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Abstract. This paper proposes anovel construction, called duplex, closely related to the sponge
construction, that accepts message blocks to be hashed and —at no extra cost— provides digests
on the input blocks received so far. It can be proven equivalent to a cascade of sponge func-
tions and hence inherits its security against single-stage generic attacks. The main application
proposed here is an authenticated encryption mode based on the duplex construction. This
mode is efficient, namely, enciphering and authenticating together require only a single call
to the underlying permutation per block, and is readily usable in, e.g., key wrapping. Further-
more, it is the first mode of this kind to be directly based on a permutation instead of a block
cipher and to natively support intermediate tags. The duplex construction can be used to effi-
ciently realize other modes, such as a reseedable pseudo-random bit sequence generators and
a sponge variant that overwrites part of the state with the input block rather than to XOR it in.
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1 Introduction

While most symmetric-key modes of operations are based on a block cipher or a stream
cipher, there exist modes using a fixed permutation as underlying primitive. Designing a
cryptographically strong permutation suitable for such purposes is similar to designing
a block cipher without a key schedule and this design approach was followed for several
recent hash functions, see, e.g., [19].

The sponge construction is an example of such a mode. With its arbitrarily long input
and output sizes, it allows building various primitives such as a stream cipher or a hash
function [/]. In the former, the input is short (typically the key and a nonce) while the
output is as long as the message to encrypt. In contrast, the latter takes a message of any
length at input and produces a digest of small length.

Some applications can take advantage of both a long input and a long output size. For
instance, authenticated encryption combines the encryption of a message and the gener-
ation of a message authentication code (MAC) on it. It could be implemented with one
sponge function call to generate a key stream (long output) for the encryption and another
call to generate the MAC (long input). However, in this case, encryption and authentica-
tion are separate processes without any synergy.

The duplex construction is a novel way to use a fixed permutation (or transformation)
to allow the alternation of input and output blocks at the same rate as the sponge con-
struction, like a full-duplex communication. In fact, the duplex construction can be seen
as a particular way to use the sponge construction, hence it inherits its security proper-
ties. By using the duplex construction, authenticated encryption requires only one call
to the underlying permutation (or transformation) per message block. In a nutshell, the
input blocks of the duplex are used to input the key and the message blocks, while the
intermediate output blocks are used as key stream and the last one as a MAC.

Authenticated encryption (AE) has been extensively studied in the last ten years. Block
cipher modes clearly are a popular way to provide simultaneously both integrity and con-
fidentiality. Many block cipher modes have been proposed and most of these come with a



security proof against generic attacks, e.g., [B,21,28,45,38,5,30,43,32,24,46,39,25,27,26,31].
Interestingly, there have also been attempts at designing dedicated hybrid primitives of-
fering efficient simultaneous stream encryption and MAC computation, e.g., Helix and
Phelix [20,48]. However, these primitives were shown to be weak [36,40,49]. Another ex-
ample of hybrid primitive is the Grain-128 stream cipher to which optional built-in au-
thentication was recently added [p0].

Our proposed mode shares with these hybrid primitives that it offers efficient simul-
taneous stream encryption and MAC computation. It shares with the block cipher modes
that it has provable security against generic attacks. However, it is the first such construc-
tion that (directly) relies on a permutation rather than a block cipher and that proves its
security based on this type of primitive. An important efficiency parameter of an AE mode
is the number of calls to the block cipher or to the permutation per block. While encryp-
tion or authentication alone requires one call per block, some AE modes only require one
call per block for both functions. The duplex construction naturally provides a good basis
for building such an efficient AE mode. Also, the AE mode we propose natively supports
intermediate tags and the authenticated encryption of a sequence of messages.

Authenticated encryption can also be used to transport secret keys in a confidential
way and to ensure their integrity. This task, called key wrapping, is very important in
key management and can be implemented with our construction if each key has a unique
identifier.

Finally, the duplex construction can be used for other modes as well, such as a reseed-
able pseudo-random bit sequence generator (PRG) or to prove the security of an “over-
write” mode where the input block overwrites part of the state instead of XORing it in.

These modes can readily be used by the concrete sponge function Keccax [I1] and the
members of a recent wave of lightweight hash functions that are in fact sponge functions:
Quark [2], Photon [23] and Spongent [14]. For these, and for the small-width instances
of Keccak, our security bound against generic attacks beyond the birthday bound pub-
lished in [I0] allows constructing solutions that are at the same time compact, efficient
and potentially secure.

The remainder of this paper is organized as follows. First, we propose a model for au-
thenticated encryption in Section P. Then in Section J, we review the sponge construction.
The core concept of this paper, namely the duplex construction, is defined in Section f.
Its use for authenticated encryption is given in Section f and for other applications in
Section . Finally, Section [] discusses the use of a flexible and compact padding.

2 Modeling authenticated encryption

We consider authenticated encryption as a process that takes as input a key K, a data
header A and a data body B and that returns a cryptogram C and a tag T. We denote this
operation by the term wrapping and the operation of taking a data header A, a cryptogram
C and a tag T and returning the data body B if the tag T is correct by the term unwrapping.

The cryptogram is the data body enciphered under the key K and the tag is a MAC
computed under the same key K over both header A and body B. So here the header A
can play the role of associated data as described in [42]. We assume the wrapping and
unwrapping operations as such to be deterministic. Hence two equal inputs (A, B) =
(A’, B) will give rise to the same output (C, T) under the same key K. If this is a problem,
it can be tackled by expanding A with a nonce.

Formally, for a given key length k and tag length ¢, we consider a pair of algorithms
W and U, with

W:Z5x (23)* - 25 x 75 : (K,A,B) — (C,T) = W(K, A, B), and
U : 75 x (z3)? x 2 — 75 U {error} : (K, A,C,T) — B or error.



The algorithms are such that if (C,T) = W(K, A, B) then U(K, A,C,T) = B. As we con-
sider only the case of non-expanding encryption, we assume from now on that |C| = |B|.

2.1 Intermediate tags and authenticated encryption of a sequence

So far, we have only considered the case of the authentication and encryption of a single
message, i.e., a header and body pair (A, B). It can also be interesting to authenticate and
encrypt a sequence of messages in such a way that the authenticity is guaranteed not only
on each (A, B) pair but also on the sequence received so far. Intermediate tags can also be
useful in practice to be able to catch fraudulent transactions early.

