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Abstract

We give new methods for generating and using “strong trapdoors” in cryptographic lattices, which
are simultaneously simple, efficient, easy to implement (even in parallel), and asymptotically optimal
with very small hidden constants. Our methods involve a new kind of trapdoor, and include specialized
algorithms for inverting LWE, randomly sampling SIS preimages, and securely delegating trapdoors.
These tasks were previously the main bottleneck for a wide range of cryptographic schemes, and our
techniques substantially improve upon the prior ones, both in terms of practical performance and quality
of the produced outputs. Moreover, the simple structure of the new trapdoor and associated algorithms can
be exposed in applications, leading to further simplifications and efficiency improvements. We exemplify
the applicability of our methods with new digital signature schemes and CCA-secure encryption schemes,
which have better efficiency and security than the previously known lattice-based constructions.

1 Introduction

Cryptography based on lattices has several attractive and distinguishing features:

• On the security front, the best attacks on the underlying problems require exponential 2Ω(n) time in
the main security parameter n, even for quantum adversaries. By constrast, for example, mainstream
factoring-based cryptography can be broken in subexponential 2Õ(n1/3) time classically, and even in
polynomial nO(1) time using quantum algorithms. Moreover, lattice cryptography is supported by
strong worst-case/average-case security reductions, which provide solid theoretical evidence that the
random instances used in cryptography are indeed asymptotically hard, and do not suffer from any
unforeseen “structural” weaknesses.
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• On the efficiency and implementation fronts, lattice cryptography operations can be extremely simple,
fast and parallelizable. Typical operations are the selection of uniformly random integer matrices A
modulo some small q = poly(n), and the evaluation of simple linear functions like

fA(x) := Ax mod q and gA(s, e) := stA + et mod q

on short integer vectors x, e.1 (For commonly used parameters, fA is surjective while gA is injective.)
Often, the modulus q is small enough that all the basic operations can be directly implemented using
machine-level arithmetic. By contrast, the analogous operations in number-theoretic cryptography (e.g.,
generating huge random primes, and exponentiating modulo such primes) are much more complex,
admit only limited parallelism in practice, and require the use of “big number” arithmetic libraries.

In recent years lattice-based cryptography has also been shown to be extremely versatile, leading to a large
number of theoretical applications ranging from (hierarchical) identity-based encryption [GPV08, CHKP10,
ABB10a, ABB10b], to fully homomorphic encryption schemes [Gen09b, Gen09a, vGHV10, BV11b, BV11a,
GH11, BGV11], and much more (e.g., [LM08, PW08, Lyu08, PV08, PVW08, Pei09b, ACPS09, Rüc10,
Boy10, GHV10, GKV10]).

Not all lattice cryptography is as simple as selecting random matrices A and evaluating linear functions
like fA(x) = Ax mod q, however. In fact, such operations yield only collision-resistant hash functions,
public-key encryption schemes that are secure under passive attacks, and little else. Richer and more advanced
lattice-based cryptographic schemes, including chosen ciphertext-secure encryption, “hash-and-sign” digital
signatures, and identity-based encryption also require generating a matrix A together with some “strong”
trapdoor, typically in the form of a nonsingular square matrix (a basis) S of short integer vectors such that
AS = 0 mod q. (The matrix S is usually interpreted as a basis of a lattice defined by using A as a “parity
check” matrix.) Applications of such strong trapdoors also require certain efficient inversion algorithms for the
functions fA and gA, using S. Appropriately inverting fA can be particularly complex, as it typically requires
sampling random preimages of fA(x) according to a Gaussian-like probability distribution (see [GPV08]).

Theoretical solutions for all the above tasks (generating A with strong trapdoor S [Ajt99, AP09], trapdoor
inversion of gA and preimage sampling for fA [GPV08]) are known, but they are rather complex and not very
suitable for practice, in either runtime or the “quality” of their outputs. (The quality of a trapdoor S roughly
corresponds to the Euclidean lengths of its vectors — shorter is better.) The current best method for trapdoor
generation [AP09] is conceptually and algorithmically complex, and involves costly computations of Hermite
normal forms and matrix inverses. And while the dimensions and quality of its output are asymptotically
optimal (or nearly so, depending on the precise notion of quality), the hidden constant factors are rather large.
Similarly, the standard methods for inverting gA and sampling preimages of fA [Bab85, Kle00, GPV08]
are inherently sequential and time-consuming, as they are based on an orthogonalization process that uses
high-precision real numbers. A more efficient and parallelizable method for preimage sampling (which
uses only small-integer arithmetic) has recently been discovered [Pei10], but it is still more complex than is
desirable for practice, and the quality of its output can be slightly worse than that of the sequential algorithm
when using the same trapdoor S.

More compact and efficient trapdoors appear necessary for bringing advanced lattice-based schemes
to practice, not only because of the current unsatisfactory runtimes, but also because the concrete security
of lattice cryptography can be quite sensitive to even small changes in the main parameters. As already

1 Inverting these functions corresponds to solving the “short integer solution” (SIS) problem [Ajt96] for fA, and the “learning
with errors” (LWE) problem [Reg05] for gA, both of which are widely used in lattice cryptography and enjoy provable worst-case
hardness.
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mentioned, two central objects are a uniformly random matrix A ∈ Zn×mq that serves as a public key, and an
associated secret matrix S ∈ Zm×m consisting of short integer vectors having “quality” s, where smaller
is better. Here n is the main security parameter governing the hardness of breaking the functions, and m is
the dimension of a lattice associated with A, which is generated by the vectors in S. Note that the security
parameter n and lattice dimension m need not be the same; indeed, typically we have m = Θ(n lg q), which
for many applications is optimal up to constant factors. (For simplicity, throughout this introduction we
use the base-2 logarithm; other choices are possible and yield tradeoffs among the parameters.) For the
trapdoor quality, achieving s = O(

√
m) is asymptotically optimal, and random preimages of fA generated

using S have Euclidean length β ≈ s
√
m. For security, it must be hard (without knowing the trapdoor) to find

any preimage having length bounded by β. Interestingly, the computational resources needed to do so can
increase dramatically with only a moderate decrease in the bound β (see, e.g., [GN08, MR09]). Therefore,
improving the parameters m and s by even small constant factors can have a significant impact on concrete
security. Moreover, this can lead to a “virtuous cycle” in which the increased security allows for the use
of a smaller security parameter n, which leads to even smaller values of m, s, and β, etc. Note also that
the schemes’ key sizes and concrete runtimes are reduced as well, so improving the parameters yields a
“win-win-win” scenario of simultaneously smaller keys, increased concrete security, and faster operations.
(This phenomenon is borne out concretely; see Figure 2.)

1.1 Contributions

The first main contribution of this paper is a new method of trapdoor generation for cryptographic lattices,
which is simultaneously simple, efficient, easy to implement (even in parallel), and asymptotically optimal
with small hidden constants. The new trapdoor generator strictly subsumes the prior ones of [Ajt99, AP09],
in that it proves the main theorems from those works, but with improved concrete bounds for all the
relevant quantities (simultaneously), and via a conceptually simpler and more efficient algorithm. To
accompany our trapdoor generator, we also give specialized algorithms for trapdoor inversion (for gA) and
preimage sampling (for fA), which are simpler and more efficient in our setting than the prior general
solutions [Bab85, Kle00, GPV08, Pei10].

Our methods yield large constant-factor improvements, and in some cases even small asymptotic im-
provements, in the lattice dimension m, trapdoor quality s, and storage size of the trapdoor. Because trapdoor
generation and inversion algorithms are the main operations in many lattice cryptography schemes, our
algorithms can be plugged in as ‘black boxes’ to deliver significant concrete improvements in all such applica-
tions. Moreover, it is often possible to expose the special (and very simple) structure of our trapdoor directly
in cryptographic schemes, yielding additional improvements and potentially new applications. (Below we
summarize a few improvements to existing applications, with full details in Section 6.)

We now give a detailed comparison of our results with the most relevant prior works [Ajt99, AP09,
GPV08, Pei10]. The quantitative improvements are summarized in Figure 1.

Simpler, faster trapdoor generation and inversion algorithms. Our trapdoor generator is exceedingly
simple, especially as compared with the prior constructions [Ajt99, AP09]. It essentially amounts to just one
multiplication of two random matrices, whose entries are chosen independently from appropriate probability
distributions. Surprisingly, this method is nearly identical to Ajtai’s original method [Ajt96] of generating a
random lattice together with a “weak” trapdoor of one or more short vectors (but not a full basis), with one
added twist. And while there are no detailed runtime analyses or public implementations of [Ajt99, AP09],
it is clear from inspection that our new method is significantly more efficient, since it does not involve any
expensive Hermite normal form or matrix inversion computations.
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Our specialized, parallel inversion algorithms for fA and gA are also simpler and more practically
efficient than the general solutions of [Bab85, Kle00, GPV08, Pei10] (though we note that our trapdoor
generator is entirely compatible with those general algorithms as well). In particular, we give the first parallel
algorithm for inverting gA under asymptotically optimal error rates (previously, handling such large errors
required the sequential “nearest-plane” algorithm of [Bab85]), and our preimage sampling algorithm for fA
works with smaller integers and requires much less offline storage than the one from [Pei10].

Tighter parameters. To generate a matrix A ∈ Zn×mq that is within negligible statistical distance of
uniform, our new trapdoor construction improves the lattice dimension from m > 5n lg q [AP09] down to
m ≈ 2n lg q. (In both cases, the base of the logarithm is a tunable parameter that appears as a multiplicative
factor in the quality of the trapdoor; here we fix upon base 2 for concreteness.) In addition, we give the first
known computationally pseudorandom construction (under the LWE assumption), where the dimension can
be as small as m = n(1 + lg q), although at the cost of an Ω(

√
n) factor worse quality s.

Our construction also greatly improves the quality s of the trapdoor. The best prior construction [AP09]
produces a basis whose Gram-Schmidt quality (i.e., the maximum length of its Gram-Schmidt orthogonalized
vectors) was loosely bounded by 20

√
n lg q. However, the Gram-Schmidt notion of quality is useful only

for less efficient, sequential inversion algorithms [Bab85, GPV08] that use high-precision real arithmetic.
For the more efficient, parallel preimage sampling algorithm of [Pei10] that uses small-integer arithmetic,
the parameters guaranteed by [AP09] are asymptotically worse, at m > n lg2 q and s ≥ 16

√
n lg2 q. By

contrast, our (statistically secure) trapdoor construction achieves the “best of both worlds:” asymptotically
optimal dimension m ≈ 2n lg q and quality s ≈ 1.6

√
n lg q or better, with a parallel preimage sampling

algorithm that is slightly more efficient than the one of [Pei10].
Altogether, for any n and typical values of q ≥ 216, we conservatively estimate that the new trapdoor

generator and inversion algorithms collectively provide at least a 7 lg q ≥ 112-fold improvement in the
length bound β ≈ s

√
m for fA preimages (generated using an efficient algorithm). We also obtain similar

improvements in the size of the error terms that can be handled when efficiently inverting gA.

New, smaller trapdoors. As an additional benefit, our construction actually produces a new kind of
trapdoor — not a basis — that is at least 4 times smaller in storage than a basis of corresponding quality,
and is at least as powerful, i.e., a good basis can be efficiently derived from the new trapdoor. We stress that
our specialized inversion algorithms using the new trapdoor provide almost exactly the same quality as the
inefficient, sequential algorithms using a derived basis, so there is no trade-off between efficiency and quality.
(This is in contrast with [Pei10] when using a basis generated according to [AP09].) Moreover, the storage
size of the new trapdoor grows only linearly in the lattice dimension m, rather than quadratically as a basis
does. This is most significant for applications like hierarchical ID-based encryption [CHKP10, ABB10a]
that delegate trapdoors for increasing values of m. The new trapdoor also admits a very simple and efficient
delegation mechanism, which unlike the prior method [CHKP10] does not require any costly operations like
linear independence tests, or conversions from a full-rank set of lattice vectors into a basis. In summary,
the new type of trapdoor and its associated algorithms are strictly preferable to a short basis in terms of
algorithmic efficiency, output quality, and storage size (simultaneously).

Ring-based constructions. Finally, and most importantly for practice, all of the above-described construc-
tions and algorithms extend immediately to the ring setting, where functions analogous to fA and gA require
only quasi-linear Õ(n) space and time to specify and evaluate (respectively), which is a factor of Ω̃(n)
improvement over the matrix-based functions defined above. See the representative works [Mic02, PR06,
LM06, LMPR08, LPR10] for more details on these functions and their security foundations.
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[Ajt99, AP09] constructions This work (fast f−1
A ) Factor Improvement

Dimension m
slow f−1

A [Kle00, GPV08]: > 5n lg q 2n lg q (
s
≈)

2.5 – lg q
fast f−1

A [Pei10]: > n lg2 q n(1 + lg q) (
c
≈)

Quality s
slow f−1

A : ≈ 20
√
n lg q

≈ 1.6
√
n lg q (

s
≈) 12.5 – 10

√
lg q

fast f−1
A : ≈ 16

√
n lg2 q

Length β ≈ s
√
m

slow f−1
A : > 45n lg q

≈ 2.3n lg q (
s
≈) 19 – 7 lg q

fast f−1
A : > 16n lg2 q

Figure 1: Summary of parameters for our constructions and algorithms versus prior ones. In the column
labelled “this work,”

s
≈ and

c
≈ denote constructions producing public keys A that are statistically close to

uniform, and computationally pseudorandom, respectively. (All quality terms s and length bounds β omit the
same statistical “smoothing” factor for Z, which is about 4–5 in practice.)

To illustrate the kinds of concrete improvements that our methods provide, in Figure 2 we give rep-
resentative parameters for the canonical application of GPV sigantures [GPV08], comparing the old and
new trapdoor constructions for nearly equal levels of concrete security. We stress that these parameters are
not highly optimized, and making adjustments to some of the tunable parameters in our constructions may
provide better combinations of efficiency and concrete security. We leave this effort for future work.

1.2 Techniques

The main idea behind our new method of trapdoor generation is as follows. Instead of building a random
matrix A through some specialized and complex process, we start from a carefully crafted public matrix G
(and its associated lattice), for which the associated functions fG and gG admit very efficient (in both
sequential and parallel complexity) and high-quality inversion algorithms. In particular, preimage sampling
for fG and inversion for gG can be performed in essentially O(n log n) sequential time, and can even be
performed by n parallel O(log n)-time operations or table lookups. (This should be compared with the
general algorithms for these tasks, which require at least quadratic Ω(n2 log2 n) time, and are not always
parallelizable for optimal noise parameters.) We emphasize that G is not a cryptographic key, but rather a
fixed and public matrix that may be used by all parties, so the implementation of all its associated operations
can be highly optimized, in both software and hardware. We also mention that the simplest and most
practically efficient choices of G work for a modulus q that is a power of a small prime, such as q = 2k, but a
crucial search/decision reduction for LWE was not previously known for such q, despite its obvious practical
utility. In Section 3 we provide a very general reduction that covers this case and others, and subsumes all of
the known (and incomparable) search/decision reductions for LWE [BFKL93, Reg05, Pei09b, ACPS09].

To generate a random matrix A with a trapdoor, we take two additional steps: first, we extend G
into a semi-random matrix A′ = [Ā | G], for uniform Ā ∈ Zn×m̄q and sufficiently large m̄. (As shown
in [CHKP10], inversion of gA′ and preimage sampling for fA′ reduce very efficiently to the corresponding
tasks for gG and fG.) Finally, we simply apply to A′ a certain random unimodular transformation defined by
the matrix T =

[
I −R
0 I

]
, for a random “short” secret matrix R that will serve as the trapdoor, to obtain

A = A′ ·T = [Ā | G− ĀR].
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[AP09] with fast f−1
A This work Factor Improvement

Sec param n 436 284 1.5

Modulus q 232 224 256

Dimension m 446,644 13,812 32.3

Quality s 10.7× 103 418 25.6

Length β 12.9× 106 91.6× 103 141

Key size (bits) 6.22× 109 92.2× 106 67.5

Key size (ring-based) ≈ 16× 106 ≈ 361× 103 ≈ 44.3

Figure 2: Representative parameters for GPV signatures (using fast inversion algorithms) for the old and new
trapdoor generation methods. Using the methodology from [MR09], both sets of parameters have security
level corresponding to a parameter δ of at most 1.007, which is estimated to require about 246 core-years
on a 64-bit 1.86GHz Xeon using the state-of-the-art in lattice basis reduction [GN08, CN11]. We use a
smoothing parameter of r = 4.5 for Z, which corresponds to statistical error of less than 2−90 for each
randomized-rounding operation during signing. Key sizes are calculated using the Hermite normal form
optimization. Key sizes for ring-based GPV signatures are approximated to be smaller by a factor of about
0.9n.

