 min(ε, ε− qs/p) = (ε− qs/p)/2.
Combining this with the above mentioned result of Lemma 9 in [6] yields the bounds given in the theorem.

Proof of Theorem 4: To prove the theorem, we consider an adversary A against the IND-CCA security
of the combined public key scheme, and the following sequence of games.

Game0: This is the original IND-CCA in the presence of a signing oracle experiment.
Game1: In this game, the DEM key used to encrypt the challenge messages mb and the corresponding

part of the challenge ciphertext is generated before interacting with A. More specifically, after gen-
erating a public/private key pair (pk, sk) = ((g1, g2, X, Y ), (x, y)), a random s ∈ Zp is picked and

the values c∗1 = Y s, h∗ = H(c∗1), h′∗ = 1||h∗, c∗2 = Xsg
h′∗·s
1 , K∗ = e(g1, g2)s are computed. Then pk is

passed to A, and when A submits (m0,m1), the challenge ciphertext is set to c∗ = (c∗1, c
∗
2, c
∗
3) where

c∗3 = DEnc(K∗,mb) and b is the random bit chosen in the experiment.
Game2: In this game, if A submits a decryption query c = (c1, c2, c3) to the decryption oracle where

c1 6= c∗1 but h∗ = H(c1), the decryption oracle returns ⊥ to A.
Game3: In this game, the construction of the private key is changed as follows. Firstly, random values

α, a, s ← Zp are picked, and the private and public key components y and Y are assigned values
y ← α and Y ← gy1 . Then, the challenge ciphertext components c∗1 = Y s, h∗ = H(c∗1), and h′∗ = 1||h∗
are computed, as well as the value b← h′∗/a. Lastly, the remaining public and private key components
x and X are assigned values x ← −a(α + b) and X ← gx1 . Furthermore, when responding to the
signature queries by A, the randomness r will be picked uniformly at random from Zp \ {a} instead
of Zp.

Game4: In the last game, the challenge key K∗ is replaced by a randomly chosen key K ′ ∈ GT . Further-
more, if A submits a decryption query of the form (c∗1, c

∗
2, c3) where c3 6= c∗3, the decryption oracle

will decrypt c3 using K ′.

Let Ei denote the event that A correctly guesses the challenge bit b in Gamei. The advantage of A
against the scheme can be expressed as follows:

|Pr[E0]− 1/2| ≤
3∑
i=0

|Pr[Ei]− Pr[Ei+1]|+ |Pr[E4]− 1/2|

Since the view of A is identical in Game0 and Game1, it follows that Pr[E0] = Pr[E1]. To complete the
proof, we show the following claims.

Claim. |Pr[E1]− Pr[E2]| < εh
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Proof. Note that the games Game1 and Game2 are identical unless A makes a decryption query such
that c1 6= c∗1 but H(c1) = H(c∗1). Hence, it is sufficient to show that if A makes such a query, it is possible
to break the aSec security of H. For this purpose, we construct the algorithm B which uses A as a building
block. B is defined as follows:

Initially, B is given a random element z ∈ G1, and the goal of B is to produce an element z′ ∈ G1 such
that H(z) = H(z′). Firstly, to generate a public/private key pair, B picks random generators g1 ∈ G1,
g2 ∈ G2 and random integers x, y ∈ Zp, and sets pk = (g1, g2, g

x
1 , g

y
2 ) and sk = (x, y). Then, to generate

challenge ciphertext components c∗1, c∗2, K∗, B sets c∗1 = z, h∗ = H(c∗1), h′∗ = 1||h∗, c∗2 = z(x+h
′
∗)/y, and

K∗ = e(z1/y, g2). Note that since z is a random element of G1, c∗1, c∗2, K∗ are distributed exactly as in
Game1 and Game2. Finally, B runs A with input pk.