Let (A,B) = (AW, BMW, A, ., AW, B(M) be a sequence of header-body pairs. We
extend the function of wrapping and unwrapping as providing encryption over the last
body B(") and authentication over the whole sequence (4, B). Formally, W and U are
defined as:

W:Zkx (zZ
u:zk < (z

)2t — 25 x Zb - (K, A, B) — (€9, T(ast)y — w (K, A, B), and
>t x Zb — 75 U {error} : (K, A,C, T19) — B2 or error.

N% N*

Here, (Z})?>" means any sequence of binary strings, with an even number of such strings
and at least two. To wrap a sequence of header-body pairs, the sender calls W(K, A1), B(Y))
with the first header-body pair to get (C1), T(1)), then W (K, A1), B, A?), B?)) with the
second one to get (C @) 7@ ), and so on. To unwrap, the receiver first calls U (K, AW c), T(l))
to retrieve the first body B, then U(K, AL c) A?2) c@2) T(Z)) to retrieve the second
body, and so on. As we consider only the case of non-expanding encryption, we assume
that |C)| = |BY| for all .

2.2 Security requirements

We consider two security notions from [#5] and works cited therein, called privacy and
authenticity. Together, these notions are central to the security of authenticated encryption
[3].

Privacy is defined in Eq. ([J) below. Informally, it means that the output of the wrapping
function looks like uniformly chosen random bits to an observer who does not know the
key.

/ (1)

with R(A, B) = |RO(A, B) ]|+, where B is the last body in A, B, |x| is the bitlength

AdvP™Y (A) = (Pr[K &7k AWK, )] =1] - Pr[A[R(-, )] = 1]

of string x, | - |y indicates truncation to ¢ bits and K & 7} means that K is chosen randomly
and uniformly among the set Z’é. In this definition, we use a random oracle RO as defined
in [4], but allowing sequences of one or more binary strings as input (instead of a single
binary string). Here, a random oracle is a map from (Z3)" to Z$, chosen by selecting
each bit of RO(x) uniformly and independently, for every input. The original definition
can still be used by defining an injective mapping from (Z3)* to Z5.

For privacy, we consider only adversaries who respect the nonce requirement. For a
single header-body pair, it means that, for any two queries (A, B) and (A’, B'), we have
A = A’ = B = B'. In general, the nonce requirement specifies that for any two queries
(A, B) and (A’, B') of equal length 1, we have

pre(A, B) = pre(A’,B') = B") = B'",

with pre(A, B) = (A(l), BMW,A®@ .  B-1) A(”)) the sequence with the last body omit-
ted. As for a stream cipher, not respecting the nonce requirement means that the adversary
can learn the bitwise difference between two plaintext bodies.
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Authenticity is defined in Eq. () below. Informally, it quantifies the probability of the
adversary successfully generating a forged ciphertext-tag pair.

Advauth(A) — PI‘[K i Z’é . A[W(K, . )] outputs a forgery]. (2)

Here a forgery is a sequence (A, C, T) such that U(K, A, C, T) # error and that the adver-
sary made no query to W with input (A, B) returning (C"), T), with C(") the last cipher-
text body of A, C. Note that authenticity does not need the nonce requirement.

2.3 Anideal system

We can define an ideal system using a pair of independent random oracles (RO¢, ROr).
For a single header-body pair, encryption and tag computation are implemented as fol-
lows. The ciphertext C is produced by XORing B with a key stream. This key stream is the
output of RO¢(K, A). If (K, A) is a nonce, key streams for different data inputs are the
result of calls to RO¢ with different inputs and hence one key stream gives no informa-
tion on another. The tag T is the output of ROt (K, A, B). Tags computed over different
header-body pairs will be the result of calls to ROt with different inputs. Key stream
sequences give no information on tags and vice versa as they are obtained by calls to
different random oracles.

Let us define the ideal system in the general case, which we call ROwrar. Wrapping
is defined as W(K, A, B) = (C (n) T(n) ), if A, B contains n header-body pairs, with

cm — | ROc(K, pre(A, B))] Bn| @ B,
T = |ROt(K, A, B)|+.

The unwrapping algorithm U first checks that T(”)‘ = [RO1(K, A, B) ]+ and if so decrypts
each body B() = |ROc(K,AM,BM, A, AD)] | @ C® from the first one to the
last one and finally returns the last one B") = | RO¢(K, pre(A, B))] | D cm,

The security of ROwRrar is captured by Lemmas [l and P.

Lemma 1. Let A[ROc, RO7| be an adversary having access to ROc and ROt and respecting
the nonce requirement. Then, Advgg‘;vmp(fl) < q27% if the adversary makes no more than q

queries to RO¢ or ROT.

Proof. For any fixed last body B, the output of ROwrar is indistinguishable from that
of RO used in Eq. (), unless A makes a query to RO¢ or ROt with the correct key K as
first argument. This last event has probability 2= among g queries and the advantage
can be bounded following [34, Theorem 1]. The conclusion is still valid for a variable B,
as a different B(") implies a different pre(A, B).

Lemma 2. Let A[ROc¢, ROt| be an adversary having access to ROc and ROt. Then, ROwrap

satisfies Adv?{‘g}V‘VRA,,(A) < q27% 4 27t if the adversary makes no more than q queries to ROc or
ROT.

Proof. A similar argument as in Lemma [[| can be applied here. In addition, the adversary
can just be lucky and output the correct tag T with probability 2.

3 The sponge construction

The sponge construction [7] builds a function sponGe|[f, pad, r] with variable-length in-
put and arbitrary output length using a fixed-length permutation (or transformation) f,
a padding rule “pad” and a parameter bitrate r.
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For the padding rule we use the following notation: the padding of a message M to
a sequence of x-bit blocks is denoted by M||pad|x](|M|), where |M| is the length of M.
This notation highlights that we only consider padding rules that append a bitstring that
is fully determined by the length of M and the block length x. We may omit [x], | M| or
both if their value is clear from the context.

Definition 1. A padding rule is sponge-compliant if it never results in the empty string and if
it satisfies following criterion:

Vn > 0,YM,M € Z;: M # M = Ml|[pad[r](|M]) # M'[[pad[r](|]M'])[[0"  (3)

For the sponge construction to be secure (see Section B.7), the padding rule pad must be
sponge-compliant. As a sufficient condition, a padding rule that is reversible, non-empty
and such that the last block must be non-zero, is sponge-compliant [7].