The transformation given by T has the following properties:

• It is very easy to compute and invert, requiring essentially just one multiplication by R in both cases.
(Note that T−1 =

[
I R
0 I

]
.)

• It results in a matrix A that is distributed essentially uniformly at random, as required by the security
reductions (and worst-case hardness proofs) for lattice-based cryptographic schemes.

• For the resulting functions fA and gA, preimage sampling and inversion very simply and efficiently
reduce to the corresponding tasks for fG, gG. The overhead of the reduction is essentially just a single
matrix-vector product with the secret matrix R (which, when inverting fA, can largely be precomputed
even before the target value is known).

As a result, the cost of the inversion operations ends up being very close to that of computing fA and gA in the
forward direction. Moreover, the fact that the running time is dominated by matrix-vector multiplications with
the fixed trapdoor matrix R yields theoretical (but asymptotically significant) improvements in the context
of batch execution of several operations relative to the same secret key R: instead of evaluating several
products Rz1,Rz2, . . . ,Rzn individually at a total cost of Ω(n3), one can employ fast matrix multiplication
techniques to evaluate R[z1, . . . , zn] as a whole is subcubic time. Batch operations can be exploited in
applications like the multi-bit IBE of [GPV08] and its extensions to HIBE [CHKP10, ABB10a, ABB10b].

Related techniques. At the surface, our trapdoor generator appears similar to the original “GGH” approach
of [GGH97] for generating a lattice together with a short basis. That technique works by choosing some
random short vectors as the secret “good basis” of a lattice, and then transforms them into a public “bad basis”
for the same lattice, via a unimodular matrix having large entries. (Note, though, that this does not produce
a lattice from Ajtai’s worst-case-hard family.) A closer look reveals, however, that (worst-case hardness
aside) our method is actually not an instance of the GGH paradigm: here the initial short basis of the lattice
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defined by G (or the semi-random matrix [Ā|G]) is fixed and public, while the random unimodular matrix
T =

[
I −R
0 I

]
actually produces a new lattice by applying a (reversible) linear transformation to the original

lattice. In other words, in contrast with GGH we multiply a (short) unimodular matrix on the “other side” of
the original short basis, thus changing the lattice it generates.

A more appropriate comparison is to Ajtai’s original method [Ajt96] for generating a random A together
with a “weak” trapdoor of one or more short lattice vectors (but not a full basis). There, one simply chooses a
semi-random matrix A′ = [Ā | 0] and outputs A = A′ ·T = [Ā | −ĀR], with short vectors

[
R
I

]
. Perhaps

surprisingly, our strong trapdoor generator is just a simple twist on Ajtai’s original weak generator, replacing
0 with the gadget G.

Our constructions and inversion algorithms also draw upon several other techniques from throughout the
literature. The trapdoor basis generator of [AP09] and the LWE-based “lossy” injective trapdoor function
of [PW08] both use a fixed “gadget” matrix analogous to G, whose entries grow geometrically in a structured
way. In both cases, the gadget is concealed (either statistically or computationally) in the public key by
a small combination of uniformly random vectors. Our method for adding tags to the trapdoor is very
similar to a technique for doing the same with the lossy TDF of [PW08], and is identical to the method used
in [ABB10a] for constructing compact (H)IBE. Finally, in our preimage sampling algorithm for fA, we use
the “convolution” technique from [Pei10] to correct for some statistical skew that arises when converting
preimages for fG to preimages for fA, which would otherwise leak information about the trapdoor R.

1.3 Applications

Our improved trapdoor generator and inversion algorithms can be plugged into any scheme that uses such tools
as a “black box,” and the resulting scheme will inherit all the efficiency improvements. (Every application
we know of admits such a black-box replacement.) Moreover, the special properties of our methods allow
for further improvements to the design, efficiency, and security reductions of existing schemes. Here we
summarize some representative improvements that are possible to obtain; see Section 6 for complete details.

Hash-and-sign digital signatures. Our construction and supporting algorithms plug directly into the “full
domain hash” signature scheme of [GPV08], which is strongly unforgeable in the random oracle model, with
a tight security reduction. One can even use our computationally secure trapdoor generator to obtain a smaller
public verification key, though at the cost of a hardness-of-LWE assumption, and a somewhat stronger SIS
assumption (which affects concrete security). Determining the right balance between key size and security is
left for later work.

In the standard model, there are two closely related types of hash-and-sign signature schemes:

• The one of [CHKP10], which has signatures of bit length Õ(n2), and is existentially unforgeable (later
improved to be strongly unforgeable [Rüc10]) assuming the hardness of inverting fA with solution
length bounded by β = Õ(n1.5).2

• The scheme of [Boy10], a lattice analogue of the pairing-based signature of [Wat05], which has
signatures of bit length Õ(n) and is existentially unforgeable assuming the hardness of inverting fA
with solution length bounded by β = Õ(n3.5).

We improve the latter scheme in several ways, by: (i) improving the length bound to β = Õ(n2.5); (ii) reducing
the online runtime of the signing algorithm from Õ(n3) to Õ(n2) via chameleon hashing [KR00]; (iii) making
the scheme strongly unforgeable a la [GPV08, Rüc10]; (iv) giving a tighter and simpler security reduction

2All parameters in this discussion assume a message length of Θ̃(n) bits.

7



(using a variant of the “prefix technique” [HW09] as in [CHKP10]), where the reduction’s advantage degrades
only linearly in the number of signature queries; and (v) removing all additional constraints on the parameters
n and q (aside from those needed to ensure hardness of the SIS problem). We stress that the scheme itself
is essentially the same (up to the improved and generalized parameters, and chameleon hashing) as that
of [Boy10]; only the security proof and underlying assumption are improved. Note that in comparison
with [CHKP10], there is still a trade-off between the bit length of the signatures and the bound β in the
underlying SIS assumption; this appears to be inherent to the style of the security reduction. Note also that the
public keys in all of these schemes are still rather large at Õ(n3) bits (or Õ(n2) bits using the ring analogue
of SIS), so they are still mainly of theoretical interest. Improving the key sizes of standard-model signatures
is an important open problem.

Chosen ciphertext-secure encryption. We give a new construction of CCA-secure public-key encryption (in the
standard model) from the learning with errors (LWE) problem with error rate α = 1/poly(n), where larger α
corresponds to a harder concrete problem. Existing schemes exhibit various incomparable tradeoffs between
key size and error rate. The first such scheme is due to [PW08]: it has public keys of size Õ(n2) bits (with
somewhat large hidden factors) and relies on a quite small LWE error rate of α = Õ(1/n4). The next scheme,
from [Pei09b], has larger public keys of Õ(n3) bits, but uses a better error rate of α = Õ(1/n). Finally, using
the generic conversion from selectively secure ID-based encryption to CCA-secure encryption [BCHK07],
one can obtain from [ABB10a] a scheme having key size Õ(n2) bits and using error rate α = Õ(1/n2).
(Here decryption is randomized, since the IBE key-derivation algorithm is.) In particular, the public key of
the scheme from [ABB10b] consists of 3 matrices in Zn×mq where m is large enough to embed a (strong)
trapdoor, plus essentially one vector in Znq per message bit.

We give a CCA-secure system that enjoys the best of all prior constructions, which has Õ(n2)-bit public
keys, uses error rate α = Õ(1/n) (both with small hidden factors), and has deterministic decryption. To
achieve this, we need to go beyond just plugging our improved trapdoor generator as a black box into prior
constructions. Our scheme relies on the particular structure of the trapdoor instances; in effect, we directly
construct a “tag-based adaptive trapdoor function” [KMO10]. The public key consists of only 1 matrix with
an embedded (strong) trapdoor, rather than 3 as in the most compact scheme to date [ABB10a]; moreover,
we can encrypt up to n log q message bits per ciphertext without needing any additional public key material.
Combining these design changes with the improved dimension of our trapdoor generator, we obtain more than
a 7.5-fold improvement in the public key size as compared with [ABB10a]. (This figure does not account for
removing the extra public key material for the message bits, nor the other parameter improvements implied
by our weaker concrete LWE assumption, which would shrink the keys even further.)

(Hierarchical) identity-based encryption. Just as with signatures, our constructions plug directly into the
random-oracle IBE of [GPV08]. In the standard-model depth-d hierarchical IBEs of [CHKP10, ABB10a],
our techniques can shrink the public parameters by an additional factor of about 2+4d

1+d ∈ [3, 4], relative to
just plugging our improved trapdoor generator as a “black box” into the schemes. This is because for each
level of the hierarchy, the public parameters only need to contain one matrix of the same dimension as G
(i.e., about n lg q), rather than two full trapdoor matrices (of dimension about 2n lg q each).3 Because the
adaptation is straightforward given the tools developed in this work, we omit the details.

3We note that in [Pei09a] (an earlier version of [CHKP10]) the schemes are defined in a similar way using lower-dimensional
extensions, rather than full trapdoor matrices at each level.
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1.4 Other Related Work

Concrete parameter settings for a variety “strong” trapdoor applications are given in [RS10]. Those parameters
are derived using the previous suboptimal generator of [AP09], and using the methods from this work would
yield substantial improvements. The recent work of [LP11] also gives improved key sizes and concrete
security for LWE-based cryptosystems; however, that work deals only with IND-CPA-secure encryption,
and not at all with strong trapdoors or the further applications they enable (CCA security, digital signatures,
(H)IBE, etc.).

2 Preliminaries

We denote the real numbers by R and the integers by Z. For a nonnegative integer k, we let [k] = {1, . . . , k}.
Vectors are denoted by lower-case bold letters (e.g., x) and are always in column form (xt is a row vector).
We denote matrices by upper-case bold letters, and treat a matrix X interchangeably with its ordered set
{x1,x2, . . .} of column vectors. For convenience, we sometimes use a scalar s to refer to the scaled identity
matrix sI, where the dimension will be clear from context.

The statistical distance between two distributionsX , Y over a finite or countable domainD is ∆(X,Y ) =
1
2

∑
w∈D|X(w)− Y (w)|. Statistical distance is a metric, and in particular obeys the triangle inequality. We

say that a distribution over D is ε-uniform if its statistical distance from the uniform distribution is at most ε.
Throughout the paper, we use a “randomized-rounding parameter” r that we let be a fixed function

r(n) = ω(
√

log n) growing asymptotically faster than
√

log n. By “fixed function” we mean that r =
ω(
√

log n) always refers to the very same function, and no other factors will be absorbed into the ω(·)
notation. This allows us to keep track of the precise multiplicative constants introduced by our constructions.
Concretely, we take r ≈

√
ln(2/ε)/π where ε is a desired bound on the statistical error introduced by

each randomized-rounding operation for Z, because the error is bounded by ≈ 2 exp(−πr2) according to
Lemma 2.3 below. For example, for ε = 2−54 we have r ≤ 3.5, and for ε = 2−71 we have r ≤ 4.

2.1 Linear Algebra

A unimodular matrix U ∈ Zm×m is one for which |det(U)| = 1; in particular, U−1 ∈ Zm×m as well. The
Gram-Schmidt orthogonalization of an ordered set of vectors V = {v1, . . . ,vk} ∈ Rn, is Ṽ = {ṽ1, . . . , ṽk}
where ṽi is the component of vi orthogonal to span(v1, . . . ,vi−1) for all i = 1, . . . , k. (In some cases we
orthogonalize the vectors in a different order.) In matrix form, V = QDU for some orthogonal Q ∈ Rn×k,
diagonal D ∈ Rk×k with nonnegative entries, and upper unitriangular U ∈ Rk×k (i.e., U is upper triangular
with 1s on the diagonal). The decomposition is unique when the vi are linearly independent, and we always
have ‖ṽi‖ = di,i, the ith diagonal entry of D.

For any basis V = {v1, . . . ,vn} of Rn, its origin-centered parallelepiped is defined as P1/2(V) =

V · [−1
2 ,

1
2)n. Its dual basis is defined as V∗ = V−t = (V−1)t. If we orthogonalize V and V∗ in forward

and reverse order, respectively, then we have ṽ∗i = ṽi/‖ṽi‖2 for all i. In particular, ‖ṽ∗i ‖ = 1/‖ṽi‖.
For any square real matrix X, the (Moore-Penrose) pseudoinverse, denoted X+, is the unique matrix

satisfying (XX+)X = X, X+(XX+) = X+, and such that both XX+ and X+X are symmetric. We
always have span(X) = span(X+), and when X is invertible, we have X+ = X−1.

A symmetric matrix Σ ∈ Rn×n is positive definite (respectively, positive semidefinite), written Σ > 0
(resp., Σ ≥ 0), if xtΣx > 0 (resp., xtΣx ≥ 0) for all nonzero x ∈ Rn. We have Σ > 0 if and only if Σ
is invertible and Σ−1 > 0, and Σ ≥ 0 if and only if Σ+ ≥ 0. Positive (semi)definiteness defines a partial
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ordering on symmetric matrices: we say that Σ1 > Σ2 if (Σ1 − Σ2) > 0, and similarly for Σ1 ≥ Σ2. We
have Σ1 ≥ Σ2 ≥ 0 if and only if Σ+

2 ≥ Σ+
1 ≥ 0, and likewise for the analogous strict inequalities.

For any matrix B, the symmetric matrix Σ = BBt is positive semidefinite, because

xtΣx = 〈Btx,Btx〉 = ‖Btx‖2 ≥ 0

for any nonzero x ∈ Rn, where the inequality is always strict if and only if B is nonsingular. We say that
B is a square root of Σ > 0, written B =

√
Σ, if BBt = Σ. Every Σ ≥ 0 has a square root, which can be

computed efficiently, e.g., via the Cholesky decomposition.
For any matrix B ∈ Rn×k, there exists a singular value decomposition B = QDPt, where Q ∈ Rn×n,

P ∈ Rk×k are orthogonal matrices, and D ∈ Rn×k is a diagonal matrix with nonnegative entries si ≥ 0 on
the diagonal, in non-increasing order. The si are called the singular values of B. Under this convention, D is
uniquely determined (though Q,P may not be), and s1(B) = maxu‖Bu‖ = maxu‖Btu‖ ≥ ‖B‖, ‖Bt‖,
where the maxima are taken over all unit vectors u ∈ Rk.

2.2 Lattices and Hard Problems

Generally defined, anm-dimensional lattice Λ is a discrete additive subgroup of Rm. For some k ≤ m, called
the rank of the lattice, Λ is generated as the set of all Z-linear combinations of some k linearly independent
basis vectors B = {b1, . . . ,bk}, i.e., Λ = {Bz : z ∈ Zk}. In this work, we are mostly concerned with
full-rank integer lattices, i.e., Λ ⊆ Zm with k = m. (We work with non-full-rank lattices only in the analysis
of our Gaussian sampling algorithm in Section 5.4.) The dual lattice Λ∗ is the set of all v ∈ span(Λ) such
that 〈v,x〉 ∈ Z for every x ∈ Λ. If B is a basis of Λ, then B∗ = B(BtB)−1 is a basis of Λ∗. Note that when
Λ is full-rank, B is invertible and hence B∗ = B−t.

Many cryptographic applications use a particular family of so-called q-ary integer lattices, which contain
qZm as a sublattice for some (typically small) integer q. For positive integers n and q, let A ∈ Zn×mq be
arbitrary and define the following full-rank m-dimensional q-ary lattices:

Λ⊥(A) = {z ∈ Zm : Az = 0 mod q}
Λ(At) = {z ∈ Zm : ∃ s ∈ Znq s.t. z = Ats mod q}.

It is easy to check that Λ⊥(A) and Λ(At) are dual lattices, up to a q scaling factor: q · Λ⊥(A)∗ = Λ(At),
and vice-versa. For this reason, it is sometimes more natural to consider the non-integral, “1-ary” lattice
1
qΛ(At) = Λ⊥(A)∗ ⊇ Zm. For any u ∈ Znq admitting an integral solution to Ax = u mod q, define the
coset (or “shifted” lattice)

Λ⊥u (A) = {z ∈ Zm : Az = u mod q} = Λ⊥(A) + x.

Here we recall some basic facts about these q-ary lattices.

Lemma 2.1. Let A ∈ Zn×mq be arbitrary and let S ∈ Zm×m be any basis of Λ⊥(A).