If A submits a decryption query c = (c1, c2, c3), B checks whether H(c1) = H(c∗1) and c1 6= c∗1. If this
is the case, B outputs z′ = c1 and halts. Otherwise, B returns Decrypt(sk, c) to A. Likewise, if A submits
a signature query m, B returns Sign(sk,m). At some point, A submits challenge messages m0,m1. B
completes the challenge ciphertext by picking random b ← {0, 1} and setting c∗3 = DEnc(K∗,mb), and
then returns c∗ = (c∗1, c

∗
2, c
∗
3) to A. Note that c∗ will be distributed as in Game1 and Game2. Queries

made by A after the challenge phase are answered as above. If A terminates with output a bit b′, B
aborts.

It should be clear from the above description that B succeeds whenever A makes a decryption query
of the described form. Hence, the claim follows. ut

Claim. |Pr[E2]− Pr[E3]| < qs/p

Proof. Note that the public key components X,Y computed in Game3 are independent of the challenge
ciphertext components, and are distributed as random elements in G1. Hence, the only difference between
Game2 and Game3 is that the randomness used in the construction of signatures is picked from Zp \ {a}
instead of Zp, where a is a random element of Zp. This implies that a signature created in Game3 is
distributed with a statistical difference of 1/p from the distribution of signatures in Game2. Since A asks
for qs signatures, the signatures created in Game3 will be jointly distributed with a statistical difference
of at most qs/p from the signatures constructed in Game2. Hence, the claim follows. ut

Claim. |Pr[E3]− Pr[E4]| < εdhi

Proof. Let A be an adversary which correctly guesses the challenge bit with a different probability in
Game2 and Game3, and let εA = |Pr[E3] − Pr[E4]|. Using A, we will construct an algorithm B which
solves the q-DBDHI problem with advantage εA.

Initially, B is given a description of a pairing G = (e,G1,G2,GT , p) and an instance of the q-DBDHI

problem (g1, g
α
1 , g2, g

α
2 , g

α2

2 , . . . , gα
q

2 , , T ) ∈ G2
1 × Gq+1

2 × GT . The goal of B is to output a bit β which
indicates whether T = e(g1, g2)1/α or T is a random element of GT . We construct B as follows:

Setup: Firstly, B constructs a generator g′2 of G2 for which it knows a set of q values of the form
(wi, (g

′
2)1/(wi+α)). This is done as follows: B picks random w1, . . . , wq ∈ Z∗p, defines the polynomial

f(z) =
∏q
i=1(z + wi), and expands f(z) =

∑q
i=0 ciz

i to obtain the coefficients c0, . . . , cq ∈ Zp. Then
B computes the generator

g′2 =

q∏
i=1

(
gα

i

2

)ci
= g

f(α)
2 ∈ G2.

We assume that g′2 6= 1 (if this is not the case, we must have that wi = −α for some i, and B would
be able to solve the q-DBDHI problem without interacting with A). Observe that B can compute
(g′2)1/(wi+α) for any of the above chosen wi by expanding the polynomial fi(z) = f(z)/(z + wi) =∑q−1
i=0 diz

i and computing g
fi(α)
2 =

∏q−1
i=0 (gα

i

2 )di = (g′2)1/(wi+α).
B proceeds by picking random a, l ∈ Zp and computing challenge ciphertext components c∗1 = gl1,
h∗ = H(c∗1), h′∗ = 1||h∗, and c∗2 = g−al1 , as well as the value b = h′∗/a. Furthermore, B computes the

challenge key K∗ = T lc0
∏q−1
i=0 e(g1, g

αi

2 )lci+1 .

Lastly, B computes the public key components X = (gα1 )−ag−ab1 and Y = gα1 . This will implicit define
the private key as (x, y) = (−a(α+ b), α). Define s = l/α. Observe that

c∗1 = gl1 = Y l/α = Y s

c∗2 = g−al1 = g
−aα(l/α)
1 = g

(x+ab)(l/α)
1 = Xsg

s·h′∗
1
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Furthermore, if T = e(g1, g2)1/α, then K∗ = e(g1, g2)lf(α)/α = e(g1, g
′
2)l/α = e(g1, g

′
2)s. On the other

hand, if T is random in GT , then so is K∗.
Lastly, B passes the public key pk = (g1, g

′
2, X, Y ) to A.

