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Abstract. We present a study on the algebraic degree of iterated permutations seen as multivari-
ate polynomials. Our main result shows that this degree depends on the algebraic degree of the
inverse of the permutation which is iterated. This result is also extended to non-injective balanced
vectorial functions where the relevant quantity is the minimal degree of the inverse of a permutation
expanding the function. This property has consequences in symmetric cryptography since several
attacks or distinguishers exploit a low algebraic degree, like higher-order differential attacks, cube
attacks and cube testers, or algebraic attacks. Here, we present some applications of this improved
bound to a higher-degree variant of the block cipher KA, to the block cipher Rijndael-256 and to
the inner permutations of the hash functions ECHO and JH.

1 Introduction

Most of the symmetric cryptographic primitives that are used nowadays, including block ciphers
and hash functions, base their design on an inner function, that is iterated a high number of
times. This transformation, called the round function, is very often a permutation. The algebraic
degree of this permutation, i.e., the degree of the corresponding multivariate polynomial, is a
quantity that plays an important role on the security of the symmetric primitive. Actually,
a cryptographic primitive of low algebraic degree is vulnerable to many attacks, for instance
higher-order differential [27,26,28] attacks, algebraic attacks [13,12] or cube attacks [16].

Here, we show that, even if the inverse of the round permutation F' is never used in practice,
as it is the case for Feistel ciphers or for hash functions, its degree also plays a fundamental role
on the degree of the composition Go F' and in consequence on the overall degree of the primitive.
Even if the degree of the round function is high, if the degree of the inverse is low, the degree
of the cipher will be much lower than believed. This result helps in general the understanding
of the evolution of the algebraic degree of iterated permutations. Several earlier works have
established new bounds on the degree of such permutations: most notably, [11] connects the
degree of G o F' with the divisibility of the Walsh spectrum of F' by a high power of 2 and
a recent result [10] applies to the families of functions composed of several smaller balanced
functions. Here, we derive some new bounds on the degree of G o F' which involve the degree
of F~1. In the design of some particular ciphers, the nonlinear primitives of the round function
are not permutations. This is for example the case for the DES, that uses a collection of eight
6 x 4 balanced functions. For such functions, the notion of inverse does not obviously exist. We
show however, that the overall degree of the cipher depends on the degree of the inverse of a
balanced expansion of the function and thus a result, similar to the one for permutations, can
be derived.

As illustrations, we apply our results to A, a variant of XN, a cipher proposed by Knudsen
and Nyberg in [31]. In this variant, the quadratic round permutation which was originally used
in N is replaced by a function with higher degree but derived from a permutation whose
inverse has algebraic degree 2. Our new bounds are also applied to the cipher Rijndael-256 and
to two finalists of the SHA-3 competition, ECHO and JH.



The rest of the paper is organized as follows. After some preliminaries on the algebraic
degree of a vectorial function, the technique of higher-order differential cryptanalysis is recalled
in Section 2 and it is illustrated by the attack proposed by Jakobsen and Knudsen [23] against
the KN block cipher. Section 3 presents the main result on the influence of the inverse of a
permutation F' to the degree of G o F' and includes some corollaries. A variant of the main
result for non-injective balanced functions is presented in Section 4, while some applications are
described in Section 5.

2 Exploiting a low algebraic degree in cryptanalysis

2.1 Degree of a vectorial function

The whole paper focuses on functions F' from F% into F5'. The coordinates of such a function F
are the m Boolean functions F;, 1 < i < m, such that F(z) = (Fi(z),..., Fn(z)) for all z.

The algebraic degree of F' is usually defined by the algebraic degrees of its coordinates as
follows.

Definition 1. Let f be a function from F3 into Fo. Then, f can be uniquely written as a
multivariate polynomial in Falz1, ..., x5]/(22 — 21),. .., (22 — x,), named its algebraic normal

form: .
f(x1,... ) = Z aun;”.

u=(u1,...,un)EFy  i=1

The (algebraic) degree of f is then defined as
deg f = max{wt(u) : uw € F§,a, # 0},

where wt denotes the Hamming weight of a binary vector.
For a function F from F3 into F3', m > 1, the (algebraic) degree of F' is the mazimal
algebraic degree of its coordinates.