1. For any unimodular T ∈ Zm×m, we have T · Λ⊥(A) = Λ⊥(A ·T−1), with T · S as a basis.

2. [ABB10a, implicit] For any invertible H ∈ Zn×nq , we have Λ⊥(H ·A) = Λ⊥(A).

3. [CHKP10, Lemma 3.2] Suppose that the columns of A generate all of Znq , let A′ ∈ Zn×m′q be arbitrary,
and let W ∈ Zm×m′ be an arbitrary solution to AW = −A′ mod q. Then S′ =

[
I 0
W S

]
is a basis of

Λ⊥([A′ | A]), and when orthogonalized in appropriate order, S̃′ =
[
I 0
0 S̃

]
. In particular, ‖S̃′‖ = ‖S̃‖.
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Cryptographic problems. For β > 0, the short integer solution problem SISq,β is an average-case version
of the approximate shortest vector problem on Λ⊥(A). The problem is: given uniformly random A ∈ Zn×mq

for any desired m = poly(n), find a relatively short nonzero z ∈ Λ⊥(A), i.e., output a nonzero z ∈ Zm such
that Az = 0 mod q and ‖z‖ ≤ β. When q ≥ β

√
n·ω(
√

log n), solving this problem (with any non-negligible
probability over the random choice of A) is at least as hard as (probabilistically) approximating the Shortest
Independent Vectors Problem (SIVP, a classic problem in the computational study of point lattices [MG02])
on n-dimensional lattices to within Õ(β

√
n) factors in the worst case [Ajt96, MR04, GPV08].

For α > 0, the learning with errors problem LWEq,α may be seen an average-case version of the
bounded-distance decoding problem on the dual lattice 1

qΛ(At). Let T = R/Z, the additive group of
reals modulo 1, and let Dα denote the Gaussian probability distribution over R with parameter α (see
Section 2.3 below). For any fixed s ∈ Znq , define As,α to be the distribution over Znq × T obtained by
choosing a ← Znq uniformly at random, choosing e ← Dα, and outputting (a, b = 〈a, s〉/q + e mod 1).
The search-LWEq,α problem is: given any desired number m = poly(n) of independent samples from As,α

for some arbitrary s, find s. The decision-LWEq,α problem is to distinguish, with non-negligible advantage,
between samples from As,α for uniformly random s ∈ Znq , and uniformly random samples from Znq × T.
There are a variety of (incomparable) search/decision reductions for LWE under certain conditions on the
parameters (e.g., [Reg05, Pei09b, ACPS09]); in Section 3 we give a reduction that essentially subsumes
them all. When q ≥ 2

√
n/α, solving search-LWEq,α is at least as hard as quantumly approximating SIVP

on n-dimensional lattices to within Õ(n/α) factors in the worst case [Reg05]. For a restricted range of
parameters (e.g., when q is exponentially large) a classical (non-quantum) reduction is also known [Pei09b],
but only from a potentially easier class of problems like the decisional Shortest Vector Problem (GapSVP)
and the Bounded Distance Decoding Problem (BDD) (see [LM09]).

Note that the m samples (ai, bi) and underlying error terms ei from As,α may be grouped into a matrix
A ∈ Zn×mq and vectors b ∈ Tm, e ∈ Rm in the natural way, so that b = (Ats)/q+ e mod 1. In this way, b
may be seen as an element of Λ⊥(A)∗ = 1

qΛ(At), perturbed by Gaussian error. By scaling b and discretizing
its entries using a form of randomized rounding (see [Pei10]), we can convert it into b′ = Ats + e′ mod q
where e′ ∈ Zm has discrete Gaussian distribution with parameter (say)

√
2αq.

2.3 Gaussians and Lattices

The n-dimensional Gaussian function ρ : Rn → (0, 1] is defined as

ρ(x)
∆
= exp(−π · ‖x‖2) = exp(−π · 〈x,x〉).

Applying a linear transformation given by a (not necessarily square) matrix B with linearly independent
columns yields the (possibly degenerate) Gaussian function

ρB(x)
∆
=

{
ρ(B+x) = exp

(
−π · xtΣ+x

)
if x ∈ span(B) = span(Σ)

0 otherwise

where Σ = BBt ≥ 0. Because ρB is distinguished only up to Σ, we usually refer to it as ρ√Σ.
Normalizing ρ√Σ by its total measure over span(Σ), we obtain the probability distribution function of

the (continuous) Gaussian distribution D√Σ. By linearity of expectation, this distribution has covariance
Ex←D√Σ

[x ·xt] = Σ
2π . (The 1

2π factor is the variance of the Gaussian D1, due to our choice of normalization.)
For convenience, we implicitly ignore the 1

2π factor, and refer to Σ as the covariance matrix of D√Σ.
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Let Λ ⊂ Rn be a lattice, let c ∈ Rn, and let Σ ≥ 0 be a positive semidefinite matrix such that
(Λ + c) ∩ span(Σ) is nonempty. The discrete Gaussian distribution DΛ+c,

√
Σ is simply the Gaussian

distribution D√Σ restricted to have support Λ + c. That is, for all x ∈ Λ + c,

DΛ+c,
√

Σ(x) =
ρ√Σ(x)

ρ√Σ(Λ + c)
∝ ρ√Σ(x).

We recall the definition of the smoothing parameter from [MR04], generalized to non-spherical (and
potentially degenerate) Gaussians. It is easy to see that the definition is consistent with the partial ordering of
positive semidefinite matrices, i.e., if Σ1 ≥ Σ2 ≥ ηε(Λ), then Σ1 ≥ ηε(Λ).

Definition 2.2. Let Σ ≥ 0 and Λ ⊂ span(Σ) be a lattice. We say that
√

Σ ≥ ηε(Λ) if ρ√
Σ+(Λ∗) ≤ 1 + ε.

The following is a bound on the smoothing parameter in terms of any orthogonalized basis. Note that for
practical choices like n ≤ 214 and ε ≥ 2−80, the multiplicative factor attached to ‖B̃‖ is bounded by 4.6.

Lemma 2.3 ([GPV08, Theorem 3.1]). Let Λ ⊂ Rn be a lattice with basis B, and let ε > 0. We have

ηε(Λ) ≤ ‖B̃‖ ·
√

ln(2n(1 + 1/ε))/π.

In particular, for any ω(
√

log n) function, there is a negligible ε(n) for which ηε(Λ) ≤ ‖B̃‖ · ω(
√

log n).

For appropriate parameters, the smoothing parameter of a random lattice Λ⊥(A) is small, with very high
probability. The following bound is a refinement and strengthening of one from [GPV08], which allows for a
more precise analysis of the parameters and statistical errors involved in our constructions.

Lemma 2.4. Let n, m, q ≥ 2 be positive integers. For s ∈ Znq , let the subgroup Gs = {〈a, s〉 : a ∈ Znq } ⊆
Zq, and let gs = |Gs| = q/ gcd(s1, . . . , sn, q). Let ε > 0, η ≥ ηε(Zm), and s > η be reals. Then for
uniformly random A ∈ Zn×mq ,

E
A

[
ρ1/s(Λ

⊥(A)∗)
]
≤ (1 + ε)

∑
s∈Znq

max{1/gs, η/s}m. (2.1)

In particular, if q = pe is a power of a prime p, and

m ≥ max

{
n+

log(3 + 2/ε)

log p
,
n log q + log(2 + 2/ε)

log(s/η)

}
, (2.2)

then EA

[
ρ1/s(Λ

⊥(A)∗)
]
≤ 1+2ε, and so by Markov’s inequality, s ≥ η2ε/δ(Λ

⊥(A)) except with probability
at most δ.

Proof. We will use the fact (which follows from the Poisson summation formula; see [MR04, Lemma 2.8])
that ρt(Λ) ≤ ρr(Λ) ≤ (r/t)m · ρt(Λ) for any rank-m lattice Λ and r ≥ t > 0.

For any A ∈ Zn×mq , one can check that Λ⊥(A)∗ = Zm + {Ats/q : s ∈ Znq }. Note that Ats is uniformly
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random over Gm
s , for uniformly random A. Then we have

E
A

[
ρ1/s(Λ

⊥(A)∗)
]
≤
∑
s∈Znq

E
A

[
ρ1/s(Zm + Ats/q)

]
(lin. of E)

=
∑
s∈Znq

g−ms · ρ1/s(g
−1
s · Zm) (avg. over A)

≤
∑
s∈Znq

g−ms ·max{1, gsη/s}m · ρ1/η(Zm), (above fact)

≤ (1 + ε)
∑
s∈Znq

max{1/gs, η/s}m, (η ≥ ηε(Zm)).

To prove the second part of the claim, observe that gs = pi for some i ≥ 0, and that there are at most gn

values of s for which gs = g, because each entry of s must be in Gs. Therefore,∑
s∈Znq

1/gms ≤
∑
i≥0

pi(n−m) =
1

1− pn−m
≤ 1 +

ε

2(1 + ε)
.

(More generally, for arbitrary q we have
∑

s 1/gms ≤ ζ(m− n), where ζ(·) is the Riemann zeta function.)
Similarly,

∑
s(η/s)

m = qn(s/η)−m ≤ ε
2(1+ε) , and the claim follows.

We need a number of standard facts about discrete Gaussians.

Lemma 2.5 ([MR04, Lemmas 2.9 and 4.1]). Let Λ ⊂ Rn be a lattice. For any Σ ≥ 0 and c ∈ Rn,
we have ρ√Σ(Λ + c) ≤ ρ√Σ(Λ). Moreover, if

√
Σ ≥ ηε(Λ) for some ε > 0 and c ∈ span(Λ), then

ρ√Σ(Λ + c) ≥ 1−ε
1+ε · ρ√Σ(Λ).

Combining the above lemma with a bound of Banaszczyk [Ban93], we have the following tail bound on
discrete Gaussians.

Lemma 2.6 ([Ban93, Lemma 1.5]). Let Λ ⊂ Rn be a lattice and r ≥ ηε(Λ) for some ε ∈ (0, 1). For any
c ∈ span(Λ), we have

Pr
[
‖DΛ+c,r‖ ≥ r

√
n
]
≤ 2−n · 1+ε

1−ε .

Moreover, if c = 0 then the bound holds for any r > 0, with ε = 0.

The next lemma bounds the predictability (i.e., probability of the most likely outcome or equivalently,
min-entropy) of a discrete Gaussian.

Lemma 2.7 ([PR06, Lemma 2.11]). Let Λ ⊂ Rn be a lattice and r ≥ 2ηε(Λ) for some ε ∈ (0, 1). For any
c ∈ Rn and any y ∈ Λ + c, we have Pr[DΛ+c,r = y] ≤ 2−n · 1+ε

1−ε .

2.4 Subgaussian Distributions and Random Matrices

For δ ≥ 0, we say that a random variable X (or its distribution) over R is δ-subgaussian with parameter
s > 0 if for all t ∈ R, the (scaled) moment-generating function satisfies

E [exp(2πtX)] ≤ exp(δ) · exp(πs2t2).
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Notice that the exp(πs2t2) term on the right is precisely the (scaled) moment-generating function of the
Gaussian distribution Ds. So, our definition differs from the usual definition of subgaussian only in the
additional factor of exp(δ); we need this relaxation when working with discrete Gaussians, usually taking
δ = ln(1+ε

1−ε) ≈ 2ε for the same small ε as in the smoothing parameter ηε.
If X is δ-subgaussian, then its tails are dominated by a Gaussian of parameter s, i.e., Pr [|X| ≥ t] ≤

2 exp(δ) exp(−πt2/s2) for all t ≥ 0.4 This follows by Markov’s inequality: by scaling X we can assume
s = 1, and we have

Pr[X ≥ t] = Pr[exp(2πtX) ≥ exp(2πt2)] ≤ exp(δ) exp(πt2)/ exp(2πt2) = exp(δ) exp(−πt2).

The claim follows by repeating the argument with −X , and the union bound. Using the Taylor series
expansion of exp(2πtX), it can be shown that any B-bounded symmetric random variable X (i.e., |X| ≤ B
always) is 0-subgaussian with parameter B

√
2π.

More generally, we say that a random vector x or its distribution (respectively, a random matrix X) is δ-
subgaussian (of parameter s) if all its one-dimensional marginals 〈u,v〉 (respectively, utXv) for unit vectors
u,v are δ-subgaussian (of parameter s). It follows immediately from the definition that the concatenation of
independent δi-subgaussian vectors with common parameter s, interpreted as either a vector or matrix, is
(
∑
δi)-subgaussian with parameter s.

Lemma 2.8. Let Λ ⊂ Rn be a lattice and s ≥ ηε(Λ) for some 0 < ε < 1. For any c ∈ span(Λ), DΛ+c,s is
ln(1+ε

1−ε)-subgaussian with parameter s. Moreover, it is 0-subgaussian for any s > 0 when c = 0.

Proof. By scaling Λ we can assume that s = 1. Let x have distribution DΛ+c, and let u ∈ Rn be any unit
vector. We bound the scaled moment-generating function of the marginal 〈x,u〉 for any t ∈ R:

ρ(Λ + c) · E [exp(2π〈x, tu〉)] =
∑

x∈Λ+c

exp(−π(〈x,x〉 − 2〈x, tu〉))

= exp(πt2) ·
∑

x∈Λ+c

exp(−π〈x− tu,x− tu〉)

= exp(πt2) · ρ(Λ + c− tu).

Both claims then follow by Lemma 2.5.

Here we recall a standard result from the non-asymptotic theory of random matrices; for further details,
see [Ver11]. (The proof for δ-subgaussian distributions is a trivial adaptation of the 0-subgaussian case.)

Lemma 2.9. Let X ∈ Rn×m be a δ-subgaussian random matrix with parameter s. There exists a universal
constant C > 0 such that for any t ≥ 0, we have s1(X) ≤ C · s · (

√
m+

√
n+ t) except with probability at

most 2 exp(δ) exp(−πt2).

Empirically, for discrete Gaussians the universal constant C in the above lemma is very close to 1/
√

2π.
In fact, it has been proved that C ≤ 1/

√
2π for matrices with independent identically distributed continuous

Gaussian entries.
4The converse also holds (up to a small constant factor in the parameter s) when E[X] = 0, but this will frequently not quite be

the case in our applications, which is why we define subgaussian in terms of the moment-generating function.
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3 Search to Decision Reduction

Here we give a new search-to-decision reduction for LWE that essentially subsumes all of the (incomparable)
prior ones given in [BFKL93, Reg05, Pei09b, ACPS09].5 Most notably, it handles moduli q that were not
covered before, specifically, those like q = 2k that are divisible by powers of very small primes. The only
known reduction that ours does not subsume is a different style of sample-preserving reduction recently given
in [MM11], which works for a more limited class of moduli and error distributions; extending that reduction
to the full range of parameters considered here is an interesting open problem. In what follows, ω(

√
log n)

denotes some fixed function that grows faster than
√

log n, asymptotically.

Theorem 3.1. Let q have prime factorization q = pe11 · · · p
ek
k for pairwise distinct poly(n)-bounded primes pi

with each ei ≥ 1, and let 0 < α ≤ 1/ω(
√

log n). Let ` be the number of prime factors pi < ω(
√

log n)/α.
There is a probabilistic polynomial-time reduction from solving search-LWEq,α (in the worst case, with
overwhelming probability) to solving decision-LWEq,α′ (on the average, with non-negligible advantage) for
any α′ ≥ α such that α′ ≥ ω(

√
log n)/peii for every i, and (α′)` ≥ α · ω(

√
log n)1+`.

For example, when every pi ≥ ω(
√

log n)/α we have ` = 0, and any α′ ≥ α is acceptable. (This special
case, with the additional constraint that every ei = 1, is proved in [Pei09b].) As a qualitatively new example,
when q = pe is a prime power for some (possibly small) prime p, then it suffices to let α′ ≥ α · ω(

√
log n)2.

(A similar special case where q = pe for sufficiently large p and α′ = α� 1/p is proved in [ACPS09].)

Proof. We show how to recover each entry of s modulo a large enough power of each pi, given access to the
distribution As,α for some s ∈ Znq and to an oracle O solving DLWEq,α′ . For the parameters in the theorem
statement, we can then recover the remainder of s in polynomial time by rounding and standard Gaussian
elimination.

First, observe that we can transform As,α into As,α′ simply by adding (modulo 1) an independent sample
from D√α′2−α2 to the second component of each (a, b = 〈a, s〉/q+Dα mod 1) ∈ Znq ×T drawn from As,α.