Signing queries: To respond to A’s ith signing query mi, B retrieves the ith pair ((g′2)1/(α+wi), wi)

generated in the setup phase. Let hi = (g′2)1/(α+wi). Then B sets m′i = 0||mi, computes r = a+
m′i−ab
wi

and returns the signature σ = (h
1/(r−a)
i , r). Note that r − a 6= 0 since, due to a different prefix,

m′i 6= h′∗ = ab. Furthermore, observe that σ is a valid signature since

h
1/(r−a)
i = (g′2)1/(r−a)(α+wi) = (g′2)1/(rα+m

′
i−ab−aα) = (g′2)1/(ry+m

′
i+x),

and that r is distributed uniformly at random among the elements in Zp for which m′i + x+ ry 6= 0
and r 6= a, since wi is uniformly distributed in Zp \ {0,−α}.

Decryption queries: If A submits a decryption query c = (c1, c2, c3), B first computes h = H(c1) and
sets h′ = 1||h. If either
– c1 6= c∗1 but h = h∗, or

– e(c1, X̂g
h′

2 ) 6= e(c2, Ŷ ) where X̂ = (gα2 )−ag−ab2 = gx2 and Ŷ = gα2 = gy2 (note that this implies

that c2 6= c
(x+h′)/y
1 ).

B returns ⊥ to A. Furthermore, if (c1, c2) = (c∗1, c
∗
2), then B returns m = DDec(K∗, c3) to A.

Otherwise, we must have that c1, c2 are of the form c1 = Y s, c2 = Xsgh
′·s

1 for some s ∈ Zp and

that h′ 6= h′∗. Note that c2c
a
1 = Xsgs·h

′

1 Y sa = g
s(x+h′+ay)
1 = g

s(−a(α+b)+h′+aα)
1 = g

s(h′−h′∗)
1 . Hence, B

computes the key

K = e((c2c
a
1)(h

′−h′∗)
−1

, g′2) = e(gs1, g
′
2) = e(g1, g

′
2)s,

and returns the message m = DDec(K, c3).
Challenge: At some point, A submits challenge messages (m0,m1) of equal length. B responds by

picking a random bit b ∈ {0, 1}, and returning the challenge ciphertext c∗ = (c∗1, c
∗
2, c
∗
3) where c∗1, c∗2

were computed in the setup phase, and c∗3 = DEnc(K∗,mb). After receiving the challenge ciphertext
c∗, A can submit additional signing and decryption queries, which B answers as above. Eventually,
A outputs a bit b′. If b′ = b, B returns β = 1 indicating that T = e(g1, g2)1/α. Otherwise, B returns
β = 0.

Let Real denote the event that T = e(g1, g2)1/α and let Random denote the event that T is random
in GT . Note that if Real occurs, then B provides A with a perfect simulation of Game3 whereas if
Random occurs, then B provides A with a perfect simulation of Game4. The advantage of B in solving
the q-DBDHI problem is given by

|Pr[β = 1|Real]− Pr[β = 1|Random]| = |Pr[b′ = b|Real]− Pr[b′ = b|Random]|
= |Pr[E3]− Pr[E4]|
= εA

Hence, the claim follows. ut

Claim. |Pr[E4]− 1/2| < εdem

Proof. Assume that an adversary with advantage εA in Game4 exists i.e. εA = |Pr[E4]− 1/2|. Using A,
we will construct an algorithm B with advantage εA against the DEM. B is constructed as follows:

Setup: B generates the public and private key (pk, sk) and the challenge ciphertext components c∗1, c∗2
as specified in Game4. The random key K ′ will correspond to the key of the DEM B is attacking. B
runs A with input pk.

Signing queries: Given a message m from A, B simply computes a signature σ on m by using sk, but
follows the restriction on the choice of randomness required in Game4.

Decryption queries: Upon a query (c1, c2, c3) from A, B responds as follows:
– If c1 6= c∗1 but H(c1) = H(c∗1), B returns ⊥ as required in Game4.