From the other side, every vectorial function F' from F% into F3 can also be seen as a
univariate polynomial over Fon. This representation is possible because Fon can be identified
with an n-dimensional vector space over Fs. Thus, for every such F, there exists a unique
univariate polynomial representation over Fon of degree at most 2 — 1,

2" —1
F(JZ) = Z bi.%'i, b; € Fan.
1=0

In this case, it can be shown that the algebraic degree of F represented in such a way is given
by
deg F' = max{wt(i) : 0<i< 2" and b; # 0},

where wt(i) denotes the Hamming weight of the n-bit vector corresponding to the binary ex-
pansion of .
2.2 Higher-order differential cryptanalysis

Many statistical attacks against symmetric cryptosystems exploit the fact that the system
involves a family of functions (Fy)reic (resp. of permutations) having both following properties:

— the inputs and outputs of (F)reic can be computed from plaintext/ciphertext pairs;



— (Fx)rek is not a pseudo-random function (resp. a pseudo-random permutation).

Roughly speaking, this second property means that a randomly chosen function within this
family can be distinguished with some non-negligible advantage from a randomly chosen function
(resp. permutation) (see Chapter 3 in [5] for formal definitions of this notion). Several properties
may be used as a distinguisher including the fact that some given coefficients in the algebraic
normal forms of some Boolean functions derived from F} are not distributed as it is expected
for a family of randomly chosen functions. Indeed, the coefficients of the algebraic normal form
of a Boolean function f can be easily computed from some input-output pairs of f as follows:

ay, = Z f(x) mod 2 .

z€Fy,x;<u;

In particular, this formula shows that a, can be computed from 2% pairs of inputs-outputs
of f. It is worth noticing that, when all the 2" values of f are known, the 2" coefficients of
the algebraic normal form can be computed all together by the Moebius transform with time
complexity O(n2") (see e.g. [24, p. 286]).

The simplest attack exploiting some property of the coefficients of the algebraic normal form
is the higher-order differential attack introduced by Knudsen [26]: this attack uses that, for all
values of k, all coordinates of F}, have degree strictly less than n (resp. strictly less than n—1 in
the case of permutations). The algebraic degree of Fy is then of primary importance since the
data complexity of this cryptanalysis is proportional to 24¢¢ fx Indeed, Bhattacharyya et al. have
recently shown that testing whether a Boolean function has degree at most d (or equivalently
whether it belongs to the Reed-Muller code of order d) with constant error probability requires
the knowledge of O(29) values of the function only [8]. Moreover, this data complexity is known
to be optimal [1, Corollary 7].

In the case of iterated block ciphers, i.e., ciphers consisting of several iterations of the same
round permutation P parameterized by different round keys:

PkTOu-OPkQOPkly

the target function Fj whose inputs and outputs can be computed by the attacker usually
corresponds to the composition of several rounds of the cipher. Typically, F}, corresponds to the
encryption function where the last round is omitted. Then, the fact that Fj has a low degree
can be used to recover the last-round subkey either by an exhaustive search [23], or by setting
up a low-degree algebraic system in these subkey bits which can be solved with time complexity
depending on the algebraic degree of the round function [34,28].

The higher-order differential attack has been generalized to other types of symmetric prim-
itives, especially to stream ciphers, under different names (including cube distinguishers) in
[33,20,22,36,3]. Cube attacks [16] and algebraic attacks [13,12] also exploit some low-degree re-
lations between some components of the cryptosystem, but they mainly aim at reducing the time
complexity for recovering the secret key from a low-degree distinguisher. Finally, even if both
univariate and multivariate degrees are related, all these attacks must be distinguished from the
attacks exploiting a low univariate degree, like the interpolation attack and its variants [23,2,35].

