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Abstract. We show that the Feistel construction with six rounds and random round functions is
publicly indifferentiable from a random invertible permutation (a result that is not known to hold
for full indifferentiability). Public indifferentiability (pub-indifferentiability for short) is a variant
of indifferentiability introduced by Yoneyama et al. [YMO09] and Dodis et al. [DRS09] where the
simulator knows all queries made by the distinguisher to the primitive it tries to simulate, and is
useful to argue the security of cryptosystems where all the queries to the ideal primitive are public
(as e.g. in many digital signature schemes). To prove the result, we introduce a new and simpler
variant of indifferentiability, that we call sequential indifferentiability (seq-indifferentiability for
short) and show that this notion is in fact equivalent to pub-indifferentiability for stateless ideal
primitives. We then prove that the 6-round Feistel construction is seq-indifferentiable from a ran-
dom invertible permutation. We also observe that sequential indifferentiability implies correlation
intractability, so that the Feistel construction with six rounds and random round functions yields
a correlation intractable invertible permutation, a notion we define analogously to correlation
intractable functions introduced by Canetti et al. [CGH98].
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1 Introduction

Indifferentiability. Indifferentiability has been introduced by Maurer et al. [MRH04] as a general-
ization of the concept of indistinguishability for systems using public components (i.e. components
that can be queried by any party including the adversary). This framework has since then gained
much popularity, and starting with [CDMP05] it has been widely used to analyze hash functions built
from a smaller ideal primitive, e.g. a fixed input-length (FIL) random compression function or an
ideal block cipher [BR06,BDPA08,CLNY06,CN08,DRRS09,FLP08,HPY07,MT07]. Informally, a con-
struction C using an ideal primitive F (e.g. a hash function based on a FIL random compression
function) is said to be indifferentiable from another ideal primitive G (e.g. a random oracle) if there
exists a simulator S accessing G such that the two systems (G,SG) and (CF ,F ) are indistinguish-
able. Roughly, the goal of the simulator is twofold: it must provide answers that are consistent with
G, without deviating too much from the distribution of answers of F . Indifferentiability allows mod-
ular proofs of security in idealized models in the sense that if a construction CF is indifferentiable
from an ideal primitive G, then any cryptosystem proven secure when used with G remains secure
when used with the construction CF .4 For example, if a cryptosystem is secure in the random oracle
model, and some hash function construction Hf based on a FIL random compression function f is
indifferentiable from a random oracle, then the cryptosystem is still secure when used with Hf . More
interestingly from a theoretical point of view, Coron et al. [CDMP05] showed that a number of vari-
ants of the Merkle-Damgård construction [Dam89,Mer89], used with an ideal cipher in Davies-Meyer
4 It was recently pointed out that this composition theorem only holds for cryptosystems whose security is
defined by so called single-stage games [RSS11].



mode [PGV93,BRS02], are indifferentiable from a random oracle. This implies that any functionality
that can be securely implemented in the random oracle model can also be securely realized in the ideal
cipher model.
The Feistel construction with public round functions. The Feistel construction turns a function
F from n-bit strings to n-bit strings into an (efficiently invertible) permutation on 2n-bit strings.
It is computed as ΨF (L,R) = (R,L ⊕ F (R)). In their seminal paper [LR88] which triggered a lot
of subsequent work [Mau92,NR99,Pat90,Pat91,Pat98,Pat03,Pat04,Vau03], Luby and Rackoff showed
that three (resp. four) rounds of the Feistel construction, with independent pseudorandom functions in
each round, yields a pseudorandom permutation (resp. strong pseudorandom permutation). The core
of this result is in fact purely information-theoretic [Mau92], meaning that the Feistel construction with
three (resp. four) rounds and random round functions is indistinguishable from a random permutation
(resp. an invertible random permutation) by any computationally unbounded distinguisher limited to
a polynomial number of oracle queries. The Luby-Rackoff theorem crucially relies on the secrecy of
the round functions. A few papers studied what happens when the round functions are made public.
In particular, Ramzan and Reyzin [RR00] have shown that the Feistel construction with four rounds
remains strongly pseudorandom even when the distinguisher has oracle access to the two middle
round functions (but not to the first or the fourth round function). Dodis and Puniya [DP07] have
studied various properties of the Feistel construction (unpredictability, pseudorandomness) when all
intermediate round values of the Feistel computation are leaked to the adversary and shown that in
that case a super-logarithmic number of rounds was necessary and sufficient for the property to be
inherited by the Feistel construction from the round functions.
Indifferentiability of the Feistel construction. As already mentioned, it is possible to securely
instantiate a random oracle in the ideal cipher model. A natural question is whether the other direction
holds, namely whether there is a construction using a random oracle that securely implements a random
invertible permutation.5 Given its numerous cryptographic properties, the Feistel construction (with
public random round functions) appears as an obvious candidate for this task. Again, this question can
be rigorously formulated in the indifferentiability framework: namely, is the Feistel construction with
sufficiently many rounds, and public random round functions, indifferentiable from a random invertible
permutation? Dodis and Puniya [DP06] considered the problem in the so-called honest-but-curious
model, where the distinguisher only sees the queries made by the Feistel construction to the random
round functions, but is not allowed to make arbitrary queries to the round functions. In this setting, they
showed that a super-logarithmic number of rounds is sufficient to securely realize a random invertible
permutation. However, since full indifferentiability is not implied in general by indifferentiability in the
honest-but-curious model (these two notions are in fact incomparable [CPS08]), they were not able to
conclude in the general setting. Coron, Patarin, and Seurin [CPS08] gave a first proof that the Feistel
construction with six rounds is indifferentiable from a random invertible permutation. The proof was
rather involved, and Künzler [Kün09] later found a distinguishing attack against the simulator given
in [CPS08], therefore invalidating the indifferentiability proof.6 Only recently, Holenstein et al. [HKT11]
gave a new proof that the Feistel construction with fourteen rounds is indifferentiable from a random
invertible permutation, which was inspired from a previous proof for ten rounds that appeared in the
PhD thesis of Seurin [Seu09] but had some gaps.
Public indifferentiability. Yoneyama et al. [YMO09] and Dodis et al. [DRS09] independently realized
that indifferentiability was sometimes stronger than needed to argue security of cryptosystems. In
particular, when all queries made to the ideal primitive are public (like in many digital signature
schemes such as FDH [BR93], probabilistic FDH [Cor02], PSS [BR96]. . . , where all queries to the hash
function can be revealed to the attacker without affecting the security), the weaker notion of public
indifferentiability is sufficient. [YMO09,DRS09] were both concerned with indifferentiability from a
5 Such a construction easily implies a secure ideal cipher by simply prepending the key of the block cipher to
the input of each random oracle queries.

6 We stress that this does not mean that the 6-round Feistel construction is not indifferentiable from a random
invertible permutation, but only that no one is able to give a proof at the moment.



random oracle and respectively called this notion leaky random oracle and public-use random oracle.
Public indifferentiability is defined similarly to indifferentiability, but the task of the simulator is made
easier by letting it know all queries made by the distinguisher to the ideal primitive G.
Correlation intractability. Correlation intractability was introduced by Canetti et al. [CGH98] as an
attempt to capture as many security properties of the random oracle as possible. A family of functions
is said to be correlation intractable if for a random function of the family it is hard to find a sequence
of inputs that together with their image satisfy a relation that would be hard to satisfy for a uniformly
random function (a so-called evasive relation). Correlation intractability in particular implies collision
resistance, pre-image resistance and many other security properties usually required for cryptographic
hash functions. Unfortunately, Canetti et al. also showed that in the standard model, no correlation
intractable hash function family exists. A consequence of this non-existence result is that there are
cryptosystems that are secure in the random oracle model, but insecure when the random oracle is
instantiated by any function family. Though correlation intractability was primarily defined in the
standard model, it is easily transposable to idealized models. As we will see our result establishes a
connection between correlation intractability and public indifferentiability.
Contributions of this work. We define a new and weaker notion of indifferentiability that we call
sequential indifferentiability (seq-indifferentiability for short). This new definition only restricts the
order in which the distinguisher can query the two oracles it is granted access to: it can first query
the primitive F (or the simulator S), and then the construction CF (or the ideal primitive G), but
not F /S again. We show that when the ideal primitive G is stateless (which is the most usual case),
this notion is equivalent to public indifferentiability introduced by [DRS09,YMO09] where all queries
to the primitive G are public. However the seq-indifferentiability notion has the advantage of being
simpler and easier to use in proofs. This simple restriction on the queries of the distinguisher enables
to give a relatively simple proof that the 6-round Feistel construction with random round functions
is seq-indifferentiable (and hence also publicly indifferentiable) from a random invertible permutation,
a result whose analogue for full indifferentiability seems out of reach at the moment. Our result in
particular implies that any scheme proven secure in the random invertible permutation model or the
ideal cipher model and where all queries to the ideal primitive can be made public without affecting
the security (e.g. signature schemes like OPSSR [Gra02] and subsequent variants [KW03,CMPP05])
remains secure in the random oracle model when using a 6-round Feistel construction (while the best
generic replacement previously to our work was the 14-round Feistel construction [HKT11]).

Though weaker than full indifferentiability, we also show that seq-indifferentiability is still suffi-
ciently strong to imply correlation intractability. In particular, our result shows that the 6-round Feistel
construction with random round functions yields a correlation intractable invertible permutation (we
note that previous observations [CPS08] already implied that the 5-round Feistel construction fails to
provide a correlation intractable invertible permutation). We discuss the implications of this result for
chosen-key and known-key attacks on block ciphers [KR07].

On a slightly different topic, we also analyze the Feistel-like domain extension construction for ideal
ciphers proposed by Coron et al. [CDMS10] and show that in the seq-indifferentiability model one can
obtain a security bound beyond the birthday barrier.
Open problems. The most challenging open question is of course whether the 6-round Feistel con-
struction is fully indifferentiable from a random invertible permutation, and if not, what is the minimal
number of rounds needed to achieve this property. We hope that our result will constitute a first step
towards a finer understanding of this question. In particular, our result implies that if the 6-round
Feistel construction is not fully indifferentiable from a random invertible permutation, then this can-
not be shown by proving that it is not correlation intractable as was done for five rounds. Another
interesting problem is to weaken the assumptions on the round functions and see which property would
continue to hold: e.g. is the 6-round Feistel construction with correlation intractable round functions
still a correlation intractable invertible permutation? A related question is whether our result could be
a first step towards proposing plausible constructions of (restricted) correlation intractable function
families in the standard model, a question left open by [CGH98, Section 5.1].



Organization. In Section 2, we start by giving the definition of sequential indifferentiability and prove
that it is equivalent to public indifferentiability for stateless ideal primitives. In Section 3, we prove
the main result of this paper, namely that the 6-round Feistel construction is sequentially (and hence
publicly) indifferentiable from a random invertible permutation. In Section 4, we apply this result to
prove the correlation intractability of the 6-round Feistel construction.

