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Abstract

The notion of differential privacy has recently emerged as a gold standard in the field of database privacy.
While this notion has the benefit of providing concrete theoretical privacy (compared to various previous ad-hoc
approaches), the major drawback is that the mechanisms needs to inject some noise the output limiting its applica-
bility in many settings.

In this work, we initiate the study of a new notion of privacy called noiseless privacy. The (very natural) idea
we explore is to exploit the entropy already present in the database and substitute that in the place of external noise
to the output. The privacy guarantee we provide is very similar to DP but where that guarantee “comes from” is
very different in the two cases. While differential privacy focusses on generality, we make assumptions about the
database distribution, the auxiliary information which the adversary may have and the type of queries. This allows
us to obtain “privacy for free” whenever the underlying assumptions are satisfied.

In this work, we first formalize the notion of noiseless privacy, introduce two definitions and show that they are
equivalent. We then study certain types of boolean and real queries and show natural (and well understood) condi-
tions under which noiseless privacy can be obtained with good parameters. We also study the issue of composability
and introduce models under which it can be achieved in the noiseless privacy framework.

1 Introduction

In the recent past, the field of data privacy has gone through a sea of change. Starting with techniques like removal
of Personally identifiable information (PII), to sophisticated anonymization methods like k-anonymity [Swe02], `-
diversity [MGKV06], there has always been a tension between different privacy models and breaches against them.
Almost all of these ad-hoc notions of privacy are presently known to be vulnerable to various easy to implement
practical attacks [GKS08]. Dwork et al. [DMNS06] came up with a rigorous notion of privacy called differential
privacy. This notion was one of the first few to provably guarantee privacy under worst case adversarial setting. Any
algorithm (mechanism) that preserves differential privacy (DP), does it by injecting controlled randomness (noise) in
the output. The definition is as below:

Definition 1 (ε-differential privacy or ε-DP [DMNS06]). A randomized algorithm A is said to be ε-differentially
private (or is said to satisfy ε-DP) if for all databases T, T ′ ∈ Dn differing in at most one record and all events
O ⊆ Range(A), Pr[A(T ) ∈ O] ≤ eε Pr[A(T ′) ∈ O] .

Although this is an extremely strong notion of privacy, a draw back being that in many practical scenarios dif-
ferentially private algorithms inject too much of noise in the output and as a result degrades the utility of the output
sharply [MKA+08]. Several applications, in fact, completely breakdown upon addition of any amount of noise to
the output (see the financial audit example below). Besides, if the database curator has to give a noisy output, both
∗Work done in part while visiting Microsoft Research, India.
†Work done in part while visiting Microsoft Research, India.
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the mechanism to generate the output as well as the one which consumes the output has to be reanalyzed and repro-
grammed1 Hence the fact that addition of some noise to the output is inherent in DP is argued to be a major barriers
towards the adoption of DP in practice.

Financial Audits: Consider a company going under a financial audit. The auditor, in order to verify the quarterly
report, would like to know the total expenditure under the head “employee salary”. In other words, the auditor request
for the sum-total salary of all the employees of the company. In order to preserve privacy of each employee, say the
company adds noise to the sum-total salary and then outputs the total salary (call it X̃). Now, let Y be the actual total
amount spent by the company for employee salaries. Since X̃ is a noisy output, with high probability |Y − X̃| 6= 0.
From the perspective of an auditor, it would not be clear whether the non-zero gap between Y and X̃ is because of the
injected noise or there was some fraud w.r.t. the money spent for salaries. In such cases adding any amount of noise
to the output X̃ is completely unacceptable.

In this work, we ask the following natural question: “Is it always necessary to add noise the output to achieve
provable privacy guarantees? Are there any scenarios where one can do without adding any noise?”

Our Notion – Noiseless Privacy. Towards answering the above question, we initiate the study of a new notion of
privacy called noiseless privacy. The (very natural) idea we explore is to exploit the entropy already present in the
database and substitute that in the place of external noise to the output. At a high level, our definition is as follows.
Consider an entry ti in the database and two possible values a and b which it can take. We simply require that the
probability of the output (or the vector of outputs in case of multiple queries) lying in a certain measurable set remains
similar in both of these cases. Here, the probability is taken over the choice of the database (coming from a certain
distribution) and is conditioned on the auxiliary information (present with the adversary) about the database. See
Definition 2 for formal details.

The privacy guarantee we provide is very similar to DP but where that guarantee “comes from” is very different in
the two cases. Differential Privacy focusses on attaining generality and works in a large number of scenarios (the data
could be coming from any distribution, the adversary may have any auxiliary information about the database, etc).
However to achieve the required guarantees, DP requires addition of external noise to the output. The philosophy of
this work is quite different from DP:

• The key “ground rule” we follow in our work is that the output is always given correctly; there is no external
noise added to the query output.

• We are willing to make strong (but still realistic) assumptions about the databases: in particular we make
assumptions about the distribution from which the entries are coming from and that a large number of entries
are independent of each other.

• We are willing to restrict the class of queries we can handle: for example a particular class of boolean functions,
linear queries over reals, etc.

• We are willing to make assumptions about the adversary: in particular that the adversary has limited or no
auxiliary information about the database in question.

At this point, we do not know how widely our privacy framework will be applicable in real systems. However
whenever privacy can be obtained in our framework, it comes for “free”. Our work shows that there are significant
non-trivial classes of systems where our framework is applicable to obtained privacy. We believe that the gains made
by making the assumptions required by our framework are quite significant:

• The output can be provided without any loss of utility, there are no tradeoffs to be made between the privacy
parameter and the utility. Whatever privacy comes, it comes for free.

• Only an analysis to “okay the system” is required and whenever such an analysis goes through, no changes need
to be made to the mechanism to answer the queries. Hence, existing applications will work as they are without
any additional investment to change the mechanism (and how the output is handled) etc.

1For example, consider a mechanism which takes various inputs and produces various outputs. If all inputs are noisy, the outputs may not
now satisfy a property which they earlier did.
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Given the growing importance of data privacy, we believe that a fruitful approach towards obtaining data privacy
will be the following two step approach:

1. First check if the conditions for obtaining noiseless privacy are satisfied by the system. If so, privacy is automatic
and nothing needs to be done.

2. If not, proceed to obtain privacy via alternate “explicit” means such as injection of noise to the output. Thus,
we pay for privacy only if strictly necessary.

Thus, we believe it is important to understand and develop techniques to analyze when privacy comes automati-
cally. The current work represents an initial step in that direction. We stress that our results should not be seen as “end
results” by any means and much work remains to be done in this direction.

Our Results. In this work, we study certain types of boolean and real queries and show natural (and well understood)
conditions under which noiseless privacy can be obtained with good parameters. We first focus on boolean setting;
i.e., the entries of the database as well as the query output have one bit of information each. For simplicity, our starting
assumption is that each bit of the database is independently drawn from the uniform distribution (this assumption can
be partially relaxed; see Section 3). We show that functions which are sufficiently “far” away from both 0-junta and
1-junta functions2 satisfy noiseless privacy with “good” parameters. Note that functions which are close to either
0-junta or 1-junta do not represent an “aggregate statistics” of the database (which should depend on a large number
of database entries). Hence, in real systems releasing some aggregate information about the database, we do expect
such a condition to be naturally satisfied. Our proof of this theorem is rather intuitive and interestingly shows that
these two (well understood) characteristics of the boolean functions are the only ones on which the privacy parameter
depends.

For functions over the reals with real outputs, we study two types of functions: (a) linear functions (i.e., where the
output is a linear combination of the rows of the database), and, (b) sum of arbitrary functions of the database rows.
These functions together cover a large class of aggregate information to support various data mining algorithms used
in real systems. We show natural conditions on the database distribution for which noiseless privacy can be obtained
with good parameters. We refer the reader to section 4.1 for more details.

Multiple Queries. The above results are only for the case where the adversary is allowed to ask a single query. In
the noiseless privacy framework, composition is tricky and privacy can completely breakdown even given a response
to two different (carefully crafted) queries. This is in contrast to the differential privacy framework which provides
a composition theorem showing that privacy does not completely break down with multiple queries (although it still
degrades exponentially). The reason why such a composition is difficult to obtain in our setting is the lack of inde-
pendence between the responses to the queries; the queries operate on the same database and might have complex
interdependence on each other to enable an entry of the database to be deduced fully give the responses. In differential
privacy, such an interdependence is broken by means of adding (independent) external noise to the output.

To break such interdependence in our setting, we introduce what we call the changing database model; we assume
that between any two queries, a nontrivial fraction of the database has been “refreshed”. The newly added entries
(which may either replace some existing entries or be in addition to the existing entries) are independent of the old
entries already present in the database. The effect of these new entries will reflect in the response to a given query.
This helps us maintain some weak independence between different responses as in differential privacy thus providing
us something to rely on while trying to obtain composability. We note that the setting of the changing database model
is quite realistic. We present one real world example below.

HR Salary Surveys: A standard practice to determine the budget for pay raises in most large organizations is
the conduct what is called an yearly HR salary survey. As part of this survey, the organization would submit relevant
statistics about the salaries of its employees to some market research firms. These firms in turn aggregate data received
from all organizations and generate salary statistics for the entire industry (which in turn forms the primary basis
for the organizations to decide the salary budget for the upcoming year). A key requirement when an organization
submits such statistics about the employee salaries to the market research firms is to maintain anonymity and hide all
personally identifiable information about its employees (and only give salary statistics based on the department, years
of experience, etc). A reasonable assumption in this setting is that a constant fraction of the employees will change

2Roughly, an i-junta function is one which depends only upon i of the total input variables.
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every year (i.e., if the attrition rate of a firm is five percent, then roughly five percent of the entries can be expected to
be refreshed every year).

Apart from the above example, there are various other scenarios where the changing database model is realistic
(i.e., when one is dealing with streaming data, data with a time window, etc). Under such changing database model,
we provide generalizations of our boolean as well as real query theorems to the case of multiple queries.

Other than the above, we also have other interesting results like obtaining noiseless privacy for symmetric boolean
functions, “decomposable” function, etc. In various cases, we in fact show positive results for noiseless privacy under
multiple queries even in the static database model.

Future Work. Our works opens up an interesting direction for research in the area of database privacy. Our at-
tempt to understand what type of queries and database distributions inherently provide privacy guarantees is far from
comprehensive. One can ask about what type of boolean function classes support multiple queries while maintaining
good privacy parameters. What other real value functions support good privacy for the case of single as well as mul-
tiple queries? In the present work, much of our results are with independence assumption on the database generating
distribution. A possible direction of research can be on how to show privacy for databases with correlated entries.

Related Works. The line of works most related to our work is that of query auditing (see Kenthapadi et al. [KMN05]
and Nabar et al. [NMK+06]). Roughly, in this line of work there is a query auditor which decides for a database
T = 〈t1, · · · , tn〉 with real entries, whether to answer a particular query or not. If the auditor decides to answer the
query, then the answer to the query is output without adding any noise. Since the decision of whether to answer a
query or not in itself can leak information about the database, the decision is itself randomized. So, in essence it is
possible that a query is not answered when ideally it should have been answered and vice versa. The cases where the
query is rejected and the randomized decision of when to query a query can be viewed as some form of noise injection
into the system. However, the good aspect of query auditing is that if an answer is output, it is without any noise which
is in harmony with the motivation of our present work. See appendix for a more detailed comparison of our work to
this and other related works.

2 Our privacy notion

In our present work, we investigate the possibility of guaranteeing privacy without adding any external noise. The
main idea is to look for (and systematically categorize) query functions which under certain assumptions on the data
generating distribution are inherently private (under our formal notion of privacy that we define shortly). Since, the
output of the function itself is inherently private, there is no need to inject external noise. As a result the output of
the function has no utility degradation. Formally, we define our new notion of privacy (called Noiseless Privacy) as
follows:

Definition 2 (ε-Noiseless Privacy or ε-NP). Let D be the domain from which the entries of the database are drawn.
A deterministic query function f : Dn → Y is said to be ε-noiseless private (or is said to satisfy ε-NP) under a
distribution D on Dn and some auxiliary information Aux (which the adversary might have), if for all measurable
sets O ⊆ Y , for all ` ∈ [n] and for all a, a′ ∈ D,

Pr
T∼D

[f(T ) ∈ O|t` = a,Aux] ≤ eε Pr
T∼D

[f(T ) ∈ O|t` = a′,Aux]

where t` is the `-th entry of the database T .