2.3 Attacking the KN -cipher and its variant

An example of an attack exploiting the low algebraic degree of a symmetric primitive is the
higher-order differential attack presented by Jakobsen and Knudsen [23] against the JCA -cipher.



This construction, proposed by Nyberg and Knudsen in [31], is a 6-round Feistel cipher over
Fg4 with a 198-bit secret key. Its round permutation is defined as follows

FP x FP F§ x FY
(r,y) = (y,z+ToS(E(w)+ki))
where k; is the ith round subkey, £ is a linear expansion from F3? into F33, T is a linear

truncation from F3? into F32 and S is the power function 2% over Fyss. In this definition, the
finite field Fyss is identified with the vector space F33.

Ti—1 Yi—1
k;
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Fig. 1. Round i of the KN cipher

An important remark is that the decryption function is exactly the same as the encryption
function, except that the round keys have to be used in reverse order. This is because the round
permutation obtained with the Feistel construction is involutive. The main motivation behind
this design is that the choice of S, which is the only nonlinear part in the cipher, guarantees an
optimal resistance to both linear and differential attacks. Thus, 23 over Fon, n odd, was chosen,
since it is an almost bent function [29]. More precisely, some lower bounds on the probabilities
of the best differential and of the best linear approximation show that 6 rounds of this cipher
are resistant to these attacks.

However, one of the main weaknesses of this cipher, identified by Jakobsen and Knudsen [23],
is that the encryption function has a low algebraic degree. Indeed, for any r-round Feistel cipher,
it can be observed that, when the right half of the input yg is a constant, the function which
associates the left part of the output z, to the left part of the input xy has degree at most
(deg S)"~2. Therefore, since the Sbox in the A/-cipher is quadratic, there exists a distinguisher
for r rounds with data and time complexity 22"7*+1 This must be compared to the best known
generic attacks against any 4-round and 5-round Feistel ciphers which have respective data
complexity 26 and 232 [32]. Here, the whole encryption function can be distinguished from a
random permutation with data complexity 2'7. Also, the last round key can be recovered by
an exhaustive search: for each possible value for the last round key kg, the attacker decrypts



the last round, computes x5 and she determines whether the function xy — x5 has degree less
than or equal to 8. This last attack recovers 33 key bits with average time complexity 24! and
data complexity 29 pairs of chosen plaintexts-ciphertexts. This attack has been improved by
Shimoyama et al. [34] who replaced the exhaustive search for kg by the solving of a linear system
in the bits of kg, since the involved equations have degree (deg .S — 1). The data complexity of
the attack is then unchanged but the average time complexity for recovering the 33-key bits
reduces to 24,

Therefore, it is now well-known that, in an r-round block cipher, the round permutation P
must be chosen such that (deg P)" is much higher than the block size. Since a similar distin-
guisher can also be applied by an attacker to the decryption function, i.e., to the function

_ p—1 -1 —1
Dp=PF o...oP ~ oP =,

the inverse of the round permutation must also satisfy this property, i.e., (deg P~!)" must be
much higher than the block size. In a Feistel cipher, the condition on the degree of the round
function can be refined by imposing that (deg.S)"~2 must be much higher than half of the block
size. But, in this case, the condition on the degree of the inverse of S is not necessary since
S~1 is not involved neither in the encryption function nor in the decryption function. It may
only affect the complexity of some algebraic attacks [13]. Therefore, a variant of this cipher,
that we name KA, suggested by Nyberg and Knudsen in the same paper [31] does not present
the same weakness. This variant is obtained by modifying S and using instead the inverse of a
quadratic permutation. Actually, it is known that any permutation and its inverse present the
same resistance to differential and linear cryptanalysis [30]. But, a major difference is that S and
S~ may have different algebraic degrees. For instance, if S is a quadratic power permutation
over Fon, n odd, i.e., S(x) = 2% ! with ged(s,n) = 1, then the algebraic degree of S~! is equal
to ”T‘H [29]. Since the implementation complexity of the inverse of 23 over Fgss is unacceptable
in most applications, we consider the nonlinear function over F32 composed of four parallel