2 Preliminaries

2.1 Notations and Definitions

Notations. [i..j] will denote the set of integers k such that i ≤ k ≤ j. We will use n to denote the
security parameter, and in sections dealing with the Feistel construction we will identify n with the
input and output length of the round functions. We will write f ∈ poly(n) to denote a polynomially
bounded function and f ∈ negl(n) to denote a negligible function. When X is a non-empty finite set,
we write x ←R X to mean that a value is sampled uniformly at random from X and assigned to x.
PPT will stand for probabilistic polynomial-time, and ITM for interactive Turing machine.
Ideal primitives. Given two sets Dom ⊂ {0, 1}∗ and Rng ⊂ {0, 1}∗, we denote F(Dom, Rng) the
set of all functions from Dom to Rng. A primitive G is a sequence G = (Domn, Rngn,Gn)n∈N where
Gn ⊂ F(Domn, Rngn). The ideal primitive G associated with G is the sequence of random variables
(Gn)n∈N whereGn is uniformly distributed over Gn. We will often adopt the lazy sampling view [BR06]
to describe ideal primitives queried as oracles.

A random function F = (Fn)n∈N is the ideal primitive associated to the set of all functions from
{0, 1}n to {0, 1}n. Queried as an oracle it returns a uniformly random string in {0, 1}n if x was never
queried, or the same answer as before if x was previously queried.

A random invertible permutation P = (Pn)n∈N is the ideal primitive associated with the sequence
P = (Domn, Rngn,Pn)n∈N where Domn = {0, 1} × {0, 1}n, Rngn = {0, 1}n, and Pn is the set of functions
P such that x 7→ P (0, x) is a permutation of {0, 1}n, and y 7→ P (1, y) its inverse. Queries of the form
(0, x) and (1, y) will be called respectively forward and backward queries. In the lazy sampling point
of view, Pn keeps two lists Lx and Ly of forward and backward queries whose image is already defined
together with an invertible mapping from Lx to Ly. Upon receiving a forward query (0, x) such that
x /∈ Lx it returns an answer y uniformly random over {0, 1}n \ Ly, and adds x to Lx and y to Ly and
updates the mapping (and reciprocally for a backward query (1, y)). Later, we will occasionally refer
to Lx and Ly as the history of the random invertible permutation. An ideal cipher E = (En) takes
an additional input, the key, of length `(n), and for each key k ∈ {0, 1}`(n), En(k, ·) is an independent
random invertible permutation over {0, 1}n.

A two-sided random function on {0, 1}n, denoted Rn, is very similar to a random invertible per-
mutation. It also keeps to lists Lx and Ly together with an invertible mapping from Lx to Ly. However
when receiving a forward query (0, x) such that x /∈ Lx or a backward query (1, y) such that y /∈ Ly,
it returns a uniformly random answer in {0, 1}n. In case a collision happens, the previous image or
pre-image is removed from Ly or Lx and the mapping is updated accordingly. Note that a two-sided
random function is stateful: it may return different answers to the same query (however at any time
it defines an invertible mapping from Lx to Ly). A two-sided random function is statistically indis-
tinguishable from a random invertible permutation: the so called PRF/PRP switching lemma [BR06]
establishes7 that an oracle machine making at most q oracle queries can distinguish Pn from Rn with
advantage at most q2/2n+1.

In the following, we omit the subscripts when the domain and the range of an ideal primitive are
clear from the context. A construction will simply be a Turing machine having oracle access to an ideal
primitive and implementing another given primitive. The main construction we will consider in this
work is the Feistel construction.
7 Strictly speaking, the result is proven in [BR06] for one-sided functions and permutations, but the proof can
be straightforwardly adapted to two-sided primitives.
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Fig. 1. Notations used for the 6-round Feistel construction.

The Feistel construction. Given a function F : {0, 1}n → {0, 1}n, the basic (1-round) Feistel
construction is the permutation on {0, 1}2n defined by ΨF (L,R) = (R,L ⊕ F (R)). Its inverse is
computed by (ΨF )−1(S, T ) = (T ⊕ F (S), S). (Here L, R, S, and T are n-bit strings). The k-round
Feistel construction associated to round functions (F1, . . . , Fk) takes inputs x ∈ {0, 1} × {0, 1}2n and
is defined by:

Ψ
(F1,...,Fk)
k (0, (L,R)) = ΨFk ◦ · · · ◦ ΨF1(L,R)

Ψ
(F1,...,Fk)
k (1, (S, T )) =

(
ΨF1

)−1 ◦ · · · ◦
(
ΨFk

)−1 (S, T ) .

Notations used for denoting the intermediate round values for the 6-round Feistel construction are
given in Figure 1. In the following, when considering the Feistel construction using k independent
random functions, we will simply note F = (F1, . . . ,Fk) this tuple of functions and ΨF

k = Ψ
(F1,...,Fk)
k .

2.2 Sequential Indifferentiability

Indifferentiability was originally formulated within the formalism of random systems [Mau02]. We
adopt here the simpler formulation using interactive Turing machines as in [CDMP05]. We first recall
the classical definition of indifferentiability [MRH04]. For this, we slightly change the way one usually
measure the cost of queries of a distinguisher (this will make our results simpler to express). Given a
distinguisher D, the total oracle queries cost of D is the number of queries received by the oracle F
when D interacts with (CF ,F ). Hence this is the sum of the number of direct queries of D to F and
the number of queries made by C to F to answer D’s queries.



Definition 1 ((Statistical, Strong) Indifferentiability). Let q, σ : N→ N and ε : N→ R be three
functions of the security parameter n. A construction C with oracle access to an ideal primitive F is
said to be statistically and strongly (q, σ, ε)-indifferentiable from an ideal primitive G if there exists an
oracle ITM S such that for any distinguisher D of total oracle queries cost at most q, S makes at most
σ oracle queries, and the following holds:∣∣∣Pr

[
DG,SG

(1n) = 1
]
− Pr

[
DC

F ,F (1n) = 1
]∣∣∣ ≤ ε .

CF is simply said to be statistically and strongly indifferentiable from G if for any q ∈ poly(n), the
above definition is fulfilled with σ ∈ poly(n) and ε ∈ negl(n).

Definition 1 does not refer to the running time of S and D. When only polynomial-time algo-
rithms are considered, indifferentiability is said to be computational. Weak indifferentiability is defined
as above, but the order of quantifiers for the distinguisher and the simulator are switched (for all
distinguisher, there is a simulator. . . ). We will mainly be concerned with statistical strong indifferen-
tiability in this work, but we note that weak indifferentiability is sufficient for our results on correlation
intractability in Section 4.

In order to define our new notion of indifferentiability, we will consider a restricted class of dis-
tinguisher, called sequential distinguisher, which can only make queries in a specific order. Such a
distinguisher first queries the primitive F (or the simulator S) as it wishes, and then the construc-
tion CF (or the primitive G) as it wishes, but after its first query to CF or G, it cannot query S
or F again. Sequential indifferentiability (seq-indifferentiability for short) is defined relatively to such
distinguishers (see also Figure 2).

Definition 2 (Seq-indifferentiability). A construction C with oracle access to an ideal primitive
F is said to be (statistically and strongly) (q, σ, ε)-seq-indifferentiable from an ideal primitive G if
Definition 1 is fulfilled when D ranges over the class of sequential distinguishers.

D

0/1

SG

12

D

0/1

FC

12

Fig. 2. The sequential indifferentiability notion. The numbers next to query arrows indicate in which order the
distinguisher accesses both oracles. After its first query to the left oracle, the distinguisher cannot query the
right oracle any more.

Full indifferentiability obviously implies seq-indifferentiability. Yoneyama et al. [YMO09] and Dodis
et al. [DRS09] have introduced another weakened notion of indifferentiability, where the primitive G
is only queried on public inputs, that we call here public indifferentiability (pub-indifferentiability for
short). This can be formalized as follows: given an ideal primitive G, we define the augmented ideal
primitive G as the primitive exposing two interfaces: the first (regular) one is the same as G, and the



second is an interface Reveal that, when queried, returns the ordered sequence of all (regular) queries
and corresponding answers made so far by any party to the regular interface. The second interface can
only be used by the simulator, not by the distinguisher.

Definition 3 (Pub-indifferentiability). A construction C with oracle access to an ideal primitive
F is said to be (statistically and strongly) (q, σ, ε)-pub-indifferentiable from an ideal primitive G if
there exists an oracle ITM S such that for any distinguisher D of total oracle queries cost at most q,
S makes at most σ oracle queries, and the following holds:∣∣∣∣Pr

[
DG,SG

(1n) = 1
]
− Pr

[
DC

F ,F (1n) = 1
]∣∣∣∣ ≤ ε .

As explained in [DRS09], the composition theorem of [MRH04] still holds with pub-indifferentia-
bility for cryptosystems where all messages queried to G can be inferred from the adversary’s query
during the security experiment.

Clearly, pub-indifferentiability implies seq-indifferentiability. Indeed, since after its first query to G
a sequential distinguisher never queries the simulator again, the interface Reveal is of no use to the
simulator. A less trivial result is that seq-indifferentiability implies pub-indifferentiability for stateless8

ideal primitives G, thus making seq- and pub-indifferentiability equivalent notions in that case.

Theorem 1. Let C be a construction with oracle access to some ideal primitive F . If CF is statistically
(resp. computationally) strongly (2q, σ, ε)-seq-indifferentiable from a stateless ideal primitive G, then
CF is statistically (resp. computationally) strongly (q, σ + q, ε)-pub-indifferentiable from G.

Proof. The proof is deferred to Appendix A for reasons of space. ut

Ristenpart9 observed that the above theorem does not hold (at least in the computational setting)
when G is stateful. This is explained in Appendix B. A very simple example enables to separate full
indifferentiability from seq/pub-indifferentiability, namely the Merkle-Damgård construction without
strengthening using a random compression function: it was proven in [CDMP05] that it is not indiffe-
rentiable from a random oracle (a consequence of length-extension attacks), and in [DRS09] that it is
pub-indifferentiable from a random oracle.

2.3 Seq-Indifferentiability Beyond the Birthday Barrier for the Construction
of [CDMS10]

In [CDMS10], Coron et al. considered the problem of ideal cipher domain extension. They showed
that a 3-round Feistel-like construction based on an n-bit ideal cipher is indifferentiable from a 2n-bit
ideal cipher. They obtained a birthday security bound, namely the construction is secure as long as the
attacker makes q � 2n/2 many queries. However, in the same paper it was shown that the construction
is actually secure up to q � 2n many queries in the standard indistinguishability model, where the
attacker cannot make queries to the smaller n-bit ideal cipher. It was left as an open problem whether
obtaining a similar improved security bound in the indifferentiability model was possible. Here we give
a partial positive answer to that question, namely showing that the 3-round Feistel-like construction
is seq-indifferentiable and pub-indifferentiable from an ideal cipher up to q � 2n queries. Details can
be found in Appendix F.

8 By stateless we mean that the answer of G to any query only depends on the query and the randomness of
G and not on any additional state information. In particular, for fixed randomness, G always returns the
same answer to a given query.