– Otherwise, if (c1, c2) 6= (c∗1, c
∗
2), B uses sk = (x, y) to check if c2 = c

(x+h′)/y
1 where h′ = 1||h and

h = H(c1), and if this is not the case, B returns ⊥ to A. Otherwise, B computes K = e(c1, g
1/y
2 )

and returns m = DDec(K, c3).
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– Lastly, if (c1, c2) = (c∗1, c
∗
2), B submits c3 to his decryption oracle and returns the obtained

message m to A.

Challenge: Eventually, A outputs challenge messages m0, m1 of equal length. B submits m0, m1 as
his own challenge messages to obtain c∗3, and returns (c∗1, c

∗
2, c
∗
3) to A. After receiving the challenge,

A can ask additional queries which B responds to as above. Finally, A will output a bit b which B
forwards as his own response to the DEM challenge.

From the above description it should be clear that B provides A with a perfect simulation of Game4 and
that B will succeed in guessing the challenge bit whenever A does. Hence, the claim follows. ut

Combining the above claims yields the bound on the success probability of an IND-CCA in the presence
of a decryption oracle adversary against the scheme. ut

Proof of Theorem 5: Since large parts of this proof overlap with the proof of Theorem 4, we will
only sketch the modifications required to obtain a proof of the extended scheme. However, for clarity, we
provide the full description of the sequence of games used to obtain the proof:

Game0: This is the original IND-tag-CCA in the presence of a signing oracle experiment.

Game1: Like in Game1 of Theorem 4, we precompute the challenge ciphertext components c∗1, c∗2 and
the challenge keys K∗d , K∗m before interacting with A i.e. after generating the public/private key pair
(pk, sk) = ((g1, g2, X, Y ), (x, y)), a random s ∈ Zp is picked and the values c∗1 = Y s, h∗ = H(c∗1), h′∗ =

1||h∗, c∗2 = Xsg
h′∗·s
1 , K∗ = e(g1, g2)s and (K∗d ,K

∗
m) = KDF(K∗). Then A is run on input pk. When A

submits the challenge messages m0,m1 and the challenge tag t∗, the components c∗3 = DEnc(K∗d ,mb)
and c∗4 = MAC(K∗m, t

∗) are computed, where b is the challenge bit chosen in the experiment, and the
challenge ciphertext c∗ = (c∗1, c

∗
2, c
∗
3, τ
∗) is returned to A.

Game2: In this game, if A submits a decryption query consisting of c = (c1, c2, c3, τ) and tag t such that
c1 6= c∗1 but H(c1) = H(c∗1), the decryption oracle returns ⊥ to A.

Game3: In this game, if A submits a decryption query consisting of c = (c1, c2, c3, τ) and tag t in Phase
1 such that c1 = c∗1, the decryption oracle returns ⊥ to A.

Game4: In this game, if A submits a decryption query consisting of c = (c1, c2, c3, τ) and a tag t in
Phase 2 such that (c1, c2) = (c∗1, c

∗
2) but (τ, t) 6= (τ∗, t∗), the decryption oracle returns ⊥ to A.

Game5: Like in Game3 of Theorem 4, the construction of the private key is changed as follows. Firstly,
random values α, a, s ← Zp are picked, and the private and public key components y and Y are
assigned values y ← α and Y ← gy1 . Then, the challenge ciphertext components c∗1 = Y s, h∗ = H(c∗1),
and h′∗ = 1||h∗ are computed, as well as the value b← h′∗/a. Lastly, the remaining public and private
key components x and X are assigned values x ← −a(α + b) and X ← gx1 . Furthermore, when
responding to the signature queries by A, the randomness r will be picked uniformly at random from
Zp \ {a} instead of Zp.

Game6: In this game, the value K∗ used as input to KDF when generating the challenge keys (K∗d ,K
∗
m),

is replaced by a random value in GT . Furthermore, if A submits a decryption query consisting of
c = (c1, c2, c3, τ) and a tag t such that (c1, c2, τ, t) = (c∗1, c

∗
2, τ
∗, t∗), the DEM key derived from the

randomly chosen K∗ is used to decrypt c3 i.e. the decryption oracle computes (K∗d ,K
∗
m) = KDF(K∗)

and returns the output of DDec(K∗d , c3).