In comparison to Differential Privacy (see Definition 1), our notion of Noiseless Privacy (Definition 2) differs at
least in the following three aspects:

• unlike in Definition 1, it is possible for a non-trivial deterministic function f to satisfy Definition 2 with rea-
sonable ε. For e.g., XOR of all the bits of a boolean database (where each entry of the database is an unbiased
random bit) satisfies Definition 2 with ε = 0 where as Definition 1 is not satisfied for any finite ε.

• the privacy guarantee of Definition 2 is under a specific distribution D, where as Definition 1 is agnostic to any
distributional assumption on the database.
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• the privacy guarantee of Definition 2 is w.r.t. an auxiliary information Aux whereas differential privacy is
oblivious to auxiliary information.

Intuitively, the above definition captures the change in adversary’s belief about a particular output in the range of
f in the presence or absence of a particular entry in the database. A comparable (and seemingly more direct) notion
is to capture the change in adversary’s belief about a particular entry before and after seeing the output. This is stated
formally in the next definition.

Definition 3 (ε-Aposteriori Noiseless Privacy or ε-ANP). A deterministic query function f : Dn → Y is said to
be ε-Aposteriori Noiseless Private (or is said to satisfy ε-ANP) under a distribution D on Dn and some auxiliary
information Aux, if for all measurable sets O ⊆ Y , for all ` ∈ [n] and for all a ∈ D,

e−ε ≤ PrT∼D[t`=a|f(T )∈O,Aux]
PrT∼D[t`=a|Aux] ≤ eε

where t` is the `-th entry of the database T .

The following lemma shows that Definition 3 implies Definition 2 and vice versa with a two-fold degradation in
privacy parameter ε in one direction.

Lemma 1. Let f : Dn → Y be a deterministic query function. Given a distribution, D, over Dn, and some auxiliary
information, Aux, the following hold:

1. If f satisfies ε-NP under D and Aux, then it also satisfies 2ε-ANP under the same D and Aux.

2. If f satisfies ε-ANP under D and Aux, then it is also ε-NP under the same D and Aux.

Proof. Let us first prove Definition 3⇒ Definition 2. For all measurable O ⊆ Range(f), for all ` ∈ [n] (where n is
the number of rows in the database T ) and for all a ∈ D, the following is true.

Pr[f(T ) ∈ O|t` = a,Aux] =
Pr[t` = a|f(T ) ∈ O,Aux] Pr[f(T ) ∈ O|Aux]

Pr[t` = a|Aux]

Now, Pr[f(T )∈O|t`=a,Aux]
Pr[f(T )∈O|t`=a′,Aux] (where a, a′ ∈ D and a 6= a′) can be written as

Pr[t` = a|f(T ) ∈ O,Aux] Pr[f(T ) ∈ O|Aux]

Pr[t` = a|Aux]
· Pr[t` = a′|Aux]

Pr[t` = a′|f(T ) ∈ O,Aux] Pr[f(T ) ∈ O|Aux]

=
Pr[t` = a|f(T ) ∈ O,Aux]

Pr[t` = a|Aux]
· Pr[t` = a′|Aux]

Pr[t` = a′|f(T ) ∈ O,Aux]

Now, Pr[t`=a|f(T )∈O,Aux]
Pr[t`=a|Aux] ≤ eε and Pr[t`=a

′|Aux]
Pr[t`=a′|f(T )∈O,Aux] ≤ e

ε by Definition 3. Therefore,

Pr[f(T ) ∈ O|t` = a,Aux]

Pr[f(T ) ∈ O|t` = a′,Aux]
≤ e2ε

⇒ Pr[f(T ) ∈ O|t` = a,Aux] ≤ e2ε Pr[f(T ) ∈ O|t` = a′,Aux]

The proof in the other direction goes as follows. We want to upper and lower bound the ratio Pr[t`=a|f(T )∈O,Aux]
Pr[t`=a|Aux] .

Equivalently, we have,

Pr[t` = a|f(T ) ∈ O,Aux]

Pr[t` = a|Aux]
=

Pr[f(T ) ∈ O|t` = a,Aux] Pr[t` = a|Aux]

Pr[f(T ) ∈ O|Aux] Pr[t` = a|Aux]

=
Pr[f(T ) ∈ O|t` = a,Aux]

Pr[f(T ) ∈ O|Aux]

=
Pr[f(T ) ∈ O|t` = a,Aux]∑

a′∈D Pr[f(T ) ∈ O|t` = a′,Aux] Pr[t` = a′|Aux]

=
1∑

a′∈D
Pr[f(T )∈O|t`=a′,Aux]
Pr[f(T )∈O|t`=a,Aux] Pr[t` = a′|Aux]

This ratio is upper and lower bounded by eε and e−ε respectively because each of Pr[f(T )∈O|t`=a′,Aux]
Pr[f(T )∈O|t`=a,Aux] is upper and

lower bounded due to Definition 2 and the fact
∑

a′∈D Pr[t` = a′|Aux] = 1.

5



Finally, we introduce a relaxed notion of Noiseless Privacy called (ε, δ)-Noiseless Privacy, where with a small
probability δ the ε-Noiseless Privacy does not hold. Here, the probability is taken over the choice of the database
and the two possible values for the database entry in question. While for a strong privacy guarantee a negligible δ is
desirable, a non-negligible δ may be tolerable in certain applications. The following definition captures this notion
formally.

Definition 4 ((ε, δ)-Noiseless Privacy). Let f : Dn → Y be a deterministic query function on a database of length n
drawn from domain D. Let D be a distribution on Dn. Let S1 ⊆ Y and S2 ⊆ D be two sets such that for all j ∈ [n],
PrT∼D[f(T ) ∈ S1] + PrT∼D[tj ∈ S2] ≤ δ, where tj is the j-th entry of T .

The function f is said to be (ε, δ)-Noiseless Private under distribution D and some auxiliary information Aux, if
there exists S1, S2 as defined above such that, for all measurable sets O ⊆ Y − S1, for all a, a′ ∈ D− S2, and for all
` ∈ [n] the following holds:

Pr
T∼D

[f(T ) ∈ O|t` = a,Aux] ≤ eε Pr
T∼D

[f(T ) ∈ O|t` = a′,Aux]

Composability. In many applications, privacy has to be achieved under multiple (partial) disclosures of the database.
For instance, in database applications, several thousand user queries about the database entries are answered in a day.
Thus, a general result which tells how the privacy guarantee changes (typically degrades) as more and more queries are
answered is very useful and is referred to as composability of privacy under multiple queries. While in some scenarios
(eg. streaming applications) the database can change in between queries (dynamic database), in other scenarios it
remains the same (static database). Also, the queries can be of different types or multiple instances of the same type.
As mentioned earlier, while the DP definition admits a general composition result, the privacy guarantee degrades
exponentially with the number of queries on a static database.

In case of NP, obtaining general composition results is a challenge because the data distribution can change some-
what intractably when conditioned on the query responses returned so far. Moreover, if the data distribution allowed
dependence among data entries, then revealing exact answers to deterministic queries involving some entries, can
easily reveal information about other (dependent) entries. Hence we explore the possibility of composition under
independence assumptions. It turns out that, even with independence, not all query-sequences compose under NP.
We provide one interesting example of the kinds of query-sequences for which composition can be achieved under
independence assumption on the data.

Consider data entries, tj , j = 1, 2, . . ., drawn iid according to some distribution (over some fixed domain D), and
let {T1, . . . , Tm} denote a sequence of subsets of {tj}. We now study the composition of a sequence of queries fi(Ti),
i = 1, . . . ,m (Notice that each fi(·) is a function of only the corresponding subset Ti of {tj}). If Ti’s do not share
any elements at all, then composition is trivial (given the independence of {ti}) assuming each individual fi satisfies
noiseless privacy (with the suitable parameters). Even when Ti’s contain common or shared elements, composition is
easy if we only required guarantees for the unique elements (i.e., for those that participate in only one query). This
is because, entries participating in previous queries can be regarded as auxiliary information and if we can obtain
NP under leakage of suitable auxiliary information, composition of NP for the unique entries follows. However, we
obviously require composition of NP for all entries in the database (not just the unique entries). Our composition
result below shows that this is possible if each Ti has “sufficiently many” unique entries.

Theorem 1 (Composition). Let tj , j = 1, . . ., denote the data entries drawn iid according to distribution D (over
the data domain D). Let Ti, i = 1, . . . ,m, denote a sequence of subsets of {tj}. Consider a sequence of m queries
fi(Ti), i = 1, . . . ,m, where the ith query operates on the ith data set Ti. Let T ∗ denote the set of all data entries that
appear in two or more data sets, i.e. T ∗ = {t : t ∈ Ti ∩ Tj , i 6= j}. If each fi(Ti) is (εi, δi) noiseless private under
auxiliary disclosure of |Ti∩T ∗| entries of Ti, then the sequence of queries fi(Ti), i = 1, . . . ,m is (

∑m
i=1 εi,

∑m
i=1 δi)

noiseless private.

Proof. To assess the privacy of the `th element t`, we consider the joint probability of observing them query responses
given [t` = a] and compare it with the corresponding probability for [t` = a′]. LetAf denote the collection of random
variables in (T ∗ \ {t`}). By marginalizing over all possible value assignments to the entries in Af , we can write the
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joint probability of the m query responses given [t` = a] as follows:

Pr
T∼D

[f1(T1) ∈ O1, . . . , fm(Tm) ∈ Om | t` = a]

=

∫
Af
dF (f1(T1) ∈ O1, . . . , fm(Tm) ∈ Om,Af | t` = a)

=

∫
Af

Pr
T∼D

[f1(T1) ∈ O1, . . . , fm(Tm) ∈ Om | t` = a,Af ]× dF (Af ) (1)

The last expression above, namely (1), follows from the independence of Af and t`. By factorizing the conditional
probability in (1) we obtain

Pr
T∼D

[f1(T1) ∈ O1, . . . , fm(Tm) ∈ Om | t` = a]

=

∫
Af

m∏
i=1

Pr
T∼D

[fi(Ti) ∈ Oi | t` = a,Af ]× dF (Af ) (2)

=

∫
Af

m∏
i=1

Pr
T∼D

[fi(Ti) ∈ Oi | t` = a, (T ∗ ∩ Ti)]× dF (Af ) (3)

where (2) is obtained by observing that the event [f1(T1) ∈ O1, . . . , fi−1(Ti−1) ∈ Oi−1] can reveal no more about
the entries in Ti than [t` = a,Af ] put-together (Note that this again requires the independence between data entries as
per the data generating distribution D). The next expression (3) then follows since, again, elements in Af outside of
(T ∗∩Ti) are independent of Ti. Under auxiliary leakage of |T ∗∩Ti| elements of Ti we are given that fi(Ti) is (εi, δi)-
Noiseless Private, i.e., there exist appropriate sets Si1 and Si2 (see Definition 4) with PrT∼D[fi(Ti) ∈ Si1]+PrT∼D[tj ∈
Si2] ≤ δi such that, for all measurable sets Oi ⊆ Yi − Si1, for all a, a′ ∈ D − Si2, we have

Pr
T∼D

[fi(Ti) ∈ Oi | t` = a, (T ∗ ∩ Ti)]

≤ eεi Pr
T∼D

[fi(Ti) ∈ Oi | t` = a′, (T ∗ ∩ Ti)] (4)

Let S1 be the set of all possible m responses where the ith response lies in Si1 for some i, 1 ≤ i ≤ m, and let
S2 = ∪mi=1S

i
2. Using these constructions of S1 and S2, and denote the vector of responses, [f1(T1), . . . , fm(Tm)] as

f(T ) we get

Pr
T∼D

[f(T ) ∈ S1] + Pr
T∼D

[tj ∈ S2] ≤
m∑
i=1

δi (5)

and applying (4) for each of the m terms inside the product in (3) we get, for all measurable sets O1 × · · · × Om,
where each Oi ⊆ Yi − Si1, for all a, a′ ∈ D − S2,

Pr
T∼D

[f1(T1) ∈ O1, . . . , fm(Tm) ∈ Om | t` = a]

≤ e
∑m
i=1 εi Pr

T∼D
[f1(T1) ∈ O1, . . . , fm(Tm) ∈ Om | t` = a′] (6)

This completes the proof.