9 Personal communication



3 Seq-Indifferentiability of the 6-Round Feistel Construction

In this section we prove the main result of this paper which states that the Feistel construction with
6 rounds and random round functions is seq-indifferentiable from a random invertible permutation,
and hence also pub-indifferentiable since a random invertible permutation is stateless. Before stating
the result, we recall that in [CPS08], it was shown that the Feistel construction with five rounds is
not indifferentiable from a random invertible permutation. In fact, the distinguisher they described is
sequential, which implies that the 5-round Feistel construction is not even seq-indifferentiable from a
random invertible permutation. We recall this attack in Appendix C.

Theorem 2. The Feistel construction with six rounds and random round functions is statistically and
strongly (q, σ, ε)-seq-indifferentiable from a random invertible permutation, where:

σ(q) = q2 and ε(q) = 8q4

2n + q4

22n .

The rest of this section is devoted to the proof of Theorem 2. We will consider a sequential dis-
tinguisher D that first issues at most qf queries to the simulator (or the random functions Fi). These
queries will be called F -queries. Then, it issues at most qp queries to the random permutation P (or
the Feistel construction ΨF

6 ). These queries will be called P -queries. The total oracle queries cost is
qf + 6qp (for each P -query, the Feistel construction makes 6 F -queries to compute the answer) and is
assumed to be less than q.

We start by describing how the simulator S works. It maintains an history of values for which each
round function has been defined (either because this value has been queried by the distinguisher, or
because the simulator has set this value internally). We will note Fi, i ∈ [1..6] the history of the i-th
round function, that is a set of pairs (U, V ) ∈ {0, 1}n×{0, 1}n, where U is an input to round function
Fi and V is the corresponding image (which we denote Fi(U) = V ). We write U ∈ Fi to denote that
the image of U by Fi is defined in the history. Initially round function values Fi(U) are undefined for
all i ∈ [1..6] and all U ∈ {0, 1}n. The images are then modified during the execution of the simulator.
Fi(U)← V means that the image of U by Fi is set to V and Fi(U)←R {0, 1}n means that the image
of U by Fi is set uniformly at random in {0, 1}n. If a round function value is already in the history and
a new assignment occurs, the previous value is overwritten (alternatively, we could let the simulator
abort in this case, as in [CPS08], but as we will see this happens only with negligible probability so
that the exact behavior of the simulator in such a case in unessential). We will note H = (F1, . . . , F6)
the complete history of the six round functions.

When the simulator receives a F -query (i, U) (meaning that the distinguisher asks for the image of
U through round function Fi), it calls an internal procedure Query(i, U). This procedure checks whether
the corresponding image is in the history of Fi, in which case it returns this value and stops. Otherwise
it sets the image uniformly at random. If i = 1, 2, 5, or 6, it does nothing more. If i = 3 or 4, the
simulator additionally completes all centers (Y, Z) ∈ F3 × F4 newly created so that the corresponding
values of (L,R) and (S, T ) obtained by evaluating the Feistel construction respectively backward and
forward are consistent with the random permutation P , meaning that P (0, (L,R)) = (S, T ). This
is done by calling two internal procedures CompleteForward (if i = 4) or CompleteBackward (if
i = 3) which “adapts” two round function values (F5(A) and F6(S) for CompleteForward, and F1(R)
and F2(X) for CompleteBackward) so that the Feistel matches with the random permutation. The
pseudo-code for the three procedures is given below. Statements put in boxes in CompleteForward
and CompleteBackward are replacements for a different system used in the indifferentiability proof
and can be ignored for the moment.

There are two points to prove in order to obtain Theorem 2: that the simulator runs in polynomial
time, and then that the probabilities that the distinguisher outputs 1 when interacting with (P ,SP )
and (ΨF

6 ,F ) differ by a negligible quantity ε. The following lemma shows that the simulator runs in
time polynomial in the number of queries it receives.



Algorithm 1 Simulator

1: variable: round function histories F1, . . . , F6

2: procedure Query(i,U)
3: if U /∈ Fi then
4: Fi(U)←R {0, 1}n
5: if i = 3 then
6: for all Z ∈ F4 do
7: CompleteBackward(U,Z)
8: end for
9: end if
10: if i = 4 then
11: for all Y ∈ F3 do
12: CompleteForward(Y,U)
13: end for
14: end if
15: end if
16: return Fi(U)
17: end procedure

18: procedure CompleteForward(Y ,Z)
19: X := Z ⊕ F3(Y )
20: Query(2, X)
21: R := Y ⊕ F2(X)
22: Query(1, R)
23: L := X ⊕ F1(R)
24: (S, T ) := P (0, (L,R)) (S, T ) := R(0, (L,R))
25: A := Y ⊕ F4(Z)
26: F5(A)← Z ⊕ S
27: F6(S)← A⊕ T
28: end procedure

29: procedure CompleteBackward(Y ,Z)
30: A := Y ⊕ F4(Z)
31: Query(5, A)
32: S := Z ⊕ F5(A)
33: Query(6, S)
34: T := A⊕ F6(S)
35: (L,R) := P (1, (S, T )) (L,R) := R(1, (S, T ))
36: X := Z ⊕ F3(Y )
37: F2(X)← R⊕ Y
38: F1(R)← L⊕X
39: end procedure
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Fig. 3. Systems used in the seq-indifferentiability proof.

Lemma 1. When the simulator is asked at most q queries, then the size of histories for F3 and F4 is
at most q, the size of histories for F1, F2, F5 and F6 is at most q2 +q, the procedures CompleteForward
and CompleteBackward are called in total at most q2 times, and the simulator makes at most q2 queries
to the random permutation.

Proof. Elements are added to the history of F3 and F4 only when a corresponding F -query is made to
the simulator, so that the size of their history cannot be greater than q. For each pair (Y, Z) ∈ F3×F4,
either CompleteForward(Y,Z) or CompleteBackward(Y, Z) is called, at most once, so that in total
these procedures are called at most q2 times. Since the simulator makes one query to the random
permutation per execution of CompleteForward and CompleteBackward this in turns implies that the
total number of queries to P is at most q2. Finally, elements are added to the history of F1, F2, F5
and F6 either when a query is made to the simulator, or during an execution of CompleteForward or
CompleteBackward, so that the size of their history cannot be greater than q2 + q. ut

In order to prove that the two systems Σ1 = (P ,SP ) and Σ4 = (ΨF
6 ,F ) are indistinguishable, we

will use two intermediate systems: Σ2 = (ΨSP

6 ,SP ) where the P -queries of D are answered by the
Feistel construction asking round function values to the simulator, which itself interacts with P , and
Σ3 = (ΨSR

6 ,SR) where the random invertible permutation is replaced by a two-sided random function
R (note the corresponding change in procedures CompleteForward and CompleteBackward indicated
by a boxed statement). The four systems used in the proof are depicted in Figure 3.

The main part of the analysis is concerned with systems Σ2 and Σ3. We will show that unless some
bad event happens, the round function values set by the simulator in Σ2 are consistent with P (which
will enable to bound the statistical distance between Σ1 and Σ2), and that in Σ3 they are uniformly
random and independent (which will enable to bound the statistical distance between Σ3 and Σ4). In
systems Σ2 and Σ3, the simulator first receives at most qf queries from the distinguisher, and then
at most 6qp queries from the Feistel construction (6 for each P -query of the distinguisher). Hence the
total number of queries received by the simulator is exactly the total oracle queries cost of D, which
is less than q. The statistical distance between answers of systems Σ2 and Σ3 is easily bounded.



Lemma 2. For any distinguisher of total oracle queries cost at most q, the following holds:

∣∣Pr
[
DΣ2(1n) = 1

]
− Pr

[
DΣ3(1n) = 1

]∣∣ ≤ q4

22n+1 .

Proof. Consider the union of D, Ψ6, and S as a single distinguisher D′ interacting either with a random
invertible permutation or a two-sided random function. Note that D′ makes at most q2 queries to its
oracle (Lemma 1). One can conclude thanks to the PRF/PRP switching lemma [BR06]. ut

Before going further with the proof, we define formally what it means for an input x ∈ {0, 1}×{0, 1}n
to the Feistel construction to be computable with respect to the history of the simulator.

Definition 4 (Computable input). Given a simulator history H and an input x ∈ {0, 1}×{0, 1}2n,
the sequence ρH(x) = (ρH(x)[i])i∈[0..7] is defined as follows:

– for a forward input x = (0, (L,R)), ρH(x)[0] = L, ρH(x)[1] = R, and for i = 2 to 7:{
if ρH(x)[i− 1] ∈ Fi−1 then ρH(x)[i] = ρH(x)[i− 2]⊕ Fi−1(ρH(x)[i− 1])
else ρH(x)[i] =⊥

– for a backward input x = (1, (S, T )), ρH(x)[7] = T , ρH(x)[6] = S, and for i = 5 to 0:{
if ρH(x)[i+ 1] ∈ Fi+1 then ρH(x)[i] = ρH(x)[i+ 2]⊕ Fi+1(ρH(x)[i+ 1])
else ρH(x)[i] =⊥

An input x is said to be computable with respect to H iff ρH(x)[i] 6=⊥ for all i ∈ [0..7]. In that case
we note ΨH6 (x) = (ρH(x)[6], ρH(x)[7]) if x is a forward input and ΨH6 (x) = (ρH(x)[0], ρH(x)[1]) if x is
a backward input.

For a computable input x, we will often use the notation (L,R,X, Y, Z,A, S, T ) = ρH(x) as depicted
on Figure 1.

We now define a bad event that may occur during the execution of the simulator (in Σ2 or Σ3)
in relation with Lines 26, 27, 37, and 38 of the simulator. We will say that event Bad happens if
in any execution of CompleteForward or CompleteBackward, the input value whose image is set at
Lines 26, 27, 37 or 38 is already in the history of the corresponding round function. This implies that
the simulator overwrites a value so that its answers may not be coherent with P or R any more.10

Reciprocally, if Bad does not happen, then the simulator never overwrites any value in its history.
We start with the simple observation that if Bad does not happen, then during any execution of

CompleteForward or CompleteBackward, the query to P or R made by the simulator is fresh.

Lemma 3. In system Σ2, if Bad does not happen, then in any execution of CompleteForward or
CompleteBackward the query to P made by the simulator is not in the history of P . For system Σ3,
the corresponding statement holds for R.

Proof. The reasoning is the same for Σ2 and Σ3, we use Σ2 to fix ideas. Consider an execution of
CompleteForward(Y,Z). Let x = (0, (L,R)) be the query to P made by the simulator, and (S, T ) =
P (x). If x is already in the history of P , then it was necessarily added by a previous execution of
CompleteForward(Y ′, Z ′) or CompleteBackward(Y ′, Z ′) (note that the distinguisher does not make
any query to P in Σ2 or to R in Σ3). But since Bad does not happen, round function values are never
overwritten so that necessarily (Y ′, Z ′) = (Y,Z). This is impossible since by construction the simulator
makes at most one call to CompleteForward or CompleteBackward per center (Y,Z) ∈ F3 × F4. ut

We are now ready to upper bound the probability that Bad happens in Σ2 or Σ3.
10 In previous work on indifferentiability of the Feistel construction [CPS08,Seu09], in such a case the simulator

aborted. It does not change much since, as we will prove, this happens only with negligible probability.