applications of the same function & defined over F$ like in KN

c:F§— F$
x —too(e(x)))

where e is an affine expansion from F§ into F§ with maximal rank, ¢ is a truncation from
F) into F§, and o is the inverse of a quadratic power permutation z + 221 over Fyo, e.g.,
o(xz) = 2! which is the inverse of 3. This function, which is the only nonlinear part of the
cipher, has algebraic degree 5. It is worth noticing that it has a high univariate degree which
prevents interpolation attacks. The round function of KN is depicted on Figure 2: it is defined
by
F3? x F3? — F3? x F3?
(x,y) = (y,x+ L oS (L(x)+ ki))

where S corresponds to four parallel applications of &, k; is the i-th 32-bit subkey, and £ and
L' are two linear bijections over F3? which aim at providing diffusion.

The attack proposed by Jakobsen and Knudsen against XN does not apply to KN, since
the round permutation has degree 5, and the previously used upper bound does not provide
any relevant information on the degree of the left part of the output for 5 rounds or more. This
example tends to show that the Sbox used in a Feistel cipher must have good cryptographic
properties but, if this Sbox is a permutation, it does not seem necessary that its inverse has
good cryptographic properties too. In the following, we show that, even if ¢! is never involved
in the KN cipher, its algebraic degree affects the security of the cipher regarding higher-order
differential attacks. We actually exhibit a new upper bound on the degree of the composition
G o F, for any G, which involves the degree of F~1.
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Fig. 2. Round i of the KA cipher

3 On the degree of G o F when F' is a permutation

3.1 General problem

We now focus on the following general problem: let F' be a function from F7 into Fy and G be
a function from F¥% into F5', for some m. Then, we aim at exhibiting some particular classes of
functions F' such that the trivial bound

deg(G o F) < deg(F) deg(G)

can be improved.
The following two families corresponding to some common situations in cryptographic ap-
plications have been previously identified in [11] and [10].

Proposition 1. [11] Let F be a function from ¥4 into F§ and G be a function from F3 into
F3'. Assume that all Walsh coefficients of F, i.e., all

3 (- F@rer g p e By

zeFy
are divisible by 2¢ for some integer £ > 1, then
deg(Go F)<n—/{+degG .

When F' is a permutation, we can deduce the following corollary which involves the degree
of F~1,

Corollary 1. Let F' be a permutation of ¥y and let G be a function from ¥5 into 3. Then,

we have
n—1

min(deg F,deg F—1)

deg(GoF)<n—1- | +degc.



Proof. Obviously, the set of all Walsh coefficients of a permutation and of its inverse are the

same since
Z (71)b.F(m)+a.x _ Z (71>a-F_1(gc)+b-x )

zeFy zeFy

Moreover, a lower bound of the highest power of 2 which divides all Walsh coefficients of a
Boolean function can be derived from Katz theorem [25]: for any function F' and any nonzero
b € FY, we have

Z (_1)b-F(a3)+a~:c = Z (_1)b~F(:c) mod 2’—%“—1 .

zeFy zeFy

Since F' is a permutation, any nonzero linear combination of its coordinates is balanced. Then,
by applying this result both to F' and F~!, we obtain that all Walsh coefficients of F are
divisible by 2¢ with
-1
0>1+4 n ] .

- {min(deg F,deg F1)

In particular, if F~! is quadratic, Corollary 1 leads to

n—1

deg(G o F) < | "= | +deg G,

which may provide some relevant information if deg G < [251]. But, this condition on G does

not hold in the problem raised by the search of a distinguisher on 5 rounds of the XN’ cipher.
It has recently be shown in [10] that the bound given by Proposition 1 can be improved when

F corresponds to the parallel applications of smaller balanced functions, i.e., F' = (Si,...,Ss).