We now show how to recover each entry of s modulo (powers of) any prime p = pi dividing q. Let
e = ei, and for j = 0, 1, . . . , e define Ajs,α′ to be the distribution over Znq × T obtained by drawing
(a, b) ← As,α′ and outputting (a, b + r/pj mod 1) for a fresh uniformly random r ← Zq. (Clearly, this
distribution can be generated efficiently from As,α′ .) Note that when α′ ≥ ω(

√
log n)/pj ≥ ηε((1/p

j)Z)

for some ε = negl(n), Ajs,α′ is negligibly far from U = U(Znq × T), and this holds at least for j = e
by hypothesis. Therefore, by a hybrid argument there exists some minimal j ∈ [e] for which O has a
non-negligible advantage in distinguishing between Aj−1

s,α′ and Ajs,α′ , over a random choice of s and all other
randomness in the experiment. (This j can be found efficiently by measuring the behavior of O.) Note that
when pi ≥ ω(

√
log n)/α ≥ ω(

√
log n)/α′, the minimal j must be 1; otherwise it may be larger, but there

are at most ` of these by hypothesis. Now by a standard random self-reduction and amplification techniques
(e.g., [Reg05, Lemma 4.1]), we can in fact assume that O accepts (respectively, rejects) with overwhelming
probability given Aj−1

s,α′ (resp., Ajs,α′), for any s ∈ Znq .

Given access to Aj−1
s,α′ and O, we can test whether s1 = 0 mod p by invoking O on samples from Aj−1

s,α′

that have been transformed as follows (all of what follows is analogous for s2, . . . , sn): take each sample
(a, b = 〈a, s〉/q + e+ r/pj−1 mod 1)← Aj−1

s,α′ to

(a′ = a− r′ · (q/pj) · e1 , b′ = b = 〈a′, s〉/q + e+ (pr + r′s1)/pj mod 1) (3.1)
5We say “essentially subsumes” because our reduction is not very meaningful when q is itself a very small prime, whereas those

of [BFKL93, Reg05] are meaningful. This is only because our reduction deals with the continuous version of LWE. If we discretize
the problem, then for very small prime q our reduction specializes to those of [BFKL93, Reg05].
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for a fresh r′ ← Zq (where e1 = (1, 0, . . . , 0) ∈ Znq ). Observe that if s1 = 0 mod p, the transformed
samples are also drawn from Aj−1

s,α′ , otherwise they are drawn from Ajs,α′ because r′s1 is uniformly random
modulo p. Therefore, O tells us which is the case.

Using the above test, we can efficiently recover s1 mod p by ‘shifting’ s1 by each of 0, . . . , p− 1 mod p
using the standard transformation that maps As,α′ to As+t,α′ for any desired t ∈ Znq , by taking (a, b)
to (a, b + 〈a, t〉/q mod 1). (This enumeration step is where we use the fact that every pi is poly(n)-
bounded.) Moreover, we can iteratively recover s1 mod p2, . . . , pe−j+1 as follows: having recovered
s1 mod pi, first ‘shift’ As,α′ to As′,α′ where s′1 = 0 mod pi, then apply a similar procedure as above to
recover s′1 mod pi+1: specifically, just modify the transformation in (3.1) to let a′ = a− r′ · (q/pj+i) · e1,
so that b′ = b = 〈a′, s〉/q + e+ (pr + r′(s′1/p

i))/pj . This procedure works as long as pj+i divides q, so we
can recover s1 mod pe−j+1.

Using the above reductions and the Chinese remainder theorem, and letting ji be the above minimal value
of j for p = pi (of which at most ` of these are greater than 1), from As,α we can recover s modulo

P =
∏
i

p
ei−(ji−1)
i = q/

∏
i

pji−1
i ≥ q ·

(
α′

ω(
√

log n)

)`
≥ q · α · ω(

√
log n),

because α′ < ω(
√

log n)/pji−1
i for all i by definition of ji and by hypothesis on α′. By applying the ‘shift’

transformation to As,α we can assume that s = 0 mod P . Now every 〈a, s′〉/q is an integer multiple of
P/q ≥ α · ω(

√
log n), and since every noise term e ← Dα has magnitude < (α/2) · ω(

√
log n) with

overwhelming probability, we can round the second component of every (a, b)← As,α to the exact value of
〈a, s〉/q mod 1. From these we can solve for s by Gaussian elimination, and we are done.

4 Primitive Lattices

At the heart of our new trapdoor generation algorithm (described in Section 5) is the construction of a very
special family of lattices which have excellent geometric properties, and admit very fast and parallelizable
decoding algorithms. The lattices are defined by means of what we call a primitive matrix. We say that a
matrix G ∈ Zn×mq is primitive if its columns generate all of Znq , i.e., G · Zm = Znq .6

The main results of this section are summarized in the following theorem.

Theorem 4.1. For any integers q ≥ 2, n ≥ 1, k = dlog2 qe and m = nk, there is a primitive matrix
G ∈ Zn×mq such that

• The lattice Λ⊥(G) has a known basis S ∈ Zm×m with ‖S̃‖ ≤
√

5 and ‖S‖ ≤ max{
√

5,
√
k}.

Moreover, when q = 2k, we have S̃ = 2I (so ‖S̃‖ = 2) and ‖S‖ =
√

5.

• Both G and S require little storage. In particular, they are sparse (with only O(m) nonzero entries)
and highly structured.

• Inverting gG(s, e) := stG + et mod q can be performed in quasilinear O(n · logc n) time for any
s ∈ Znq and any e ∈ P1/2(q ·B−t), where B can denote either S or S̃. Moreover, the algorithm is
perfectly parallelizable, running in polylogarithmic O(logc n) time using n processors. When q = 2k,
the polylogarithmic term O(logc n) is essentially just the cost of k additions and shifts on k-bit integers.

6We do not say that G is “full-rank,” because Zq is not a field when q is not prime, and the notion of rank for matrices over Zq is
not well defined.
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• Preimage sampling for fG(x) = Gx mod q with Gaussian parameter s ≥ ‖S̃‖ · ω(
√

log n) can
be performed in quasilinear O(n · logc n) time, or parallel polylogarithmic O(logc n) time using n
processors. When q = 2k, the polylogarithmic term is essentially just the cost of k additions and shifts
on k-bit integers, plus the (offline) generation of about m random integers drawn from DZ,s.

More generally, for any integer b ≥ 2, all of the above statements hold with k = dlogb qe, ‖S̃‖ ≤
√
b2 + 1,

and ‖S‖ ≤ max{
√
b2 + 1, (b− 1)

√
k}; and when q = bk, we have S̃ = bI and ‖S‖ =

√
b2 + 1.

The rest of this section is dedicated to the proof of Theorem 4.1. In the process, we also make several
important observations regarding the implementation of the inversion and sampling algorithms associated
with G, showing that our algorithms are not just asymptotically fast, but also quite practical.

Let q ≥ 2 be an integer modulus and k ≥ 1 be an integer dimension. Our construction starts with a
primitive vector g ∈ Zkq , i.e., a vector such that gcd(g1, . . . , gk, q) = 1. The vector g defines a k-dimensional
lattice Λ⊥(gt) ⊂ Zk having determinant |Zk/Λ⊥(gt)| = q, because the residue classes of Zk/Λ⊥(gt) are
in bijective correspondence with the possible values of 〈g,x〉 mod q for x ∈ Zk, which cover all of Zq
since g is primitive. Concrete primitive vectors g will be described in the next subsections. Notice that
when q = poly(n), we have k = O(log q) = O(log n) and so Λ⊥(gt) is a very low-dimensional lattice. Let
Sk ∈ Zk×k be a basis of Λ⊥(gt), that is, gt · Sk = 0 ∈ Z1×k

q and |det(Sk)| = q.
The primitive vector g and associated basis Sk are used to define the parity-check matrix G and basis

S ∈ Zq as G := In ⊗ gt ∈ Zn×nkq and S := In ⊗ Sk ∈ Znk×nk. That is,

G :=


· · ·gt · · ·

· · ·gt · · ·
. . .
· · ·gt · · ·

 ∈ Zn×nkq , S :=


Sk

Sk
. . .

Sk

 ∈ Znk×nk.

Equivalently, G, Λ⊥(G), and S are the direct sums of n copies of gt, Λ⊥(gt), and Sk, respectively. It follows
that G is a primitive matrix, the lattice Λ⊥(G) ⊂ Znk has determinant qn, and S is a basis for this lattice. It
also follows (and is clear by inspection) that ‖S‖ = ‖Sk‖ and ‖S̃‖ = ‖S̃k‖.

By this direct sum construction, it is immediate that inverting gG(s, e) and sampling preimages of
fG(x) can be accomplished by performing the same operations n times in parallel for ggt and fgt on the
corresponding portions of the input, and concatenating the results. For preimage sampling, if each of the fgt
preimages has Gaussian parameter

√
Σ, then by independence, their concatenation has parameter In ⊗

√
Σ.

Likewise, inverting gG will succeed whenever all the n independent ggt-inversion subproblems are solved
correctly.

In the next two subsections we study concrete instantiations of the primitive vector g, and give optimized
algorithms for inverting ggt and sampling preimages for fgt . In both subsections, we consider primitive
lattices Λ⊥(gt) ⊂ Zk defined by the vector

gt :=
[
1 2 4 · · · 2k−1

]
∈ Z1×k

q , k = dlog2 qe, (4.1)

whose entries form a geometrically increasing sequence. (We focus on powers of 2, but all our results
trivially extend to other integer powers, or even mixed-integer products.) The only difference between
the two subsections is in the form of the modulus q. We first study the case when the modulus q = 2k

is a power of 2, which leads to especially simple and fast algorithms. Then we discuss how the results
can be generalized to arbitrary moduli q. Notice that in both cases, the syndrome 〈g,x〉 ∈ Zq of a binary
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vector x = (x0, . . . , xk−1) ∈ {0, 1}k is just the positive integer with binary expansion x. In general, for
arbitrary x ∈ Zk the syndrome 〈g,x〉 ∈ Zq can be computed very efficiently by a sequence of k additions
and binary shifts, and a single reduction modulo q, which is also trivial when q = 2k is a power of 2. The
syndrome computation is also easily parallelizable, leading to O(log k) = O(log log n) computation time
using O(k) = O(log n) processors.

4.1 Power-of-Two Modulus

Let q = 2k be a power of 2, and let g be the geometric vector defined in Equation (4.1). Define the matrix

Sk :=


2
−1 2

−1
. . .

2
−1 2

 ∈ Zk×k.

This is a basis for Λ⊥(gt), because gt · Sk = 0 mod q and det(Sk) = 2k = q. Clearly, all the basis vectors
are short. Moreover, by orthogonalizing Sk in reverse order, we have S̃k = 2 · Ik. This construction is
summarized in the following proposition. (It generalizes in the obvious way to any integer base, not just 2.)

Proposition 4.2. For q = 2k and g = (1, 2, . . . , 2k−1) ∈ Zkq , the lattice Λ⊥(gt) has a basis S such that
S̃ = 2I and ‖S‖ ≤

√
5. In particular, ηε(Λ⊥(gt)) ≤ 2r = 2 · ω(

√
log n) for some ε(n) = negl(n).

Using Proposition 4.2 and known generic algorithms [Bab85, Kle00, GPV08], it is possible to invert
ggt(s, e) correctly whenever e ∈ P1/2((q/2) · I), and sample preimages under fgt with Gaussian parameter
s ≥ 2r = 2 · ω(

√
log n). In what follows we show how the special structure of the basis S leads to simpler,

faster, and more practical solutions to these general lattice problems.

Inversion. Here we show how to efficiently find an unknown scalar s ∈ Zq given bt = [b0, b1, . . . , bk−1] =
s · gt + et = [s+ e0, 2s+ e1, . . . , 2

k−1s+ ek−1] mod q, where e ∈ Zk is a short error vector.
An iterative algorithm works by recovering the binary digits s0, s1, . . . , sk−1 ∈ {0, 1} of s ∈ Zq, from

least to most significant, as follows: first, determine s0 by testing whether

bk−1 = 2k−1s+ ek−1 = (q/2)s0 + ek−1 mod q

is closer to 0 or to q/2 (modulo q). Then recover s1 from bk−2 = 2k−2s + ek−2 = 2k−1s1 + 2k−2s0 +
ek−2 mod q, by subtracting 2k−2s0 and testing proximity to 0 or q/2, etc. It is easy to see that the algorithm
produces correct output if every ei ∈

[
− q

4 ,
q
4

)
, i.e., if e ∈ P1/2(q · Ik/2) = P1/2(q · (S̃k)−t). It can also be

seen that this algorithm is exactly Babai’s “nearest-plane” algorithm [Bab85], specialized to the scaled dual
q(Sk)

−t of the basis Sk of Λ⊥(gt), which is a basis for Λ(g).
Formally, the iterative algorithm is: given a vector bt = [b0, . . . , bk−1] ∈ Z1×k

q , initialize s← 0.

1. For i = k−1, . . . , 0: let s← s+2k−1−i ·
[
bi − 2i · s 6∈

[
− q

4 ,
q
4

)
mod q

]
, where [E] = 1 if expression

E is true, and 0 otherwise. Also let ei ← bi − 2i · s ∈
[
− q

4 ,
q
4

)
.

2. Output s ∈ Zq and e = (e0, . . . , ek−1) ∈
[
− q

4 ,
q
4

)k ⊂ Zk.
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Note that for x ∈ {0, . . . , q − 1} with binary representation (xk−1xk−2 · · ·x0)2, we have[
x 6∈

[
− q

4 ,
q
4

)
mod q

]
= xk−1 ⊕ xk−2.

There is also a non-iterative approach to decoding using a lookup table, and a hybrid approach between
the two extremes. Notice that rounding each entry bi of b to the nearest multiple of 2i (modulo q, breaking
ties upward) before running the above algorithm does not change the value of s that is computed. This lets
us precompute a lookup table that maps the 2k(k+1)/2 = qO(lg q) possible rounded values of b to the correct
values of s. The size of this table grows very rapidly for k > 3, but in this case we can do better if we assume
slightly smaller error terms ei ∈

[
− q

8 ,
q
8

)
: simply round each bi to the nearest multiple of max{ q8 , 2

i}, thus
producing one of exactly 8k−1 = q3/8 possible results, whose solutions can be stored in a lookup table. Note
that the result is correct, because in each coordinate the total error introduced by ei and rounding to a multiple
of q

8 is in the range
[
− q

4 ,
q
4

)
. A hybrid approach combining the iterative algorithm with table lookups of `

bits of s at a time is potentially the most efficient option in practice, and is easy to devise from the above
discussion.

Gaussian sampling. We now consider the preimage sampling problem for function fgt , i.e., the task of
Gaussian sampling over a desired coset of Λ⊥(gt). More specifically, we want to sample a vector from the
set Λ⊥u (gt) = {x ∈ Zk : 〈g,x〉 = u mod q} for a desired syndrome u ∈ Zq, with probability proportional
to ρs(x). We wish to do so for any fixed Gaussian parameter s ≥ ‖S̃k‖ · r = 2 · ω(

√
log n), which is an

optimal bound on the smoothing parameter of Λ⊥(G).
As with inversion, there are two main approaches to Gaussian sampling, which are actually opposite

extremes on a spectrum of storage/parallelism trade-offs. The first approach is essentially to precompute
and store many independent samples x← DZk,s, ‘bucketing’ them based on the value of 〈g,x〉 ∈ Zq until
there is at least one sample per bucket. Because each 〈g,x〉 is statistically close to uniform over Zq (by the
smoothing parameter bound for Λ⊥(gt)), a coupon-collecting argument implies that we need to generate
about q log q samples to occupy every bucket. The online part of the sampling algorithm for Λ⊥(gt) is trivial,
merely taking a fresh x from the appropriate bucket. The downside is that the storage and precomputation
requirements are rather high: in many applications, q (while polynomial in the security parameter) can be in
the many thousands or more.

The second approach exploits the niceness of the orthogonalized basis S̃k = 2Ik. Using this basis, the
randomized nearest-plane algorithm of [Kle00, GPV08] becomes very simple and efficient, and is equivalent
to the following: given a syndrome u ∈ {0, . . . , q − 1} (viewed as an integer),

1. For i = 0, . . . , k − 1: choose xi ← D2Z+u,s and let u← (u− xi)/2 ∈ Z.

2. Output x = (x0, . . . , xk−1).

Observe that every Gaussian xi in the above algorithm is chosen from one of only two possible cosets of 2Z,
determined by the least significant bit of u at that moment. Therefore, we may precompute and store several
independent Gaussian samples from each of 2Z and 2Z+1, and consume one per iteration when executing the
algorithm. (As above, the individual samples may be generated by choosing several x← DZ,s and bucketing
each one according to its least-significant bit.) Such presampling makes the algorithm deterministic during
its online phase, and because there are only two cosets, there is almost no wasted storage or precomputation.
Notice, however, that this algorithm requires k = lg(q) sequential iterations.

