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Abstract. SQUARE, an 8-round substitution-permutation block cipher, is considered as the pre-
decessor of the AES. In this paper, inspired from the recent biclique attack on the AES [5], we
present the first single-key attack on full SQUARE. First, we introduce a biclique for 3 rounds of
SQUARE using the independent related-key differentials. Then, we present an attack on the full
round of this cipher with a data complexity of about 248 chosen plaintexts and a time complexity
of about 2126 encryptions.
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1 Introduction

The structure and mathematical backgrounds used in the design of the SQUARE [6] poses this
block cipher as the predecessor of the Advanced Encryption Standard (AES) [7]. This 128-bit
block cipher has an 8-round SPN structure and supports the key length of 128 bits. Designed
based on the Wide Trail Strategy, SQUARE is secure against differential [1] and linear [11]
cryptanalysis. The first cryptanalysis result on this block cipher is a square attack introduced
by the designers [6]. This attack can break 6 rounds of the cipher with data, time and memory
complexities of 232 chosen plaintexts, 272 encryptions and 272 blocks of memory, respectively.
Recently, a related-key boomerang attack on full rounds of this cipher has been introduced in
[10] which recovers 16 subkey bits with 236 encryptions and 2123 adaptively chosen plaintexts
and ciphertexts.

Block cipher cryptanalysis and hash function cryptanalysis share several techniques. Differ-
ential Cryptanalysis, a technique originally invented for analysis of block ciphers, now is widely
applicable to hash functions [8, 12, 13]. Inversely, two new techniques have been carried over from
hash analysis to block cipher analysis. First, local collisions were used in related-key boomerang
attacks on AES-192 and AES-256 [2–4], and recently, biclique cryptanalysis which was first intro-
duced for analysis of the hash functions Skein-512 and the SHA-2 family [9], has been exploited
to attack the full version of the 3 variants of the AES [5].

In this paper, inspired from the biclique cryptanalysis of the AES [5], we present an attack
on SQUARE block cipher. To the best of our knowledge this is the first attack on the full
round of this cipher in the single-key scenario. We find a 3-round biclique for the 3 initial
rounds of SQUARE using independent related-key differentials. Then we use precomputation
and recomputation techniques to recover the whole key. This is considered the second application
of biclique attack on a block cipher. Table 1 summarizes our results along with previously known
results on SQUARE.

The rest of this paper is organized as follows. Section 2 provides a brief description of the
block cipher SQUARE. The concept of biclique attack is reviewed in Section 3. Our proposed
biclique attack on SQUARE is presented, and its complexity is evaluated in Section 4. Finally,
the paper is concluded in Section 5.

2 A Brief Description of SQUARE

The 128-bit block cipher SQUARE [6] has an 8-round SPN structure that supports 128-bit keys.
Let us represent a 128-bit data or key by a 4×4 matrixA = a0a1a2a3|a4a5a6a7|a8a9a10a11|a12a13a14a15)



Table 1. Summary of previous attacks and our new attack on SQUARE

Rounds Data Time Memory Attack Source
(CP) (Encryptions) (Blocks) type

5 211 240 small Square [6]
5 232 240 232 Square [6]
6 232 272 232 Square [6]
8 2123 236 ? RK Boomerang [10]
8 248 2126 216 Biclique This work

of bytes, where the byte located in row i ∈ {0, 1, 2, 3} and column j ∈ {0, 1, 2, 3} of A is denoted
by a4i+j . Each round of SQUARE applies the following 4 transformations to the state matrix.

• θ is a linear row-wise permutation with differential branch number 5. The state matrix is
multiplied to a 4× 4 MDS matrix M in GF (28), where

M =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

.

• γ is a nonlinear substitution layer including 16 invertible 8-bit S-boxes. In our attack, the
exact values of the S-box table is not required, so we only consider its invertibility.
• π is a linear transformation transposing the state matrix.
• σ is a bitwise key XOR with the 128-bit round key.