3.1 Definition

The permutation f operates on a fixed number of bits, the width b. The sponge construction
has a state of b bits. First, all the bits of the state are initialized to zero. The input message
is padded with the function pad[r] and cut into r-bits blocks. Then it proceeds in two
phases: the absorbing phase followed by the squeezing phase:

Absorbing phase The r-bit input message blocks are XORed into the first r bits of the
state, interleaved with applications of the function f. When all message blocks are
processed, the sponge construction switches to the squeezing phase.

Squeezing phase The first r bits of the state are returned as output blocks, interleaved
with applications of the function f. The number of iterations is determined by the
requested number of bits.

Finally the output is truncated to the requested length. The sponge construction is illus-
trated in Figure [, and Algorithm [] provides a formal definition.
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Fig.1. The sponge construction

The value ¢ = b — ris called the capacity. The last c bits of the state are never directly af-
fected by the input blocks and are never output during the squeezing phase. The capacity
c actually determines the attainable security level of the construction [8,10].
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Algorithm 1 The sponge construction sPoNGE|[f, pad, 7]
Require: r < b

Interface: Z = sponge(M, ¢) with M € Zj, integer £ > 0 and Z € Z}
P = M][pad[r)(|M])
Let P = Py||Py]] ... ||Py with |P;| =7
s=0b
fori =0tow do
s =5 (B|0")
s = f(s)
end for
Z=s],
while |Z| < ¢ do
5= £(5)
z=7|llsl;
end while
return |Z],

3.2 Security

Cryptographic functions are often designed in two steps. In the first step, one chooses a
construction that uses a cryptographic primitive with fixed input and output size (e.g., a
compression function or a permutation) and builds a function that can take inputs and
or generate outputs of arbitrary size. If the security of this construction can be proven,
for instance as in this case using the indifferentiability framework, it reduces the scope
of cryptanalysis to that of the underlying primitive and guarantees the absence of single-
stage generic attacks (e.g., preimage, second preimage and collision attacks) [35]. How-
ever, generic security in the multi-stage setting using the indifferentiability framework is
currently an open problem [#1].

It is shown in [8] that the success probability of any single-stage generic attack for
differentiating the sponge construction calling a random permutation or transformation
from a random oracle is upper bounded by 2~ (“*1V)N2. Here N is the number of calls
to the underlying permutation or its inverse. This implies that any single-stage generic
attack on a sponge function has success probability of at most 2~ (¢*1) N2 plus the success
probability of this attack on a random oracle.

In [I0], we address the security of the sponge construction when the message is pre-
fixed with a key, as it will be done in the mode of Section f. In this specific case, the
security proof goes beyond the 2¢/2 complexity if the number of input or output blocks
for which the key is used (data complexity) is upper bounded by M < 2¢/271 In that
case, distinguishing the keyed sponge from a random oracle has time complexity of at
least 2°~1 /M > 2¢/2. Hence, for keyed modes, one can reduce the capacity c for the same
targeted security level.

3.3 Implementing authenticated encryption

The simplest way to build an actual system that behaves as ROwrar would be to replace
the random oracles ROc and ROt by a sponge function with domain separation. The
indifferentiability proof in [§] guarantees the result is secure if the permutation f of the
sponge function has no structural distinguishers.

However, such a solution requires two sponge function executions: one for the genera-
tion of the key stream and one for the generation of the tag, while we aim for a single-pass
solution. To achieve this, we define a variant where the key stream blocks and tag are the
responses of a sponge function to input sequences that are each other’s prefix. This intro-
duces a new construction that is closely related to the sponge construction: the duplex
construction. Subsequently, we build an authenticated encryption mode on top of that.



4 The duplex construction

Like the sponge construction, the duplex construction pupLex[f, pad, r] uses a fixed-length
transformation (or permutation) f, a padding rule “pad” and a parameter bitrate r. Unlike
a sponge function that is stateless in between calls, the duplex construction accepts calls
that take an input string and return an output string depending on all inputs received so
far. We call an instance of the duplex construction a duplex object, which we denote D in
our descriptions. We prefix the calls made to a specific duplex object D by its name D and
a dot.

o) 7y o1 Z oP) Zs
A A y
A Y Y
d d d
| e JA(HTZO) (eed) ()| | (ad) (L)
Y Y Y
r||0 > b D> >
f f f
c||0 > » > >
L —/ —/ —/
init. duplexing duplexing duplexing

Fig. 2. The duplex construction

The duplex construction works as follows. A duplex object D has a state of b bits.
Upon initialization all the bits of the state are set to zero. From then on one can send to it
D.duplexing(c, £) calls, with ¢ an input string and ¢ the requested number of bits.

Algorithm 2 The duplex construction puprLex|f, pad, 7]
Require: r < b

Require: pmax(pad,r) >0

Require: s € Zg (maintained across calls)

Interface: D.initialize()
s=0°

Interface: Z = D.duplexing(c, {) with £ <r, 0 € Uf;:é(pad’r) Z3,and Z € Zé
P = o|[pad[r](|e])

s=s@ (P||077)

s = f(s)

return [s],

The maximum number of bits £ one can request is r and the input string ¢ shall be
short enough such that after padding it results in a single r-bit block. We call the maximum
length of o the maximum duplex rate and denote it by pmax(pad, 7). Formally:

Pmax(pad, r) = min{x : x + |pad[r](x)| > r} — 1. (4)

Upon receipt of a D.duplexing(c, ¢) call, the duplex object pads the input string o and
XORs it into the first 7 bits of the state. Then it applies f to the state and returns the first
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Fig. 3. Generating the output of a duplexing call with a sponge

¢ bits of the state at the output. We call a blank call a call with ¢ the empty string, and a
mute call a call without output, £ = 0. The duplex construction is illustrated in Figure [,
and Algorithm P} provides a formal definition.

The following lemma links the security of the duplex construction purLex[f, pad, 7] to
that of the sponge construction spoNGe[f, pad, r]. Generating the output of a D.duplexing|()
call using a sponge function is illustrated in Figure J.