Between the extremes of the two algorithms described above, there is a hybrid algorithm that chooses
` ≥ 1 entries of x at a time. (For simplicity, we assume that ` divides k exactly, though this is not
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strictly necessary.) Let ht = [1, 2, . . . , 2`−1] ∈ Z1×`
2`

be a parity-check matrix defining the 2`-ary lattice
Λ⊥(ht) ⊆ Z`, and observe that gt = [ht, 2` · ht, . . . , 2k−` · ht]. The hybrid algorithm then works as follows:

1. For i = 0, . . . , k/`−1, choose (xi`, . . . , x(i+1)`−1)← DΛ⊥
u mod 2`

(ht),s and let u← (u−x)/2`, where

x =
∑`−1

j=0 xi`+j · 2j ∈ Z.

2. Output x = (x0, . . . , xk−1).

As above, we can precompute samples x ← DZ`,s and store them in a lookup table having 2` buckets,
indexed by the value 〈h,x〉 ∈ Z2` , thereby making the algorithm deterministic in its online phase.

4.2 Arbitrary Modulus

For a modulus q that is not a power of 2, most of the above ideas still work, with slight adaptations. Let
k = dlg(q)e, so q < 2k. As above, define gt := [1, 2, . . . , 2k−1] ∈ Z1×k

q , but now define the matrix

Sk :=



2 q0

−1 2 q1

−1 q2

. . .
...

2 qk−2

−1 qk−1


∈ Zk×k

where (q0, . . . , qk−1) ∈ {0, 1}k is the binary expansion of q =
∑

i 2i · qi. Again, S is a basis of Λ⊥(gt)
because gt · Sk = 0 mod q, and det(Sk) = q. Moreover, the basis vectors have squared length ‖si‖2 = 5
for i < k and ‖sk‖2 =

∑
i qi ≤ k. The next lemma shows that Sk also has a good Gram-Schmidt

orthogonalization.

Lemma 4.3. With S = Sk defined as above and orthogonalized in forward order, we have ‖s̃i‖2 = 4−4−i

1−4−i
∈

(4, 5] for 1 ≤ i < k, and ‖s̃k‖2 = 3q2

4k−1
< 3.

Proof. Notice that the the vectors s1, . . . , sk−1 are all orthogonal to gk = (1, 2, 4, . . . , 2k−1) ∈ Zk. Thus,
the orthogonal component of sk has squared length

‖s̃k‖2 =
〈sk,gk〉2

‖gk‖2
=

q2∑
j<k 4j

=
3q2

4k − 1
.

Similarly, the squared length of s̃i for i < k can be computed as

‖s̃i‖2 = 1 +
4i∑
j<i 4j

=
4− 4−i

1− 4−i
.

This concludes the description and analysis of the primitive lattice Λ⊥(gt) when q is not a power
of 2. Specialized inversion algorithms can also be adapted as well, but some care is needed. Of course,
since the lattice dimension k = O(log n) is very small, one could simply use the general methods of
[Bab85, Kle00, GPV08, Pei10] without worrying too much about optimizations, and satisfy all the claims
made in Theorem 4.1. Below we briefly discuss alternatives for Gaussian sampling.
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The offline ‘bucketing’ approach to Gaussian sampling works without any modification for arbitrary
modulus, with just slighly larger Gaussian parameter s ≥

√
5 · r, because it relies only on the smoothing

parameter bound of ηε(Λ⊥(gt)) ≤ ‖S̃k‖ · ω(
√

log n) and the fact that the number of buckets is q. The
randomized nearest-plane approach to sampling does not admit a specialization as simple as the one we have
described for q = 2k. The reason is that while the basis S is sparse, its orthogonalization S̃ is not sparse in
general. (This is in contrast to the case when q = 2k, for which orthogonalizing in reverse order leads to
the sparse matrix S̃ = 2I.) Still, S̃ is “almost triangular,” in the sense that the off-diagonal entries decrease
geometrically as one moves away from the diagonal. This may allow for optimizing the sampling algorithm
by performig “truncated” scalar product computations, and still obtain an almost-Gaussian distribution on the
resulting samples. An interesting alternative is to use a hybrid approach, where one first performs a single
iteration of randomized nearest-plane algorithm to take care of the last basis vector sk, and then performs
some variant of the convolution algorithm from [Pei10] to deal with the first k−1 basis vectors [s1, . . . , sk−1],
which have very small lengths and singular values. Notice that the orthogonalized component of the last
vector sk is simply a scalar multiple of the primitive vector g, so the scalar product 〈sk, t〉 (for any vector t
with syndrome u = 〈g, t〉) can be immediately computed from u as u/q (see Lemma 4.3).

4.3 The Ring Setting

The above constructions and algorithms all transfer easily to compact lattices defined over polynomial rings
(i.e., number rings), as used in the representative works [Mic02, PR06, LM06, LPR10]. A commonly used
example is the cyclomotic ring R = Z[x]/(Φm(x)) where Φm(x) denotes the mth cyclotomic polynomial,
which is a monic, degree-ϕ(m), irreducible polynomial whose zeros are all the primitive mth roots of unity
in C. The ring R is a Z-module of rank n, i.e., it is generated as the additive integer combinations of the
“power basis” elements 1, x, x2, . . . , xϕ(m)−1. We let Rq = R/qR, the ring modulo the ideal generated by an
integer q. For geometric concepts like error vectors and Gaussian distributions, it is usually nicest to work
with the “canonical embedding” of R, which roughly (but not exactly) corresponds with the “coefficient
embedding,” which just considers the vector of coefficients relative to the power basis.

Let g ∈ Rkq be a primitive vector modulo q, i.e., one for which the ideal generated by q, g1, . . . , gk is the
full ring R. As above, the vector g defines functions fgt : Rk → Rq and ggt : Rq ×Rk → R1×k

q , defined as
fgt(x) = 〈g,x〉 =

∑k
i=1 gi · xi mod q and ggt(s, e) = s · gt + et mod q, and the related R-module

qRk ⊆ Λ⊥(gt) := {x ∈ Rk : fgt(x) = 〈g,x〉 = 0 mod q} ( Rk,

which has index (determinant) qn = |Rq| as an additive subgroup of Rk because g is primitive. Concretely,
we can use the exact same primitive vector gt = [1, 2, . . . , 2k−1] ∈ Rkq as in Equation (4.1), interpreting its
entries in the ring Rq rather than Zq.

Inversion and preimage sampling algorithms for ggt and fgt (respectively) are relatively straightforward
to obtain, by adapting the basic approaches from the previous subsections. These algorithms are simplest
when the power basis elements 1, x, x2, . . . , xϕ(m)−1 are orthogonal under the canonical embedding (which
is the case exactly when m is a power of 2, and hence Φm(x) = xm/2 + 1), because the inversion operations
reduce to parallel operations relative to each of the power basis elements. We defer the details to the full
version.
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5 Trapdoor Generation and Operations

In this section we describe our new trapdoor generation, inversion and sampling algorithms for hard random
lattices. Recall that these are lattices Λ⊥(A) defined by an (almost) uniformly random matrix A ∈ Zn×mq ,
and that the standard notion of a “strong” trapdoor for these lattices (put forward in [GPV08] and used
in a large number of subsequent applications) is a short lattice basis S ∈ Zm×m for Λ⊥(A). There are
several measures of quality for the trapdoor S, the most common ones being (in nondecreasing order):
the maximal Gram-Schmidt length ‖S̃‖; the maximal Euclidean length ‖S‖; and the maximal singular
value s1(S). Algorithms for generating random lattices together with high-quality trapdoor bases are given
in [Ajt99, AP09]. In this section we give much simpler, faster and tighter algorithms to generate a hard
random lattice with a trapdoor, and to use a trapdoor for performing standard tasks like inverting the LWE
function gA and sampling preimages for the SIS function fA. We also give a new, simple algorithm for
delegating a trapdoor, i.e., using a trapdoor for A to obtain one for a matrix [A | A′] that extends A, in a
secure and non-reversible way.

The following theorem summarizes the main results of this section. Here we state just one typical
instantiation with only asymptotic bounds. More general results and exact bounds are presented throughout
the section.

Theorem 5.1. There is an efficient randomized algorithm GenTrap(1n, 1m, q) that, given any integers n ≥ 1,
q ≥ 2, and sufficiently large m = O(n log q), outputs a parity-check matrix A ∈ Zn×mq and a ‘trapdoor’ R
such that the distribution of A is negl(n)-far from uniform. Moreover, there are efficient algorithms Invert
and SampleD that with overwhelming probability over all random choices, do the following:

• For bt = stA + et, where s ∈ Znq is arbitrary and either ‖e‖ < q/O(
√
n log q) or e← DZm,αq for

1/α ≥
√
n log q · ω(

√
log n), the deterministic algorithm Invert(R,A,b) outputs s and e.

• For any u ∈ Znq and large enough s = O(
√
n log q), the randomized algorithm SampleD(R,A,u, s)

samples from a distribution within negl(n) statistical distance of DΛ⊥u (A),s·ω(
√

logn).

Throughout this section, we let G ∈ Zn×wq denote some fixed primitive matrix that admits efficient
inversion and preimage sampling algorithms, as described in Theorem 4.1. (Recall that typically, w =
ndlog qe for some appropriate base of the logarithm.) All our algorithms and efficiency improvements are
based on the primitive matrix G and associated algorithms described in Section 4, and a new notion of
trapdoor that we define next.

5.1 A New Trapdoor Notion

We begin by defining the new notion of trapdoor, establish some of its most important properties, and give a
simple and efficient algorithm for generating hard random lattices together with high-quality trapdoors.

Definition 5.2. Let A ∈ Zn×mq and G ∈ Zn×wq be matrices with m ≥ w ≥ n. A G-trapdoor for A is a
matrix R ∈ Z(̄m−w)×w such that A

[
R
I

]
= HG for some invertible matrix H ∈ Zn×nq . We refer to H as the

tag or label of the trapdoor. The quality of the trapdoor is measured by its largest singular value s1(R).

We remark that, by definition of G-trapdoor, if G is a primitive matrix and A admits a G trapdoor, then
A is primitive as well. In particular, det(Λ⊥(A)) = qn. Since the primitive matrix G is typically fixed and
public, we usually omit references to it, and refer to G-trapdoors simply as trapdoors. We remark that since
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G is primitive, the tag H in the above definition is uniquely determined by (and efficiently computable from)
A and the trapdoor R.

The following lemma says that a good basis for Λ⊥(A) may be obtained from knowledge of R. We
do not use the lemma anywhere in the rest of the paper, but include it here primarily to show that our new
definition of trapdoor is at least as powerful as the traditional one of a short basis. Our algorithms for Gaussian
sampling and LWE inversion do not need a full basis, and make direct (and more efficient) use of our new
notion of trapdoor.

Lemma 5.3. Let S ∈ Zw×w be any basis for Λ⊥(G). Let A ∈ Zn×mq have trapdoor R ∈ Z(m−w)×w with
tag H ∈ Zn×nq . Then the lattice Λ⊥(A) is generated by the basis

SA =

[
I R
0 I

] [
I 0
W S

]
,

where W ∈ Zw×m̄ is an arbitrary solution to GW = −H−1A[I | 0]T mod q. Moreover, the basis SA

satisfies ‖S̃A‖ ≤ s1(
[
I R
0 I

]
) · ‖S̃‖ ≤ (s1(R) + 1) · ‖S̃‖, when SA is orthogonalized in suitable order.

Proof. It is immediate to check that A · SA = 0 mod q, so SA generates a sublattice of Λ⊥(A). In fact, it
generates the entire lattice because det(SA) = det(S) = qn = det(Λ⊥(A)).

The bound on ‖S̃A‖ follows by simple linear algebra. Recall by Item 3 of Lemma 2.1 that ‖B̃‖ = ‖S̃‖
when the columns of B =

[
I 0
W S

]
are reordered appropriately. So it suffices to show that ‖T̃B‖ ≤

s1(T) · ‖B̃‖ for any T, B. Let B = QDU and TB = Q′D′U′ be Gram-Schmidt decompositions of B
and TB, respectively, with Q,Q′ orthogonal, D,D′ diagonal with nonnegative entries, and U,U′ upper
unitriangular. We have

TQDU = Q′D′U′ =⇒ T′D = D′U′′,

where T = Q′T′Q−1 ⇒ s1(T′) = s1(T), and U′′ is upper unitriangular because such matrices form a
multiplicative group. Now every row of T′D has Euclidean norm at most s1(T) · ‖D‖ = s1(T) · ‖B̃‖,
while the ith row of D′U′′ has norm at least d′i,i, the ith diagonal of D′. We conclude that ‖T̃B‖ = ‖D‖ ≤
s1(T) · ‖B̃‖, as desired.

We also make the following simple but useful observations:

• The rows of
[
R
I

]
in Definition 5.2 can appear in any order, since this just induces a permutation of A’s

columns.

• If R is a trapdoor for A, then it can be made into an equally good trapdoor for any extension [A | B],
by padding R with zero rows; this leaves s1(R) unchanged.

• If R is a trapdoor for A with tag H, then R is also a trapdoor for A′ = A − [0 | H′G] with tag
(H −H′) for any H′ ∈ Zn×nq , as long as (H −H′) is invertible modulo q. This is the main idea
behind the compact IBE of [ABB10a], and can be used to give a family of “tag-based” trapdoor
functions [KMO10]. In Section 6 we give explicit families of matrices H having suitable properties
for applications.

5.2 Trapdoor Generation

We now give an algorithm to generate a (pseudo)random matrix A together with a G-trapdoor. The algorithm
is straightforward, and in fact it can be easily derived from the definition of G-trapdoor itself. A random
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lattice is built by first extending the primitive matrix G into a semi-random matrix A′ = [Ā | HG]
(where Ā ∈ Zn×m̄q is chosen at random, and H ∈ Zn×nq is the desired tag), and then applying a random
transformation T =

[
I R
0 I

]
∈ Zm×m to the semi-random lattice Λ⊥(A′). Since T is unimodular with inverse

T−1 =
[
I −R
0 I

]
, by Lemma 2.1 this yields the lattice T · Λ⊥(A′) = Λ⊥(A′ · T−1) associated with the

parity-check matrix A = A′ ·T−1 = [Ā | HG− ĀR]. Moreover, the distribution of A is close to uniform
(either statistically, or computationally) as long as the distribution of [Ā | 0]T−1 = [Ā | −ĀR] is. For
details, see Algorithm 1, whose correctness is immediate.

Algorithm 1 Efficient algorithm GenTrapD(Ā,H) for generating a parity-check matrix A with trapdoor R.
Input: Matrix Ā ∈ Zn×m̄q for some m̄ ≥ 1, invertible matrix H ∈ Zn×nq , and distribution D over Zm̄×w.

(If no particular Ā, H are given as input, then the algorithm may choose them itself, e.g., picking
Ā ∈ Zn×m̄q uniformly at random, and setting H = I.)

Output: A parity-check matrix A = [Ā | A1] ∈ Zn×mq , where m = m̄+ w, and trapdoor R with tag H.
1: Choose a matrix R ∈ Zm̄×w from distribution D.
2: Output A = [Ā | HG− ĀR] ∈ Zn×mq and trapdoor R ∈ Zm̄×w.

We next describe two types of GenTrap instantiations. The first type generates a trapdoor R for a
statistically near-uniform output matrix A using dimension m̄ ≈ n log q or less (there is a trade-off between
m̄ and the trapdoor quality s1(R)). The second types generates a computationally pseudorandom A (under
the LWE assumption) using dimension m̄ = 2n; this pseudorandom construction is the first of its kind in the
literature. Certain applications allow for an optimization that decreases m̄ by an additive n term; this is most
significant in the computationally secure construction because it yields m̄ = n.

Statistical instantiation. This instantiation works for any parameter m̄ and distribution D over Zm̄×w
having the following two properties:

1. Subgaussianity: D is subgaussian with some parameter s > 0 (or δ-subgaussian for some small δ).
This implies by Lemma 2.9 that R ← D has s1(R) = s · O(

√
m̄ +

√
w), except with probability

2−Ω(m̄+w). (Recall that the constant factor hidden in the O(·) expression is ≈ 1/
√

2π.)