To spot the transformation θ, γ, π and σ in round i, we use the notation θi, γi, πi and σi.
The round transformation of SQUARE ρr(A) = σ ◦ π ◦ γ ◦ θ(A) is illustrated in Figure 1. The
encryption consists of an initial application of the transformation θ−1, then whitening with the
128-bit subkey rk0, and finally 8 consecutive round functions.
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Fig. 1. Round transformation of the block cipher SQUARE

The key schedule of SQUARE generates 9 128-bit round keys rk0, rk1, ..., rk8 given the
master key K. Let each round key rki be regarded as a 4× 4 array and rkirow(j) be its jth row.
To generate these round keys, rk0 is initiated with K, and rki+1, i = 0, 1, ..., 7 is generated based
on the following rule.

rki+1
row(0) = rkirow(0) ⊕ rotl(rk

i
row(3))⊕ C

i,
for j=1, 2, 3: rki+1

row(j) = rkirow(j) ⊕ rk
i+1
row(j−1),

where Ci is a constant and the function rotl rotates its four-byte argument by one byte to the
left. Note that the key schedule lacks any diffusion and nonlinear part.



3 Biclique Cryptanalysis of Block Ciphers

Biclique cryptanalysis of block ciphers was originally introduced in [5] to cryptanalyze the 3
variants of the AES. In this section, we customize the concept introduced in [5] for the case
where the biclique is constructed in the plaintext side.

Consider the block cipher E as a composition of 3 subciphers: E = f ◦ g ◦ h, where f is
located in the plaintext side, g follows f , and h is located in the ciphertext side. Let S be the
intermediate state obtained from the application of f on a plaintext P , i.e. fK(P ) = S. Suppose
f connects 2d plaintexts {Pi} to 2d intermediate states {Sj} with 22d keys {K[i, j]}, where

{K[i, j]} =

 K[0, 0] ... K[0, 2d − 1]
...

...
...

K[2d − 1, 0] ... K[2d − 1, 2d − 1]


The 3-tuple [{Pi}, {Sj}, {K[i, j]} is called a biclique of dimension d if

Sj = fK[i,j](Pi), ∀i, j ∈ {0, 1, ..., 2d − 1}

In other words, as illustrated in Figure 2, a biclique is a bipartite graph with {Pi} and {Sj} as
the two parts of vertexes connected via 22d edges fK[i,j], where each edge has degree 2d.

0P 1P −2 1dP

0S 1S −2 1dS

[0,0]Kf − −[2 1,2 1]d dKf

 

Fig. 2. d-dimensional biclique in the plaintext side

The biclique attack for a block cipher with key length of k bits is performed based on the
following four steps.
Key Partitioning. The key space is partitioned into 2k−2d groups of 22d keys each. A group is
considered as a 2d × 2d elements K[i, j]. For each group of keys:
Biclique Construction. Build a structure of 2d plaintexts Pi and 2d intermediate states Sj
such that for all i, j ∈ {0, 1, ..., 2d − 1} the relation Sj = fK[i,j](Pi) is satisfied. To reduce the
data complexity, some plaintexts are reused in different bicliques.
Data Collection. Ask for the encryption of plaintexts Pi to obtain the corresponding cipher-
texts Ci.
Matching check. Check if there exist i and j values such that g ◦ hK[i,j](Sj) = Ci. This step
can be performed by a precomputation-recomputation strategy to reduce the time complexity.

4 Biclique Cryptanalysis of SQUARE

In this section we present a biclique attack on full rounds of SQUARE. [5] introduces two methods
to construct a biclique: using independent related-key differentials and using interleaving related
key differential trails. Here, we follow the first approach to construct a biclique for the first three
rounds of SQUARE. Moreover, we use precomputation and recomputation in the final step of
the above attack procedure to reduce the time complexity.



4.1 Constructing a 3-Round Biclique of Dimension 8

In this section, we construct a 3-round biclique for the initial three rounds of SQUARE using
two independent related-key differentials. We remind that although related-key differentials are
used to construct the biclique, the attack is substantially performed in the single-key scenario.

As shown in Figure 3, left, let the key K[0, 0] map plaintext P0 = 0 to intermediate state
S0 = fK[0,0](P0). Moreover, consider two sets of 2d related-key differentials with respect to the

base computation P0
K[0,0]−−−−→ S0.