One way of gaining intuition behind this theorem is the following. In this theorem, we are interested in the privacy
of entries appearing in multiple datasets Ti’s. However if each dataset has some unique entries, the “effect” these
unique entries have on the output can be compared to the noise added by a differentially private mechanism to the
output. Besides, because of the independence property, the effect of unique entries in each query is independent.
Hence, this can be viewed as similar to independent noise being added to each query by a differentially private
mechanism. Then, the privacy of entries appearing in multiple datasets degrades similar to how the privacy degrades
in differential privacy setting under multiple queries.

There are many practical settings where the Ti’s satisfy the condition of our composition theorem. For example,
dynamic databases arise in many scenarios: (a) Growing database model: Here the database keeps growing with time,
e.g. database of all registered cars. Thus, in-between subsequent releases of information, the database grows by some
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number k, (b) Streaming model: This is the more commonly encountered scenario, where the availability of limited
memory/storage causes the replacement of some old data with new one. Thus, at the time of each query the database
has some k new entries out of the total (fixed) n , and (c) Random replacement model: A good generalization of the
above two models, it replaces randomly chosen k entries from the database of size n with the new incoming entries.
In all such cases, our composition results will apply.

In all the above models of dynamic databases, we assume that the number of new elements form a constant fraction
of the database. In particular, if n is the current database size, then some ρn, (0 ≤ ρ ≤ 1) number of entries are old
and the remaining k = (1− ρ)n entries are new. Our main result about composability of Noiseless Privacy holds for
any query which has (ε, δ)-Noiseless Privacy under any auxiliary information about at most ρn, (0 ≤ ρ ≤ 1) elements
of the database. Note that in the growing database model, the size of the largest database on which the query is made
is assumed to be n and the maximum fraction of old entries is ρ.

3 Boolean queries

In this section we study queries of the form f : T → {0, 1}, i.e., the query function f acts on a database T and outputs
a bit. In all the cases except section A.1, we consider that database T ∈ Dn, where D is the domain from which the
data entries are drawn. In section A.1 where we discuss the growing database model, we do not fix the length of the
database, i.e., the query f can be over a variable length database. We discuss later why such a relaxation is necessary.

3.1 The No Auxiliary Information Setting

We first study a simple and clean setting: the database entries are all drawn independently and the adversary has
no auxiliary information about them. We discuss generalizations later on. Before we get into the details of privacy
friendly functions under our setting, we need some of the terminologies from analysis of boolean functions literature.

Definition 5 (k-junta [KLM+09]). A function f : {0, 1}n → {0, 1} is said to be k-junta if it depends only on some
subset of the n coordinates of size k .

Definition 6 ((1 − τ)-far from k-junta). Let F be the class of all k-junta functions f ′ : {0, 1}n → {0, 1} and let D
be a distribution on {0, 1}n. A function f : {0, 1}n → {0, 1} is (1− τ)-far from k-junta under D if

max
f ′∈F

| Pr
T∼D

[f(T ) = f ′(T )]− Pr
T∼D

[f(T ) 6= f ′(T )]| = τ

An alternative way of stating the above condition is that for any such f ′, |Pr[f(T ) = f ′(T )] − 1/2| ≤ τ
2 . That

is, f ′ can predict f only with “advantage” at most τ2 (over a random guess). It is easy to see that when D is a uniform
distribution over n-bits, a k-junta is 0-far from the class of k-juntas and the parity function is 1-far from the class of
all 1-juntas.

Now, we are in a position to state our result in the boolean to boolean setting. The theorem below is for the setting
where the adversary has no auxiliary information about the database. Later on in this section, we show how to handle
the case when the adversary may have a subset of the database entries. We for clarity of exposition, we first state the
theorem assuming that each bit of the database is individually random and generalize it later on.

Theorem 2. Let D be an arbitrary distribution over {0, 1}n such that the marginal probability of the i-th bit equaling
1 is 1/2. Let f : {0, 1}n → {0, 1} be a boolean function which is (1 − τ1)-far from 0-junta and (1 − τ2)-far from
1-junta under D. If τ1 + τ2 < 1, then f is ln 1+(τ1+τ2)

1−(τ1+τ2) -noiseless private.

We now state and prove a more general version of the above theorem.

Theorem 3. Let D be an arbitrary distribution over {0, 1}n such that the marginal probability of the i-th bit equaling
1 is pi. Let f : {0, 1}n → {0, 1} be a boolean function which is (1 − τ1)-far from 0-junta and (1 − τ2)-far from
1-junta under D. If τ1+τ2

2 < mini∈[n] pi and maxi∈[n] pi < 1− τ1+τ2
2 , then f is(

maxi∈[n] max
{

ln 1+(τ1+τ2)/(2(1−pi))
1−(τ1+τ2)/(2pi)

, ln 1+(τ1+τ2)/(2pi)
1−(τ1+τ2)/(2(1−pi))

})
-noiseless private. (Observe that the two terms for

the max function are obtained by simply switching pi by 1− pi.)
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Proof. In the following, we denote by T , a random instance of the database under distribution D and by ti, the i-th bit
of T . For a boolean function f to be (1 − τ1)-far from 0-junta, it means that either PrT [f(T ) = 0] = 1/2 + τ1/2 or
PrT [f(T ) = 0] = 1/2−τ1/2 (as 0 and 1 are the only 0-junta functions). Similarly, for a function to be 1−τ2 far from
a 1-junta, it means that there exists i ∈ [n] such that PrT [f(T ) = ti] = 1/2− τ2/2 or PrT [f(T ) = t̄i] = 1/2 + τ2/2.

Let us fix the following notation. Let A = PrT [f(T ) = 0]. For any i, let 1
2 +Bi = PrT [f(T ) = ti]. We note that

A ∈ {1/2− τ1/2, 1/2 + τ1/2} and for all i, Bi ∈ [−τ2/2, τ2/2].
One can write

1

2
+Bi = PrT [f(T ) = ti] = (1− pi) Pr

T
[f(T ) = 0|ti = 0] + pi Pr

T
[f(T ) = 1|ti = 1]

= (1− pi) Pr
T

[f(T ) = 0|ti = 0] + pi(1− Pr
T

[f(T ) = 0|ti = 1])

Again,

A = PrT [f(T ) = 0] = (1− pi) Pr
T

[f(T ) = 0|ti = 0] + pi Pr
T

[f(T ) = 0|ti = 1]

Solving for PrT [f(T ) = 0|ti = 0] and PrT [f(T ) = 0|ti = 1] we get,

Pr
T

[f(T ) = 0|ti = 0] =
A+Bi + (1/2− pi)

2(1− pi)

Pr
T

[f(T ) = 0|ti = 1] =
A−Bi − (1/2− pi)

2pi

Therefore, the ratio

PrT [f(T ) = 0|ti = 0]

PrT [f(T ) = 0|ti = 1]
=
A+Bi + (1/2− pi)

2(1− pi)
2pi

A−Bi − (1/2− pi)

To obtain noiseless privacy guarantee we need to upper (lower) bound the above ratio. It can be verified that the
above ratio is upper bounded by substituting the maximum value for Bi and by substituting the minimum value for A
in the denominator and the maximum value in the numerator. This leads to (after some simple calculations) an upper
bound of 1+(τ1+τ2)/(2(1−pi))

1−(τ1+τ2)/(2pi)
which would make sense as long as the denominator is positive which is enforced by

τ1+τ2
2 < pi.

To lower bound the above ratio, it suffices to upper bound PrT [f(T )=0|ti=1]
PrT [f(T )=0|ti=0] . Using similar argument as above it

follows that this ratio is upper bounded by

1 + (τ1 + τ2)/(2pi)

1− (τ1 + τ2)/(2(1− pi))

With this the proof is complete.

Note that in the above theorem we do not assume independence among the entries in T . As a result we can handle
databases with correlated entries. It is also worth mentioning here that all the other results in this section assume the
entries in the database to be uncorrelated.

To get some more insight into the result let, us consider f(T ) to be the XOR of all the bits of T . Let T be drawn
from the uniform distribution. Then f is 1-far from both a 0-junta and a 1-junta. Hence, f is 0-noiseless private.
Instead of theXOR, if we let f be theAND function, then we see that it is just 1− 1

2n−1 -far from a 0-junta. The ratio
in this case becomes∞, which shows AND is not a very good function for providing ε-noiseless privacy for small ε.
This is indeed the case because PrT [f(T ) = 1|ti = 0] = 0 for all i. However, we can capture functions like AND if
we try to guarantee (ε, δ)-noiseless privacy. If we fix δ = 1

2n (which is basically the probability of the AND function
yielding 1), we get (0, 1

2n )-noiseless privacy for AND. This property is in fact not specific to AND. In fact one can
easily guarantee (ε, δ)-noiseless privacy for any symmetric boolean functions (i.e., the functions whose output does
not change on any permutation of the input bits). We will discuss this result in a more general setting later in Section
3.4.
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3.2 Handling Auxiliary Information

We now study the setting where the adversary may have auxiliary information about a subset of the entries in the
database. We study the privacy of the entries about whom the adversary has no auxiliary information.

Theorem 4. Let D be the distribution over {0, 1}n where the i-th bit is chosen to be 1 independently with probability
pi. Let T be a database drawn from D. Let f : {0, 1}n → {0, 1} be a boolean function which is (1 − τ)-far away
from d + 1 junta (that is, for any function g that depends only on a maximum of d + 1 input variables, |Pr[f(T ) =
g(T )] − 1/2| ≤ τ/2). Let Γ be any adversarially chosen subset of variables that has been leaked with |Γ| = d. If
τ
δ < mini∈[n] pi and maxi∈[n] pi < 1 − τ

δ , then f is (maxi∈[n]−Γ

(
max

{
ln

(
1+ τ

δ(1−pi)
1− τ

δpi

)
, ln

(
1+ τ

δpi
1− τ

δ(1−pi)

)})
, 2δ)-

noiseless private with respect to the bit ti ∈ T , where i ∈ [n]− Γ.

Proof. We analyze the probability that the auxiliary information Γ = t is such that |PrR[f(R||t) = 0]− 1/2| ≤ τ/2δ
and |PrR[f(R||t) = ti]− 1/2| ≤ τ/2δ. We prove that this happens with probability at least 1− δ− δ = 1− 2δ. The
proof is as follows. Here the notation R||t refers to a database formed by combining R and t.

Lemma 2. Let the underlying distribution be any D where each bit is 1 independently with probability pi. Under D,
let f be (1 − τ)-far away from d junta, that is for any function g that depends only on d variables, |PrD[f(T ) =
g(T )] − 1/2| ≤ τ/2. Here T is the database drawn from D and let Γ (with |Γ| = d) be any adversarial subset
of entries of T that has been leaked. Then, with probability at least 1 − δ over the choice of assignments t to Γ,
|PrR[f(R||t) = 0]− 1/2| ≤ τ/2δ.