Lemma 4. For any distinguisher of total oracle queries cost at most q, event Bad happens with prob-
ability less than 4q4/2n in Σ3 and less than 4q4/2n + q4/22n+1 in Σ2.

Proof. We start by working with Σ3 since it is slightly easier to analyze. Assume Bad has not happened
yet, and consider a call to Query(3, Y ) (the case of Query(4, Z) is symmetric). Let Z1, . . . , Zm, (m ≤ q
according to Lemma 1) be the values in the history of F4 at this point. We show that event Bad
does not happen for any call to CompleteBackward(Y,Zi) except with negligible probability. Since
F3(Y ) is set uniformly at random, the probability that any value Xi = Zi ⊕ F3(X) is in the history
of F2 at the time F3(Y ) is set is less than m(q2 + q)/2n ≤ 2q3/2n. Moreover F2(Xi) cannot be set
until CompleteBackward(Y, Zi) is called, hence Bad does not happen for Line 37 of any execution of
CompleteBackward(Y,Zi) except with probability less than 2q3/2n. Let (Li, Ri) denote the answer of
the query to R in CompleteBackward(Y,Zi). Since Bad has not happened yet, according to Lemma 3
this query is not in the history of R so that the answer is uniformly random. Hence Ri is in the
history of F1 with probability less than (q2 + q)/2n. Since there are m ≤ q calls to CompleteBackward,
event Bad does not occur for Line 38 of CompleteBackward except with probability less than 2q3/2n.
Finally, since there are at most q calls in total to Query(3, ·) and Query(4, ·), event Bad happens with
probability less than 4q4/2n in Σ3. The absolute difference between the probability that Bad happens
in Σ2 and Σ3 cannot be greater than the statistical distance between answers of P and R, hence the
probability that Bad happens in Σ2 is less than 4q4/2n + q4/22n+1. ut

The following lemma says that as long as Bad does not happen in Σ2, the round function values
set by the simulator are consistent with P .

Lemma 5. If Bad does not happen in system Σ2, then for any input x ∈ {0, 1} × {0, 1}2n computable
with respect to the final history of the simulator H, ΨH6 (x) = P (x).

Proof. Consider an input x ∈ {0, 1}×{0, 1}2n computable with respect to the final historyH of the sim-
ulator, and let (L,R,X, Y, Z,A, S, T ) = ρH(x). There was necessarily a call to CompleteForward(Y,Z)
or CompleteBackward(Y,Z) during the execution of the simulator. With respect to the history H′
just after the completion of CompleteForward(Y,Z) or CompleteBackward(Y, Z), it is clear that
ΨH

′

6 (x) = P (x). Since Bad does not happen the simulator never overwrites a value and the equal-
ity remains true until the end of the simulation, hence ΨH6 (x) = P (x). ut

A direct consequence of this lemma is that as long as Bad does not happen in Σ2, the answers of
systems Σ1 and Σ2 are identically distributed.

Lemma 6. For any distinguisher of total oracle queries cost at most q, the following holds:

∣∣Pr
[
DΣ1(1n) = 1

]
− Pr

[
DΣ2(1n) = 1

]∣∣ ≤ 4q4

2n + q4

22n+1 .

Proof. Clearly, answers to F -queries of the distinguisher are identically distributed in Σ1 and Σ2 since
they are answered by SP in both systems (may Bad occur or not).11 Moreover, in Σ2 any P -query x
asked by the distinguisher is computable with respect to the history of the simulator at the time it is
answered by Ψ6, and if Bad does not happen in Σ2, then according to Lemma 5, ΨH6 (x) = P (x) so that
answers to P -queries of the distinguisher are also identically distributed in both systems. The result
follows from Lemma 4. ut

Lemma 7. If Bad does not happen in system Σ3, then the round function values set by the simulator
are uniformly random and independent.

11 It is crucial here that the distinguisher is sequential, otherwise the simulation in Σ2 would be altered by the
queries made by Ψ6.



Proof. Since this is clear for round function values set uniformly at random (independently of Bad
occurring or not), we only have to examine values that are adapted at Lines 26, 27, 37, and 38 of
the simulator. But according to Lemma 3, if Bad does not happen, the query to R made by the
distinguisher in any execution of CompleteForward or CompleteBackward is not in the history of R,
so that the answer (S, T ) or (L,R) is uniformly random. Consequently, round function values set by
F5(A) ← Z ⊕ S and F6(S) ← A ⊕ T in CompleteForward, or F2(X) ← R ⊕ Y and F1(R) ← L ⊕X
in CompleteBackward are uniformly random and independent of previous round function values set
by the simulator. Since Bad does not happen round function values are not overwritten and the result
follows. ut

This lemma finally enables to bound the statistical distance between the answers of Σ3 and Σ4.

Lemma 8. For any distinguisher of total oracle queries cost at most q, the following holds:

∣∣Pr
[
DΣ3(1n) = 1

]
− Pr

[
DΣ4(1n) = 1

]∣∣ ≤ 4q4

2n .

Proof. If Bad does not occur in Σ3 then answers of SR are distributed exactly as answers of F according
to Lemma 7. Hence the statistical distance between answers of Σ3 and Σ4 is upper bounded by the
probability that Bad happens in Σ3, given by Lemma 4. ut

Theorem 2 is now a simple consequence of Lemmata 2, 6, and 8.

Remark 1. The strategy of using the intermediate system Σ2 is likely to be quite generic for seq-in-
differentiability proofs (system Σ3, on the contrary, is quite specific to the Feistel construction). We
believe this could probably make proofs of pub-indifferentiability (e.g. [DRS09, Section 7]) much easier,
but leave this for future work.

Remark 2. Note that for general distinguishers (not necessarily sequential), the proof would go through
exactly as above for Lemmata 2 and 8. The problematic step is clearly going from Σ1 to Σ2. To see
what could go wrong if the distinguisher can interleave queries to P and S, consider the following
simple example. D first makes a P -query P (0, (L,R)) = (S, T ), and then makes the sequence of F -
queries F1(R), F2(X), F6(S), F5(A). In system Σ1, the simulator returns uniformly answers to the four
F -queries and will be unable to adapt F3 and F4, whereas in Σ2 the initial P -query of the distinguisher
will trigger six F -queries from Ψ6 which will lead the simulator to adapt the chain when query F4(Y )
occurs. Making progress towards proving full indifferentiability for six rounds clearly requires to find
the right way to deal with these “external” chains without knowing the P -queries of the distinguisher.

4 Applications to Correlation Intractability

Correlation intractability was introduced by Canetti et al. in their work on the limits of the random ora-
cle methodology [CGH98]. In the standard model, a function family is said to be correlation intractable
if given the description of a random function f of the family, no PPT algorithm can find an input x, or
more generally a sequence of inputs (x1, . . . , xm), such that ((x1, . . . , xm), (f(x1), . . . , f(xm))) satisfies
a relation that would be hard to satisfy for a uniformly random function.

There is no difficulty in extending the definition of correlation intractability to an idealized model:
instead of passing the description of the function as input to the algorithm, it is granted access to
the ideal primitive used by the construction C. This way one can define a correlation intractable
construction (accessing an ideal primitive).

In all the following, we will consider relations over pairs of binary sequences (formally, a subset of
{0, 1}∗ × {0, 1}∗). We assume that the machine M returns sequences of strings in Domn, the domain
of the ideal primitive Gn or the construction CFn .



Definition 5 (Evasive relation). Let G = (Gn) be an ideal primitive associated to G = (Domn, Rngn,
Gn). A relation R over pairs of binary sequences is said to be evasive with respect to G if for any PPT
oracle machineM, there is a negligible function ε such that the following holds:

Pr
[
(x1, . . . , xm)←MGn(1n) : ((x1, . . . , xm), (Gn(x1), . . . ,Gn(xm))) ∈ R

]
≤ ε(n) .

Example 1. The relation over pairs of quadruplets of binary strings

∪n
{(

((0, (L1, R1)), (0, (L2, R2)), (0, (L3, R3)), (0, (L4, R4))), ((S1, T1), (S2, T2), (S3, T3), (S4, T4))
)

:
Li, Ri, Si, Ti ∈ {0, 1}n and R1 ⊕R2 ⊕R3 ⊕R4 = 0 and S1 ⊕ S2 ⊕ S3 ⊕ S4 = 0

}
is evasive for a random invertible permutation. This is exactly the evasive relation used in Appendix C
to show that the 5-round Feistel construction is not seq-indifferentiable from a random permutation.
This same attack also shows that the 5-round Feistel construction is not correlation intractable.

Definition 6 (Correlation intractable construction). Let C be a construction with oracle access
to an ideal primitive F = (Fn) and implementing some primitive G. CF is said to be (multiple-output)
correlation intractable if for any relation R over pairs of binary sequences evasive with respect to G,
and any PPT oracle machineM, there is a negligible function ε such that:

Pr
[
(x1, . . . , xm)←MFn(1n) :

(
(x1, . . . , xm), (CFn(x1), . . . , CFn(xm))

)
∈ R

]
≤ ε(n) .

Weak correlation intractability is defined similarly as above by quantifying only over all polynomial-
time recognizable relations (i.e. relations R such that there exists a polynomial-time algorithm that,
given ((x1, . . . , xm), (y1, . . . , ym)), decides whether it belongs to R or not).

Theorem 3. Let C be a construction with oracle access to an ideal primitive F = (Fn) and imple-
menting some primitive G. If CF is statistically (resp. computationally) seq-indifferentiable from the
ideal primitive G, then CF is correlation intractable (resp. weakly correlation intractable).

Proof. Assume that CF is not correlation intractable. Then there is an evasive relation R and a
PPT oracle machine M such that MFn(1n) outputs with non-negligible probability δ a sequence
(x1, . . . , xm) such that ((x1, . . . , xm), (CFn(x1), . . . , CFn(xm))) ∈ R. Consider the following sequential
distinguisher D accessing a pair of oracles (G,F ): it runs M, answering M’s oracle queries with its
own oracle F . M returns (x1, . . . , xm). D then makes oracle queries G(x1), . . . , G(xm) and checks12

whether ((x1, . . . , xm), (G(x1), . . . , G(xm))) ∈ R. If this is the case it returns 1, otherwise it returns 0.
When the distinguisher is interacting with (CF ,F ), the probability that it returns 1 is exactly δ,

which is non-negligible by hypothesis. On the contrary, when it interacts with (G,SG), then the union
ofM and S is a PPT oracle machine with oracle access toG, so that by definition of an evasive relation
D outputs 1 only with negligible probability. The advantage of the distinguisher is non-negligible, which
contradicts the seq-indifferentiability of CF . ut

A direct consequence of Theorems 2 and 3 is that the 6-round Feistel construction with random
round functions is correlation intractable: no polynomial algorithm with oracle access to the round
functions can find a sequence of inputs that together with their image by the Feistel satisfy a relation
that would be hard to satisfy in the random invertible permutation model. Note that the sole existence
of correlation intractable invertible permutations in the random oracle model was already implied by
the result of Holenstein et al. [HKT11] on the full indifferentiability of the 14-round Feistel construction
(since full indifferentiability implies seq-indifferentiability and hence correlation intractability), but our
results shows that six rounds are sufficient to achieve this property.
12 Note that the reasoning holds only relatively to a polynomial-time recognizable relation if D is computa-

tionally bounded.