Lemma 3. [Duplexing-sponge lemmal If we denote the input to the i-th call to a duplex object
by (03, £;) and the corresponding output by Z; we have:

Z; = D.duplexing(c;, ¢;) = sponge(oo||pad,||c1||pad,||... |0 )
with pad; a shortcut notation for pad|[r](|o;|).

Proof. The proof is by induction on the number of input strings o;.

First consider the case i = 0. We must prove D.duplexing(cy, ¢p) = sponge(0p, {o).
The state of the duplex object before the call has value 0%, the same as the initial state of
the sponge function. Both in the case of the sponge function and the duplex object the
input string is padded with pad resulting in a single r-bit block P. Then, in both cases P is
XORed to the first r bits of the state and f is applied to the state. At this point the sponge
function and the duplex object have the same state and both return the first ¢ < r bits of
the state as output string. Since the sponge function does not do any additional iterations
of f on the state, the state of the duplex object after the call D.duplexing(cp, £o) is equal
to the state of the sponge construction after absorbing a single block op||pad,,.

Now assume that after the call D.duplexing(c;_1, ¢;_1) the duplex object has the same
state as the sponge function after absorbing oy||pad,||ci||pad,||...||ci-1||pad,_;. During
the call D.duplexing(c;, ¢;), the block o;||pad, is XORed into the first r bits of the state and
subsequently f is applied to the state. It follows that the state of the duplex object D after
the call D.duplexing(c;, ¢;) is equal to the state of the sponge function after absorbing
ool|pady||o1||pad,|| ... oi||pad;. As the output just consists of the first ¢; bits of the state,
this proves Lemma [ O

The output of a duplexing call is thus the output of a sponge function with an input
ool|pad, ||o1||pad,|| ... ||oi and from this input the exact sequence oy, 07, .. ., 0; can be re-
covered as shown in Lemma f| below. As such, the duplex construction is as secure as
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the sponge construction with the same parameters. In particular, it inherits its resistance
against (single-stage) generic attacks. The reference point in this case is a random oracle
whose input is the sequence of inputs to the duplexing calls since the initialization.

Lemma 4. Let pad and r be fixed. Then, the mapping from a sequence (09,01, .. .,0y) of binary

strings with |o;| < pmax(pad, r) Vi to the binary string s = op||pad,||o1||pad,|| ... ||pad,_;||on
is injective.

Proof. The length of 0, can be determined as |0,| = |s| mod r; this allows recovering o,
from s. Then, if n > 0, pad,_; can be removed and the process continues recursively with
' = aollpadg e Ipady -l 1. 0

In the following sections we will show that the duplex construction is a powerful tool
for building modes of use.

5 The authenticated encryption mode SPONGEWRAP

We propose an authenticated encryption mode SPoNGEWRAP that realizes the authenti-
cated encryption process defined in Section P}. Similarly to the duplex construction, we
call an instance of the authenticated encryption mode a SPoNGEWRAP object.

Upon initialization of a SPONGEWRAP object, it loads the key K. From then on one can
send requests to it for wrapping and/or unwrapping data. The key stream blocks used for
encryption and the tags depend on the key K and the data sent in all previous requests.
The authenticated encryption of a sequence of header-body pairs, as described in Sec-
tion 2.1, can be performed with a sequence of wrap or unwrap requests to a SPONGEWRAP
object.

5.1 Definition

A SpoNGEWRAP object W internally uses a duplex object D with parameters f, pad and
r. Upon initialization of a SPONGEWRAP object, it initializes D and forwards the (padded)
key blocks K to D using mute D.duplexing() calls.

When receiving a W.wrap(A, B, {) request, it forwards the blocks of the (padded)
header A and the (padded) body B to D. It generates the cryptogram C block by block
Ci = B; & Z; with Z; the response of D to the previous D.duplexing() call. The ¢-bit tag
T is the response of D to the last body block (possibly extended with the response to ad-
ditional blank D.duplexing() calls in case ¢ > p). Finally it returns the cryptogram C and
the tag T.

When receiving a W.unwrap(A, C, T) request, it forwards the blocks of the (padded)
header A to D. It decrypts the databody B block by block B; = C; @ Z; with Z; the response
of D to the previous D.duplexing() call. The response of D to the last body block (possi-
bly extended) is compared with the tag T received as input. If the tag is valid, it returns
the data body B; otherwise, it returns an error. Note that in implementations one may
impose additional constraints, such as SPoNGEWRAP objects dedicated to either wrapping
or unwrapping. Additionally, the SPONGEWRAP object should impose a minimum length
t for the tag received before unwrapping and could break the entire session as soon as an
incorrect tag is received.

Before being forwarded to D, every key, header, data or cryptogram block is extended
with a so-called frame bit. The rate p of the SPONGEWRAP mode determines the size of the
blocks and hence the maximum number of bits processed per call to f. Its upper bound
is pmax(pad, r) — 1 due to the inclusion of one frame bit per block. A formal definition of
SPONGEWRAP is given in Algorithm J.



Algorithm 3 The authenticated encryption mode SpoNngGeEWRraP[f, pad, 7, p].

Require: p < pmax(pad,7) —1
Require: D = purLex[f, pad, 7]

: Interface: W.initialize(K) with K € Z}
: Let K = Kol |Kq||...||Ky with |K;| = p fori < u, |Ky| < pand |[K,| > 0ifu >0
: D.initialize()
fori=0tou—1do
D.duplexing(K;||1,0)
end for
: D.duplexing(K,||0,0)

NS U WN R

8: Interface: (C, T) = W.wrap(A, B, £) with A,B € Z5, £ >0,C € Z and T € Z{
9: Let A = Apl||A1]]...]|Ar with |A;] = pfori < v, |Ay] < pand|Ay| >0ifv >0

10: Let B = By||By]] .. - ||Bw with |B;| = p fori < w, |By| < p and |By| > 0if w > 0

11: fori =0tov —1do

12:  D.duplexing(A4;||0,0)

13: end for
14: Z = D.duplexing(Ao||1, |Bo|)
15: C=By® Z

16: fori =0tow —1do

17:  Z = D.duplexing(B;||1, |B;+1|)
18: C=C||(Biz1®2)

19: end for

20: Z = D.duplexing(By||0, p)

21: while |Z| < ¢ do

22:  Z = Z||D.duplexing(0, p)

23: end while

24: T=|Z],

25: return (C,T)