1. ∆i-differentials. Each related-key differential in the first set maps input difference ∆S = 0
to an output difference ∆i = ∆P = P0 ⊕ Pi under the key difference ∆K

i .

0
∆K

i−−→
f−1

∆i

According to Figere 3, middle, Pi is of the following form

Pi = P0 ⊕ (000 ∗ |000 ∗ |000 ∗ |00 ∗ ∗)⊕ θ(00i0|0000|000i|000i),

where ’*’ denotes any byte difference.
2. ∇j-differentials. Each related-key differential in the second set maps input difference ∆S =
∇j to output difference ∆P = 0 under the key difference ∇Kj .

∇j
∇K

j−−→
f−1

0

In fact, given ∆P = 0 and ∆rk2 = (jj00|jj00|jj00|jj00), the attacker computes Sj , j =
0, ..., 2d − 1.

∆i-differentials and ∇j-differentials are illustrated in truncated form in Figure 3. Since these
two sets of differentials do not share any active S-box, we have

∇j
∆K

i ⊕∇K
j−−−−−−→

f−1
∆i, ∀i, j ∈ {0, 1, ..., 2d − 1}.

Note that all differentials are with respect to the (P0, S0,K[0, 0]), so one can easily deduce

S0 ⊕∇j
K[0,0]⊕∆K

i ⊕∇K
j−−−−−−−−−−→

f−1
P0 ⊕∆i, ∀i, j ∈ {0, 1, ..., 2d − 1}.

Hence, the triple{Pi, Sj ,K[0, 0]} with the definition

Pi = P0 ⊕∆i,
Sj = S0 ⊕∇j ,
K[i, j] = K[0, 0]⊕∆K

i ⊕∇Kj
exactly conforms the definition of a biclique of dimension 8.

4.2 Key Partitioning

The 2128 possible values in the key space are partitioned into 2112 groups of 22d = 216 keys
each with respect to the subkey rk2. The groups are enumerated by 2112 base keys of the form
K[0, 0] = (0 ∗ 0 ∗ | ∗ ∗ ∗ ∗| ∗ ∗ ∗ ∗| ∗ ∗ ∗ ∗), where two bytes are fixed to zero and the remaining
14 bytes take all possible values. Note that the key schedule of SQUARE given each value of
rk2 uniquely determines one value for the master key, so this partitioning is equivalent to a
partitioning of the master key space. Let rk2[0, 0] be the subkey of round 2 generated based
on the key schedule from the base master key K[0, 0]. The 216 keys {K[i, j]} in a group with a
K[0, 0] as the base key are constructed from rk2[i, j], where
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Fig. 3. 3-round biclique of SQUARE from combined independent differentials



rk2[i, j] = rk2[0, 0]⊕∆rk2 = rk2[0, 0]⊕ (jj00|jj00|jj0i|jj0i), i, j ∈ {0, 1, ..., 28 − 1}.

Following this method, the adversary partitions the rk2 subkey space, and hence the master key
space into 2112 groups of 216 keys each.

4.3 The Attack Procedure

The attack mainly follows the 4-step procedure mentioned in Section 3. Biclique construction
and key partitioning steps were described in Subsections 4.1 and 4.2, respectively. Data collection
step is performed based on the chosen plaintext scenario. So, we here elaborate only the matching
check stage.

Recall that for each biclique 28 plaintexts Pi and 28 intermediate states Sj are available, and
there is a unique path from each Pi to each Sj through the key K[i, j]. Knowing this relation,
for i = 0, 1, ..., 2d− 1 the adversary obtains Ci in the chosen plaintext scenario. Then she has to
check if there is some j such that

Ci
K[i,j]−−−−−→

h−1◦g−1
Sj (1).