Remark 3. According to Theorem 3, sequential indifferentiability implies correlation intractability.
However correlation intractability does not necessarily imply sequential indifferentiability. In Ap-
pendix D we provide a simple counter-example separating the two notions.

Implications for Chosen-Key and Known-Key Attacks on Block Ciphers. Knudsen and Rij-
men [KR07] have introduced so-called known-key attacks on block ciphers. We discuss the implications
of our results regarding this attack model in Appendix E.
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A Proof of Theorem 1

Assume that CF is strongly (2q, σ, ε)-seq-indifferentiable from G, and let Sseq be the simulator for
seq-indifferentiability. We define a simulator Spub for pub-indifferentiability as follows. Spub runs Sseq,
transparently relaying queries of Sseq to G to the regular interface of G. Each time Spub receives a F -
query y from the distinguisher, it makes a call to Reveal, getting a sequence (x1, . . . , xm) of G-queries
that have been made by the distinguisher so far (Spub considers only fresh G-queries, i.e. G-queries
that have not been returned by a previous query to Reveal). For each i = 1 to m, Spub makes all
F -queries needed to compute CF (xi) to Sseq. Finally, it makes the F -query y to Sseq and returns the
corresponding answer.

Let Dpub be a distinguisher for the pub-indifferentiability game of total oracle queries cost at most
q. We have to bound the absolute difference between the probabilities that Dpub outputs 1 when
interacting with (G,SG

pub) and (CF ,F ). For this, we assume wlog that

Pr
[
DG,SG

pub
pub (1n) = 1

]
≥ Pr

[
DC

F ,F
pub (1n) = 1

]
. (1)

We consider the following sequential distinguisher Dseq interacting with a pair of oracles (G,F ) which
can be either (G,SG

seq) or (CF ,F ). Dseq runs Dpub (see Figure 4). Dseq simply relays any F -query of
Dpub to its own F oracle, returning the corresponding answer. When Dpub makes a G-query x, Dseq
makes all the necessary F -queries to its own F -oracle to compute CF (x) and returns this value as the
answer to Dpub. Once Dpub has returned 0 or 1, Dseq makes all the G-queries that have been made by
Dpub to its own G-oracle and checks whether all the answers it has given to Dpub (by computing CF
with its own F -oracle) correspond (in which case we say that event check happens). If this is the case,
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Fig. 4. Illustration of the proof of Theorem 1. The dashed arrow means that Dseq makes the corresponding
queries once Dpub has returned and compares the answers with the one it computed with C.

Dseq returns the same answer as Spub. Otherwise it returns 1. Note that Dseq is indeed sequential, and
that its total oracle queries cost is less than 2q when Dpub’s total oracle queries cost is less than q.

First, it is straightforward to verify that when Dseq interacts with (CF ,F ), check happens with
probability one so that

Pr
[
DC

F ,F
seq (1n) = 1

]
= Pr

[
DC

F ,F
pub (1n) = 1

]
.

When Dseq interacts with (G,SG
seq), one can write:

Pr
[
DG,SG

seq
seq (1n) = 1

]
= Pr

[
DG,SG

seq
seq (1n) = 1 | check

]
Pr[check] + Pr[check] .

Note that when event check occurs, all answers to F - and G-queries of Dpub have been answered as
if Dpub had been interacting directly with (G,SG

pub). This follows from the definition of Spub and the
fact that G is stateless. The statelessness of G is crucial here since even when check happens, the
sequence of queries to G when Dseq interacts with (G,SG

seq) is not necessarily the same as when Dpub

interacts with (G,SG
pub): in the former, the G-queries of Dpub are forwarded to G by Dseq only once

Dpub has returned, whereas in the later G receives Dpub’s queries immediately. Hence we have:

Pr
[
DG,SG

seq
seq (1n) = 1

]
= Pr

[
DG,SG

pub
pub (1n) = 1 | check

]
Pr[check] + Pr[check]

= Pr
[
DG,SG

pub
pub (1n) = 1

]
+ Pr[check]

(
1− Pr

[
DG,SG

pub
pub (1n) = 1 | check

])
≥ Pr

[
DG,SG

pub
pub (1n) = 1

]
.

It follows from assumption (1) that∣∣∣∣Pr
[
DG,SG

pub
pub (1n) = 1

]
− Pr

[
DC

F ,F
pub (1n) = 1

]∣∣∣∣ ≤ ∣∣∣∣Pr
[
DG,SG

seq
seq (1n) = 1

]
− Pr

[
DC

F ,F
seq (1n) = 1

]∣∣∣∣ ,



which is less than ε since by hypothesis CF is (2q, σ, ε)-seq-indifferentiable from G. The result follows
by noting that Spub makes at most q Reveal queries and σ queries to G.

Clearly, Spub and Dpub are polynomial-time if Sseq and Dseq are, so that pub-indifferentiability
holds computationally if seq-indifferentiability does. ut

B Counter-Example to Theorem 1 for Stateful Ideal Primitives

When the ideal primitive G is stateful, then seq-indifferentiability does not necessarily imply pub-
indifferentiability in the computational setting, as was observed by Ristenpart. To see this, let E =
(KeyGen, Enc, Dec) be a IND-CPA public-key encryption scheme. The ideal primitive G maintains a
hashtable T with n-bit keys and takes as input an n-bit string x and a public key pk for E .
1: procedure G(x,pk)
2: if T (x) = ⊥ then
3: y ←R {0, 1}n
4: T (x) := Encpk(y)
5: end if
6: return T (x)
7: end procedure

The construction C is quite similar to G, but instead of drawing a uniformly random y it uses a
random function oracle F : {0, 1}n → {0, 1}n:
1: procedure CF (x,pk)
2: if T (x) = ⊥ then
3: y := F (x)
4: T (x) := Encpk(y)
5: end if
6: return T (x)
7: end procedure

One can show that CF is strongly, computationally seq-indifferentiable from G, but not pub-
indifferentiable. The idea is that in the seq-indifferentiability game, the simulator can always get the y
values drawn by G by generating the public keys by itself, whereas in the pub-indifferentiability game,
when the distinguisher makes a G-query before the simulator, the y value will be hidden to Spub unless
it can break the one-wayness of E . The seq-indifferentiability simulator maintains an history F for the
simulated oracle and is defined as follows:
1: procedure SG

seq(x)
2: if F (x) = ⊥ then
3: (pk, sk)← KeyGen(1n)
4: c := G(x, pk)
5: y := Decsk(c)
6: F (x) := y
7: end if
8: return F (x)
9: end procedure

It is not very hard to see that the above simulator works for seq-indifferentiability. On the other
hand, consider the following distinguisher for pub-indifferentiability:
1: procedure DΘ1,Θ2

pub (1n)
2: (pk, sk)← KeyGen(1n)
3: c := Θ1(0, pk)
4: y := Decsk(c)
5: y′ := Θ2(0)
6: if y = y′ then



7: return 1
8: else
9: return 0

10: end if
11: end procedure

When (Θ1, Θ2) = (CF ,F ) then Dpub always returns 1. However any efficient simulator Spub such
that Dpub returns 1 with non negligible probability when (Θ1, Θ2) = (G,SG

pub) can be turned into an
algorithm breaking the one-wayness of E . Hence Dpub distinguishes the two systems with overwhelming
probability.

C Sequential Distinguisher for the 5-Round Feistel Construction

The sequential distinguisher D proceeds as follows (see Figure 5). It chooses an arbitrary value Z13,
two arbitrary values Y14 et Y23, and queries F3(Y14) and F3(Y23). It then computes:{

X12 = Z13 ⊕ F3(Y14)
X34 = Z13 ⊕ F3(Y23) .

Notations are chosen such that input round values sharing a common index correspond to the same
input-output pair of the Feistel scheme: we say they constitute a chain. For example, (X12, Y14, Z13)
constitute a chain since X12 = Z13 ⊕ F3(Y14).
The distinguisher then queries F2(X12) and F2(X34) and computes:

R1 = Y14 ⊕ F2(X12)
R2 = Y23 ⊕ F2(X12)
R3 = Y23 ⊕ F2(X34)
R4 = Y14 ⊕ F2(X34) .

Note that necessarily R1 ⊕R2 ⊕R3 ⊕R4 = 0.
Then the distinguisher queries F1(R1), F1(R2), F1(R3), and F1(R4) and computes:

L1 = X12 ⊕ F1(R1)
L2 = X12 ⊕ F1(R2)
L3 = X34 ⊕ F1(R3)
L4 = X34 ⊕ F1(R4) .

Finally the distinguisher makes the P -queries (S1, T1) = P (0, (L1, R1)), (S2, T2) = P (0(L2, R2)),
(S3, T3) = P (0, (L3, R3)) and (S4, T4) = P (0, (L4, R4)). If S1⊕S2⊕S3⊕S4 = 0, it returns 1, otherwise
it returns 0. Note that this distinguisher is sequential.

First, one can easily verify that D always returns 1 when it interacts with (ΨF
5 ,F ). Indeed, denote

Z24 = X12 ⊕ F3(Y23) the input value to F4 associated with (L2, R2). Since X12 ⊕ F3(Y14) = X34 ⊕
F3(Y23) = Z13, then Z24 = X34 ⊕ F3(Y14), so that Z24 is also the input value to F4 associated with
(L4, R4). It follows that: 

S1 = Y14 ⊕ F4(Z13)
S2 = Y23 ⊕ F4(Z24)
S3 = Y23 ⊕ F4(Z13)
S4 = Y14 ⊕ F4(Z24) ,

and the relation S1 ⊕ S2 ⊕ S3 ⊕ S4 = 0 is always verified.
On the contrary, when interacting with (P ,SP ), it returns 1 only with negligible probability.

Indeed, considering the union of D and S as a single machine making a polynomial number of queries
to the random permutation P , it can find four input/output pairs (Si, Ti) = P (0, (Li, Ri)) satisfying
R1 ⊕R2 ⊕R3 ⊕R4 = 0 and S1 ⊕ S2 ⊕ S3 ⊕ S4 = 0 only with negligible probability.
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Fig. 5. Description of the sequential distinguisher for the 5-round Feistel construction.

D Separating Correlation Intractability and Sequential Indifferentiability

According to Theorem 3, sequential indifferentiability implies correlation intractability. However, it
does not hold the other way around. Below we give a constructive counter-example.