26: Interface: B = W.unwrap(A,C,T) with A,C,T € Z3, B € ZIZC‘ U {error}

27: Let A = Ao||A1]] ... ||Av with |A;| = pfori < v, |Ay| < pand|Ay| > 0ifv >0
28: Let C = Cpl|Cy]] - .. ||Cw with |C;] = p fori < w, |Cyp| < pand |Cyp| > 0ifw >0
29: Let T = To||T1||...||Tx with |T;| = p fori < x, |Cx| < pand |[Cx| > 0ifx >0

30: fori=0tov —1do

31:  D.duplexing(A;]|0,0)

32: end for

33: Z = D.duplexing(A,||1,|Col)
34: By=Co® Z

35: fori =0tow —1do

36:  Z = D.duplexing(B;||1,|C;ii1])
37: Bi+1 = CiJrl ©Z

38: end for

39: Z = D.duplexing(By||0, p)
40: while |Z| < ¢ do

41:  Z = Z||D.duplexing(0, p)
42: end while

43: if T = |Z], then

44:  return Byl||Bi]|...Bw

45: else

46:  return Error

47: end if
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5.2 Security

In this section, we show the security of SPONGEWRAP against generic attacks. To do so,
we proceed in two steps. First, we define a variant of ROwrar for which the key stream
depends not only on A but also on previous blocks of B. Then, we quantify the increase in
the adversary advantage when trading the random oracles R O¢ and ROt with arandom
sponge function and appropriate input mappings.

For a fixed block length p, let pre;(A, B) = (AW, B, A@)  Bln=1) Aln), LB(”)jiP),
i.e., the last body B(" is truncated to its first i blocks of p bits. We define ROwrar|p] iden-
tically to ROwrap, except that in the wrapping algorithm, we have

CM =|ROc(K, pre,(A,B))] 150 @ By

|[ROc(K, pre,(A,B))] 5] @ B%n)

’ ’ LROC(K’ prew<A’ B))J |Bz(4?)| @ Bz(un)

for B = B{"|[B\"”|...||BY” with [B!| = pfori < w, |B}| < pand |BJ| > 0 if
w > 0. The unwrap algorithm U is defined accordingly.

The scheme ROwrar|p] is as secure as ROwraP, as expressed in the following two
lemmas. We omit the proofs, as they are very similar to those of Lemma [] and P.

Lemma 5. Let A[ROc, RO7| be an adversary having access to ROc and ROt and respecting
the nonce requirement. Then, Advgg‘:mp[p

queries to RO¢ or ROT.

}(./4) < g2k if the adversary makes no more than q

Lemma 6. Let A[ROc¢, RO7| be an adversary having access to ROc and ROt. Then, ROwrap

satisfies Adv%‘g}v‘vmp[ o (A) < g2~ + 27 if the adversary makes no more than q queries to RO¢
or ROT.

Clearly, ROwrar and ROwraPr[p| are equally secure if we implement RO¢ and ROt
using a single random oracle with domain separation: RO¢c(x) = RO(x||1) and ROt(x) =
RO(x||0). Notice that SPoNGEWRAP uses the same domain separation technique: the last
bit of the input of the last duplexing call is always a 1 (resp. 0) to produce key stream bits
(resp. to produce the tag). With this change, SPonGeEWrAP now works like ROwrar|[p], ex-
cept that the input is formatted differently and that a sponge function replaces RO. The
next lemma focuses on the former aspect.

Lemma 7. Let (K, A, B) be a sequence of strings composed by a key followed by header-body pairs.
Then, the mapping from (K, A, B) to the corresponding sequence of inputs (09,04, ..., 0y) to the
duplexing calls in Algorithm B is injective.

Proof. We show that from (0o, 07, . . ., 0, ) we can always recover (K, A, B). The convention
is that, when cutting input strings into blocks of p bits, there is always at least one block
(see, e.g., line P of Algorithm J). Consequently, any (possibly empty) input string causes
at least one duplexing call (e.g., see lines [, [4 and 20) or equivalently at least one element
;.

The key K can be found by looking for the first block ¢; that ends with frame bit 0;
the key K is concatenation of the blocks ¢j, j < i, with their last bit removed. Then we
look for the first block oy, i’ > i, that ends with a frame bit 1; blocks from ;1 to oy are
concatenated with their last bit removed to give the first header A(1). To find the first body
B we follow the same procedure, except that we look for the first block oy, i” > 7/, that
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ends with a bit 0. This operation is repeated to find the next header A(?) and the next body

B®?). And so on.
Note that the blocks ¢ produced by line P7 of Algorithm f do not contribute to neither a
header nor a body as they contain only one bit, which is removed in the above procedure.
O

We now have all the ingredients to prove the following theorem.

Theorem 1. The authenticated encryption mode SPONGEWRAP(f, pad, r, p] defined in Algorithm B
satisfies

N(N +1)
2c+1

N(N +1)
2c+1 4

AdvE™ (A) < g2~ +

SpoNGeWRaP(f,pad,r,p| and

h —k —_
AdVE;IZ)NGEWRAP[f,pad,I’,p] ('A) < qz +2 ! +

against any single adversary A if K & Z%, tags of ¢ > t bits are used, f is a randomly chosen
permutation, q is the number of queries and N is the number of times f is called.

Proof. The scheme SpoNGeWRaP[f, pad,r,p] uses a pupLex[f, pad, ] object. Combining
Lemmas B, @l and [], we see that SPoNGEWRaP([f, pad, 7, p| works like ROwrar|p] with a
random oracle replaced by the sponge function spoNGe[f, pad, 7] and an injective input
function from (Z3)* to Z;. Compared to the expressions in Lemmas f and f, the extra
term in the advantages above accounts for the adversary being able to differentiate a ran-
dom sponge from a random oracle. This follows from [35], formalized in [[I, Theorem 2],
and from the value of the RO-differentiating advantage of a random sponge [8]. O

Note that all the outputs of SPONGEWRAP are equivalent to calls to a sponge func-
tion with the secret key blocks as a prefix. So the results of [10] can also be applied to
SPoNGEWRAP as explained in Section B.2.

5.3 Advantages and limitations

The authenticated encryption mode SPoNGEWRAP has the following unique combination
of advantages:

While most other authenticated encryption modes are described in terms of a block
cipher, SPONGEWRAP only requires on a fixed-length permutation.

It supports the alternation of strings that require authenticated encryption and strings
that only require authentication.