Proof. Let |Γ| = d, be the set of indices leaked. Note that we use Γ to represent both the indices and the set of
leaked variables. Let R = [n]− Γ. We prove the lemma by contradiction. Suppose the claim is wrong. That is, with
probability more than δ over Γ, |PrR[f(R||t) = 0]− 1/2| ≥ τ/2δ. Construct g : {0, 1}d → {0, 1} as follows.

g(t) =

{
0 if PrR[f(R||t) = 0] ≥ 1/2
1 otherwise

Observe that g just depends on d variables. We shall now show predictability of f using g which contradicts
farness from d junta. Let us evaluate Pr[f(T ) = g(Γ)]. To that end, we partition the assignments t to T into three
sets, S1, S2 and S3. S1 is the set of t such that PrR[f(R||t) = 0] ≥ 1/2 + τ/2δ, S2 is the set of t such that
PrR[f(R||t) = 0] ≤ 1/2 − τ/2δ and S3 is the set of remaining assignments. Now, from our assumption, we are
given that Pr[T ∈ S1 ∪ S2] > δ. Also, it is easy to observe that for any t, PrR[f(R||t) = g(t)] ≥ 1/2 by the choice
of g (since in all cases, g does at least as well as a random guess). Now, we lower bound Pr[f(T ) = g(Γ)].

Pr[f(T ) = g(Γ)] = EΓPrR[f(R||Γ) = g(Γ)]

≥ Pr[Γ ∈ S1](1/2 + τ/2δ) + Pr[Γ ∈ S2](1/2 + τ/2δ) + Pr[Γ ∈ S3](1/2)

≥ 1/2 + (τ/2δ) Pr[Γ ∈ S1 ∪ S2]

> 1/2 + τ/2

This leads to a contradiction.

Lemma 3. Let D be a distribution over {0, 1}n where each bit is 1 independently with probability pi. Under D, let
f be far away from d + 1 junta. Let T be a database drawn from D and let Γ (with |Γ| = d) be any adversarial
subset of entries of T that has been leaked. Then, with probability at least 1− δ over the choice of assignments t to Γ,
|PrR[f(R||t) = ti]− 1/2| ≤ τ/2δ, where ti is the i-th entry of the database T .

Proof. Let |Γ| = d, be the set of indices leaked. As before that we use Γ to represent both the indices and the set
of leaked variables. Let R = [n] − Γ. We prove the lemma by contradiction. Suppose the claim is wrong. That is,
with probability more than δ over Γ, |PrR[f(R||t) = ti] − 1/2| ≥ τ/2δ. Now, let f ′ = f ⊕ ti. Equivalently, with
probability at least δ over Γ, |PrR[f ′(R||t) = 0]− 1/2| ≥ τ/2δ. The argument now is similar to the previous lemma
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owing to the transformation from f to f ′. We nevertheless repeat it for completeness. Construct g : {0, 1}d → {0, 1}
as follows.

g(t) =

{
0 if PrR[f ′(R||t) = 0] ≥ 1/2
1 otherwise

Observe that g′ = g⊕ ti just depends on d+ 1 variables. We shall now show the predictability of f using g′ which
contradicts farness from d+1 junta. Let us evaluate Pr[f(T ) = g′(Γ)] = Pr[f ′(T ) = g(Γ)]. To that end, we partition
the assignments t to Γ into three sets, S1, S2 and S3. S1 is the set of t such that PrR[f ′(R||t) = 0] ≥ 1/2 + τ/2δ, S2

is the set of t such that PrR[f ′(R||t) = 0] ≤ 1/2− τ/2δ and S3 is the set of remaining assignments. Now, from our
assumption, we are given that Pr[Γ ∈ S1 ∪S2] > δ. Also, it is easy to observe that for any t, PrR[f ′(R||t) = g(t)] ≥
1/2 by the choice of g. Now, we lower bound Pr[f(T ) = g′(Γ)] = Pr[f ′(T ) = g(Γ)].

Pr[f ′(T ) = g(Γ)] = EΓPrR[f ′(R||Γ) = g(Γ)]

≥ Pr[Γ ∈ S1](1/2 + τ/2δ) + Pr[Γ ∈ S2](1/2 + τ/2δ) + Pr[Γ ∈ S3](1/2)

≥ 1/2 + (τ/2δ) Pr[Γ ∈ S1 ∪ S2]

> 1/2 + τ/2

This leads to a contradiction.

Following the proof structure in Theorem 3, let N = Pr[f = 0|Γ = t, ti = 0] and D = Pr[f = 0|Γ = t, ti = 1].
Now,

(1− pi)N + pi(1−D) = 1/2 +Bi, where |Bi| ≤ τ/2δ
(1− pi)N + piD = A, where |A− 1/2| ≤ τ/2δ

From here we use the argument from Theorem 3 to upper (lower) bound the ratioN/D. Since the bound holds with

probability 1−2δ, we get that if maxi∈[n] pi < 1− τ
δ , then f is (maxi∈[n]−Γ

(
max

{
ln

(
1+ τ

δ(1−pi)
1− τ

δpi

)
, ln

(
1+ τ

δpi
1− τ

δ(1−pi)

)})
, 2δ)-

noiseless private which again makes sense as long as τ
δ < mini∈[n] pi and maxi∈[n] pi < 1− τ

δ .

3.3 Handling multiple queries in Adversarial Refreshment Model

Unlike the static model, in this model we assume that every query is run on a database where some significant part of
it is new. We focus on the adversarial replacement model.

Definition 7 (d-Adversarial Refreshment Model). In this model, except for an adversarially chosen d bits of the
database T , the remaining bits are refreshed under the data generating distribution D before every query fi.

We demonstrate the composability of boolean to boolean queries ( i.e., f : {0, 1}n → {0, 1}) under this model.
By the reduction shown in Theorem 1, privacy under multiple queries follows from the privacy in single query

under auxiliary information. We use Theorems 1 and 4 to obtain the following composition theorem for boolean
functions.

Corollary 1. Let f be (1−τ)-far away from d+1 junta ( with d = O(n)), that is for any function g that depends only
on a subset of variables of size d+1, |Pr[f(T ) = g(S)]−1/2| < τ/2. Let T be changed as per the d-Adversarial Re-
freshment Model and let T̂ be the database formed by concatenating the new entries (in the d-Adversarial Refreshment
Model) with the existing entries (instead of refreshing them). Let the number of times that f has been queried is m.

Under the conditions of Theorem 4, f is (mmaxi∈[n]

(
max

{
ln

(
1+ τ

δ(1−pi)
1− τ

δpi

)
, ln

(
1+ τ

δpi
1− τ

δ(1−pi)

)})
, 2mδ)-noiseless

private, where n is the size of the database T̂ and pi is the probability of the i-th bit of T̂ being one.
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3.4 Symmetric Functions on {0, 1}n

In this section we look at functions where the domain of the function is a vector of boolean entries but the range is
over the reals, i.e., f : {0, 1}n → R. Note that even if f maps to the set of reals, the number of elements of R which
f maps to is at most 2n.

Consider a boolean database T ∈ {0, 1}n and the query function f : {0, 1}n → R, where each entry of T is drawn
from a biased bernoulli trial with bias p. We want to provide ε-noiseless privacy for the query function f . Note that
even if f maps to the set of reals, the number of elements of R which f maps to is at most 2n. The specific class of
query functions f we consider are called symmetric functions. Formally,

Definition 8 (Symmetric function). A function f : {0, 1}n → R is said to be symmetric, if for any input string
T = 〈t1t2 · · · tn〉 ∈ {0, 1}n and for all permutations σ from the set of permutations over the set {1, · · · , n} the
following holds

f(t1, · · · , tn) = f(tσ(1), · · · , tσ(n))

The lemma below follows directly from the definition above.

Lemma 4. Any symmetric function f : {0, 1}n → R depends only on the number of bits in the input which are 1.

So, to guarantee noiseless privacy for a symmetric function f , we essentially need to bound the following ratio for
all i ∈ [n] and for all a ∈ {0, · · · , n}

PrT [cT = a|ti = 0]

PrT [cT = a|ti = 1]

where cT is the count of the number of 1 in T . The following theorem provides a bound for it. We will make use of
the fact that the entire view of the adversary (which has responses to multiple different queries) can be constructed
based only on the count of the number of bits in T ∈ {0, 1}n which are 1.

Theorem 5. Let T be from the distribution D where each bit is 1 with probability p (a constant). Let cT be the count
of number of bits in T ∈ {0, 1}n which are 1 and let a be any element from the set {0, · · · , n}. For any constant
ε > 0, cT is (ε, negl(n))-noiseless private.

Proof. First note that since the vector T is generated from the set {0, 1}n under D, the random variable cT follows
a Binomial(n, p) distribution. For any given v ∈ {0, 1}, the ratio PrT [cT=a|ti=v]

PrT [cT=a|ti=v̄] is exactly the ratio between the
probability masses of the binomial distribution B = Binomial(n′ = n− 1, p) at two adjacent points a and a− 1.

For such a distribution and for 0 < x < n′ − pn′, we have

Pr[B = pn′ + x]

Pr[B = pn′ + x+ 1]
=
n− 1 + (x+ 1)/p

n− 1− x/(1− p)

Now, we bound the above ratio by 1 + ε < eε. It follows that as long as x <
εp(n− 1)(1− p)

(1 + pε)
− 1− p

1 + pε︸ ︷︷ ︸
A

, the above

bound holds. By Chernoff bound we have |x| < A w.p. greater than 1− negl(n) (assuming ε and p to be constant).
This completes the proof.

Handling Auxiliary Information. The above result implies that the privacy guarantee for a sequence of symmetric
boolean functions does not degrade across multiple queries, which is an interesting property of symmetric boolean
functions.

Corollary 2. Let T be a static database drawn from the distribution D where each bit initially 1 with probability
p (a constant). Let f1, f2, · · · fm be m symmetric queries on T . Then for any constant ε > 0, the query sequence
f1, f2, · · · fm is (ε, negl(n))-noiseless private.
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4 Real queries

In this section, we study the privacy of functions which operate on databases with real entries and compute a real value
as output. We view the database T as a collection of n random variables 〈t1, t2, . . . , tn〉 with the ith random variable
representing the ith database entry. First, we study the privacy of a query that outputs the sum of functions of database
entries, that is, fn(T ) = 1

sn

∑
i∈[n] gi(ti), sn =

∑
i∈[n] E[g2

i (ti)] in Section 4.1. We provide the set of assumptions
about the functions gi’s, under which the response of a single such query can be provided with Noiseless Privacy
guarantees in Theorem 7. While Theorem 7 is for an adversary that has no auxiliary information about the database,
Theorem 8 is for an adversary that may have auxiliary information about some constant fraction of the database.
We note that this query function is important as many learning algorithms, including principal component analysis,
k-means clustering and any algorithm in the statistical query framework can be captured by this type of query (see
[BDMN05]). Next, in section 4.2, we study the case of simple linear queries of the form fn(T ) =

∑
i∈[n] aiti, ai ∈ R

when ti are drawn i.i.d. from a normal distribution. Clearly, linear queries on database entries are captured by the
earlier query type, but here we study how multiple such queries (for a static database) can be answered, albeit with
stronger assumptions about the database. We show that we can allow upto 5

√
n query-responses (on a static database)

while still providing (ε, δ)-Noiseless Privacy for any arbitrary ε and for δ negligible in n. Again, we give a theorem
each for an adversary with no auxiliary information as well as for an adversary who may have auxiliary information
about some constant fraction of the database. We present several results about the privacy of these two queries under
the various changing databases models in section 4.2.

4.1 Sums of functions of database entries

Let T = 〈t1, · · · , tn〉 be a database where each ti ∈ R is independently chosen and let gi : R → R,∀i ∈ [n] be a set
of n real valued functions. We study the privacy of the following function on the database T : Yn = 1

sn

∑n
i=1 gi(ti)

where s2
n =

∑n
i=1 E[g2

i (ti)]. We state Hertz Theorem [Her69] below and use it to derive the uniform convergence of
the cdf of Yn to the cdf of the standard normal.