Game7: In this game, the keys (K∗d ,K
∗
m) = KDF(K∗) are replaced by keys chosen uniformly at random

in Kd×Km. Furthermore, if A submits a decryption query consisting of c = (c1, c2, c3, τ) and a tag t
such that (c1, c2, τ, t) = (c∗1, c

∗
2, τ
∗, t∗), the randomly chosen DEM key K∗d is used directly to decrypt

c3 i.e. the decryption oracle just returns the output of DDec(K∗d , c3).

Let Ei denote the probability that the adversary A succeeds in guessing the challenge bit in Gamei.
Furthermore, let Fi be the event that, in Phase 2 of Gamei, A submits a decryption query consisting of
c = (c1, c2, c3, τ) and tag t such (c1, c2) = (c∗1, c

∗
2), (τ, t) 6= (τ∗, t∗) and MVer(K∗m, t, τ) = 1. The advantage

of the adversary is given by

|Pr[E0]− 1/2| ≤
6∑
i=0

|Pr[Ei]− Pr[Ei+1] + |Pr[E7]− 1/2|

28



Note that Game3 and Game4 are identical unless A submits a decryption query consisting of c =
(c1, c2, c3, τ) and tag t such that (c1, c2) = (c∗1, c

∗
2), (τ, t) 6= (τ∗, t) and Dec(sk, c, t) 6= ⊥. Since Dec(sk, c, t) 6=

⊥ requires that MVer(K∗m, t, τ) = 1, we must have

|Pr[E3]− Pr[E4]| ≤ Pr[F4] ≤ |Pr[F4]− Pr[F5]|+ |Pr[F5]− Pr[F6]|+ |Pr[F6]− Pr[F7]|+ Pr[F7]

To complete the proof, we show the following claims.

Claim. Pr[E0] = Pr[E1], |Pr[E1] − Pr[E2]| ≤ εh, |Pr[E4] − Pr[E5]| ≤ qs/p, |Pr[F4] − Pr[F5]| ≤ qs/p,
|Pr[E5]− Pr[E6]| ≤ εdhi, and |Pr[E7]− 1/2| ≤ εdem

These claims can be shown using almost identical arguments to the ones used for the corresponding
claims in the proof of Theorem 4.

Claim. |Pr[E2]− Pr[E3]| ≤ qd/p

Proof. Observe that Game2 and Game3 will be identical unless A submits a decryption query in Phase
1 such that c1 = c∗1. However, since c∗1 is perfectly hidden from A before the challenge phase, this will
happen with probability at most 1/p for a single query. Since A makes at most qd queries, the probability
that c1 = c∗1 in any of A’s queries in Phase 1 is upper bounded by qd/p. ut

Claim. |Pr[F5]− Pr[F6]| ≤ εdhi

Proof. The proof of this claim is only slightly different from the proof of |Pr[E5]−Pr[E6]| ≤ εdhi since we
are interested in bounding the probability of the adversary forging a MAC instead of correctly guessing
the challenge bit. More specifically, given a DBDHI instance and an adversary A, we create a simulator
B identical to that used for showing |Pr[E4] − Pr[E5]| ≤ εdhi which in turn is almost identical to the
simulator used in the proof of the corresponding claim in Theorem 4. However, instead of using the bit b′

output byA, B checks all decryption queries made byA, and if any of the queries satisfy (c1, c2) = (c∗1, c
∗
2),

(τ, t) 6= (τ∗, t∗), and MVer(K∗m, t, τ) = 1, B outputs 1. Otherwise B outputs 0.
Depending on whether the value T given in the DBDHI problem corresponds to e(g1, g2)1/α or a

random value, B will either simulate Game5 or Game6 for A. Furthermore, note that B outputs 1 only
if the event Fi occurs, i = 5, 6. Hence, if |Pr[F5] − Pr[F6]| = εA, then B will solve the DBDHI problem
with probability εA. ut