It can provide intermediate tags after each W.wrap(A, B, {) request.

It has a strong security bound against generic attacks with a very simple proof.

It is single-pass and requires only a single call to the permutation f per p-bit block.

It is flexible as the bitrate can be freely chosen as long as the capacity is larger than
some lower bound.

The encryption is not expanding.

As compared to some block cipher based authenticated encryption modes, it has some
limitations. First, the mode as such is serial and cannot be parallelized at algorithmic level.
Some block cipher based modes do actually allow parallelization, for instance, the offset
codebook (OCB) mode [#4]. Yet, SPoNGEWRAP variants could be defined to support par-
allel streams in a fashion similar to tree hashing, but with some overhead.

Second, if a system does not impose the nonce requirement on A, an attacker may
send two requests (A, B) and (A, B') with B # B’. In this case, the first differing blocks
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of B and B/, say B; and BZ’-, will be enciphered with the same key stream, making their
bitwise XOR available to the attacker. Some block cipher based modes are misuse resistant,
i.e., they are designed in such a way that in case the nonce requirement is not fulfilled, the
only information an attacker can find out is whether B and B’ are equal or not [46]. Yet,
many applications already provide a nonce, such as a packet number or a key ID, and can
putitin A.

5.4 An application: key wrapping

Key wrapping is the process of ensuring the secrecy and integrity of cryptographic keys
in transport or storage, e.g., [B7,18]. A payload key is wrapped with a key-encrypting key
(KEK). We can use the SponGEWRAP mode with K equal to the KEK and let the data body
be the payload key value. In a sound key management system every key has a unique
identifier. It is sufficient to include the identifier of the payload key in the header A and
two different payload keys will never be enciphered with the same key stream. When
wrapping a private key, the corresponding public key or a digest computed from it can
serve as identifier.

6 Other applications of the duplex construction

Authenticated encryption is just one application of the duplex construction. In this section
we illustrate it by providing two more examples: a pseudo-random bit sequence generator
and a sponge-like construction that overwrites part of the state with the input block rather
than to XOR it in.

6.1 A reseedable pseudo-random bit sequence generator

In various cryptographic applications and protocols, random bits are used to generate
keys or unpredictable challenges. While randomness can be extracted from a physical
source, it is often necessary to provide many more bits than the entropy of the physical
source. A pseudo-random bit sequence generator (PRG) is initialized with a seed, gener-
ated in a secret or truly random way, and it then expands the seed into a sequence of bits.
For cryptographic purposes, it is required that the generated bits cannot be predicted,
even if subsets of the sequence are revealed. In this context, a PRG is similar to a stream
cipher. A PRG is also similar to a cryptographic hash function when gathering entropy
coming from different sources. Finally, some applications require a pseudo-random bit
sequence generator to support forward security: The compromise of the current state does
not enable the attacker to determine the previously generated pseudo-random bits [,17].

Conveniently, a pseudo-random bit sequence generator can be reseedable, i.e., one
can bring an additional source of entropy after pseudo-random bits have been generated.
Instead of throwing away the current state of the PRG, reseeding combines the current
state of the generator with the new seed material. In [J] a reseedable PRG was defined
based on the sponge construction that implements the required functionality. The ideas
behind that PRG are very similar to the duplex construction. We however show that such
a PRG can be defined on top of the duplex construction.

A duplex object can readily be used as a reseedable PRG. Seed material can be fed via
the ¢ inputs in D.duplexing() call and the responses can be used as pseudo-random bits.
If pseudo-random bits are required and there is no seed available, one can simply send
blank D.duplexing() calls. The only limitation of this is that the user must split his seed
material in strings of at most pmax bits and that at most r bits can be requested in a single
call.
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As a next step, we propose a reseedable pseudo-random bit sequence generator mode
called SPoNGEPRG. This mode is similar to the one proposed in [J] in that it minimizes the
number of calls to f, although explicitly based on the duplex construction. Internally it
makes use of a duplex object D and it has two buffers: an input buffer B;, and an output
buffer B,y:. During feed requests it accumulates seed material in Bj, and, if it has received
at least p bits, it forwards them to D in a D.duplexing() call. Any surplus seed string is
kept in the input buffer. Upon a fetch request, if the input buffer is not empty, it emp-
ties it by forwarding any remaining seed to D and returns the requested number of bits,
performing more duplexing calls if necessary, each requesting p bits. The surplus of pro-
duced bits are kept in By, which will be returned first upon the next fetch request. Note
that at any moment, one of B, and B,y is empty.

As such, the operation of a SPONGEPRG object is based on a permutation and revealing
the state allows the attacker to backtrack the generation back to the most recent unknown
seed fed into it. Nevertheless, reseeding regularly with sufficient entropy already pre-
vents the attacker from going backwards. Also, an embedded security device such as a
smartcard in which such a PRG would be used is designed to protect the secrecy of keys
and therefore reading out the state is expected to be difficult.

Still, forward security can be explicitly enforced by means of a P.forget() request. The
effect of this request is the resetting to zero of the first p bits of the state, an application of
the padding and a subsequent application of f. Under the condition that p > ¢, guessing
the state before this operation given the state afterwards requires guessing at least c bits
and hence is infeasible for reasonable values of c. On a PC, which might be more vulner-
able to a memory recovery attack, this condition that p > ¢ can easily be satisfied by a
suitable sponge function; e.g., this is the case for Keccak|[] with its default parameters.

The SPoNGePRG mode is defined in Algorithm f. Note that the buffers do not require
separate storage but can be implemented merely as pointers to the state: The input buffer
requires a pointer to the state indicating from where on new bits must be XORed into the
state, while the output buffer pointer points in the state where the next output bit must
be taken. The storage is thus limited to the b-bit state and two integers.

It is clear that every bit returned by P.fetch() is part of the output of the sponge pre-
sented with a string that contains all seed material presented so far. The SPonGePRG mode
does not allow reconstructing the individual blocks ¢; but does allow reconstructing their
concatenation.

6.2 The mode OVERWRITE

In [22] sponge-like constructions were proposed and cryptanalyzed. In some of these con-
structions, absorbing is done by overwriting part of the state by the message block rather
than XORing it in, e.g., as in the hash function Grindahl [29]. These overwrite functions
have the advantage over sponge functions that between calls to f, only c bits must be
kept instead of b. This may not be useful when hashing in a continuous fashion, as b bits
must be processed by f anyway. However, when hashing a partial message, then putting
it aside to continue later on, storing only c¢ bits may be useful on some platforms.