2. Regularity: for Ā← Zn×m̄q and R← D, A = [Ā | ĀR] is δ-uniform for some δ = negl(n).

In fact, there is no loss in security if Ā contains an identity matrix I as a submatrix and is otherwise
uniform, since this corresponds with the Hermite normal form of the SIS and LWE problems. See,
e.g., [MR09, Section 5] for further details.

For example, let D = Pm̄×w where P is the distribution over Z that outputs 0 with probability 1/2, and ±1
each with probability 1/4. Then P (and hence D) is 0-subgaussian with parameter

√
2π, and satisfies the

regularity condition (for any q) for δ ≤ w
2

√
qn/2m̄, by a version of the leftover hash lemma (see, e.g., [AP09,

Section 2.2.1]). Therefore, we can use any m̄ ≥ n lg q + 2 lg w
2δ .

As another important example, let D = Dm̄×w
Z,s be a discrete Gaussian distribution for some s ≥ ηε(Z)

and ε = negl(n). Then D is 0-subgaussian with parameter s by Lemma 2.8, and satisfies the regularity
condition when m̄ satisfies the bound (2.2) from Lemma 2.4. For example, letting s = 2ηε(Z) we can use
any m̄ = n lg q + ω(log n). (Other tradeoffs between s and m̄ are possible, potentially using a different
choice of G, and more exact bounds on the error probabilities can be worked out from the lemma statements.)
Moreover, by Lemmas 2.4 and 2.8 we have that with overwhelming probability over the choice of Ā, the
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conditional distribution of R given A = [Ā | ĀR] is negl(n)-subgaussian with parameter s. We will use
this fact in some of our applications in Section 6.

Computational instantiation. Let Ā = [I | Â] ∈ Zn×m̄q for m̄ = 2n, and let D = Dm̄×w
Z,s for some

s = αq, where α > 0 is an LWE relative error rate (and typically αq >
√
n). Clearly, D is 0-subgaussian

with parameter αq. Also, [Ā | ĀR = ÂR2 + R1] for R =
[
R1
R2

]
← D is exactly an instance of decision-

LWEn,q,α (in its normal form), and hence is pseudorandom (ignoring the identity submatrix) assuming that
the problem is hard.

Further optimizations. If an application only uses a single tag H = I (as is the case with, for example,
GPV signatures [GPV08]), then we can save an additive n term in the dimension m̄ (and hence in the total
dimension m): instead of putting an identity submatrix in Ā, we can instead use the identity submatrix from
G (which exists without loss of generality, since G is primitive) and conceal the remainder of G using either
of the above methods.

All of the above ideas also translate immediately to the ring setting (see Section 4.3), using an appropriate
regularity lemma (e.g., the one in [LPR10]) for a statistical instantiation, and the ring-LWE problem for a
computationally secure instantiation.

5.3 LWE Inversion

Algorithm 2 below shows how to use a trapdoor to solve LWE relative to A. Given a trapdoor R for
A ∈ Zn×mq and an LWE instance bt = stA + et mod q for some short error vector e ∈ Zm, the algorithm
recovers s (and e). This naturally yields an inversion algorithm for the injective trapdoor function gA(s, e) =
stA + et mod q, which is hard to invert (and whose output is pseudorandom) if LWE is hard.

Algorithm 2 Efficient algorithm InvertO(R,A,b) for inverting the function gA(s, e).
Input: An oracle O for inverting the function gG(ŝ, ê) when ê ∈ Zw is suitably small.

• parity-check matrix A ∈ Zn×mq ;

• G-trapdoor R ∈ Zm̄×kn for A with invertible tag H ∈ Zn×nq ;
• vector bt = gA(s, e) = stA + et for any s ∈ Znq and suitably small e ∈ Zm.

Output: The vectors s and e.
1: Compute b̂t = bt

[
R
I

]
.

2: Get (ŝ, ê)← O(b̂).
3: return s = H−tŝ and e = b−Ats (interpreted as a vector in Zm with entries in [− q

2 ,
q
2)).

Theorem 5.4. Suppose that oracle O in Algorithm 2 correctly inverts gG(ŝ, ê) for any error vector ê ∈
P1/2(q · B−t) for some B. Then for any s and e of length ‖e‖ < q/(2‖B‖s) where s =

√
s1(R)2 + 1,

Algorithm 2 correctly inverts gA(s, e). Moreover, for any s and random e ← DZm,αq where 1/α ≥
2‖B‖s · ω(

√
log n), the algorithm inverts successfully with overwhelming probability over the choice of e.

Note that using our constructions from Section 4, we can implement O so that either ‖B‖ = 2 (for q a
power of 2, where B = S̃ = 2I) or ‖B‖ =

√
5 (for arbitrary q).
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Proof. Let R̄ = [ Rt I ], and note that s = s1(R̄). By the above description, the algorithm works correctly
when R̄e ∈ P1/2(q ·B−t); equivalently, when (btiR̄)e/q ∈ [−1

2 ,
1
2) for all i. By definition of s, we have

‖btiR̄‖ ≤ s‖B‖. If ‖e‖ < q/(2‖B‖s), then |(btiR̄)e/q| < 1/2 by Cauchy-Schwarz. Moreover, if e is
chosen at random from DZm,αq, then by the fact that e is 0-subgaussian (Lemma 2.8) with parameter αq, the
probability that |(btiR̄)e/q| ≥ 1/2 is negligible, and the second claim follows by the union bound.

5.4 Gaussian Sampling

Here we show how to use a trapdoor for efficient Gaussian preimage sampling for the function fA, i.e.,
sampling from a discrete Gaussian over a desired coset of Λ⊥(A). Our precise goal is, given a G-trapdoor R
(with tag H) for matrix A and a syndrome u ∈ Znq , to sample from the spherical discrete Gaussian DΛ⊥u (A),s

for relatively small parameter s. As we show next, this task can be reduced, via some efficient pre- and
post-processing, to sampling from any sufficiently narrow (not necessarily spherical) Gaussian over the
primitive lattice Λ⊥(G).

The main ideas behind our algorithm, which is described formally in Algorithm 3, are as follows. For
simplicity, suppose that R has tag H = I, so A

[
R
I

]
= G, and suppose we have a subroutine for Gaussian

sampling from any desired coset of Λ⊥(G) with some small, fixed parameter
√

ΣG ≥ ηε(Λ
⊥(G)). For

example, Section 4 describes algorithms for which
√

ΣG is either 2 or
√

5. (Throughout this summary we
omit the small rounding factor r = ω(

√
log n) from all Gaussian parameters.) The algorithm for sampling

from a coset Λ⊥u (A) follows from two main observations:

1. If we sample a Gaussian z with parameter
√

ΣG from Λ⊥u (G) and produce y =
[
R
I

]
z, then y is

Gaussian over the (non-full-rank) set
[
R
I

]
Λ⊥u (G) ( Λ⊥u (A) with parameter

[
R
I

]√
ΣG (i.e., covariance[

R
I

]
ΣG[ Rt I ]). The (strict) inclusion holds because for any y =

[
R
I

]
z where z ∈ Λ⊥u (G), we have

Ay = (A
[
R
I

]
)z = Gz = u.

Note that s1(
[
R
I

]
·
√

ΣG) ≤ s1(
[
R
I

]
) · s1(

√
ΣG) ≤

√
s1(R)2 + 1 · s1(

√
ΣG), so y’s distribution is

only about an s1(R) factor wider than that of z over Λ⊥u (G). However, y lies in a non-full-rank subset
of Λ⊥u (A), and its distribution is ‘skewed’ (non-spherical). This leaks information about the trapdoor
R, so we cannot just output y.

2. To sample from a spherical Gaussian over all of Λ⊥u (A), we use the ‘convolution’ technique from [Pei10]
to correct for the above-described problems with the distribution of y. Specifically, we first choose a
Gaussian perturbation p ∈ Zm having covariance s2 −

[
R
I

]
ΣG [ Rt I ], which is well-defined as long

as s ≥ s1(
[
R
I

]
·
√

ΣG). We then sample y =
[
R
I

]
z as above for an adjusted syndrome v = u−Ap,

and output x = p + y. Now the support of x is all of Λ⊥u (A), and because the covariances of p and y
are additive (subject to some mild hypotheses), the overall distribution of x is spherical with Gaussian
parameter s that can be as small as s ≈ s1(R) · s1(

√
ΣG).

Quality analysis. Algorithm 3 can sample from a discrete Gaussian with parameter s · ω(
√

log n) where
s can be as small as

√
s1(R)2 + 1 ·

√
s1(ΣG) + 2. We stress that this is only very slightly larger — a

factor of at most
√

6/4 ≤ 1.23 — than the bound (s1(R) + 1) · ‖S̃‖ from Lemma 5.3 on the largest
Gram-Schmidt norm of a lattice basis derived from the trapdoor R. (Recall that our constructions from
Section 4 give s1(ΣG) = ‖S̃‖2 = 4 or 5.) In the iterative “randomized nearest-plane” sampling algorithm
of [Kle00, GPV08], the Gaussian parameter s is lower-bounded by the largest Gram-Schmidt norm of the
orthogonalized input basis (times the same ω(

√
log n) factor used in our algorithm). Therefore, the efficiency
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and parallelism of Algorithm 3 comes at almost no cost in quality versus slower, iterative algorithms that use
high-precision arithmetic. (It seems very likely that the corresponding small loss in security can easily be
mitigated with slightly larger parameters, while still yielding a significant net gain in performance.)

Runtime analysis. We now analyze the computational cost of Algorithm 3, with a focus on optimizing the
online runtime and parallelism (sometimes at the expense of the offline phase, which we do not attempt to
optimize).

The offline phase is dominated by sampling from DZm,r
√

Σ for some fixed (typically non-spherical)
covariance matrix Σ > I. By [Pei10, Theorem 3.1], this can be accomplished (up to any desired statistical
distance) simply by sampling a continuous Gaussian Dr

√
Σ−I with sufficient precision, then independently

randomized-rounding each entry of the sampled vector to Z using Gaussian parameter r ≥ ηε(Z).
Naively, the online work is dominated by the computation of H−1(u − w̄) and Rz (plus the call to

O(v), which as described in Section 4 requires only O(logc n) work, or one table lookup, by each of n
processors in parallel). In general, the first computation takes O(n2) scalar multiplications and additions
in Zq, while the latter takes O(m̄ · w), which is typically Θ(n2 log2 q). (Obviously, both computations are
perfectly parallelizable.) However, the special form of z, and often of H, allow for some further asymptotic
and practical optimizations: since z is typically produced by concatenating n independent dimension-k
subvectors that are sampled offline, we can precompute much of Rz by pre-multiplying each subvector by
each of the n blocks of k columns in R. This reduces the online computation of Rz to the summation of n
dimension-m̄ vectors, or O(n2 log q) scalar additions (and no multiplications) in Zq. As for multiplication by
H−1, in some applications (like GPV signatures) H is always the identity I, in which case multiplication is
unnecessary; in all other applications we know of, H actually represents multiplication in a certain extension
field/ring of Zq, which can be computed in O(n log n) scalar operations and depth O(log n). In conclusion,
the asymptotic cost of the online phase is still dominated by computing Rz, which takes Õ(n2) work, but the
hidden constants are small and many practical speedups are possible.

Theorem 5.5. Algorithm 3 is correct.

To prove the theorem we need the following fact about products of Gaussian functions.

Fact 5.6 (Product of degenerate Gaussians). Let Σ1,Σ2 ∈ Rm×m be symmetric positive semidefinite matrices,
let Vi = span(Σi) for i = 1, 2 and V3 = V1∩V2, let P = Pt ∈ Rm×m be the symmetric matrix that projects
orthogonally onto V3, and let c1, c2 ∈ Rm be arbitrary. Supposing it exists, let v be the unique point in
(V1 + c1) ∩ (V2 + c2) ∩ V ⊥3 . Then

ρ√Σ1
(x− c1) · ρ√Σ2

(x− c2) = ρ√Σ1+Σ2
(c1 − c2) · ρ√Σ3

(x− c3),

where Σ3 and c3 ∈ v + V3 are such that

Σ+
3 = P(Σ+

1 + Σ+
2 )P

Σ+
3 (c3 − v) = Σ+

1 (c1 − v) + Σ+
2 (c2 − v).

Proof of Theorem 5.5. We adopt the notation from the algorithm, let V = span(
[
R
I

]
) ⊂ Rm, let P be the

matrix that projects orthogonally onto V , and define the lattice Λ = Zm ∩ V = L(
[
R
I

]
), which spans V .

We analyze the output distribution of SampleD. Clearly, it always outputs an element of Λ⊥u (A), so let x̄ ∈
Λ⊥u (A) be arbitrary. Now SampleD outputs x̄ exactly when it chooses in Step 1 some p̄ ∈ V + x̄, followed in
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Algorithm 3 Efficient algorithm SampleDO(R, Ā,H,u, s) for sampling a discrete Gaussian over Λ⊥u (A).

Input: An oracle O(v) for Gaussian sampling over a desired coset Λ⊥v (G) with fixed parameter r
√

ΣG ≥
ηε(Λ

⊥(G)), for some ΣG ≥ 2 and ε ≤ 1/2.

Offline phase:
• partial parity-check matrix Ā ∈ Zn×m̄q ;
• trapdoor matrix R ∈ Zm̄×w;
• positive definite Σ ≥

[
R
I

]
(2 + ΣG)[ Rt I ], e.g., any Σ = s2 ≥ (s1(R)2 + 1)(s1(ΣG) + 2).

Online phase:
• invertible tag H ∈ Zn×nq defining A = [Ā | HG− ĀR] ∈ Zn×mq , for m = m̄+ w

(H may instead be provided in the offline phase, if it is known then);
• syndrome u ∈ Znq .

Output: A vector x drawn from a distribution within O(ε) statistical distance of DΛ⊥u (A),r·
√

Σ.

Offline phase:

1: Choose a fresh perturbation p← DZm,r
√

Σp
, where Σp = Σ−

[
R
I

]
ΣG [ Rt I ] ≥ 2

[
R
I

]
[ Rt I ].

2: Let p = [ p1
p2 ] for p1 ∈ Zm̄, p2 ∈ Zw, and compute w̄ = Ā(p1 −Rp2) ∈ Znq and w = Gp2 ∈ Znq .

Online phase:

3: Let v← H−1(u− w̄)−w = H−1(u−Ap) ∈ Znq , and choose z← DΛ⊥v (G),r
√

ΣG
by calling O(v).

4: return x← p +
[
R
I

]
z.

Step 3 by the unique z̄ ∈ Λ⊥v (G) such that x̄− p̄ =
[
R
I

]
z̄. It is easy to check that ρ√ΣG

(z̄) = ρ√
Σy

(x̄− p̄),
where

Σy =
[
R
I

]
ΣG [ Rt I ] ≥ 2

[
R
I

]
[ Rt I ]

is the covariance matrix with span(Σy) = V . Note that Σp + Σy = Σ by definition of Σp, and that
span(Σp) = Rm because Σp > 0. Therefore, we have (where C denotes a normalizing constant that may
vary from line to line, but does not depend on x̄):

px̄ = Pr[SampleD outputs x̄]

=
∑

p̄∈Zm∩(V+x̄)

DZm,r
√

Σp
(p̄) ·D

Λ⊥v (G),r
√

Σy
(z̄) (def. of SampleD)

= C
∑
p̄

ρ
r
√

Σp
(p̄) · ρ

r
√

Σy
(p̄− x̄)/ρr

√
ΣG

(Λ⊥v (G)) (def. of D)

= C · ρr√Σ(x̄) ·
∑
p̄

ρr
√

Σ3
(p̄− c3)/ρr

√
ΣG

(Λ⊥v (G)) (Fact 5.6)

∈ C[1, 1+ε
1−ε ] · ρr√Σ(x̄) ·

∑
p̄

ρr
√

Σ3
(p̄− c3) (Lemma 2.5 and r

√
ΣG ≥ ηε(Λ⊥(G)))

= C[1, 1+ε
1−ε ] · ρr√Σ(x̄) · ρr√Σ3

(Zm ∩ (V + x̄)− c3), (5.1)

where Σ+
3 = P(Σ+

p + Σ+
y )P and c3 ∈ v + V = x̄ + V , because the component of x̄ orthogonal to V is the

unique point v ∈ (V + x̄) ∩ V ⊥. Therefore,

Zm ∩ (V + x̄)− c3 = (Zm ∩ V ) + (x̄− c3) ⊂ V
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is a coset of the lattice Λ = L(
[
R
I

]
). It remains to show that r

√
Σ3 ≥ ηε(Λ), so that the rightmost term

in (5.1) above is essentially a constant (up to some factor in [1−ε
1+ε , 1]) independent of x̄, by Lemma 2.5. Then

we can conclude that px̄ ∈ [1−ε
1+ε ,

1+ε
1−ε ] · ρr√Σ(x̄), from which the theorem follows.