Theorem 6 (Hertz theorem). LetX1, X2, · · · , Xn be independent random variables with distribution functions V1, V2,
· · · , Vn, zero means and finite non-zero variances σ2

1, σ
2
2, · · · , σ2

n. Let s2
n =

∑n
1 σ

2
i and Φ(x) = (2π)−

1
2

∫ x
−∞ e

−t2/2 dt
be the distribution function of N (0, 1). Then,

∣∣Pr[(X1 +X2 + · · ·+Xn)s−1
n ≤ x]− Φ(x)

∣∣ ≤ K

s3
n

∫ sn

u=0
ψn(u)du (7)

where ψn(u) =
∑n

i=1

∫
|x|>u x

2dVi(x).

Corollary 3 (Uniform Convergence of Fn to Φ). Let Fn be the cdf of Yn = 1
sn

∑n
i=1 gi(ti) where s2

n =
∑n

i=1 E[g2
i (ti)]

and let Φ denote the standard normal cdf. If ∀i ∈ [n], E[gi(ti)] = 0 and E[g2
i (ti)], E[|gi(ti)|3] = O(1) (constants

independent of i), then Yn converges in distribution uniformly to the standard normal random variable as follows:
|Fn(x)− Φ(x)| = O

(
1√
n

)
Proof. Setting Xi = gi(ti) ∀i and solving the integral on the RHS of (7) we obtain the corollary about uniform
convergence of the cdf (Fn) of Yn to the cdf (Φ) of the standard normal random variable.

Let Ii =
∫ sn
u=0(

∫
|x|>u x

2dVi(x))du where Vi(·) is the distribution function of gi(ti). We have

Ii =

∫ sn

u=0

(∫
|x|>sn

x2vi(x)dx

)
du+

∫ sn

u=0

(∫
u<|x|≤sn

x2vi(x)dx

)
du
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where vi(x) is the density function of gi(ti). Changing the order of integration, we get

Ii =

∫
|x|>sn

x2vi

(∫ sn

u=0
du

)
dx+

∫
|x|≤sn

x2vi

(∫ |x|
u=0

du

)
dx

=

∫
|x|>sn

snx
2vidx+

∫
|x|≤sn

|x|3vidx

≤
∫
|x|>sn

|x|3vidx+

∫
|x|≤sn

|x|3vidx

= E[|g3
i (ti)|] = O(1)

This gives us
∑n

i=1 Ii = O(n). Now, since sn = O(
√
n) and since |Pr[Yn ≤ x]− Φ(x)| ≤ K

s3n

∑n
i=1 Ii, we get

|Fn(x)− Φ(x)| = O( 1√
n

).

If the pdf fn of Yn exists and has a bounded derivative, we can further derive the convergence rate of the pdf fn
to the pdf φ of the standard normal random variable. This result about pdf convergence is required because we will
need to calculate the conditional probabilities in our privacy definitions over all measurable sets O in the range of the
query output (see Definitions 2 & 4). The result is presented in the following Lemma.

Lemma 5 (Uniform Convergence of fn to φ). Let fn(·) be the pdf of Yn =
1
sn

∑n
i=1 gi(ti) where s2

n =
∑n

i=1 E[g2
i (ti)] and let φ(·) denote the standard normal pdf. If E[gi(ti)] = 0, E[g2

i (ti)],
E[|gi(ti)|3] = O(1) ∀i ∈ [n], and if ∀i, the densities of gi(ti) exist and have bounded derivative then fn converges
uniformly to the standard normal pdf as follows: |fn(x)− φ(x)| = O

(
1
4√n

)
Proof. We are given that the density of gi(ti) exists and has bounded derivative ∀i ∈ [n]. Let fg1(·) and fg2(·) denote
the densities of g1(t1) and g2(t2) respectively. The density fg1+g2(u) of their sum (g1(t1) + g2(t2)) is given by the
convolution integral

fg1+g2(u) =

∫ inf

− inf
fg1(τ)fg2(u− τ)dτ.

The derivative of the fg1+g2(·) can be written as

limh→0
1

h

∫ inf

− inf
fg1(τ) (fg2(u+ h− τ)− fg2(u− τ)) dτ.

Applying mean value theorem for the fg2(·) terms and letting C denote the upper-bound on |f ′g2(·)|, we obtain that C
is also an upper-bound for |f ′g1+g2(·)|. By induction, we conclude that ∀x, n, |f ′n(x)| ≤ C. We will now show that
∀γ > 0, ∃N̄ s.t. ∀x and ∀n ≥ N̄ the following is true:

|fn(x)− φ(x)| ≤ γ

We have fn(x) = limh→0
Fn(x+h)−Fn(x)

h where Fn(·) denotes the cdf of Yn. Define qx(n, h) = Fn(x+h)−Fn(x)
h .

Similarly, we can write φ(x) = limh→0
Φ(x+h)−Φ(x)

h and define rx(h) = Φ(x+h)−Φ(x)
h . For some constant h∗ which

is independent of n and x (and which we will fix later)

|fn(x)− φ(x)| ≤ |fn(x)− qx(n, h∗)|︸ ︷︷ ︸
(I)

+ |qx(n, h∗)− rx(h∗)|︸ ︷︷ ︸
(II)

+ |rx(h∗)− φ(x)|︸ ︷︷ ︸
(III)

The approach for proving the lemma is as follows:

• Find h∗ independent of x and n, such that (I) and (III) are ≤ γ
3 .

• Find N̄ s.t. ∀n ≥ N̄ , we have (II) ≤ γ
3 .
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Again, using Mean Value Theorem and the fact that |f ′n(·) ≤ C|, we find that ∃m s.t. , fn(x)−fn(y) = f ′n(m)(x−y).
This implies |fn(x) − fn(y)| ≤ C|x − y|. If we have |x − y| ≤ γ

3C , we have |fn(x) − fn(y)| ≤ γ
3 Now, qn(x,h)

h =
Fn(x+h)−Fn(x)

h . From Mean Value Theorem it follows that ∃w ∈ [x, x+ h] such that

fn(w) =
Fn(x+ h)− Fn(x)

h

if |h| ≤ γ
3C , then we can get |fn(x)−qx(n, h)| ≤ γ

3 ∀x,∀n. Similarly, since φ(·) is differentiable with |φ′(·)| ≤ 1
e
√

2π
,

if we picked |h| ≤ γe
√

2π
3 , ∀x we get, |rx(h)− φ(x)| ≤ γ

3 . Therefore, if we choose h∗ = Mγ where M is a constant

given by M = min{ 1
3C ,

e
√

2π
3 } then we can ensure that (I) and (III) are both ≤ γ

3 .
To obtain an upper-bound for (II) we express |qx(n, h∗)− rx(h∗)| as follows:

|qx(n, h∗)− rx(h∗)|

=

∣∣∣∣Fn(x+ h∗)− Fn(x)

h∗
− Φ(x+ h∗)− Φ(x)

h∗

∣∣∣∣
≤
∣∣∣∣Fn(x+ h∗)− Φ(x+ h∗)

h∗

∣∣∣∣+

∣∣∣∣Fn(x)− Φ(x)

h∗

∣∣∣∣
By uniform convergence of Fn to Φ (Corollary 3) we can pick N̄ such that ∀n ≥ N̄ , |Fn(x + h∗) − Φ(x + h∗)|

and |Fn(x) − Φ(x)| are both less than γh∗

6 and thus (II) is also upper-bounded by γ
3 . Finally, since γh∗

6 = Mγ2

6 , we
note that for any γ > 0, if |Fn(x) − Φ(x)| ≤ Mγ2

6 , ∀n ≥ N̄ and ∀x, then we get |fn(x) − φ(x)| ≤ γ, ∀n ≥ N̄ and
∀x. This gives us |fn(x)− φ(x)| = O( 1

4√n).
From corollary 3 we have

∀x, (λ > 0),

∣∣∣∣∫ x

x−λ
fn(x)dx−

∫ x

x−λ
φ(x)dx

∣∣∣∣ ≤ O( 1√
n

)
We set γh

∗

6 = θ
(

1√
n

)
. Thus, ∀n ≥ 0, |Fn(x + h∗) − Φ(x + h∗)| and |Fn(x) − Φ(x)| are both ≤ γh∗

6 . Since

h∗ = θ(γ). Replacing h∗ in γh∗

6 and equating with
(

1√
n

)
, we have γ = O

(
1

n
1
4

)
.

Hence, ∀n ≥ 0,∀x, |fn(x)− φ(x)| ≤ O
(

1

n
1
4

)
.

Our results concerning the privacy of Yn = 1
sn

∑n
i=1 gi(ti) are presented in Theorem 7 (for an adversary with no

auxiliary information) and Theorem 8 (for an adversary with auxiliary information about at most a constant fraction
of the database).

Theorem 7 (Sum of functions of database entries). Let T = 〈t1, · · · , tn〉 be a database where each ti is an inde-
pendent, real-valued random varaible. Let gi : R → R, ∀i ∈ [n] be a set of one-to-one real valued functions and
let Yn = 1

sn

∑n
i=1 gi(ti), where s2

n =
∑n

i=1 E[g2
i (ti)] and ∀i ∈ [n], E[gi(ti)] = 0, E[g2

i (ti)], E[|gi(ti)|3] = O(1)

(constants independent of i) and ∀i ∈ [n] the density function for gi(ti) exists and has bounded derivative (dg(ti)dti
is a

constant, independent of i). Then, Yn is
(
O
(

lnn
6√n

)
, O

(
1√
n

))
-Noiseless Private.

Proof. We will show that ∀a, α, β ∈ R, the following ratio is bounded from above and below.

R =
pdf(Yn = a|t` = α)

pdf(Yn = a|t` = β)

Define Z = 1
sz

∑n
i=1,i 6=` gi(ti), where s2

z =
∑n

i=1,i 6=` E[g2
i (ti)]. If g` is a one-to-one function, we can rewrite the

above ratio as

R =
pdf

(
Z = asn−g`(α)

sz

)
pdf

(
Z = asn−g`(β)

sz

)
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.
The uniform convergence result of Lemma 5 gives us

R ≤
φ
(
asn−g`(α)

sz

)
+ ξ

(n−1)
1
4

φ
(
asn−g`(β)

sz

)
− ξ

(n−1)
1
4

where ξ ≥ 0 is some constant. Let us assume that ξ

(n−1)
1
4
≤ 1

10 ·φ
(
asn−g`(α)

sz

)
and also ξ

(n−1)
1
4
≤ 1

10 ·φ
(
asn−g`(β)

sz

)
.