This particular situation is actually very common in cryptography for obvious implementation

reasons.

3.2 Main result

We now show that, when F' is a permutation, the upper bound given by Corollary 1 can be
improved. This improvement relies on the following theorem which bounds the maximum degree
for the product of any k coordinates of F', for all 1 < k < n. The following notation will then
be extensively used.

Definition 2. Let F' be a function from F% into Fi'. For any integer k, 1 < k < m, §(F)
denotes the mazximal algebraic degree of the product of any k (or fewer) coordinates of F':

0n(F) = d Fi| .
M) = 9 e 08 (EL )

In particular, 61(F) = deg F.

Theorem 1. Let F be a permutation on F%. Then, for any integers k and £, §;(F~') <n —k
if and only if k(F) <n — L.

Proof. We only have to show that if §;(F~!) < n—k then §;(F) < n — £. Indeed, the reciprocal
relation is obtained by exchanging the roles of F' and F~!.



Let m: 2w [[;cx Fi(z), with |[K| < k. For L C {1,...,n}, with |L| < ¢, we denote by ar,
the coefficient of the monomial [];,; z; of degree n —[L|. We will show that ar, = 0.

ar, = Z m(x) mod 2

zcFy
r;j=0,j€L

=#{reFy: 2;=0,j€Land Fi(z)=1,ie€ K} mod 2
—#{yeFy:yi=1icKand F,'(y) =0,j € L} mod 2,

where the last equality comes from the fact that F' is a permutation, implying that there is a
one-to-one correspondence between x and y = F(z). Additionally, ijl(y) =0 for all j € L if

and only if [, (1+ Fj_l(y)) = 1. Then,

ap =#{y€Fy:yi=1ic Kand [J(1+F;'(y)) =1} mod 2. (1)
jEL

Now, we define the Boolean function

HK7L:{QJEF311‘i:1,i€K}—> Fy
x = ier (1 + F (=) -

We have
ayj, = 'wt(H[gL) mod 2 .

Hp 1, is a function of n — k variables and it has degree at most S¢(F~1). Then, as by hypothesis
Se(F~Y) < n—k, Hg 1 is of even Hamming weight and thus aj, = 0, which means that & (F) <
n—4L. ad

This theorem explains for instance the observation reported in [19] on the inverse of the quadratic
permutation x over F3 used in the hash function KEccak [7]. Since §1(x) = deg x = 2, we have
09 (X_l) < 4.

The following (less precise) result can be derived from the trivial bound on &,(F~!).

Corollary 2. Let F' be a permutation of ¥y and let G be a function from ¥5 into F3'. Then,

we have
n—l—degGJ

deg(Go F) <n— L deg(F 1)

Proof. Obviously, deg(GoF') < dqeg (F'). But the previous theorem shows that dqeg ¢ (F) < n—/¢
for some integer £ if and only if §,(F~!) < n — deg G. However, we have from the trivial bound
that §p(F~1) < £deg(F~1). Tt follows that d,(F~1) < n — deg G for any integer ¢ satisfying

< | sl

Indeed,

Vl —1—deg GJ B { L&;?;%%J if n — deg G # 0 mod deg(F~1)

deg(F—1> - n—deg G

deg(F=1) — 1 otherwise.

Therefore, in all cases, we have

n—1—degCG

deg(Ffl)L deg(F—1)

J<n—degG,

8



implying that

_ _ i n—1—degG
Se(F~1) < fdeg(F~ 1) < deg(F 1){WF_1§J <n—degG.
We then deduce that | — dee &
n—1—deg
ddega(F) <mn — LwJ

O

Obviously, the upper bound of the previous theorem gets better when the degree of F~! de-
creases. Moreover, if G is balanced, this bound is relevant only if it improves the obvious bound
deg(G o F) < n. It then provides some information if deg G < n —1 —deg F~!, while the bound

in Corollary 1 was relevant only for deg G < [min( deg"; éeg F—l)-"

3.3 Some corollaries

Some simple corollaries of Theorem 1 can be obtained by setting k = 1 in the theorem. In this
case, we have deg(F~!) < n — £ if and only if §;(F) < n — 1. We then deduce the following
result and its well-known consequence.