To show that r
√

Σ3 ≥ ηε(Λ), note that since Λ∗ ⊂ V , for any covariance Π we have ρP
√

Π(Λ∗) =

ρ√Π(Λ∗), and so P
√

Π ≥ ηε(Λ) if and only if
√

Π ≥ ηε(Λ). Now because both Σp,Σy ≥ 2
[
R
I

]
[ Rt I ], we

have
Σ+
p + Σ+

y ≤ (
[
R
I

]
[ Rt I ])+.

Because r
[
R
I

]
≥ ηε(Λ) for ε = negl(n) by Lemma 2.3, we have r

√
Σ3 = r

√
(Σ+

p + Σ+
y )+ ≥ ηε(Λ), as

desired.

5.5 Trapdoor Delegation

Here we describe very simple and efficient mechanism for securely delegating a trapdoor for A ∈ Zn×mq

to a trapdoor for an extension A′ ∈ Zn×m′q of A. Our method has several advantages over the previous
basis delegation algorithm of [CHKP10]: first and most importantly, the size of the delegated trapdoor grows
only linearly with the dimension m′ of Λ⊥(A′), rather than quadratically. Second, the algorithm is much
more efficient, because it does not require testing linear independence of Gaussian samples, nor computing
the expensive ToBasis and Hermite normal form operations. Third, the resulting trapdoor R has a ‘nice’
Gaussian distribution that is easy to analyze and may be useful in applications. We do note that while the
delegation algorithm from [CHKP10] works for any extension A′ of A (including A itself), ours requires
m′ ≥ m + w. Fortunately, this is frequently the case in applications such as HIBE and others that use
delegation.

Algorithm 4 Efficient algorithm DelTrapO(A′ = [A | A1],H′, s′) for delegating a trapdoor.

Input: an oracle O for discrete Gaussian sampling over cosets of Λ = Λ⊥(A) with parameter s′ ≥ ηε(Λ).
• parity-check matrix A′ = [A | A1] ∈ Zn×mq × Zn×wq ;

• invertible matrix H′ ∈ Zn×nq ;
Output: a trapdoor R′ ∈ Zm×w for A′ with tag H ∈ Zn×nq .

1: Using O, sample each column of R′ independently from a discrete Gaussian with parameter s′ over the
appropriate coset of Λ⊥(A), so that AR′ = H′G−A1.

Usually, the oracleO needed by Algorithm 4 would be implemented (up to negl(n) statistical distance) by
Algorithm 3 above, using a trapdoor R for A where s1(R) is sufficiently small relative to s′. The following
is immediate from Lemma 2.9 and the fact that the columns of R′ are independent and negl(n)-subgaussian.
A relatively tight bound on the hidden constant factor can also be derived from Lemma 2.9.

Lemma 5.7. For any valid inputs A′ and H′, Algorithm 4 outputs a trapdoor R′ for A′ with tag H′, whose
distribution is the same for any valid implementation of O, and s1(R′) ≤ s′ · O(

√
m +

√
w) except with

negligible probability.
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6 Applications

The main applications of “strong” trapdoors have included digital signature schemes in both the random-
oracle and standard models, encryption secure under chosen-ciphertext attack (CCA), and (hierarchical)
identity-based encryption. Here we focus on signature schemes and CCA-secure encryption, where our
techniques lead to significant new improvements (beyond what is obtained by plugging in our trapdoor
generator as a “black box”). Where appropriate, we also briefly mention the improvements that are possible
in the remaining applications.

6.1 Algebraic Background

In our applications we need a special collection of elements from a certain ringR, which induce invertible
matrices H ∈ Zn×nq as required by our trapdoor construction. We construct such a ring using ideas from the
literature on secret sharing over groups and modules, e.g., [DF94, Feh98]. Define the ringR = Zq[x]/(f(x))
for some monic degree-n polynomial f(x) = xn + fn−1x

n−1 + · · · + f0 ∈ Z[x] that is irreducible
modulo every prime p dividing q. (Such an f(x) can be constructed by finding monic irreducible degree-
n polynomials in Zp[x] for each prime p dividing q, and using the Chinese remainder theorem on their
coefficients to get f(x).) Recall that R is a free Zq-module of rank n, i.e., the elements of R can be
represented as vectors in Znq relative to the standard basis of monomials 1, x, . . . , xn−1. Multiplication by
any fixed element ofR then acts as a linear transformation on Znq according to the rule x · (a0, . . . , an−1)t =
(0, a0, . . . , an−2)t−an−1(f0, f1, . . . , fn−1)t, and so can be represented by an (efficiently computable) matrix
in Zn×nq relative to the standard basis. In other words, there is an injective ring homomorphism h : R → Zn×nq

that maps any a ∈ R to the matrix H = h(a) representing multiplication by a. In particular, H is invertible
if and only if a ∈ R∗, the set of units inR. By the Chinese remainder theorem, and because Zp[x]/(f(x))
is a field by construction of f(x), an element a ∈ R is a unit exactly when it is nonzero (as a polynomial
residue) modulo every prime p dividing q. We use this fact quite essentially in the constructions that follow.

6.2 Signature Schemes

6.2.1 Definitions

A signature scheme SIG for a message spaceM (which may depend on the security parameter n) is a tuple
of PPT algorithms as follows:

• Gen(1n) outputs a verification key vk and a signing key sk.

• Sign(sk, µ), given a signing key sk and a message µ ∈M, outputs a signature σ ∈ {0, 1}∗.
• Ver(vk, µ, σ), given a verification key vk, a message µ, and a signature σ, either accepts or rejects.

The correctness requirement is: for any µ ∈M, generate (vk, sk)← Gen(1n) and σ ← Sign(sk, µ). Then
Ver(vk, µ, σ) should accept with overwhelming probability (over all the randomness in the experiment).

We recall two standard notions of security for signatures. An intermediate notion is strong unforge-
ability under static chosen-message attack, or su-scma security, is defined as follows: first, the forger F
outputs a list of distinct query messages µ(1), . . . , µ(Q) for some Q. (The distinctness condition simplifies
our construction, and does not affect the notion’s usefulness.) Next, we generate (vk, sk) ← Gen(1n)
and σ(i) ← Sign(sk, µ(i)) for each i ∈ [Q], then give vk and each σ(i) to F . Finally, F outputs an at-
tempted forgery (µ∗, σ∗). The forger’s advantage Advsu-scma

SIG (F) is the probability that Ver(vk, µ∗, σ∗)
accepts and (µ∗, σ∗) 6= (µ(i), σ(i)) for all i ∈ [Q], taken over all the randomness of the experiment. The
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scheme is su-scma-secure if Advsu-scma
SIG (F) = negl(n) for every nonuniform probabilistic polynomial-time

algorithm F .
Another notion, called strong existential unforgeability under adaptive chosen-message attack, or su-acma

security, is defined similarly, except that F is first given vk and may adaptively choose the messages µ(i) to
be signed, which need not be distinct.

Using a family of chameleon hash functions, there is a generic transformation from eu-scma- to eu-acma-
security; see, e.g., [KR00]. Furthermore, the transformation results in an offline/online scheme in which the
Sign algorithm can be precomputed before the message to be signed is known; see [ST01]. The basic idea
is that the signer chameleon hashes the true message, then signs the hash value using the eu-scma-secure
scheme (and includes the randomness used in the chameleon hash with the final signature). A suitable type of
chameleon hash function has been constructed under a weak hardness-of-SIS assumption; see [CHKP10].

6.2.2 Standard Model Scheme

Here we give a signature scheme that is statically secure in the standard model. The scheme itself is essentially
identical (up to the improved and generalized parameters) to the one of [Boy10], which is a lattice analogue of
the pairing-based signature of [Wat05]. We give a new proof with an improved security reduction that relies
on a weaker assumption. The proof uses a variant of the “prefix technique” [HW09] also used in [CHKP10].

Our scheme involves a number of parameters. For simplicity, we give some exemplary asymptotic bounds
here. (Other slight trade-offs among the parameters are possible, and more precise values can be obtained
using the more exact bounds from earlier in the paper and the material below.) In what follows, ω(

√
log n)

represents a fixed function that asymptotically grows faster than
√

log n.

• G ∈ Zn×nkq is a gadget matrix for large enough q = poly(n) and k = dlog qe = O(log n), with the
ability to sample from cosets of Λ⊥(G) with Gaussian parameter O(1) · ω(

√
log n) ≥ ηε(Λ

⊥(G)).
(See for example the constructions from Section 4.)

• m̄ = O(nk) and D = Dm̄×nk
Z,ω(
√

logn)
so that (Ā, ĀR) is negl(n)-far from uniform for Ā← Zn×m̄q and

R← D, and m = m̄+ 2nk is the total dimension of the signatures.

• ` is a suitable message length (see below), and s = O(
√
`nk) · ω(

√
log n)2 is a sufficiently large

Gaussian parameter.

The legal values of ` are influenced by the choice of q and n. Our security proof requires a special
collection of units in the ringR = Zq[x]/(f(x)) as constructed in Section 6.1 above. We need a sequence of
` units u1, . . . , u` ∈ R∗, not necessarily distinct, such that any nontrivial subset-sum is also a unit, i.e., for
any nonempty S ⊆ [`],

∑
i∈S ui ∈ R∗. By the characterization of units inR described in Section 6.1, letting

p be the smallest prime dividing q, we can allow any ` ≤ (p− 1) · n by taking p− 1 copies of each of the
monomials xi ∈ R∗ for i = 0, . . . , n− 1.

The signature scheme has message space {0, 1}`, and is defined as follows.

• Gen(1n): choose Ā← Zn×m̄q , choose R ∈ Zm̄×nk from distribution D, and let A = [Ā | G− ĀR].

For i = 0, 1, . . . , `, choose Ai ← Zn×nkq . Also choose a syndrome u← Znq .

The public verification key is vk = (A,A0, . . . ,A`,u). The secret signing key is sk = R.

• Sign(sk, µ ∈ {0, 1}`): let Aµ =
[
A | A0 +

∑
i∈[`] µiAi

]
∈ Zn×mq , where µi ∈ {0, 1} is the ith bit

of µ, interpreted as an integer. Output v ∈ Zm sampled from DΛ⊥u (Aµ),s, using SampleD with trapdoor
R for A (which is also a trapdoor for its extension Aµ).
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• Ver(vk, µ,v): let Aµ be as above. Accept if ‖v‖ ≤ s ·
√
m and Aµ · v = u; otherwise, reject.

Notice that the signing process takesO(`n2k) scalar operations (to add up the Ais), but after transforming
the scheme to a fully secure one using chameleon hashing, these computations can be performed offline
before the message is known.

Theorem 6.1. There exists a PPT oracle algorithm (a reduction) S attacking the SISq,β problem for large
enough β = O(`(nk)3/2) · ω(

√
log n)3 such that, for any adversary F mounting an su-scma attack on SIG

and making at most Q queries,

AdvSISq,β (SF ) ≥ Advsu-scma
SIG (F)/(2(`− 1)Q+ 2)− negl(n).

Proof. Let F be an adversary mounting an su-scma attack on SIG, having advantage δ = Advsu-scma
SIG (F).

We construct a reduction S attacking SISq,β . The reduction S takes as input m̄+ nk + 1 uniformly random
and independent samples from Znq , parsing them as a matrix A = [Ā | B] ∈ Zn×(m̄+nk)

q and syndrome
u′ ∈ Znq . It will use F either to find some z ∈ Zm of length ‖z‖ ≤ β − 1 such that Az = u′ (from which it
follows that [A | u′] · z′ = 0, where z′ = [ z

−1 ] is nonzero and of length at most β), or a nonzero z ∈ Zm
such that Az = 0 (from which is follows that [A | u′] · [ z0 ] = 0).

We distinguish between two types of forger F : one that produces a forgery on an unqueried message
(a violation of standard existential unforgeability), and one that produces a new signature on a queried
message (a violation of strong unforgeability). Clearly any F with advantage δ has probability at least δ/2 of
succeeding in at least one of these two tasks.

First we consider F that forges on an unqueried message (with probability at least δ/2). Our reduction S
simulates the static chosen-message attack to F as follows:

• Invoke F to receive up to Q messages µ(1), µ(2), . . . ∈ {0, 1}`. Compute the set P of all strings
p ∈ {0, 1}≤` having the property that p is a shortest string for which no µ(j) has p as a prefix.
Equivalently, P represents the set of maximal subtrees of {0, 1}≤` (viewed as a tree) that do not
contain any of the queried messages. The set P has size at most (`− 1) ·Q+ 1, and may be computed
efficiently. (See, e.g., [CHKP10] for a precise description of an algorithm.) Choose some p from P
uniformly at random, letting t = |p| ≤ `.
• Construct a verification key vk = (A,A0, . . . ,A`,u = u′): for i = 0, . . . , `, choose Ri ← D, and let

Ai = HiG− ĀRi, where Hi =


h(0) = 0 i > t

(−1)pi · h(ui) i ∈ [t]

−
∑

j∈[t] pj ·Hj i = 0

.

(Recall that u1, . . . , u` ∈ R = Zq[x]/(f(x)) are units whose nontrivial subset-sums are also units.)

Note that by hypothesis on m̄ and D, for any choice of p the key vk is only negl(n)-far from uniform
in statistical distance. Note also that by our choice of the Hi, for any message µ ∈ {0, 1}` having p
as a prefix, we have H0 +

∑
i∈[`] µiHi = 0. Whereas for any µ ∈ {0, 1}` having p′ 6= p as its t-bit

prefix, we have

H0 +
∑
i∈[`]

µiHi =
∑
i∈[t]

(p′i − pi) ·Hi =
∑

i∈[t],p′i 6=pi

(−1)pi ·Hi = h
( ∑
i∈[t],p′i 6=pi

ui
)
,

which is invertible by hypothesis on the uis. Finally, observe that with overwhelming probability
over any fixed choice of vk and the Hi, each column of each Ri is still independently distributed as
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a discrete Gaussian with parameter ω(
√

log n) ≥ ηε(Ā) over some fixed coset of Λ⊥(Ā), for some
negligible ε = ε(n).

• Generate signatures for the queried messages: for each message µ = µ(i), compute

Aµ =
[
A | A0 +

∑
i∈[`]

µiAi

]
=
[
Ā | B | HG− Ā

(
R0 +

∑
i∈[`]

µiRi

)]
,

where H is invertible because the t-bit prefix of µ is not p. Therefore, R = (R0 +
∑

i∈[`] µiRi) is
a trapdoor for Aµ. By the conditional distribution on the Ris, concatenation of subgaussian random
variables, and Lemma 2.9, we have

s1(R) =
√
`+ 1 ·O(

√
m̄+

√
nk) · ω(

√
log n) = O(

√
`nk) · ω(

√
log n)

with overwhelming probability. Since s = O(
√
`nk) ·ω(

√
log n)2 is sufficiently large, we can generate

a properly distributed signature vµ ← DΛ⊥u (Aµ),s using SampleD with trapdoor R.

Next, S gives vk and the generated signatures to F . Because vk and the signatures are distributed within
negl(n) statistical distance of those in the real attack (for any choice of the prefix p), with probability at least
δ/2−negl(n), F outputs a forgery (µ∗,v∗) where µ∗ is different from all the queried messages, Aµ∗v

∗ = u,
and ‖v∗‖ ≤ s ·

√
m. Furthermore, conditioned on this event, µ∗ has p as a prefix with probability at least

1/((` − 1)Q + 1) − negl(n), because p is still essentially uniform in P conditioned on the view of F .
Therefore, all of these events occur with probability at least δ/(2(`− 1)Q+ 2)− negl(n).

In such a case, S extracts a solution to its SIS challenge instance from the forgery (µ∗,v∗) as follows.
Because µ∗ starts with p, we have Aµ∗ =

[
Ā | B | −ĀR∗

]
for R∗ = R0 +

∑
i∈[`] µ

∗
iRi, and so

[Ā | B]︸ ︷︷ ︸
A

[
Im̄ −R∗

Ink

]
v∗︸ ︷︷ ︸

z

= u mod q,

as desired. Because ‖v∗‖ ≤ s ·
√
m = O(

√
`nk) · ω(

√
log n)2 and s1(R∗) =

√
`+ 1 · O(

√
m̄ +

√
nk) ·

ω(
√

log n) with overwhelming probability (conditioned on the view of F and any fixed Hi), we have
‖z‖ = O(`(nk)3/2) · ω(

√
log n)3, which is at most β − 1, as desired.