Claim. |Pr[E6]− Pr[E7]| ≤ εkdf and |Pr[F6]− Pr[F7]| ≤ εkdf

Proof. The only difference between Game6 and Game7 is that in Game6, the keys K∗d , K∗m are derived
from KDF whereas they are picked uniformly at random from the appropriate keyspaces in Game7.
Furthermore, since the input to KDF is a key K∗ chosen uniformly at random, the claim follows from a
simple reduction to the security of KDF. ut

Claim. Pr[F7] ≤ qdεmac

Proof. Let A be an adversary making qd decryption queries and let εA = Pr[F7]. Using A, we will con-
struct an algorithm B that breaks the unforgeability of the MAC with probability εA/qd. B is constructed
as follows:

Setup B computes the public and private keys (pk, sk) and the challenge ciphertext components c∗1,
c∗2 as dictated in Game7, and lastly pick a random DEM key K∗d ∈ Kd. The MAC key K∗m will
correspond to the key of B’s challenger. Then B passes pk to A.

Phase 1 Given a signature query m, B simply constructs a signature σ on m using sk, but follows the
restriction on the used randomness which is required in Game7. Given a decryption query consisting
of c = (c1, c2, c3, τ) and a tag t, B returns ⊥ to A if c1 = c∗1 or c1 6= c∗1 but H(c1) = H(c∗1) as required
in Game1. Otherwise, B simply returns the output of Dec(sk, c, t). Note that since all queries for
which c1 = c∗1 is rejected in Phase 1, B will not be required to use K∗m to verify any MAC.

Challenge At some point, A submits challenge messages m0, m1 and a challenge tag t∗. B flips a bit
b ← {0, 1}, computes c∗3 = DEnc(K∗d ,mb), submits t∗ to his MAC oracle to obtain τ∗, and finally
returns c∗ = (c∗1, c

∗
2, c
∗
3, τ
∗) to A.
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Phase 2 B responds to signature queries as in Phase 1. Given a decryption query consisting of c =
(c1, c2, c3, τ) and a tag t, B returns ⊥ to A if c1 6= c∗1 but H(c1) = H(c∗1) or (c1, c2) = (c∗1, c

∗
2)

but (τ, t) 6= (τ∗, t∗) as required in Game7. If (c1, c2, τ, t) = (c∗1, c
∗
2, τ
∗, t∗), B returns the output of

DDec(K∗d , c3), and otherwise return the output of Dec(sk, c, t). At some point, A outputs a bit b′

which B discards. B then picks a random decryption query submitted by A, and returns (τ, t) as his
forgery.

From the above description, it should be clear that B provides a perfect simulation of Game7 to A.
Furthermore, if F7 occurs, at least one of A’s decryption queries must have the property that (c1, c2) =
(c∗1, c

∗
2), (τ, t) 6= (τ∗, t∗), and MVer(K∗m, t, τ) = 1. With probability at least 1/qd, such query will be

picked and returned by B. Hence, B succeeds in breaking the unforgeability of the MAC with probability
εA/qd, and thus the claim follows. ut

Combining the above claims yields the bound on the success probability of an IND-tag-CCA in the
presence of a signing oracle adversary against the scheme. ut

C Asymmetric Gentry IBE

The IBE scheme of Gentry [18] can be extended naturally to the setting of asymmetric pairings e :
G1 ×G2 → GT in the following way.

Setup: The PKG picks random generatorsX ∈ G1, Y,H ∈ G2 and random α ∈ Zp. It sets A = Xα ∈ G1.
The public mpk and private msk are given by

mpk = (X,A,H, Y ) msk = α.

Extract: To generate a private key for identity ID ∈ Zp, the PKG generates random rID ∈ Zp, and
outputs the private key

dID = (rID, HID) , where HID =
(
HY −rID

)1/(α−ID)
.

If ID = α, the PKG aborts. We require that the PKG always use the same random value rID for
ID. This can be accomplished, for example, using a PRF or an internal log to ensure consistency.

Encrypt: To encrypt m ∈ GT using identity ID ∈ Zp, the sender generates random s ∈ Zp and sends
the ciphertext

C =
(
As ·X−s·ID, e(X,Y )s,m · e(X,H)−s

)
∈ G1 ×GT ×GT .