The mode OverwritE differs from the sponge construction in that it overwrites part
of the state with an input block instead of XORing it in. Such a mode can be analyzed
by building it on top of the duplex construction. If the first p bits of the state are known
to be Z, overwriting them with a message block P; is equivalent to XORing in Z @ P;.
Note that this idea is also used in the forget call of the SPONGEPRG mode and is formally
implemented in Algorithm . In practice, of course, the implementation can just overwrite
the first p bits of the state by a message block. As a matter of fact, Algorithm f can be
rewritten to call f directly, similar to the sponge construction. We leave this as an exercise
for the reader.
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Algorithm 4 Pseudo-random bit sequence generator mode SpoNnGePRG|f, pad, , p]

Require: p < pmax(pad,r)
Require: D = purLex|[f, pad, 7]

Interface: P.initialize()
D.initialize()

Bin = empty string
Bout = empty string

Interface: P.feed (o) with o € Z3
M= Bin‘ “7
Let M = My||M1]||...||My with |M;| = pfori <wand 0 < |[My| <p
fori=0tow —1do
D.duplexing(M;, 0)
end for
Bin = My
Bout = empty string

Interface: Z = P.fetch(¢) with integer ¢ > 0 and Z € Zé
while |Boyt| < ¢ do
Bout = Bout||D.duplexing(Bin, o)
B;, = empty string
end while
zZ= \_BoutJé
Bout = last (|B0ut| - Z) bits of Bout
return Z

Interface: Z = P.forget() requiring p > ¢
Z = D.duplexing(Bin, p)

Bin = empty string

D.duplexing(Z, p)

Bout = empty string

We define the mode OvERwRITE on top of the duplex construction. An OVERWRITE func-
tion internally uses a duplex object D. It pads the message M and splits it in p-bit blocks.
Then it makes a sequence of D.duplexing() calls, each time with a message block XORed
with the response of the previous D.duplexing() call and with a frame bit appended to
it. This frame bit is equal to 1 for the last block and 0 for all other blocks. If the requested
number of output bits ¢ is larger than p, additional D.duplexing() calls are done where
each time the response of the previous D.duplexing() call is fed back to D.

Theorem 2. The construction OVERWRITE[f, pad, 1, p| is as secure as sPoNGE[f, pad, r].

Proof. The construction OVErRwRITE([f, pad, 7, p] is defined in terms of calls to pupLex|f, pad, 7].
From the sponge-duplexing lemma, the output of such a call is the output to sPoNGE|[f, pad, 7]
for a specific input. Hence, the theorem comes down to showing that the input M to
OVERWRITE can be recovered from the inputs to the duplexing calls.

The coding using the frame bits in Algorithm [ allows, for any input sequence of D,
finding the last block (P, @ Z) and the length of the original input M. To recover the
message M from the input sequence, one can start with the first block. Since Z = 0° in
the first block, the first block in the D.duplexing() call allows recovering the first block of
M. Then, this block allows determining the output Z that was XORed into the next block,
and so on. O

We have thus proven that the security of OVERWRITE is equivalent to that of the sponge
construction with the same parameter, but at a cost of 2 bits of bitrate (or equivalently, of
capacity): one for the padding rule (assuming pad10* is used) and one for the frame bit.
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Algorithm 5 The construction OverwrITE[f, pad, 1, o]

Require: p < pmax(pad,7) —1
Require: D = purLex|[f, pad, 7]

Interface: Z = OverwriTE(M, £) with M € Z, integer £/ > 0 and Z € Zé
P = Milpad(p](|M])
Let P = Py||Py]] ... || Pw with |P;| = p fori < w
D.initialize()
Z=0°
fori=0tow—1do
Z = D.duplexing((P; ® Z)||0, p)
end for
Z = D.duplexing((P, ® Z)||1,p)
Bout =272
while |Bout| < ¢ do
Z = D.duplexing(Z||1, p)
Bout = Bout| |Z
end while
return |Bout |y

7 A flexible and compact padding rule

Sponge functions and duplex objects feature the nice property of allowing a range of
security-performance trade-offs, via capacity-rate pairs, using the same fixed permuta-
tion f. To be able to fully exploit this property in the scope of the duplex construction,
and for performance reasons, the padding rule should be compact and should be suit-
able for a family of sponge functions with different rates. In this section, we introduce the
multi-rate padding and prove that it is suitable for such a family.

For a given capacity and width, the padding reduces the maximum bitrate of the du-
plex construction, as in Eq. (). To minimize this effect, especially when the width of the
permutation is relatively small, one should look for the most compact padding rule. The
sponge-compliant padding scheme (see Section J) with the smallest overhead is the well-
known simple reversible padding, which appends a single 1 and the smallest number of
zeroes such that the length of the result is a multiple of the required block length. We
denote it by pad10*[r](M). It satisfies pmax(pad10*,7) = r — 1 and hence has only one bit
of overhead.

When considering the security of a set of sponge functions that make use of the same
permutation f but with different bitrates, simple reversible padding is not sufficient.
The indifferentiability proof of [8] actually only covers the indifferentiability of a sin-
gle sponge function instance from a random oracle. As a solution, we propose the multi-
rate padding, denoted pad10*1[r|(|M|), which returns a bitstring 1071 with g = (—|M| —
2) mod r. This padding is sponge-compliant and has pmax (pad10*1,7) = r — 2. Hence, this
padding scheme is compact as the duplex-level maximum rate differs from the sponge-
level rate by only two bits. Furthermore, in Theorem J we will show it is sufficient for the
indifferentiability of a set of sponge functions. The intuitive idea behind this is that, with
the pad10*1 padding scheme, the last block absorbed has a bit with value 1 at position
r — 1, while any other function of the family with ' < r this bit has value 0.