The complexity of this stage is 22d for each of the 2k−2d bicliques. So the overall time complexity
will be near exhaustive search, but we can reduce this complexity with precomputation and
meet-in-the-middle technique. To do this, first, we perform and store 2d partial encryptions and
2d partial decryptions.

for j = 0, ..., 2d − 1 : Sj
K[0,j]−−−−→
g

−→v and for i = 0, ..., 2d − 1 : ←−v K[i,0]←−−−
h−1

Ci

up to some matching variable v, which here is a byte of the intermediate state in the junction of
g and h subciphers. Thus, to check equation (1) for a particular i, j, we need to recompute only
parts of the cipher that differ from the stored values. This approach provides computational
advantage of about several bits.

We choose the subcipher g from the σ3 through π6 transformation, and h subcipher from the
output of g through σ8. The byte with index zero in the output of π6 is taken as the matching

variable v. Now let us see how the precomputations reduce the computations Sj
K[i,j]−−−→
g

−→v and

←−v K[i,0]←−−−
h−1

Ci.

Encryption direction. The difference between computation Sj
K[i,j]−−−→
g

−→v and the precomputa-

tion Sj
K[0,j]−−−−→
g

−→v is influenced by the difference between keys K[i, j] and K[0, j]. The differ-

ence between different round keys is uniquely determined by the key schedule from ∆rk2 =
(0000|0000|000i|000i). Hence, as illustrated in Figure 4, to recompute the new value of v we
have to recompute 15 S-boxes in round 3, 1

4θ and 4 S-boxes in round 4, 1
16θ and one S-box in

round 5.
Decryption direction. The difference between computation ←−v K[i,j]←−−−

h−1
Ci and the precomputa-

tion ←−v K[i,0]←−−−
h−1

Ci is influenced by the difference between keys K[i, j] and K[i, 0]. The differ-

ence between different round keys is uniquely determined by the key schedule from ∆rk2 =
(jj00|jj00|jj00|jj00). Hence, as illustrated in Figure 5, to recompute the new value of v we
have to recompute 6 S-boxes and 1

4θ in round 8, and 4 S-boxes and 1
16θ in round 6.
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Fig. 4. Recomputation through g subcipher
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Fig. 5. Recomputation through h−1 subcipher

4.4 The Attack Complexity

As discussed in Section 4.1, all the palintext in a biclique are of the form Pi = P0 ⊕∆i. Recall
that, as shown in Figure 3, ∆i = (000 ∗ |000 ∗ |000 ∗ |00 ∗ ∗)⊕ θ(00i0|0000|000i|000i), where each
byte spotted by ’*’ can take all possible values, and variable i changes from 0 to 255. So, if all
the bicliques share P0 = 0 as the base plaintext, then at most 248 different plaitexts Pi will be
used in the attack.

The computational complexity of the attack is composed of several parts. In the biclique
construction step, for each of the 2k−2d = 2112 bicliques we perform 2d = 28 3-round encryptions
to compute 2d intermediate states Sj . Since the data complexity is 248, the time complexity of
the data collection step is also 248 encryptions. Matching check has a precomputation and a
recomputation stages. The precomputation is about 2d 5-round encryptions. The recomputation
complexity for each biclique is about 2d × 30 S-box evaluation plus 2d × 10

16θ evaluation. Since
the S-box evaluation is the dominant part, and the full round encryption has 8 × 16 = 128 S-
boxes, 22d× 30

128 = 22d−2.1 encryptions seems to be a close approximation for the recomputation
complexity. Thus the overall time complexity is

TC = 2k−d × 3
8 + 248 + 2k−d × 5

8 + 2n−2.1 ≈ 2125.9.

The memory complexity is composed of two parts. The memory used to store one biclique is
equal to 2d+1 = 29 blocks for plaintexts and intermediate states, and 22d = 216 blocks for the
corresponding group of keys. The memory for the precomputation of the matching check step is
equal to the memory for storing 2d+1 = 29 full computation of g and h−1.



5 Conclusion

In this paper, we proposed the first single-key attack on full SQUARE. The attack uses the
recently introduced concept of biclique cryptanalysis, which is a technique carried over to the
block cipher cryptanalysis from hash function analysis. We introduced a biclique for the 3 initial
rounds of SQUARE to present an attack on the full round of this cipher with a data complexity
of less than 248 chosen plaintexts and a time complexity of about 2126 encryptions. Our attack
is the second application of biclique attack to a block cipher.
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