Let CE be a construction based on some ideal primitive E which is seq-indifferentiable from a
random function F = (Fn), Fn : {0, 1}n → {0, 1}n. By Theorem 3, CE is also correlation intractable
with respect to the random function F .

Now consider the primitive G = (Gn) where Gn : {0, 1}n → {0, 1}n is such that Gn(0n) = 0n
and for x ∈ {0, 1}n \ {0n}, we have Gn(x) = Fn(x). Let R be be a relation evasive with respect to
the ideal primitive G. Clearly, R is also evasive with respect to the random function F so that CE is
also correlation intractable with respect to G. However, CE is not seq-indifferentiable from G. Indeed,
consider a distinguisher which simply makes the query 0n to its left oracle: the answer will be 0n when
it is G, and will be 0n with only negligible probability when it is CE (since otherwise this would yield
a sequential distinguisher distinguishing CE from F ).

E Implications for Chosen-Key and Known-Key Attacks on Block Ciphers

Knudsen and Rijmen [KR07] have introduced the model of known-key attacks on block ciphers, where
the attacker is given a random or chosen key K to the block cipher, and must find inputs to the block
cipher that together with their image satisfy a relation that would be hard to satisfy for a random
invertible permutation. In other words, the attacker must break the correlation intractability of the
block cipher for that particular key.

In the random oracle model, there are at least two straightforward ways to obtain a block cipher
with a Feistel construction. The first one is to let round functions have input length `+n, where ` is the
key length, and to prepend the key K to the input of each round function. Another way is to xor keys
(k1, . . . , kr) (where |ki| = n) to the input of the r round functions (F1, . . . ,Fr) (the pseudorandomness



of this construction in the random oracle model has for example been studied by [GR04]). Many
variations can be explored, e.g. having a single round function F instead of independent ones, having
Fi’s be random invertible permutations rather that random functions, etc.

An interesting result of [KR07] is that for a 7-round Feistel construction using a single random
invertible permutation P as round function, and independent keys (k1, . . . , k7) xored to the input of
P at each round, then the resulting block cipher is not correlation intractable (even when the keys are
only random and known from the attacker, not chosen): namely with high probability on the choice of
the keys, the attacker can find inputs (L,R) and (L′, R′) that together with the corresponding outputs
(S, T ) and (S′, T ′) satisfy R⊕R′ ⊕ T ⊕ T ′ = 0.

Our results on the correlation intractability of the 6-round Feistel construction shows that the block
cipher obtained by prepending the key to the input of each round function is correlation intractable
(in the random oracle model), and hence immune to known-key and even chosen-key attacks. Other
variations need more careful analysis. In particular, note that the variant using a single round function
is clearly not immune to known or chosen key attacks (at least when the same key is used at each
round): for example for any number of rounds, ΨF ,...,F

r (L,R) = (S, T ) implies ΨF ,...,F
r (T, S) = (R,L)

(this is in fact true for any palindromic sequence of round functions).

F Seq-Indifferentiability Beyond the Birthday Barrier for the
Construction of [CDMS10]

Coron et al. [CDMS10] considered the 3-round permutation Ψ3 : {0, 1}2n → {0, 1}2n defined as follows
(see Figure 6 for an illustration), given block ciphers E1, E2 and E3 with n-bit key (first variable) and
n-bit input/output (second variable):

X = E1(R,L)
S = E2(X,R)
T = E3(S,X)

Ψ3(L,R) := (S, T )

The 3 round block cipher Ψ ′3 : {0, 1}k × {0, 1}2n → {0, 1}2n is defined as follows, given block ciphers
E1, E2 and E3 with (k + n)-bit key and n-bit input/output:

X = E1(K‖R,L)
S = E2(K‖X,R)
T = E3(K‖S,X)

Ψ ′3(K, (L,R)) := (S, T )

We now state our main result in this section: the 3-round Feistel construction ({0, 1}2n → {0, 1}2n)
is seq-indifferentiable from a random permutation up to q � 2n queries. To get an ideal cipher, it
suffices to prepend a key K to the 3 ideal ciphers E1, E2 and E3; one then gets a family of independent
random permutation, parametrized by K, i.e. an ideal cipher.

Theorem 4. The 3-round Feistel construction Ψ3 is (q, σ, ε)-seq-indifferentiable from a random in-
vertible permutation P : {0, 1}2n → {0, 1}2n , with σ(q) = nq, and ε = O(q/2n). The running time of
the simulator for answering a single query is tS = O(n log q).

We only consider the 3-round permutation Ψ3. The extension to block-cipher Ψ ′3 is straightfor-
ward. We must construct a simulator S such that the two systems formed by (Ψ3, E) and (P,S) are
indistinguishable.

Our simulator maintains a history of already answered queries for E1, E2 and E3. Formally,
(1, R, L,X) exists in history if and only if the simulator has answered E1(R,L) query asX or E−1

1 (R,X)
query as L previously. Similar conditions hold for (2, X,R, S) and (3, S,X, T ) as well. We define the
following algorithms:
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Fig. 6. 3-round permutation Ψ3(L,R) (left) and 3-round block-cipher Ψ ′3(K, (L,R)) (right)

– GuessE1(R,L) returns a random X ∈ {0, 1}n \ B where B is the set of already defined values for
E1(R, ·). Algorithms GuessE−1

1 , GuessE3 and GuessE−1
3 work in a similar fashion.

– ConflictE1(R,L,X) returns True iff (1, R, L, ∗) or (1, R, ∗, X) exist in history. In other words, it
checks whether E1(R,L) or E−1

1 (R,X) has been defined before. ConflictE2 and ConflictE3 work in
a similar fashion.

– Store(L,R,X, S, T ) saves (1, R, L,X), (2, X,R, S) and (3, S,X, T ) in history.

The distinguisher’s queries are answered as follows by the simulator:

E1(R,L) query: E−1
1 (R,X) query E2(X,R) query:

1. If (1, R, L, ∗) ∈ history 1. If (1, R, ∗, X) ∈ history 1. If (2, X,R, ∗) ∈ history
2. Return ∗ 2. Return ∗ 2. Return ∗
3. X ← GuessE1(R,L) 3. L← GuessE−1

1 (R,X) 3. L← GuessE−1
1 (R,X)

4. (Err, S, T )← Check(L,R,X) 4. (Err, S, T )← Check(L,R,X) 4. (Err, S, T )← Check(L,R,X)
5. If Err = True Goto 3 5. If Err = True Goto 3 5. If Err = True Goto 3
6. Store(L,R,X, S, T ) 6. Store(L,R,X, S, T ) 6. Store(L,R,X, S, T )
7. Return X 7. Return L 7. Return S

Check(L,R,X):
1. S‖T ← P (L‖R)
2. If ConflictE2(X,R, S) = True Or ConflictE3(S,X, T ) = True
3. Return (True, ∗, ∗)
4. Return (False, S, T ).

The procedure for answering the other queries is essentially symmetric; we provide it for complete-
ness:

E−1
3 (S, T ) query: E3(S,X) query E−1

2 (X,S) query:
1. If (3, S, ∗, T ) ∈ history 1. If (3, S,X, ∗) ∈ history 1. If (2, X, ∗, S) ∈ history
2. Return ∗ 2. Return ∗ 2. Return ∗
3. X ← GuessE−1

3 (S, T ) 3. T ← GuessE3(S,X) 3. T ← GuessE3(S,X)
4. (Err, L,R)← Check−1(S, T,X) 4. (Err, L,R)← Check−1(S, T,X) 4. (Err, L,R)← Check−1(S, T,X)
5. If Err = True Goto 3 5. If Err = True Goto 3 5. If Err = True Goto 3
6. Store(L,R,X, S, T ) 6. Store(L,R,X, S, T ) 6. Store(L,R,X, S, T )
7. Return X 7. Return T 7. Return R



Check−1(S, T,X):
1. L‖R← P−1(S‖T )
2. If ConflictE2(X,R, S) = True Or ConflictE1(R,L,X) = True
3. Return (True, ∗, ∗)
4. Return (False, L,R).

For a given set of queries Q and their responses X (Q) we define the extender consistency as the property
that the responses to Ψ3 (or P ) are equal to those that one would obtain by applying the extender
construction from responses to E (or S) (when queries to E or S suffice to preform the calculation).
By construction, the system (Ψ3, E) always gives consistent response. Also from the definition of our
simulator S, it is evident that (P,S) gives consistent responses as well (S runs in polynomial time
unless it enters an exponential loop with a small probability). For any distinguisher D against the
systems (Ψ3, E) and (P,S) we construct another distinguisher D′′ by the following way.
1. Ψ3(L,R)→ (S, T ) query in D is replaced in D′′ by the sequence of queries

E1(R,L)→ X,E2(X,R)→ S,E3(S,X)→ T.

2. Ψ−1
3 (S, T )→ (L,R) query in D is replaced in D′′ by the sequence of queries

E−1
3 (S, T )→ X,E−1

2 (X,S)→ R,E−1
1 (R,X)→ L.

We argue that D′′ is more powerful than D. In replacement 1, D′′ actually observes the 5-tuple
(L,R,X, S, T ), whereas D can only observe the 4-tuple (L,R, S, T ). Moreover, the systems (Ψ3, E) and
(P,S) always give extender-consistent responses. Hence, D′′ observes the exact same information as
observed by D, plus some extra information. Formally, we have the following theorem,
Theorem 5. For any distinguisher D and the distinguisher D′′ constructed in the above way, we have

AdvD ≤ AdvD
′′
.

Moreover, D′′ only makes queries to E or S.

Remark 4. The above theorem is not true in case of general indifferentiability, this kind of query
replacement would mean the simulator is getting some extra information, namely the queries to the P
oracle.

For any distinguisher D′′ making only E or S queries we construct another distinguisher D′ by the
following way.
1. E1(R,L)→ X query in D′′ is replaced by the sequence of queries E1(R,L)→ X, E2(X,R)→ S,
E3(S,X)→ T in D′.

2. E−1
1 (R,X)→ L query in D′′ is replaced by the sequence of queries E−1

1 (R,X)→ L, E2(X,R)→ S,
E3(S,X)→ T in D′.

3. E2(X,R)→ L query in D′′ is replaced by the sequence of queries E−1
1 (R,X)→ L, E2(X,R)→ S,

E3(S,X)→ T in D′.
4. The queries E−1

3 (S, T ), E3(S,X) and E−1
2 (X,S) are processed essentially symmetrically.

5. D′ does not make any duplicate or trivial query. (Queries which try to verify whether Ei is a well
defined permutation are trivial queries).

In general, D′ always observes the exact same or more information than D′′. It might happen that
for some (L,R, S, T ) such that Ψ3(L,R) = (S, T ), D′ gets the intermediate X value through E1(R,L)
query, whereas D′′ finds it through E−1

3 (S, T ) query or vice-versa. When the distinguishers are in-
teracting with (Ψ3, E) the X value is always the same irrespective of whether it is retrieved through
E1 or E−1

3 query. And when the distinguishers are interacting with (P,S), X follows the exact same
probability distribution in both scenarios. This is due to the fact that, for fixed (L,R, S, T ) while
answering E1(R,L) or E−1

3 (S, T ) the simulator picks X uniformly over all possible X which do not
conflict with previous responses. Proof of Lemma 12 explains it in more details. Hence we have the
following theorem.