These two assumptions imply that we should have,(
asn − g`(α)

sz

)
≤

√
ln

( √
n− 1

ξ2 · 200π

)
(8)

and (
asn − g`(β)

sz

)
≤

√
ln

( √
n− 1

ξ2 · 200π

)
(9)

We will later choose a, g`(α) and g`(β) so that the conditions in (8)-(9) hold. Under these assumptions, the ratio
becomes:

R =
1.1

0.9

φ
(
asn−g`(α)

sz

)
φ
(
asn−g`(β)

sz

)
Now, since φ(x) = 1√

2π
exp (−x2

2 )

φ
(
asn−g`(α)

sz

)
φ
(
asn−g`(β)

sz

) ≤ exp

(
1

2

∣∣∣∣∣
(
asn − g`(α)

sz

)2

−
(
asn − g`(β)

sz

)2
∣∣∣∣∣
)

= exp

(
1

2s2
z

∣∣(asn − g`(α))2 − (asn − g`(β))2
∣∣)

≤ exp

(
1

2s2
z

|2asn − (g`(α) + g`(β))| |g`(α)− g`(β)|
)

Now, if we choose |a| = O(
√

lnn), and |g`(α)|, |g`(β)| = O( 3
√
n
√

lnn), since sn = θ(n) and sz = θ(n− 1), we get

lnR = O

(
lnn
6
√
n

)
Also, for the chosen values of a, g`(α) and g`(β), equations 8 and 9 are satisfied for appropriate choices of constants.
Now we estimate the probabilities of |g`(α)| ≥ c1

3
√
n
√

lnn, |g`(β)| ≥ c2
3
√
n
√

lnn and |a| ≥ c3

√
lnn (This is the

probability with which our privacy guarantee does not hold). Both g`(α) and g`(β) represent realizations from zero
mean distributions with constant variances. Thus, using Chebyshev’s inequality,

Pr[|g`(α)| ≥ c1
3
√
n
√

lnn] ≤ 1

n
2
3 lnn

Pr[|g`(β|) ≥ c2
3
√
n
√

lnn] ≤ 1

n
2
3 lnn
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Since a represents a realization of Z, from Corollary 3 we have |Pr[Z ≤ x]− Φ(x)| = O
(

1√
n−1

)
,

Pr[|a| > c3

√
lnn]

= 1− Pr[|a| ≤ c3

√
lnn]

= 1−
(

Pr[Z ≤ c3

√
lnn]− Pr[Z ≤ −c3

√
lnn]

)
≤ 1−

[
Φ(c3

√
lnn)− Φ(−c3

√
lnn)−O

(
1√
n− 1

)]
= 1− Pr[|X| ≤ c3

√
lnn] +O

(
1√
n− 1

)
(where X ∼ N (0, 1))

= Pr[|X| > c3

√
lnn] +O

(
1√
n− 1

)
If X ∼ N (0, σ2), then Mill’s inequality bounds the tail of the distribution as follows:

Pr[|X| ≥ x] ≤
√

2

π

(σ
x

)
exp(− x2

2σ2
)

Thus, finally we get Pr[|a| > c3

√
lnn] ≤

√
2
π

(
1

c3
√

lnn

)
exp(− c23 lnn

2 ) +O
(

1√
n−1

)
= O

(
1√
n

)
Hence, it follows that Yn is

(
O
(

lnn
6√n

)
, O
(

1√
n

))
-noiseless private for the `th entry of the database T .

Theorem 8 (Sum of functions of database entries with auxiliary information). Let T = 〈t1, · · · , tn〉 be a database
where each ti is an independent, real-valued random variable. Let gi : R → R,∀i ∈ [n] be a set of one-to-
one real valued functions and let Yn = 1

sn

∑n
i=1 gi(ti), where s2

n =
∑n

i=1 E[g2
i (ti)] and ∀i ∈ [n], E[gi(ti)] = 0,

E[g2
i (ti)], E[|gi(ti)|3] = O(1) and ∀i ∈ [n] the density functions for gi(ti) exist and have bounded derivative. Let the

auxiliary information Aux be any subset of T of size ρn. Then, Yn is
(
O

(
ln(n(1−ρ))
6
√
n(1−ρ)

)
, O

(
1√

n(1−ρ)

))
-Noiseless

Private (for entries in T \ Aux).

Sketch of the proof: To analyze the privacy of the `th entry in the database T , we consider the ratio R = pdf(Yn =
a|t` = α,Aux)/pdf(Yn = a|t` = β,Aux). SettingZ = 1

sz

∑
i∈[n]\I(Aux),i 6=` gi(ti), where s2

z =
∑n

i∈[n]\I(Aux),i 6=` E[g2
i (ti)],

we can rewrite this ratio as R = pdf(Z = z0−g`(α)
sz

)/pdf(Z = z0−g`(β)
sz

), where I(Aux) is the index set of Aux and
z0 = asn −

∑
j∈I(Aux) gj(tj). Thereafter, the proof is similar to the proof of Theorem 7 except that Z is now a sum

of n(1− ρ) random variables instead of n− 1.

4.2 Privacy analysis of linear queries

We consider a sequence of linear queries f in(T ) =
∑

j∈[n] aijtj , i = 1, 2, . . . with constant and bounded coefficients
aij for a static database T . For each m = 1, 2, . . ., we ask if the set {f in(T ) : i = 1, . . . ,m} of queries can have
Noiseless Privacy guarantees. We first present Gershgorin circle theorem which we need for our privacy theorem for
linear queries.

Theorem 9 (Gershgorin circle theorem). Let A be a complex m ×m matrix, with entries aij . For i ∈ {1, · · · ,m},
let Ri =

∑
j 6=i |aij | be the sum of the absolute values of the entries in the i-th row. Let D(aii, Ri) be the closed disc

centered at aii with radius Ri. Such a disc is called a Gershgorin disc. Then, every eigenvalue of A lies within at least
one of the Gershgorin discs D(aii, Ri).

Theorem 10 (Linear Queries). Consider a database T = 〈t1, . . . , tn〉 where each tj is drawn i.i.d from N (0, 1).
Let f in(T ) =

∑
j∈[n] aijtj , i = 1, 2, . . ., be a sequence of linear queries (over T ) with constant coefficients aij ,

|aij | ≤ 1 and at least two non-zero coefficients in each query. For every m, 1 ≤ m ≤ 5
√
n, the set of queries

{f1
n(T ), . . . , fmn (T )} is (ε, negl(n))-Noiseless Private for any constant ε, provided the following conditions hold:

(Diagonal Dominance) For all i ∈ [m], ` ∈ [n],R(`, i) ≤ 0.99
∑n

j=1,j 6=` a
2
ij , whereR(`, i) =

∑m
k=1,k 6=i |

∑n
j=1,j 6=` aijakj |.
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Proof. We will first prove the privacy of the `th data item, t`. Let Yi =
∑n

j=1 aijtj , where tj are sampled i.i.d. from
N (0, 1). For any α, β ∈ R and any ~v = (y1, · · · , ym) ∈ Rm the following ratio needs to be bounded from above and
below by exp(ε) to guarantee noiseless privacy:

pdf(Y1 = y1, · · · , Ym = ym|t` = α)

pdf(Y1 = y1, · · · , Ym = ym|t` = β)

If we define Zi =
∑n

j=1,j 6=` aijtj for i ∈ [m], the above ratio is equivalent to:

pdf(Z1 = y1 − a1`α, · · · , Zm = ym − am`α)

pdf(Z1 = y1 − a1`β, · · · , Zm = ym − am`β)

Let Ã denote them× (n−1) matrix obtained by dropping the `th column ofA (them×n coefficient matrix). We
have Zi ∼ N (0,

∑n
j=1,j 6=` a

2
ij) and the vector ~Z = (Z1, · · · , Zm) follows the distributionN (0,Σ), where Σ = ÃÃT .

The entries of Σ look like Σik =
∑n

j=1,j 6=` aijakj and dim(Σ) = m × m. The sum of absolute values of non-
diagonal entries in the ith row of Σ is given by R(`, i) and the ith diagonal entry is

∑n
j=1,j 6=` a

2
ij (denoted Σii). By

Gershgorin Circle Theorem, the eigenvalues of Σ are lower-bounded by Σii−R(`, i) for some i ∈ [m]. The condition
R(`, i) ≤ 0.99Σii implies that every eigenvalue is at least 0.01 ×

∑n
j=1,j 6=` a

2
ij . Since each row of Ã has atleast

one strictly positive element (each row of A has two non-zero coefficients), this ensures that Σ has strictly positive
eigenvalues, and since Σ is also real and symmetric, we know Σ is invertible. Hence, for a given vector ~z ∈ Rm, we
can write

pdf(~Z = ~z) =
1

(2π)m/2|Σ|1/2
exp(−1

2
~zTΣ−1~z)

Let us define ~zα = ~y−α ~A` and ~zβ = ~y− β ~A` where ~A` denotes the `th column of A. Therefore, the ratio we try
to bound becomes:

exp

(
−1

2

(
~zα
TΣ−1 ~zα − ~zβ

TΣ−1 ~zβ

))
Let Σ−1 = QΛQT be the eigen decomposition and let ~z′α = QT ~zα and ~z′β = QT ~zβ under the eigen basis.

The ratio becomes

exp

(
−1

2

(
~z′α
T

Λ ~z′α − ~z′β
T

Λ ~z′β

))
= exp

(
−1

2

m∑
i=1

λi
(
(z′α,i)

2 − (z′β,i)
2
))

where z′α,i is the i-th entry of ~z′α, z′β,i is the i-th entry of ~z′β and λi is the i-th eigen value of Σ−1. Examining each
term in the summation individually, we have (z′α,i)

2 − (z′β,i)
2 = (z′α,i + z′β,i)(z

′
α,i − z′β,i). Further we have,

exp

(
−1

2

m∑
i=1

λi
(
(z′α,i)

2 − (z′β,i)
2
))

= exp

(
−1

2

m∑
i=1

λi
(
(z′α,i + z′β,i)(z

′
α,i − z′β,i)

))

≤ exp

(
λmax

2

m∑
i=1

∣∣(z′α,i + z′β,i)(z
′
α,i − z′β,i)

∣∣)

≤ exp

(
λmax

2

m∑
i=1

|(z′α,i + z′β,i)|
m∑
i=1

|(z′α,i − z′β,i)|

)

where λmax = argmaxi λi. Note that
∑m

i=1 |(z′α,i + z′β,i)| and
∣∣∣∑m

i=1(z′α,i − z′β,i)
∣∣∣ are L1 norm of the vectors
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( ~z′α + ~z′β) and ( ~z′α − ~z′β) respectively. We know that L1 norm ≤
√
mL2 norm. Using this inequality we have

exp

(
λmax

2

m∑
i=1

|(z′α,i + z′β,i)|
m∑
i=1

|(z′α,i − z′β,i)|

)

≤ exp

mλmax

2

√√√√ m∑
i=1

(z′α,i + z′β,i)
2

√√√√ m∑
i=1

(z′α,i − z′β,i)2


Since, the L2 norm remains preserved under orthonormal transformation, hence || ~z′α + ~z′β||2 = || ~zα + ~zβ||2 and

|| ~z′α − ~z′β||2 = || ~zα − ~zβ||2. Hence, we have

exp

mλmax

2

√√√√ m∑
i=1

(z′α,i + z′β,i)
2

√√√√ m∑
i=1

(z′α,i − z′β,i)2


≤ exp

mλmax|α− β|
2

√√√√ m∑
i=1

(2yi − ai`(α+ β))2

√√√√ m∑
i=1

a2
i`


Thus, this ratio will be less than exp(ε) if the following inequality is satisfied:√∑m

i=1(2yi − ai`(α+ β))2 ≤ 2ε
m|(α−β)|λmax‖A`‖ (10)

For i ∈ [m] let Gi denote the event
[
|2yi − ai`(α+ β)| ≤ 2ε

m3/2|(α−β)|λmax‖A`‖

]
. The conjunction of events

represented by G = ∧iGi implies the inequality in (10). We will now estimate the probability of the event Gc

(compliment of G) and show that it is negligible in n. By union bound, we have

Pr[Gc] = Pr[Gc1 ∨Gc2 · · · ∨Gcm] ≤
∑m

i=1 Pr[Gci ]

and for each i we get

Pr[Gci ] = Pr

[
|2yi − ai`(α+ β)| > 2ε

m3/2|(α− β)|λmax‖A`‖

]
≤ Pr

[
|2yi|+ |ai`(α+ β)| > 2ε

m3/2|(α− β)|λmax‖A`‖

]
= Pr

[
|2yi| >

2ε

m3/2|(α− β)|λmax‖A`‖
− |ai`(α+ β)|

]
= Pr [|yi| > ei]

where ei = ε
m3/2|(α−β)|λmax‖A`‖

−
∣∣∣ai`(α+β)

2

∣∣∣. We observe that Pr[|yi| > ei] is a non-trivial upper-bound for Pr[Gci ]
only if ei > 0. If |α|, |β| < B for some B > 0, then ei ≥ ε

2m2Bλmax
−B as 0 < aij < 1. We denote this lower-bound

for ei by e∗,
e∗ =

ε

2m2Bλmax
−B (11)

Thus, the event {|yi| ≤ ei} ⊇ {|α| < B, |β| < B, |yi| ≤ e∗}. Again, we will need e∗ > 0 for {|α| < B, |β| <
B, |yi| ≤ e∗} to be non-trivial. Therefore,