Besides having a compact padding rule, it is also useful to allow the sponge function to
have specific bitrate values. In many applications one prefers to have block lengths that are
a multiple of 8 or even higher powers of two to avoid bit shifting or misalignment issues.
With modes using the duplex construction, one has to distinguish between the mode-
level block size and the bitrate of the underlying sponge function. For instance in the
authenticated encryption mode SPoNGEWRAP, the block size is at most pmax(pad, r) — 1.
To have a block size with the desired value, it suffices to take a slightly higher value as
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bitrate r; hence, the sponge-level bitrate may no longer be a multiple of 8 or of a higher
power of two. Therefore it is meaningful to consider the security of a set of sponge func-
tions with common f and different bitrates, including bitrates that are not multiples of
8 or of a higher power of two. For instance, the mode SpoNGEWRAP could be based on
Keccaxk[r = 1027, ¢ = 573] so as to process application-level blocks of pmax (pad10*1, 1027) —
1 = 1024 bits [TT].

Regarding the indifferentiability of a set of sponge functions, it is clear that the best
one can achieve is bounded by the strength of the sponge construction with the lowest
capacity (or, equivalently, the highest bitrate), as an adversary can always just try to dif-
ferentiate the weakest construction from a random oracle. The next theorem states that
we achieve this bound by using the multi-rate padding.

Theorem 3. Given a random permutation (or transformation) f, differentiating the array of sponge
functions spoONGE[f, pad10*1, r| with 0 < r < rmax from an array of independent random oracles
(RO;) has the same advantage as differentiating sPoNGE[f, pad10*, rmax| from a random oracle.

Proof. We can implement the array of sponge functions sponNGe[f, pad10*1, r] using a sin-
gle sponge function sponge,... = sPONGE[f, pad10*, rmax, a bitrate-dependent input pre-
processing function I[r, rmax| and a bitrate-dependent output post-processing function
O[7, "max]- So we have:

sPONGE[f, pad10*1, r] = O[r, ¥max) © SPONGE|[f, pad10", rmax] © I[*, "max]- (5)

The input pre-processing function M’ = I[r, max| (M) consists of the following steps:

1. Construct Q by padding M with multi-rate padding: Q = M||pad10*1[r|(|M]).

2. Construct Q' by splitting Q in r-bit blocks, extending each block with 0"mx~" and con-
catenating the blocks again.

3. Construct M’ by unpadding Q' according to the padding rule pad10*.

Note that the third step removes the trailing rmax — r bits with value 0 and the bit with
value 1 just before that. It follows that the length of M’ modulo rmax is ¥ — 1, hence this
pre-processing implements domain separation between the different r values for a given
value of rmax. Moreover, it is straightforward to extract M from I[r, rmax|(M) and hence
the pre-processing function is injective:

V(Ml,rl) 7§ (Mz,?’z) = I[rl,rmax](Ml) 7é I[I’z,?’max](MQ).

The output post-processing function Z = O[r, rmax] (Z’) consists of splitting Z’ in rmax-
bit blocks Z/, truncating each block to its first r bits Z; = |Z/], and concatenating the
blocks again: Z = Zy||Z4]] ...

It is easy to verify that with these pre- and post-processing functions Eq. (§) holds.

Any attack that can differentiate the set of sponge functions sponGe|f, pad10*1, 7] from
a set of random oracles with an advantage € can be converted into an attack on sponge,
with the same advantage. Namely, the response Z() to a query M) to sponGk([f, pad,, 7]
can be obtained from sponge,__ by querying it with I[r, rmax] (M) and applying O[r, 7max]
to its response Z (1),

Hence, differentiating the array sponGe[f, pad10*1,r] from the array (RO,) comes
down to differentiating sponge_ . from RO, where sponge, . has capacity cpmin = b —
Fmax- a

max
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8 Duplexing iterated functions in general

The duplex construction can be seen as a way to use a sponge function in a cascaded way.
The central idea is that a duplex object keeps a state equal to that of a sponge function that
has absorbed the combination of all inputs to the duplex object so far. Clearly, the same
principle can be applied to most other sequential hash function constructions that consist
of the iterated application of a compression function or permutation f.

In general, a duplex-like object corresponding to such a hash function would work
as follows. Its state is the chaining value resulting from hashing all previous inputs and
possibly a counter (e.g., if the hash function requires the message length for the padding
or as input in the compression function). Upon presentation of an input o, it performs two
tasks. First, it generates an output: It pads ¢ with the padding rule of the hash function,
applies the final compression function f or an output transformation g, and returns the
result. Second, it updates its state by padding o with reversible padding, applying f and
updating the counter.

The disadvantage of this method is that, in general, a single duplexing call to the object
requires two calls to f, or in case of an output transformation g, one call to f and one to
g. In contrast, for a sponge function, the generation of the output and the update of the
state can be done in a single call to f.

Three main obstacles may hinder the efficiency of duplexing.

— First, as already mentioned, the special processing done after the last block prevents
to update the state and produce output at the same time. For instance, some construc-
tions have an output transformation, which must be applied before producing output,
while the main compression function is applied to update the state. The same prob-
lem occurs in the HAIFA framework [12], which enforces domain separation between
the final call to f and the previous ones. In some constructions, blank iterations are
applied at the end, which must be performed every time output is requested.

— Second, the overhead due to the padding reduces the number of bits that can be input
in a duplexing call. If the input block size is fixed to a power of two (or a small mul-
tiple of it), the place taken by the padding can break the alignment of input blocks.
Flexibility on the input block size is thus an advantage in this respect, as it can restore
their alignment.

— Third, the output length of the hash function may be smaller than the input block size.
This can be another slowdown factor, as in the case of the SpoNGEWRrRAP mode, since
as many output bits are needed as input bits. The last compression function, output
transformation or blank iterations have then to be performed several times to produce
output bits like in a mask generating function. Another possible solution is just to use
shorter input blocks.

The chop-MD construction [[I6,15] is a good candidate for duplexing. Producing out-
put and updating the state can be made in the same operation. However, for the duplexing
to be as fast as hashing, the output length should be as large as the message block and the
padding should be as compact as possible.

9 Conclusions

We have defined a new construction, namely the duplex construction, and showed that
its security is equivalent to that of a sponge function with the same parameters. This con-
struction was then used to give an efficient (single-pass) authenticated encryption mode.
We proposed a reseedable pseudo-random bit sequence generator as another application
of the duplex construction and to use it to prove the security of a mode overwriting input
blocks instead of XORing them in. We have showed that the duplex construction inherits
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the flexibility of the sponge construction in terms of security-speed trade-offs. Finally, we
have argued that duplexing with other hash function constructions is in most cases not
as efficient as with the sponge construction.
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