Theorem 6. For any distinguisher D and the distinguishers D′′ and D′ (making only E or S queries)
constructed in the above way, we have

AdvD ≤ AdvD
′′
≤ AdvD

′
.

Moreover, if D makes at most q queries to the systems (Ψ3, E) or (P,S), then D′ only makes at most
q many 3-query sequences to (Ψ3, E) or (P,S). Each query sequence is one of the following types.

– Type I E1(R,L)→ X, E2(X,R)→ S, E3(S,X)→ T

– Type II E−1
1 (R,X)→ L, E2(X,R)→ S, E3(S,X)→ T

– Type III E−1
3 (S, T )→ X, E−1

2 (X,S)→ R, E−1
1 (R,X)→ L

– Type IV E3(S,X)→ T , E−1
2 (X,S)→ R, E−1

1 (R,X)→ L

Type I and Type III query sequences are actually symmetric. The same is true for Type II and IV
query sequences as well. We write {0, 1}n as Y. If AdvD

′

i+1 is the advantage of the distinguisher D′ for
the (i+ 1)th 3-query sequence we have the following two theorems.

Theorem 7. If the (i+ 1)th 3-query sequence made by D′ is either of Type I or Type III we have,

AdvD
′

i+1 ≤
2i
|Y|2 .

Theorem 8. If the (i+ 1)th 3-query sequence made by D′ is either of Type II or Type IV we have,

AdvD
′

i+1 ≤
5i
|Y|2 + 25i2

|Y|3 + 4i3

|Y|4 .

We know, AdvD
′
≤
∑q−1
i=0 AdvD

′

i+1. Hence Theorem 6, Theorem 7 and Theorem 8 together complete the
proof of Theorem 4.

F.1 Proof of Theorem 7 and Theorem 8

Input-ouput of each 3-query sequence made by D′ is actually a 5-tuple (L,R,X, S, T ). In fact, input of
each 3-query sequence is a 2-tuple and output is a 3-tuple. Say before (i+ 1)th query, D′ has observed
i many such distinct (as D′ does not make duplicate or trivial queries) 5-tuples (Lj , Rj , Xj , Sj , Tj) for
j = 1 to i. When D′ is interacting with (P,S), the simulator’s internal history also contains exactly
the same information. Let L, R, X, S and T be the set of Lj ’s, Rj ’s, Xj ’s, Sj ’s and Tj ’s (for j = 1 to
i) respectively. We partition the set L as

L = L1 ∪ L2 ∪ · · · ∪ Li,

such that ` ∈ Lk if and only if ` has appeared exactly k times in history (or there are exactly k-many
j values such that ` = Lj). We do similar partitioning for the sets R, X, S and T as well. Note,∑

j

j|Lj | =
∑
j

j|Rj | =
∑
j

j|Xj | =
∑
j

j|Sj | =
∑
j

j|Tj | = i. (2)

We also define L0 = Y \ L. R0, X0, S0 and T0 are defined similarly. The proofs of Theorem 7 and
Theorem 8 are essentially independent. We describe Theorem 8 before, because the proof is simpler.



Theorem 8

We prove the result when the query sequence is of Type II. For Type IV query sequence the result
follows because of symmetry. Let (R,X) be the input to the Type II query sequence. Note, we can not
have (R,X) = (Rj , Xj) for some j ∈ [1, i], because then E−1

1 (R,X) becomes duplicate or trivial query.
(LE , SE , TE) and (LP , SP , TP ) be the random variables corresponding to the output tuple depending
on whether D′ is interacting with (Ψ3, E) or (P,S) respectively.

Let BL be the set of values for which E1(R, .) is defined in history. Also on BS , E−1
2 (X, .) is defined.

If R ∈ Ri1 and X ∈ Xi2 , we have

|BL| = i1 and |BS | = i2,

BL ⊆ L and BS ⊆ S.

OPST be the set of (Sj , Tj) tuples present in history. Also for j = 1, · · · , i, (Sj , Tj)’s are actually
distinct. In other words, |OPST | = i.

Lemma 9. If R ∈ Ri1 and X ∈ Xi2 then for j = 0, · · · , i we have

Pr[(LE , SE , TE) = (L, S, T )] = 1
|Y| − i1

× 1
|Y| − i2

× 1
|Y| − j

when (L, S, T ) ∈ (Y \BL)× ((Sj ×Y) \OPST ). Moreover,

|(Y \BL)× (((Sj \BS)×Y) \OPST )| = (|Y| − i1)|Sj \BS |(|Y| − j).

For the tuples (L, S, T ) not covered by Lemma 9, Pr[(LE , SE , TE) = (L, S, T )] is actually zero. In fact,
(LE , SE , TE) always have some non-zero probability over the set (Y\BL)×

((
(Y\BS)×Y

)
\OPST

)
,

even though non-uniform. We will see, (LP , SP , TP ) is actually uniform over the same set, and at other
points it has zero probability as well. Using some basic counting principles, we also get

|
(
(Y \BS)×Y

)
\OPST | = (|Y| − |BS |)|Y| − |OPST |+

∑
j′

j′|BS ∩ Sj
′
|

= |Y|2 − i2|Y| − i+
∑
j′

j′|BS ∩ Sj
′
|.

Formally, we have the following lemma.

Lemma 10. If R ∈ Ri1 and X ∈ Xi2 then, (LP , SP , TP ) is uniform over (Y \BL) ×
((

(Y \BS) ×
Y
)
\OPST

)
. More specifically, for (L, S, T ) ∈ (Y \BL)×

((
(Y \BS)×Y

)
\OPST

)
we have,

Pr[(LP , SP , TP ) = (L, S, T )] = 1
|Y| − i1

× 1
|Y|2 − i2|Y| − i+

∑
j′ j′|BS ∩ Sj′ |

.

Proof. For a Type II query sequence the simulator response is decided by simulators behavior on
E−1

1 (R,X) query. Inside the Check(L,R,X) function, L is not passed to ConflictE2 and ConflictE3
functions. L, is only used as input to P . P being a random permutation the probability distributions
of LP and (SP , TP ) are actually independent. Again, due to uniform randomness of P , (SP , TP ) is
actually uniform over a set of possible values which does conflict with history. Again, the probability
that Check(L,R,X) returns Err is the same for all possible outputs of GuessE−1

1 . Also GuessE−1
1 outputs

uniformly. Hence, the distribution of LE is also uniform. The result follows, because joint probability
distribution of two uniform and independent distribution is also uniform. ut

AdvD
′

i+1 is nothing but sum of half of the probability differences of (LE , SE , TE) and (LP , SP , TP ) at
all points. Instead of considering all the points we can only consider the points where the probability



corresponding to (LP , SP , TP ) is bigger. Now let us calculate the probability differences. For j =
0, · · · , i if (L, S, T ) ∈ (Y \BL)× ((Sj ×Y) \OPST ) we have,

Pr[(LE , SE , TE) = (L, S, T )]− Pr[(LP , SP , TP ) = (L, S, T )]

= 1
|Y| − i1

× 1
|Y| − i2

× 1
|Y| − j −

1
|Y| − i1

× 1
|Y|2 − i2|Y| − i+

∑
j′ j′|BS ∩ Sj′ |

=
j(|Y| − i2)− i+

∑
j′ j′|BS ∩ Sj′ |

(|Y| − i1)(|Y| − i2)(|Y| − j)(|Y|2 − i2|Y| − i+
∑
j′ j′|BS ∩ Sj′ |)

– As, i ≤ |Y|/2 and i1 ≤ i the expression above is bigger than zero for j ≥ 1.
– Also,

∑
j′ j′|BS ∩ Sj′ | ≤

∑
j′ j′|Sj

′ | ≤ i. Hence the expression above is negative for j = 0.

So, we can only consider j = 0, for calculating AdvD
′

i+1.

AdvD
′

i+1 ≤
(|Y| − i1)(|Y| − |S|)|Y| × i

(|Y| − i1)(|Y| − i2)|Y|(|Y|2 − i2|Y| − i+
∑
j′ j′|BS ∩ Sj′ |)

≤ i

|Y|2 − i|Y| − i (As, i2 = |BS | ≤ |S| and i2 ≤ i)

≤ 2i
|Y|2 (As, i ≤ |Y|/2− 1)

Theorem 7

We prove the result when the query sequence is of Type I. For Type III query sequence the result
follows because of symmetry. Let (L,R) be the input to the Type I query sequence. Note, we can not
have (L,R) = (Lj , Rj) for some j ∈ [1, i], because then E1(R,L) becomes duplicate or trivial query.
(XE , SE , TE) and (XP , SP , TP ) be the random variables corresponding to the output tuple depending
on whether D′ is interacting with (Ψ3, E) or (P,S) respectively.

As before, BX is the set of values for which E−1
1 (R, .) is already defined in history. Let us assume

R ∈ Ri1 . We have
|BX | = i1 and BX ⊆ X.

We also partition the sets Sj ’s as follows. For j = 0, · · · , i,

Sj = Sj0 ∪ Sj1 ∪ · · · ∪ Sjmin(i1,j),

such that s ∈ Sjj′ if and only if there are exactly j′ many x ∈ BX for which E−1
3 (s, x) is defined in

history. |Sjj′ | > 0 actually implies,
i1 + j − j′ ≤ i.

OPXS be the set of (Xj , Sj) tuples present in history. We have,

|OPXS | = i.

OPST is defined as before. Let, us denote |Xk ∩BX | as rk. Note,
i∑

k=1
rk = |BX | = i1 and

i∑
k=1

krk ≥ i1.

Lemma 11. If R ∈ Ri1 , then for k = 0, · · · , i and j = 0, · · · , i we have

Pr[(XE , SE , TE) = (X,S, T )] = 1
|Y| − i1

× 1
|Y| − k ×

1
|Y| − j ,

when (X,S, T ) ∈ ((Xk \BX)× Sj ×Y) \ ((OPXS ×Y) ∪ (Y×OPST )).



Lemma 12. If R ∈ Ri1 , then for j = 0, · · · , i and j′ = 0, · · · ,min(i1, j) we have

Pr[(XP , SP , TP ) = (X,S, T )] = 1
|Y| − i1 − j + j′

× 1
|Y|2 − i ,

when (X,S, T ) ∈ ((Y \BX)× Sjj′ ×Y) \ ((OPXS ×Y) ∪ (Y×OPST )).