Pr[|yi| ≤ ei] ≥ Pr[(|α| < B) ∧ (|β| < B) ∧ (|yi| ≤ e∗)]
Pr[|yi| > ei] ≤ Pr[(|α| ≥ B) ∨ (|β| ≥ B) ∨ (|yi| > e∗)]

Since Pr[Gci ] ≤ Pr[|yi| > ei], Pr[Gci ] ≤ Pr[|α| ≥ B ∨ |β| ≥ B ∨ |yi| > e∗]. Again using Union Bound, we get
Pr[Gci ] ≤ Pr[|α| ≥ B] + Pr[|β| ≥ B] + Pr[|yi| > e∗]. Thus,

Pr[Gc1 ∨Gc2 · · · ∨Gcm] ≤ m(Pr[|α| ≥ B] + Pr[|β| ≥ B]) +

m∑
i=1

Pr[|yi| > e∗] (12)
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If X ∼ N (0, σ2), then Mill’s inequality bounds the tail of the distribution as follows:

Pr[|X| ≥ x] ≤
√

2

π

(σ
x

)
exp(− x2

2σ2
)

Now, since α, β ∼ N (0, 1) and since yi ∼ N (0, σ2
i ) where σ2

i =
∑n

j=1 a
2
ij the upper-bound of (12) can be written as

≤
√

2

π

[
m

B
exp(−B

2

2
) +

m∑
i=1

σi
e∗

exp (− e2
∗

2σ2
i

)

]

≤
√

2

π

[
m

B
exp(−B

2

2
) +

m
√
n

e∗
exp (− e

2
∗

2n
)

]
(13)

For the second inequality we use the fact that since aik’s are constants, we have σ2
i is O(n). Now, we fix B = nr1

and m = nr2 , r1, r2 ∈ (0, 1
2). This makes the first of two summands in (13) negligible in n. The second summand

(and consequently the upper-bound) will be negligible in n if e∗ = Ω(nr3+ 1
2 ) for some r3 > 0. We now show

that this is true provided that (2r2 + r1 < 1
2). First, since λmax is the maximum eigenvalue of Σ, we know that

1
λmax

(= 0.01 ×
∑n

j=1,j 6=` a
2
ij) is the minimum eigenvalue of Σ−1. Since aij’s are all constants between 0 and 1, we

have 1
λmax

= Ω(n). Putting all this together in (11) we observe that there exist constants C1 and C2 such that:

e∗ ≥
C1nε

2n2r2nr1
− nr1

=
C1ε

2
n1−2r2−r1 − nr1

= C2n
r3+ 1

2 − nr1

where we have used r3 = 1
2 − 2r2 − r1. Since r1 > 0, r2 > 0 such that (2r2 + r1 < 1

2), we have r3 + 1
2 > r1 > 0.

This implies e∗ = Ω(nr3+ 1
2 ) for an r3 > 0. Hence the second summand in (13) is also negligible in n, and this gives

us our theorem.

The above theorem is also true if the expected value of the database entries is a non-zero constant. This is our next
claim.

Claim 1. If Y =
∑n

i=1 aiti is (ε, δ)-Noiseless Private for a database
T = 〈t1, · · · , tn〉 such that ∀i,E[ti] = 0, then Y ∗ =

∑n
i=1 ait

∗
i , where t∗i = ti + µi, is also (ε, δ)-Noiseless Private.

Proof. Since Y is (ε, δ)-noiseless private, there exist sets S1, S2 ∈ R such that Pr[Y ∈ S1] + Pr[ti ∈ S2] ≤ δ and
∀a ∈ R \ S1, α, β ∈ R \ S2, ` ∈ [1, n], the ratio r = pdf(Y=a|t`=α)

pdf(Y=a|t`=β) is bounded between exp(−ε) and exp(ε). Let
S∗1 = {x ∈ R|x−

∑n
i=1 aiµi ∈ S1} be a subset of R and Let S∗2 = {x ∈ R|x− µi ∈ S2} be a subset of R. Clearly,

cardinality of S1 and S∗1 is same and so is that of S2 and S∗2 . Now consider the ratio r =
pdf(Y ∗=a|t∗`=α)

pdf(Y ∗=a|t∗`=β) . r is equivalent

to pdf(Y=a−
∑n
i=1 aiµi|t`=α−µ`)

pdf(Y=a−
∑n
i=1 aiµi|t`=β−µ`)

, which is bounded by exp(ε) as long as a−
∑n

i=1 aiµi /∈ S1 and α− µ`, β − µ` /∈ S2.
Thus Y ∗ is also (ε, δ)-noiseless private.

The results of Theorem 10 can be extended to the case when adversary has access to some auxiliary informa-
tion, Aux, provided that Aux only contains information about a constant fraction of entries, albeit with a stricter
requirement on the coefficients of the queries (0 < aij ≤ 1 instead of |aij | ≤ 1).

Theorem 11 (Linear queries with auxiliary information). Consider a database T = 〈t1, . . ., tn〉 where each tj is
drawn i.i.d from N (0, 1). Let f in(T ) =

∑
i∈[n] aijtj , i = 1, 2, . . ., be a sequence of linear queries (over T ) with

constant coeficients aij , 0 < aij ≤ 1 and at least two non-zero coefficients in each query. Let Aux denote the
auxiliary information that the adversary can access. IfAux only contains information about a constant fraction, ρ, of
data entries in T , then, for every m, 1 ≤ m ≤ 5

√
n, the set of queries {f1

n(T ), . . . , fmn (T )} is (ε, negl(n))-Noiseless
Private for any constant ε, provided the following conditions hold: For all i ∈ [m], ` ∈ [n] and (n− ρn) ≤ r ≤ n

min
Sr

∑
j∈Sr

0.99a2
ij −

m∑
k=1,k 6=l

aijakj

 ≥ 0 (14)
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where Sr is the collection of all possible (r− 1)-size subsets of [n] \ {`}. The test in (14) can be performed efficiently
in O(n log n) time.

Sketch of the proof: We first give a proof for the case when the auxiliary information Aux is full disclosure of
any r entries of the database which implies privacy for the case when Aux is any partial information about at most
r entries of the database. Fix a set Î of indices (out of [n]) that correspond to the elements in Aux (This set is
known to the adversary, but not to the mechanism). Let |Î| = r. The response Yi to the ith query can be written as
Yi = Ŷi +

∑
j∈Î aijtj , where Ŷi =

∑
j∈[n]\Î aijtj . Since the second term in the above summation is known to the

adversary, the ratio R that we need to bound for Noiseless Privacy is given by

R =
pdf(Y1 = y1, . . . , Ym = ym | t` = α,Aux)

pdf(Y1 = y1, . . . , Ym = ym | t` = β,Aux)
(15)

=
pdf(Ŷi = yi −

∑
j∈Î aijtj , i = 1, . . .m | t` = α)

pdf(Ŷi = yi −
∑

j∈Î aijtj , i = 1, . . . ,m | t` = β)
(16)

Applying Theorem 10 to Ŷi’s we get (ε, negl(n))-Noiseless Privacy for any m ≤ 5
√
n, if ∀i ∈ [m], ` ∈ [n]:

∑
j∈[n]\Î,j 6=`

0.99a2
ij −

m∑
k=1,k 6=i

∣∣∣∣∣∣
n∑

j∈[n]\Î,j 6=`

aijakj

∣∣∣∣∣∣ ≥ 0 (17)

Theorem 11 uses the stronger condition of 0 < aij ≤ 1 (compared to |aij | ≤ 1 in Theorem 10). Hence, we can remove
the mod signs and change order of summation to get the following equivalent test: For all i ∈ [m], ` ∈ [n],

∑
j∈[n]\Î,j 6=`

0.99a2
ij −

m∑
k=1,k 6=i

aijakj

 ≥ 0 (18)

Since Î is not known to the mechanism, we need to perform this check for all Î and ensure that even the Î that
minimizes the LHS above must be non-negative. This gives us the test of (14). We can first compute all entries inside
the round braces of (18), and then sort and picking the first (n−r) entries. This takesO(n log n) time. This completes
the proof.

Finally, we point out that although Theorem 11 requires 0 < aij ≤ 1, we can obtain a very similar result for the
|aij | ≤ 1 case as well. This is because (17) is true even for |aij | ≤ 1. However, unlike for 0 < aij ≤ 1 (when (18)
could be derived), testing (17) for all Î becomes combinatorial and inefficient.

Privacy under multiple queries on changing databases Theorems 8 & 11 provide (ε, δ)-privacy guarantees under
leakage of constant fraction of data as auxiliary information. From Theorem 1, this implies composition results under
dynamically changing databases (e.g., if each query is (ε, δ)-Noiseless Private, composition of m such queries will be
(mε,mδ)-Noiseless Private). As discussed in Sec. 2, we get composition under various models where the database
keeps changing.

5 Related Works.

Comparison to differential privacy.
In the present section we compare our notion of privacy (i.e., noiseless privacy) with other existing formal notions

of privacy. The notion of privacy closest to our notion is differential privacy [DMNS06]. Roughly, it says that
the output of an algorithm A satisfying differential privacy is not too much dependent on any individual entry in
the database. Differential privacy guarantees that on any two databases T and T ′ differing in one single entry and
for any measurable set O in the output space of A, we have Pr[A(T )=O]

Pr[A(T ′)=O] ≤ eε. Note that the randomness in the
above expression is totally drawn from the coin tosses of the algorithm itself and no assumption is made on the
data generating distribution. Having no dependence on the data generating distribution makes differential privacy a
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very strong privacy notion. The flip side is that since the privacy guarantee totally relies on the randomness of the
algorithm A, often differentially private algorithms tend to add too much of noise in the output to have reasonable
utility. Noiseless privacy essentially tries to address the utility perspective of an output of a private algorithm. Firstly,
data collection is a costly affair, so by adding noise to degrade the utility of output will incur non-trivial additional cost.
Secondly, providing worst case privacy guarantee (i.e., without making any assumptions the adversary’s knowledge
about the database) might be too restrictive in certain scenarios. For example, for a reasonably large scale database it
is highly unlikely that the adversary knows all but one row of the database. So, in our setting we solely try to leverage
the uncertainty of an adversary about a database in order to guarantee privacy. Roughly speaking Definition 2 says
that if there is sufficient entropy in the database (from an adversary’s point of view), the probability distribution on
the output will remain same even if one entry of the database is changed. The philosophy of differential privacy and
our definition is the same, namely, from an adversary’s view, the output of a private algorithm should not depend too
much on an individual entry. Since, in our setting we draw the total randomness from the uncertainty in the data, we
can afford not to add any noise in the output and at the same time guarantee privacy.

One of the difficulties in drawing randomness from the uncertainty in the data is that, it is hard to quantify privacy
across multiple queries. Primarily the reason being, with each query the uncertainty in the data reduces in a manner that
is hard to quantify. For e.g., it can be shown that on a fixed real valued database T of size n, if n linearly independent
queries are posed, database T is completely determined (even if each query is ε-noiseless private in itself). Where as
since differential privacy draws its randomness from the coin tosses of the algorithm (and not from the uncertainty
about the database), it is easy to show that if algorithms A1, · · · ,Ak are each ε-differentially private, the combined
output of A1, · · · ,Ak is kε-differentially private. This property is also called composability [DL09]. We handle the
issue of composability with the dynamic model discussed earlier. The idea is that for every query a fraction of the
database is totally new (i.e., no queries have been answered on that database yet). As a result to guarantee privacy we
will rely on the uncertainty of the new fraction of the database. We show via various theorems that it is possible to
achieve composability across multiple queries under the dynamic model. We would like to emphasize the fact that a
lot of large scale databases (for e.g., web stores of different search engines) are continuously evolving, so the dynamic
model is realistic.