Decrypt: To decrypt ciphertext C = (U, V,W ) with ID, the recipient outputs

m = W · e(U,HID) · V rID

Correctness: Assuming the ciphertext is well-formed for ID:

e(U,HID) · V rID = e(Xs(α−ID), H1/(α−ID) · Y −rID/(α−ID)) · e(X,Y )srID = e(X,H)s,

as required.

The security of this scheme depends on a problem closely related to the truncated decision q-
augmented bilinear Diffie-Hellman exponent problem (q-ABDHE). An algorithm B that outputs b ∈
{0, 1} has advantage ε in solving the problem if∣∣∣Pr[B(T, Tα

q+2

, X,Xα, Y, Y α, . . . , Y α
q

, e(T, Y α
q+1

)) = 0]

−Pr[B(T, Tα
q+2

, X,Xα, Y, Y α, . . . , Y α
q

, Z) = 0]
∣∣∣ ≥ ε

where the probability is over the random choice of generators T,X in G1, Y in G2, the random choice
of α in Zp, the random choice of Z ∈ GT , and the random bits consumed by B.

Assumption 1 No t-time algorithm has advantage greater than ε in solving the above problem.
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Theorem 10 Let q = qID + 1. Assume Assumption 1 holds for (G1,G2). Then, the above IBE scheme
is (t′, qID, ε

′)-IND-ID-CPA secure for t′ = t−O(texp ·q2) and ε′ = ε+1/p, where texp is the time required
to exponentiate in G.

Proof. The proof closely follows that of Theorem 1 in [18], with appropriate modifications for the asym-
metric setting. Let A be an adversary that (t′, qID, ε

′)-breaks the IND-ID-CPA security of the IBE scheme
described above. We construct and algorithm, B, that solves the above problem, as follows. B takes as
input a random challenge of the form (T, Tα

q+2

, X,Xα, Y, Y α, . . . , Y α
q

, Z), where Z is either e(T, Y α
q+1

)
or a random element of GT . Algorithm B proceeds as follows.

Setup: B generates a random polynomial f(x) ∈ Zp of degree q. It sets H = Y f(α), computing H from
(Y, Y α, . . . , Y α

q

). It sends the public key (X,A,H, Y ) to A. Since Y, α, and f(x) are chosen uniformly
at random, H is uniformly random and this public key has a distribution identical to that in the
actual construction.

Phase 1: A makes key generation queries. B responds to a query on ID ∈ Zp as follows. If ID = α,
B uses α to solve the problem immediately. Else, let FID(x) denote the (q − 1)-degree polynomial
(f(x)− f(ID))/(x− ID). B sets the private key (rID, HID) to be (f(ID), Y FID(α)). This is a valid

private key for ID, since Y FID(α) = Y (f(α)−f(ID))/(α−ID) =
(
HY −f(ID)

)1/(α−ID)
, as required.

Challenge: A outputs identity ID∗ and messages M0,M1. Again, if α ∈ {M0,M1}, B uses α to solve
the problem immediately. Else, B generates a bit b ∈ {0, 1}, and computes a private key (rID∗ , HID∗)
for ID∗ as in Phase 1. Let f2(x) = xq+2 and let F2,ID∗(x) = (f2(x)− f2(ID∗))/(x− ID∗), which is
a polynomial of degree q + 1. B sets

U = T (f2(α)−f2(ID∗)), V = Z · e

(
T,

q∏
i=0

Y F2,ID∗,iα
i

)
W = Mb/e (U,HID∗) · V rID∗ ,

where F2,ID∗,i is the coefficient of xi in F2,ID∗(x). It sends (U, V,W ) to A as the challenge ciphertext.