Proof. For a Type I query sequence the simulator response is decided by simulators behavior on
E1(R,L) query. (S, T ) values return by the simulator is actually direct output of P . Hence, the dis-
tribution of (SE , TE) is independent of internal random choices of the simulator. If we fix S then the
distribution of XE is actually uniform over the values for which E−1

1 (R, .) and E3(S, .) is not defined.
(Note, we can actually drop the ConflictE2 call inside Check(L,R,X) function when it is being called
from E1). ut

Note, both (XE , SE , TE) and (XP , SP , TP ) has non-zero probabilities over same set of points (this is
a consequence of our simulator being always consistent to P , and never aborting), although they are
not the same. AdvD

′

i+1 is nothing but half of sum of the probability differences of the two distributions
over all points. The distribution of (XE , SE , T ) does not depend on j′, where as the distribution of
(XP , SP , TP ) does not depend on k. To give an upper bound for the sum of probability differences we
divide the total probability space in four parts. Then, we give an upper bound for each part separately.

1. ∆00 is the sum of probability differences for the points, where j = 0 and k = 0. Formally,

∆00 =
∑

(X,S,T )∈
(Y\X)×(Y\S)×Y

∣∣Pr[(XE , SE , TE) = (X,S, T )]

− Pr[(XP , SP , TP ) = (X,S, T )]
∣∣

2. ∆01 is the sum of probability differences for the points where, j = 0 and k ≥ 1. Formally,

∆01 =
i∑

k=1

∑
(X,S,T )∈

(Xk\BX )×(Y\S)×Y

∣∣Pr[(XE , SE , TE) = (X,S, T )]

− Pr[(XP , SP , TP ) = (X,S, T )]
∣∣

3. ∆10 is the sum of probability differences for the points where, j ≥ 1 and k = 0. Formally,

∆01 =
i∑

j=1

min(i1,j)∑
j′=0

∑
(X,S,T )∈

(Y\X)×((Sj

j′×Y)\OPST )

∣∣Pr[(XE , SE , TE) = (X,S, T )]

− Pr[(XP , SP , TP ) = (X,S, T )]
∣∣

4. ∆11 is the sum of probability differences for the points where, j ≥ 1 and k ≥ 1. Formally,

∆11 =
i∑

k=1

i∑
j=1

min(i1,j)∑
j′=0

∑
(X,S,T )∈

((Xk\BX )×Sj

j′×Y)
\((OPXS×Y)∪(Y×OPST ))

∣∣Pr[(XE , SE , TE) = (X,S, T )]

− Pr[(XP , SP , TP ) = (X,S, T )]
∣∣

Below, we state the upper bounds for ∆ij ’s. In section F.2 we give a detailed analysis.



1. ∆00 ≤ 2i
|Y|2

2. ∆01 ≤ 4i
|Y|2

3. ∆10 ≤ 4i
|Y|2 + 10i2

|Y|3

4. ∆11 ≤ 40i2
|Y|3 + 8i3

|Y|4

Hence,

AdvD
′

i+1 = 1
2(∆00 +∆01 +∆10 +∆11)

≤ 5i
|Y|2 + 25i2

|Y|3 + 4i3

|Y|4

F.2 Upper bound for ∆ij’s

Upper bound for ∆00

If (X,S, T ) ∈ (Y \X)× (Y \ S)×Y, we have∣∣Pr[(XE , SE , TE) = (X,S, T )]− Pr[(XP , SP , TP ) = (X,S, T )]
∣∣

=
∣∣ 1
|Y| − i1

× 1
|Y|2 −

1
|Y| − i1

× 1
|Y|2 − i

∣∣ = i

|Y|2(|Y| − i1)(|Y|2 − i) .

Hence,

∆00 = (|Y| − |X|)(|Y| − |S|)|Y| × i
|Y|2(|Y| − i1)(|Y|2 − i)

= i

|Y|2 − i ×
|Y| − |S|
|Y| × |Y| − |X|

|Y| − i1

≤ i

|Y|2 − i (As, i1 = |BX | ≤ |X|)

≤ 2i
|Y|2

Upper bound for ∆01

If (X,S, T ) ∈ (Xk \BX)× (Y \ S)×Y, we have∣∣Pr[(XE , SE , TE) = (X,S, T )]− Pr[(XP , SP , TP ) = (X,S, T )]
∣∣

=
∣∣ 1
|Y| − i1

× 1
|Y| − k ×

1
|Y| −

1
|Y| − i1

× 1
|Y|2 − i

∣∣
= k|Y| − i
|Y|(|Y| − i1)(|Y| − k)(|Y|2 − i) .

Observe,
|(Xk \BX)× (Y \ S)×Y| = (|Xk| − rk)(|Y| − |S|)|Y|.



Hence,

∆01 =
i∑

k=1

(|Xk| − rk)(|Y| − |S|)|Y|(k|Y| − i)
|Y|(|Y| − i1)(|Y| − k)(|Y|2 − i)

≤ (|Y| − |S|)
(|Y| − i1)(|Y| − i)(|Y|2 − i) ×

i∑
k=1

(|Xk| − rk)(k|Y| − i) (As, k ≤ i)

≤ i(|Y| − |X|)(|Y| − |S|))
(|Y| − i1)(|Y| − i)(|Y|2 − i)

(As,
i∑

k=1
k|Xk| = i,

i∑
k=1
|Xk| = |X|,

i∑
k=1

rk = i1,

i∑
k=1

krk ≥ i1 and |Y| ≥ i)

≤ i|Y|
(|Y| − i)(|Y|2 − i) (As, i1 ≤ |X|)

≤ 4i
|Y|2 (As, i ≤ |Y|/2)

Upper bound for ∆10

If (X,S, T ) ∈ (Y \X)× ((Sjj′ ×Y) \OPST ), we have∣∣Pr[(XE , SE , TE) = (X,S, T )]− Pr[(XP , SP , TP ) = (X,S, T )]
∣∣

=
∣∣ 1
|Y| − i1

× 1
|Y| ×

1
|Y| − j −

1
|Y| − i1 − j + j′

× 1
|Y|2 − i

∣∣
=
∣∣ j′|Y|2 − (i1j + i)|Y|+ i(i1 + j − j′)
|Y|(|Y| − i1)(|Y| − j)(|Y| − i1 − j + j′)(|Y|2 − i)

∣∣
≤ j′|Y|2 + (i1j + i)|Y|+ i(i1 + j − j′)
|Y|(|Y| − i1)(|Y| − j)(|Y| − i)(|Y|2 − i) (As, j′ ≤ min(i1, j) and i1 + j − j′ ≤ i).

Also,
|(Y \X)× ((Sjj′ ×Y) \OPST )| = (|Y| − |X|)|Sjj′ |(|Y| − j).

Hence,

∆10 ≤
i∑

j=1

min(i1,j)∑
j′=0

(|Y| − |X|)|Sjj′ |(j′|Y|2 + (i1j + i)|Y|+ i(i1 + j − j′))
|Y|(|Y| − i1)(|Y| − i)(|Y|2 − i)

≤
i∑

j=1

(|Y| − |X|)(j|Sj ||Y|2 + (i1j|Sj |+ i|Sj |)|Y|+ (ii1 + j)|Sj |)
|Y|(|Y| − i1)(|Y| − i)(|Y|2 − i)

(As, j′ ≤ j and
min(j,i1)∑
j′=0

|Sjj′ | = |Sj |)

≤ i|Y|2 + (i1 + |S|)i|Y|+ i(i1|S|+ 1)
|Y|(|Y| − i)(|Y|2 − i) (As,

i∑
j=1
|Sj | = |S|,

i∑
j=1

j|Sj | = i and i1 ≤ |X|)

≤ i|Y|2 + 2i2|Y|+ (i3 + i2)
|Y|(|Y| − i)(|Y|2 − i) (As, i1 ≤ i and |S| ≤ i)

≤ 4i
|Y|2 + 10i2

|Y|3 (As, i ≤ |Y|/2− 1)



Upper bound for ∆11

If (X,S, T ) ∈ ((Y \BX)× Sjj′ ×Y) \ ((OPXS ×Y) ∪ (Y×OPST )), we have∣∣Pr[(XE , SE , TE) = (X,S, T )]− Pr[(XP , SP , TP ) = (X,S, T )]
∣∣

=
∣∣ 1
|Y| − i1

× 1
|Y| − k ×

1
|Y| − j −

1
|Y| − i1 − j + j′

× 1
|Y|2 − i

∣∣
=
∣∣ (k + j′)|Y|2 − (i+ i1k + kj + i1j)|Y|+ (ii1 + ij − ij′ + i1kj)

(|Y| − i1)(|Y| − k)(|Y| − j)(|Y| − i1 − j + j′)(|Y|2 − i)
∣∣

≤ (k + j′)|Y|2 + (i+ i1k + kj + i1j)|Y|+ (ii1 + ij − ij′ + i1kj)
(|Y| − i1)(|Y| − k)(|Y| − j)(|Y| − i)(|Y|2 − i)

(As, j′ ≤ min(i1, j) and i1 + j − j′ ≤ i).

Also, note∣∣((Xk \BX)× Sjj′ ×Y) \ ((OPXS ×Y) ∪ (Y×OPST ))
∣∣ ≤ ∣∣((Xk \BX)× Sjj′ ×Y) \ (Y×OPST )

∣∣
= (|Xk| − rk)|Sjj′ |(|Y| − j).

Hence,

∆11 ≤
i∑

k=1

i∑
j=1

min(i1,j)∑
j′=0

(|Xk| − rk)|Sjj′ |(|Y| − j)

× (k + j′)|Y|2 + (i+ i1k + kj + i1j)|Y|+ (ii1 + ij − ij′ + i1kj)
(|Y| − i1)(|Y| − k)(|Y| − j)(|Y| − i)(|Y|2 − i)

≤
i∑

k=1

i∑
j=1

(|Xk| − rk)× (k|Sj |+ j|Sj |)|Y|2 + (i+ i1k + kj + i1j)|Sj ||Y|+ (ii1 + ij + i1kj)|Sj |
(|Y| − i1)(|Y| − k)(|Y| − i)(|Y|2 − i)

(As, j′ ≤ j and
min(i1,j)∑
j′=0

|Sjj′ | = |Sj |)

=
i∑

k=1
(|Xk| − rk)× (k|S|+ i)|Y|2 + (i|S|+ i1k|S|+ ki+ i1i)|Y|+ (ii1|S|+ i2 + ii1k)

(|Y| − i1)(|Y| − i)2(|Y|2 − i)

(As, k ≤ i,
i∑

j=1
|Sj | = |S| and

i∑
j=1

j|Sj | = i)

≤ i(|S|+ |X|)|Y|2 + (i|X||S|+ i2 + ii1|X|)|Y|+ ii1|S||X|+ i2|X|
(|Y| − i1)(|Y| − i)2(|Y|2 − i)

(As,
i∑

k=1
|Xk| = |X| and

i∑
k=1

k|Xk| = i)

≤ 2i2|Y|2 + (2i3 + i2)|Y|+ (i4 + i3)
(|Y| − i)3(|Y|2 − i) (As, |S| ≤ i, |X| ≤ i and i1 ≤ i)

≤ 40i2

|Y|3 + 8i3

|Y|4 (As, i ≤ |Y|/2− 1)