Now we consider an F that forges on one of its queried messages (with probability at least δ/2). Our
reduction S simulates the attack to F as follows:

• Invoke F to receive up to Q distinct messages µ(1), µ(2), . . . ∈ {0, 1}`. Choose one of these messages
µ = µ(i) uniformly at random, “guessing” that the eventual forgery will be on µ.

• Construct a verification key vk = (A,A0, . . . ,A`,u): generate Ai exactly as above, using p = µ.
Then choose v← DZm,s and let u = Aµv, where Aµ is defined in the usual way.

• Generate signatures for the queried messages: for all the queries except µ, proceed exactly as above
(which is possible because all the queries are distinct and hence do not have p = µ as a prefix). For µ,
use v as the signature, which has the required distribution DΛ⊥u (Aµ),s by construction.

When S gives vk and the signatures to F , with probability at least δ/2− negl(n) the forger must output a
forgery (µ∗,v∗) where µ∗ is one of its queries, v∗ is different from the corresponding signature it received,
Aµ∗v

∗ = u, and ‖v∗‖ ≤ s ·
√
m. Because vk and the signatures are appropriately distributed for any
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choice µ that S made, conditioned on the above event the probability that µ∗ = µ is at least 1/Q− negl(n).
Therefore, all of these events occur with probability at least δ/(2Q)− negl(n).

In such a case, S extracts a solution to its SIS challenge from the forgery as follows. Because µ∗ = µ, we
have Aµ∗ =

[
Ā | B | −ĀR∗

]
for R∗ = R0 +

∑
i∈[`] µ

∗
iRi, and so

[Ā | B]︸ ︷︷ ︸
A

[
Im̄ −R∗

Ink

]
(v∗ − v)︸ ︷︷ ︸

z

= 0 mod q.

Because both ‖v∗‖, ‖v‖ ≤ s ·
√
m = O(

√
`nk) · ω(

√
log n)2 and s1(R∗) = O(

√
`nk) · ω(

√
log n) with

overwhelming probability (conditioned on the view of F and any fixed Hi), we have ‖z‖ = O(`(nk)3/2) ·
ω(
√

log n)3 with overwhelming probability, as needed. It just remains to show that z 6= 0 with overwhelming
probability. To see this, write w = v∗ − v = (w1,w2,w3) ∈ Zm̄ × Znk × Znk, with w 6= 0. If w2 6= 0 or
w3 = 0, then z 6= 0 and we are done. Otherwise, choose some entry of w3 that is nonzero; without loss of
generality say it is wm. Let r = (R0)nk. Now for any fixed values of Ri for i ∈ [`] and fixed first nk − 1
columns of R0, we have z = 0 only if r · wm = y ∈ Rm̄ for some fixed y. Conditioned on the adversary’s
view (specifically, (A0)nk = Ār), r is distributed as a discrete Gaussian of parameter ≥ 2ηε(Λ

⊥(Ā)) for
some ε = negl(n) over a coset of Λ⊥(Ā). Then by Lemma 2.7, we have r = y/wm with only 2−Ω(n)

probability, and we are done.

6.3 Chosen Ciphertext-Secure Encryption

Definitions. A public-key cryptosystem for a message space M (which may depend on the security
parameter) is a tuple of algorithms as follows:

• Gen(1n) outputs a public encryption key pk and a secret decryption key sk.

• Enc(pk,m), given a public key pk and a message m ∈M, outputs a ciphertext c ∈ {0, 1}∗.
• Dec(sk, c), given a decryption key sk and a ciphertext c, outputs some m ∈M∪ {⊥}.

The correctness requirement is: for any m ∈M, generate (pk, sk)← Gen(1n) and c← Enc(pk,m). Then
Dec(sk, c) should output m with overwhelming probability (over all the randomness in the experiment).

We recall the two notions of security under chosen-ciphertext attacks. We start with the weaker notion
of CCA1 (or “lunchtime”) security. Let A be any nonuniform probabilistic polynomial-time algorithm.
First, we generate (pk, sk)← Gen(1n) and give pk to A. Next, we give A oracle access to the decryption
procedure Dec(sk, ·). Next, A outputs two messages m0,m1 ∈ M and is given a challenge ciphertext
c← Enc(pk,mb) for either b = 0 or b = 1. The scheme is CCA1-secure if the views of A (i.e., the public
key pk, the answers to its oracle queries, and the ciphertext c) for b = 0 versus b = 1 are computationally
indistinguishable (i.e., A’s acceptance probabilities for b = 0 versus b = 1 differ by only negl(n)). In the
stronger CCA2 notion, after receiving the challenge ciphertext, A continues to have access to the decryption
oracle Dec(sk, ·) for any query not equal to the challenge ciphertext c; security it defined similarly.

Construction. To highlight the main new ideas, here we present a public-key encryption scheme that
is CCA1-secure. Full CCA2 security can be obtained via relatively generic transformations using either
strongly unforgeable one-time signatures [DDN00], or a message authentication code and weak form of
commitment [BCHK07]; we omit these details.

Our scheme involves a number of parameters, for which we give some exemplary asymptotic bounds. In
what follows, ω(

√
log n) represents a fixed function that asymptotically grows faster than

√
log n.
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• G ∈ Zn×nkq is a gadget matrix for large enough prime power q = pe = poly(n) and k = O(log q) =
O(log n). We require an oracle O that solves LWE with respect to Λ(Gt) for any error vector in some
P1/2(q ·B−t) where ‖B‖ = O(1). (See for example the constructions from Section 4.)

• m̄ = O(nk) and D = Dm̄×nk
Z,ω(
√

logn)
so that (Ā, ĀR) is negl(n)-far from uniform for Ā← Zn×m̄q and

R← D, and m = m̄+ nk is the total dimension of the public key and ciphertext.

• α is an error rate for LWE, for sufficiently large 1/α = O(nk) · ω(
√

log n).

Our scheme requires a special collection of elements in the ring R = Zq[x]/(f(x)) as constructed in
Section 6.1 (recall that here q = pe). We need a very large set U = {u1, . . . , u`} ⊂ R with the “unit
differences” property: for any i 6= j, the difference ui − uj ∈ R∗, and hence h(ui − uj) = h(ui)− h(uj) ∈
Zn×nq is invertible. (Note that the uis need not all be units themselves.) Concretely, by the characterization
of units in R given above, we take U to be all linear combinations of the monomials 1, x, . . . , xn−1 with
coefficients in {0, . . . , p− 1}, of which there are exactly pn. Since the difference between any two such
distinct elements is nonzero modulo p, it is a unit.

The system has message space {0, 1}nk, which we map bijectively to the cosets of Λ/2Λ for Λ = Λ(Gt)
via some function encode that is efficient to evaluate and invert. Concretely, letting S ∈ Znk×nk be any basis
of Λ, we can map m ∈ {0, 1}nk to encode(m) = Sm ∈ Znk.

• Gen(1n): choose Ā← Zn×m̄q and R← D, letting A1 = −ĀR mod q. The public key is pk = A =
[Ā | A1] ∈ Zn×mq and the secret key is sk = R.

• Enc(pk = [Ā | A1],m ∈ {0, 1}nk): choose nonzero u ← U and let Au = [Ā | A1 + h(u)G].
Choose s← Znq , ē← Dm̄

Z,αq, and e1 ← Dnk
Z,s where s2 = (‖ē‖2 + m̄(αq)2) · ω(

√
log n)2.

Let
bt = 2(stAu mod q) + et + (0, encode(m))t mod 2q,

where e = (ē, e1) ∈ Zm and 0 has dimension m̄. (Note the use of mod-2q arithmetic: 2(stAu mod q)
is an element of the lattice 2Λ(At

u) ⊇ 2qZm.) Output the ciphertext c = (u,b) ∈ U × Zm2q.

• Dec(sk = R, c = (u,b) ∈ U × Zm2q): Let Au = [Ā | A1 + h(u)G] = [Ā | h(u)G− ĀR].

1. If c does not parse or u = 0, output ⊥. Otherwise, call InvertO(R,Au,b mod q) to get values
z ∈ Znq and e = (ē, e1) ∈ Zm̄×Znk for which bt = ztAu+et mod q. (Note that h(u) ∈ Zn×nq

is invertible, as required by Invert.) If the call to Invert fails for any reason, output ⊥.

2. If ‖ē‖ ≥ αq
√
m̄ or ‖e1‖ ≥ αq

√
2m̄nk · ω(

√
log n), output ⊥.

3. Let v = b− e mod 2q, parsed as v = (v̄,v1) ∈ Zm̄2q × Znk2q . If v̄ 6∈ 2Λ(Āt), output ⊥. Finally,
output encode−1(vt

[
R
I

]
mod 2q) ∈ {0, 1}nk if it exists, otherwise output ⊥.

(In practice, to avoid timing attacks one would perform all of the Dec operations first, and only then
finally output ⊥ if any of the validity tests failed.)

Lemma 6.2. The above scheme has only 2−Ω(n) probability of decryption error.

The error probability can be made zero by changing Gen and Enc so that they resample R, ē, and/or e1

in the rare event that they violate the corresponding bounds given in the proof below.
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Proof. Let (A,R) ← Gen(1n). By Lemma 2.9, we have s1(R) ≤ O(
√
nk) · ω(

√
log n) except with

probability 2−Ω(n). Now consider the random choices made by Enc(A,m) for arbitrary m ∈ {0, 1}nk.
By Lemma 2.6, we have both ‖ē‖ < αq

√
m̄ and ‖e1‖ < αq

√
2m̄nk · ω(

√
log n), except with probability

2−Ω(n). Letting e = (ē, e1), we have∥∥et[RI ]∥∥ ≤ ‖ētR‖+ ‖e1‖ < αq ·O(nk) · ω(
√

log n).

In particular, for large enough 1/α = O(nk) · ω(
√

log n) we have et
[
R
I

]
∈ P1/2(q ·B−t). Therefore, the

call to Invert made by Dec(R, (u,b)) returns e. It follows that for v = (v̄,v1) = b− e mod 2q, we have
v̄ ∈ 2Λ(Āt) as needed. Finally,

vt
[
R
I

]
= 2(sth(u)G mod q) + encode(m) mod 2q,

which is in the coset encode(m) ∈ Λ(Gt)/2Λ(Gt), and so Dec outputs m as desired.

Theorem 6.3. The above scheme is CCA1-secure assuming the hardness of decision-LWEq,α′ for α′ =
α/3 ≥ 2

√
n/q.

Proof. We start by giving a particular form of discretized LWE that we will need below. Given access to an
LWE distribution As,α′ over Znq × T for any s ∈ Znq (where recall that T = R/Z), by [Pei10, Theorem 3.1]
we can transform its samples (a, b = 〈s,a〉/q+e mod 1) to have the form (a, 2(〈s,a〉 mod q)+e′ mod 2q)
for e′ ← DZ,αq, by mapping b 7→ 2qb + DZ−2qb,s mod 2q where s2 = (αq)2 − (2α′q)2 ≥ 4n ≥ ηε(Z)2.
This transformation maps the uniform distribution over Znq × T to the uniform distribution over Znq × Z2q, so
the discretized distribution is pseudorandom under the hypothesis of the theorem.

We proceed via a sequence of hybrid games. The game H0 is exactly the CCA1 attack with the system
described above.

In gameH1, we change how the public key A and challenge ciphertext c∗ = (u∗,b∗) are constructed, and
the way that decryption queries are answered (slightly), but in a way that introduces only negl(n) statistical
difference with H0. At the start of the experiment we choose nonzero u∗ ← U and let the public key be
A = [Ā | A1] = [Ā | −h(u∗)G − ĀR], where Ā and R are chosen in the same way as in H0. (In
particular, we still have s1(R) ≤ O(

√
nk) · ω(

√
log n) with overwhelming probability.) Note that A is still

negl(n)-uniform for any choice of u∗, so conditioned on any fixed choice of A, the value of u∗ is statistically
hidden from the attacker. To aid with decryption queries, we also choose an arbitrary (not necessarily short)
R̂ ∈ Zm̄×nk such that A1 = −ĀR̂ mod q.

To answer a decryption query on a ciphertext (u,b), we use an algorithm very similar to Dec with
trapdoor R. After testing whether u = 0 (and outputting ⊥ if so), we call InvertO(R,Au,b mod q) to get
some z ∈ Znq and e ∈ Zm, where

Au = [Ā | A1 + h(u)G] = [Ā | h(u− u∗)G− ĀR].

(If Invert fails, we output ⊥.) We then perform steps 2 and 3 on e ∈ Zm and v = b− e mod 2q exactly as
in Dec, except that we use R̂ in place of R when decoding the message in step 3.

We now analyze the behavior of this decryption routine. Whenever u 6= u∗, which is the case with
overwhelming probability because u∗ is statistically hidden, by the “unit differences” property on U we have
that h(u − u∗) ∈ Zn×nq is invertible, as required by the call to Invert. Now, either there exists an e that
satisfies the validity tests in step 2 and such that bt = ztAu + et mod q for some z ∈ Znq , or there does not.
In the latter case, no matter what Invert does in H0 and H1, step 2 will return ⊥ in both games. Now consider
the former case: by the constraints on e, we have et

[
R
I

]
∈ P1/2(q ·B−t) in both games, so the call to Invert

36



must return this e (but possibly different z) in both games. Finally, the result of decryption is the same in
both games: if v̄ ∈ 2Λ(Āt) (otherwise, both games return ⊥), then we can express v as

vt = 2(stAu mod q) + (0,v′)t mod 2q

for some s ∈ Znq and v′ ∈ Znk2q . Then for any solution R ∈ Zm̄×nk to A1 = −ĀR mod q, we have

vt
[
R
I

]
= 2(sth(u)G mod q) + (v′)t mod 2q.

In particular, this holds for the R in H0 and the R̂ in H1 that are used for decryption. It follows that both
games output encode−1(v′), if it exists (and ⊥ otherwise).

Finally, in H1 we produce the challenge ciphertext (u,b) on a message m ∈ {0, 1}nk as follows. Let
u = u∗, and choose s ← Znq and ē ← Dm̄

Z,αq as usual, but do not choose e1. Note that Au = [Ā | −ĀR].
Let b̄t = 2(stĀ mod q) + ēt mod 2q. Let

bt1 = −b̄tR + êt + encode(m) mod 2q,

where ê ← Dnk
Z,αq

√
m·ω(

√
logn)

, and output (u,b = (b̄,b1)). We now show that the distribution of (u,b)

is within negl(n) statistical distance of that in H0, given the attacker’s view (i.e., pk and the results of
the decryption queries). Clearly, u and b̄ have essentially the same distribution as in H0, because u is
negl(n)-uniform given pk, and by construction of b̄. By substitution, we have

bt1 = 2(st(−ĀR) mod q) + (ētR + êt) + encode(m).

Therefore, it suffices to show that for fixed ē, each 〈ē, ri〉+ êi has distribution negl(n)-far from DZ,s, where
s2 = (‖ē‖2 +m(αq)2) · ω(

√
log n)2, over the random choice of ri (conditioned on the value of Āri from

the public key) and of êi. Because each ri is an independent discrete Gaussian over a coset of Λ⊥(Ā), the
claim follows essentially by [Reg05, Corollary 3.10], but adapted to discrete random variables using [Pei10,
Theorem 3.1] in place of [Reg05, Claim 3.9].

In game H2, we only change how the b̄ component of the challenge ciphertext is created, letting it be
uniformly random in Zm̄2q. We construct pk, answer decryption queries, and construct b1 in exactly the
same way as in H1. First observe that under our (discretized) LWE hardness assumption, games H1 and
H2 are computationally indistinguishable by an elementary reduction: given (Ā, b̄) ∈ Zn×m̄q × Zm̄2q where
Ā is uniformly random and either b̄t = 2(stĀ mod q) + et mod 2q (for s ← Znq and e ← Dm̄

Z,αq) or b̄
is uniformly random, we can efficiently emulate either game H1 or H2 (respectively) by doing everything
exactly as in the two games, except using the given Ā and b̄ when constructing the public key and challenge
ciphertext.

Now by the leftover hash lemma, (Ā, b̄t, ĀR,−b̄tR) is negl(n)-uniform when R is chosen as in H2.
Therefore, the challenge ciphertext has the same distribution (up to negl(n) statistical distance) for any
encrypted message, and so the adversary’s advantage is negligible. This completes the proof.
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