Comparison to query auditing and different relaxations of differential privacy.
Apart from our present work, previously there have been attempts to relax the notion of differential privacy in

order to improve utility. Works of Kenthapadi et al. [KMN05] and Nabar et al. [NMK+06] in field of query auditing
is one such direction of progress. Roughly, in this line of work there is a query auditor which decides for a database
T = 〈t1, · · · , tn〉 with real entries, whether to answer a particular query or not. If the auditor decides to answer the
query, then the answer to the query is output without adding any noise. The auditor has a data generating distribution
X in mind (similar to our model). Now, while deciding whether to answer a query or not, the auditor analyzes the
following: it first fixes a length of an interval (call it α) and then partitions the real line into intervals of length α. For
any such interval I and a data entry ti in the database, it computes PrX [ti∈I|O]

PrX [ti∈I] , where O is the answer to the current
query. If the ratio goes beyond eε, the auditor does not answer the query else it gives the correct answer. Clearly
for the auditor to check whether for any interval I if the ratio goes beyond eε, the number of such intervals I have
to be finite. What that in turn means is that the data entries ti have to come from a bounded range. And also the
runtime of the algorithm will be directly proportional to the number of such intervals which can be potentially large
depending on the interval length α. Unlike the query auditing, our proposed approach allows the data coming from
unbounded domain, and also there is no runtime overhead as we do not run any sanitization algorithm. Although
the query auditing approach has a flavour similar to that of Definition 3, query auditing cannot handle arbitrary small
interval range (i.e.,α → 0). Where as Definition 3 can be viewed as giving privacy guarantees even under arbitrary
small interval range. Another caveat in the query auditing approach is that since the decision of whether to answer
a query or not in itself can leak information about the database, the decision is itself randomized. So, in essence it
is possible that a query is not answered when ideally it should have been answered and vice versa. One can view it
as some form of noise injection into the system. However, the good aspect of query auditing is that if an answer is
output, it is without any noise which is in harmony with the motivation of our present work.

The work of Yitao Duan [Dua09] presents some results about differential privacy of summation queries without
addition of any external noise. Although the goal of our work is similar, our results have a broader scope and are
based on tighter, more accurate, analysis. First, unlike our work, [Dua09] does not provide any analysis under leakage
of auxiliary information and/or composition under multiple queries. Even in the single query setting, [Dua09] only
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provides asymptotic results based on CLT, without taking into consideration rates of convergence. More importantly,
since DP typically requires point-wise convergence of pdfs, not merely that of cdfs (as provided by CLT) it is not even
clear from the proof if differential privacy is eventually achieved. In our work, we derive explicit convergence rates of
the pdfs to the Gaussian pdf, and bring out the additional regularity conditions on the data distribution that are needed
for this to happen. Using this, our analysis is able to make explicit, the relationship between the privacy parameter
and other data parameters (such as data size).

Some of the other approaches towards relaxing the notion of differential privacy is by Rastogi et al. [RHMS09] and
by Machanavajjhala et al. [MGG09]. Both these approaches assume a distribution over the database, and guarantee
a notion of privacy similar to that of differential privacy by extracting randomness partly from the data generating
distribution and partly from the coin tosses of the privacy preserving algorithm. As a result the output has some noise
in it. In Rastogi et al. [RHMS09] approach it is not clear how one can deal with multiple queries when the number
of queries are not known in advance. Approach of Machanavajjhala et al. [MGG09] is incomparable to our approach
because we are concerned with interactive setting (i.e., where a user poses a query and receives an answer in return),
whereas [MGG09] is concerned with the non-interactive setting (i.e., where a sanitized version of the database is
published and any user query is on that sanitized database).
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A Boolean Queries

A.1 Growing database Model

In this model we assume that the database is constantly growing in size. This in turn means that every time a query
is posed, sizable number of entries in the database are new (i.e., has not been used for answering any of the previous
queries). Intuition suggests, its easier to guarantee privacy across multiple queries under this kind of a setting simply
because every query is answered on a different database. We would like to emphasize on the fact that this kind of
setting is not unnatural. In fact, the kinds of databases we are interested in providing privacy (such as internet scale
databases) actually are constantly changing. Lets define formally, what we mean by the growing database model.

Definition 9 (k-growing database). A database T is k-growing w.r.t. a sequence of queries f1, · · · if between every
two queries fi and fi−1 (i > 1), at least k new entries get added to the database. The addition of the new entries
preserve ordering, i.e., the new entries are always added at the end of the database.

Under the k-growing database model we can answer a class of queries which we call extendible queries. One of
the salient point of such queries is that the privacy guarantee does not degrade across multiple queries. So, potentially
there is no limit on the number of extendible queries that can be asked without violating privacy guarantee.

Definition 10 (Extendible sequence w.r.t. k-growing database). A sequence of queries f1, · · · , fm are said to be
extendible w.r.t. k-growing database T if response to every query fi can be generated from the responses to queries
f1, · · · , fi−1 and a query f ′i (called the auxiliary query w.r.t. fi) which only depends on ≥ k new entries that have
been added on to the database after query fi−1 and before query fi.

The following theorem guarantees noiseless privacy for extendible sequence of queries.

Theorem 12. Let f1, · · · , fm be an extendible query sequence w.r.t. k-growing database. For a given query fi, let f ′i
be the auxiliary query corresponding to it. If for all i ∈ [m], f ′i satisfies ε-noiseless privacy for any ε, the extendible
query sequence itself is ε-noiseless private.

The idea behind this the proof of this theorem is simple. Consider the queries f ′1, · · · , f ′m. Every entry is the
database influences the answer to only one of these queries (since they operate on disjoint set of entries). Thus, the
responses to the queries still preserve ε-noiseless privacy of the database. Finally we observe that the view of the
adversary can be fully reconstructed based on the responses to the queries f ′1, · · · , f ′m. A full proof of this theorem
follows below.

Proof. Let the query functions f1, · · · , fm map to some range R and let the domain of the database be D. Let Ti be
the database on which the i-th query is executed. Also, let ai be the response to the i-th query. In order to prove that
the extendible query sequence is ε-noiseless private, we need to show the following for any j and α, β ∈ D

PrT1,··· ,Tm [f1(T1) = a1, · · · , fm(Tm) = am|tj = α]

PrT1,··· ,Tm [f1(T1) = a1, · · · , fm(Tm) = am|tj = β]
≤ eε (19)

where tj is the j-th entry of the database Tn and a1, · · · , am be any query sequence. Note that T1 ⊂ · · · ⊂ Tm.
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Let us denote the new entries that has come in between the i − 1-th query and the i-th query by T ′i = Ti − Ti−1.
If we break the numerator in the above inequality via conditioning, we have the following

Pr[fm(Tm) = am|a1, a2, · · · , am − 1, tj = α] · · ·Pr[f1(T1) = a1|tj = α]

where the probability is over the data generating distribution.
Now, if the j-th entry tj is not in Ti this expression Pr[fi(Ti) = ai|a1, a2, · · · , ai − 1, tj = α] is independent of

the conditioning. Hence, they get canceled in the numerator and denominator of the expression in equation 19.
The other case is that tj is actually in the database Ti. We can write Pr[fi(Ti) = ai|a1, a2, · · · , ai − 1, tj = α] as

Pr[f ′i(T
′
i ) = a′i|tj = α], where a′i is the response to f ′i (the auxillary query) is required to get fi(Ti) = ai conditioned

on a1, · · · , ai−1.
If tj 6∈ T ′i , then Pr[f ′i(T

′
i ) = a′i|tj = α] is essentially equal to Pr[f ′i(T

′
i ) = a′i] (because the conditioning does not

matter). Hence, this term gets canceled in the numerator and the denominator of the ratio we are trying to bound. If
tj ∈ T ′i , by our initial assumption, Pr[f ′i(T

′
i )=a

′
i|tj=α]

Pr[f ′i(T
′
i )=a

′
i|tj=β]

≤ eε. Again, by assumption it is possible to have only one i such
that tj ∈ T ′i . Hence, over all

PrT1,··· ,Tm [f1(T1) = a1, · · · , fm(Tm) = am|tj = α]

PrT1,··· ,Tm [f1(T1) = a1, · · · , fn(Tm) = am|tj = β]
≤ eε

With a similar argument one can show the same result for (ε, δ)-noiseless privacy. To see the utility of the result
consider the following example. Let f1, · · · , fm be a query sequence, where each fi is a symmetric boolean function
over database entries 〈t1, · · · , tik〉, where tj ∈ {0, 1} are the entries of a k-growing database. Let ∀i ∈ [m], ci be
the count of number of ones in the database entries 〈ti−1k + 1, · · · , tik〉. For any i ∈ [m], Theorem 5 guarantees
the privacy for the count ci. Since, c1, · · · , cm are enough to answer queries f1, · · · , fm, Theorem 12 suggests that if
∀i ∈ [m], ci is (ε, δ)-noiseless private, the query sequence f1, · · · , fm is (ε, δ)-noiseless private.

Instead of modeling the database to be growing in size ( i.e., the growing database model), we can model the
changing database under conventional streaming model. In streaming model, the data is continuously arriving and the
system which handles the data has a bounded memory. So, as an when new data arrives, the system purges out the old
data. This can also be viewed as a FIFO (First In First Out) data structure, for e.g., a queue. From a privacy perspective
we assume that every time a query is posed, a significant fraction of the data stored in the storage is new, i.e., no queries
have been answered yet on these newly arrived data entries yet. We define it more formally below.

Let f1, · · · , fm be the queries on the data stream Tstream under the streaming model. Let λn entries of the database
of size n that gets purged before every query. A sequence of queries f ′1, · · · , f ′m is called a λ-disjoint sequence on
Tstream if f ′i depends only on a part of the stream Tstream whose length is ≥ λn and is disjoint from the parts of the
stream on which the other queries from the sequence depend on.

Theorem 13. If f1, · · · , fm can be computed from a λ-disjoint sequence only and if each query in the λ-disjoint
sequence is (ε, δ)-noiseless private, then the query sequence f1, · · · , fm is also (ε, δ)-noiseless private.

The proof is very similar to that of Theorem 12 and hence omitted. This theorem demonstrates that queries which
are noiseless private in the growing database model can be moulded into queries which are noiseless private in the
streaming model. The difference being that the queries in the streaming model depend on a database of size exactly
n unlike the growing database model. For e.g., symmetric boolean queries discussed above are also private in the
streaming model.

A.2 Random Boolean Functions

The following theorem suggests that most Boolean functions satisfy very good privacy parameters under the definition
of noiseless privacy.

Theorem 14. With probability at least 1− e−Θ(ε22n) over the choice of f , a random boolean function f : {0, 1}n →
{−1, 1} is 4ε-noiseless private.
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Proof. In the following, N = 2n and we associate a number i ∈ [N ] with the characteristic set S over n indices.
Also, as f is random, for a fixed T ∈ {0, 1}n, Ef [f(T )] = 0. For a fixed set S ⊆ [N ] and a random boolean function
f : {0, 1}n → −1, 1, define N real random variables Y S

i ’s, i ∈ [N ], where Y S
i = f(i)χS(i). Let Y S =

∑
i∈[N ] Y

S
i .

The following observations are now in order.

• f̂(S) = Y S

N .

• Ef [Y S
i ] = 0 for all S ⊆ [N ] as Ef [f(T )]] = 0 for a random f .

• Ef [Y S ] = 0 for all S ⊆ [N ] by linearity of expectation.

As each Yi ∈ [−1, 1], we apply the Chernoff Hoeffding bound to get

Pr
f

[|Y
S

N
− 0| > t] ≤ 2e−

t2N
2

This reduces to the following. For a fixed set S ⊆ [N ] and t > 0,

Pr
f

[|f̂(S)| > t] ≤ 2e−
t2N
2

By a union bound over all sets of cardinality 0 and 1, we thus see that with probability at least 1 − Θ
(
ne−t

2N
)

,

a random function has |f̂(S)| ≤ t. We now choose t to be an arbitrarily small constant, say ε. Then using Theorem 3,
we obtain a privacy parameter of at most ln

(
1+2ε
1−2ε

)
which is approximately equal to 4ε for small ε > 0.
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