Corollary 3. Let F' be a permutation of F5. Then,
deg(F™1) =n —min{k : 6,(F)>n—1}.

In particular, deg(F~') =n — 1 if and only if deg(F) =n — 1.

Moreover, for any integer k£ such that

b= [lgr] 1

0(F)<kdegF <n—1.

we have

It follows that

implying that

-1 n—1
deg(F™7) <n— {degF—‘ '
We then recover in a different way the bound on deg(F~!) which can be derived from Katz
theorem [25] on the divisibility of the Walsh spectrum of a permutation. Actually, all Walsh
coefficients of F' are divisible by [ dzg}ﬂ + 1 and it is well-known that the degree of a function
whose Walsh coefficients are divisible by 2 is at most (n + 1 — £) (see e.g. [11, Prop. 3]).
Corollary 3 also implies the following.

Corollary 4. Let F' be a permutation of Fy. Then, the product of k coordinates of F' has
degree (n — 1) if and only if n —deg(F~') <k <n—1.
In particular, 6p,—1(F) =n — 1.

Proof. The previous corollary implies that the smallest k& such that §x(F) > n — 1, is equal
to n — deg(F~!). Moreover, it is known that 6,(F) = n if and only if & = n. Finally, since
n —deg(F~1) <n — 1, we deduce that 6,_1(F) = n — 1 for any permutation of F%. O



The above results can also be used for improving the bound on deg(G o F') found in [10]
when F' is the concatenation of several smaller permutations.

Theorem 2. Let F' be a permutation from F3 into F4 corresponding to the concatenation of
s smaller permutations, S, ...,Ss, defined over F3°. Then, for any function G from FY into
5, we have

deg(G o F) < — "= EE), )

where ]
ng —1

= max .
v 1<i<ng—1 (’rl[) — maXi<;<s 51(5’]))

Most notably, we have
< max ma o — 1 D01, de (s:h
max max | —————, — — . )
7= 1<5<s ng — deg(Sj)7 2 ’ & J
Proof. We denote by ~; the quantity

nog — /)
Yi = )
ng — maxlgjgs (5,(Sj)

and we will try to compute the maximal ~; for 1 <i < ng—1, i.e. .
Fori=1,
nog — 1
= max ——————————.
T EISS (no — deg(S)))
For 2 < i < ng — max deg(S; '), we get from Corollary 4 that max &;(S;) < ng — 2, and
1<j<s J 1<j<s
thus . )
ng—1 ng—1v _ng—2
max
1<5j<s (no — 6i(S;)) — 2 T 2

Yi =
Finally, for the remaining indexes, i.e. for i > ng — max deg(Sj_l), we get that
<j<s

1o —1 . -1
P — < nyg—1< deg(S: ).
i 1%1?%{3 (no — (SZ(SJ)) =0 t= 1%;‘82(3 eg( J )

4 Generalization to balanced functions from F7} into F7' with m < n

On certain occasions in some symmetric primitives, the functions used to provide confusion
are not permutations, but balanced functions F' : Fy — F3', with m < n. An example of this
design is the first encryption standard cipher, DES [21], whose round function uses a parallel
application of eight different 6 x 4 Sboxes, all of them of degree 5 in the six variables.

An interesting problem is to be able to predict in some manner the evolution of the algebraic
degree of the cipher after few rounds of encryption. Clearly, as the Sboxes of DES are not
permutations, they cannot be inverted. Nevertheless, similar results as before can be deduced.

Definition 3. Let F' : F§ — F3', with m < n, F = (Fi,...,Fy), be a balanced function. A
permutation P of FY is called an expansion of F' if its first m output coordinates correspond to
the coordinates of F, i.e., for all i, 1 <1 <m,

Py(a) = Fy(x), Vo € F}, .