Let s = (logX T )F2,ID∗(α). If Z = e(T, Y α
q+1

), then

U = T (f2(α)−f2(ID∗))

= T ((α−ID∗)(f2(α)−f2(ID∗))/(α−ID∗)

= T (α−ID∗)F2,ID∗ (α)

= X(logX T )F2,ID∗ (α)(α−ID∗)

= Xs(α−ID∗),

V = e(T, Y α
q+1

) · e(T, Y F2,ID∗ (α)−α
q+1

)

= e(T, Y α
q+1+F2,ID∗ (α)−α

q+1

)

= e(T, Y F2,ID∗ (α))

= e(X logX T , Y F2,ID∗ (α))

= e(X,Y )(logX T )F2,ID∗ (α)

= e(X,Y )s,

and

Mb/W = e(U,HID∗)V
rID∗

= e(Xs(α−ID∗), Y FID∗ (α))e(X,Y )sf(ID∗)

= e(Xs(α−ID∗), Y (f2(α)−f2(ID∗))/(α−ID∗))e(X,Y )sf(ID∗)

= e(X,Y )s(f(α)−f(ID∗)+f(ID∗))

= e(X,Y f(α))s

= e(X,H)s;
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thus (U, V,W ) is a valid ciphertext for (ID∗,Mb) under randomness s. Since logX T is uniformly
random, s is uniformly random, and so (U, V,W ) is a valid, appropriately distributed challenge to
A.

Phase 2: A makes key generation queries, and B responds as in Phase 1.
Guess: Finally, the adversary outputs a guess b′ ∈ {0, 1}. If b′ = b, B outputs 0 (indicating that

Z = e(T, Y α
q+1

)); otherwise, it outputs 1.

Perfect simulation: When Z = e(T, Y α
q+1

), the public key and challenge ciphertext issued by B are
identically distributed to those of the actual construction. It still remains to show that the private keys
are appropriately distributed. Let I be a set consisting of α, ID∗, and the identities for which A re-
quested private keys; observe that |I| ≤ q+ 1. Since f(x) is a uniformly random polynomial of degree q,
the values {f(a) : a ∈ I} are uniformly independent from A’s view, so the private keys issued by B are
appropriately distributed.

Probability analysis: If Z = e(T, Y α
q+1

), then the simulation is perfect, and A will guess the bit b
correctly with probability 1/2+ε′. Else, Z is uniformly random, and thus (U, V ) is a uniformly random an
independent element of (G1,GT ). In this case the inequality V 6= e(U, Y )1/(α−ID∗) holds with probability
1− 1/p. When this inequality holds, the value of e(U,HID∗)V

rID∗ = e(U, (HY −rID∗ )1/(α−ID∗))V rID∗ =
e(U,H)1/(α−ID∗)(V/e(U, Y )1/(α−ID∗))rID∗ is uniformly random and independent from A’s view (except
for the value W ), since rID∗ is uniformly random and independent from A’s view (except for the value
W ). Thus, W is uniformly random and independent, and (U, V,W ) gives no information regarding the
bit b.

Assuming no queried identity equals α (which would only increase A’s probability of success), we see
that∣∣∣Pr[(T, Tα

q+2

, X,Xα, Y, Y α, . . . , Y α
q

, Z) = 0]− 1/2
∣∣∣ ≤ 1/p when Z is a random element of GT . However,

we have that
∣∣∣Pr[(T, Tα

q+2

, X,Xα, Y, Y α, . . . , Y α
q

, Z) = 0]− 1/2
∣∣∣ ≥ ε′ when Z = e(T, Y α

q+1

). Thus, for

uniformly random T,X, Y, α and Z, we have that∣∣∣Pr[B(T, Tα
q+2

, X,Xα, Y, Y α, . . . , Y α
q

, e(T, Y α
q+1

)) = 0]

−Pr[B(T, Tα
q+2

, X,Xα, Y, Y α, . . . , Y α
q

, Z) = 0]
∣∣∣ ≥ ε′ − 1/p.

Time-complexity: B’s overhead is dominated by computing Y FID(α) in response to A’s key generation
query on ID, where FID(x) is a polynomial of degree q− 1. Each such computation requires O(q) expo-
nentiations in G2. Since A makes at most q − 1 such queries, t = t′ +O(q2).

This concludes the proof of Theorem 10. ut
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