10



In other words, F' is expanded in a permutation with n outputs in the following way: as F' is
balanced, each of the 2™ vectors of F7' is taken by F' exactly 2"~™ times. We then complete
all of these equal vectors by concatenating to each of them a different element of F5™™ in
order to obtain 2"~ different vectors of F4. For example, if (n,m) = (6,4), v=(0,1,1,0) is a
vector in the image set of F' obtained for exactly four inputs, namely a, b, ¢ and d in Fg. Then,
one expansion of F' can be defined by associating to a, b, ¢ and d the four different vectors
of F§, (0,1,1,0,0,0,),(0,1,1,0,0,1), (0,1,1,0,1,0) and (0,1,1,0,1,1). These four images are
obtained by concatenating v = (0, 1,1,0) with all elements of F3. There are (2"~™!)2" different
expansions of a given F'.

Theorem 3. Let F' be a balanced function from Fy to F5', with m < n. Let k and ¢ be two
integers with 1 <k <m and 1 <€ < n. Then, the following three properties are equivalent.

(i) There exists a permutation Pr of FY expanding F such that, in any product of ¢ coordinates
of Pzt all monomials of degree greater than or equal to (n — k) have degree strictly less
than (n —m) in the last n — m variables.

(ii) For any permutation Pp of ¥y expanding F', we have that, in any product of £ coordinates
of PEl, all monomials of degree greater than or equal to (n — k) have degree strictly less
than (n —m) in the last n —m variables.

(iii) 64(F) <n —¢.

Proof. Let K C {1,...,m}and L C {1,...,n}. Let mx denote the product of the coordinates F;
for i € K. Then, the coefficient ag 7, of the monomial [, (1, n\L Ti in the algebraic normal
form of F' is given by

a1 = g i (x) mod 2
zeFY
x;=0,5€L

=#{reFy: 2;=0,j€Land Fi(r)=1,ie€ K} mod 2
=#{reFy: 2;=0,j€ L and (Pp)i(z)=1,i€ K} mod 2

where the last equality holds for any expansion Pr of F. Then, if Pr is a permutation, setting
y = Pp(z) leads to

axy=#{y€Fy :y;=1,i€ K and (Pz');(y) =0,j € L} mod 2
=#{yeFy:y;=1,i€ K and (Pz");(y) =0,7 € L} mod 2,

implying that ax, ; = 0 if and only if the Boolean function

HK7LI{$EF3:xi:1,Z'€K}—> F
x = [ L (14 (PEI)Z(ZL')) :

has degree strictly less than (n — k).

Let us first prove that (i) implies (iii). We deduce from the previous reasoning that, if
Condition (i) holds, any monomial of degree greater than or equal to (n — k) in the ANF of the
n-variable Boolean function

v [0+ (PE)ie)
€L
is not a factor of &y, 1 ... x,. Therefore, the restriction of such a monomial to any set {z € F% :
x; =1,i € K} with K C {1,...,m} has degree strictly less than (m — k) + (n —m) = (n — k).
It follows that, for any choice of K C {1,...,m}, Hg, has degree strictly less than (n — k).
Then, we have: (ii) = (i) = (iii).
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Conversely, we can prove that (iii) implies (ii). Suppose that (ii) does not hold, i.e., there
exists some permutation Pr expanding F' and some set L C {1, ..., m} such that the n-variable
Boolean function

X H(Pgl)z(x)
€L
contains a monomial of the form z,41...2, [[;c;2: for some set I C {1,...,m} of size at
least (m — k). We can suppose that L is the smallest such set for inclusion (otherwise, we
choose the smallest L' C L satisfying the property). Let us choose K = {1,...,m} \ I where
Tmi1-.-Tn ;e i is the monomial with highest degree of this form in the ANF of 7. By
hypothesis, the size of K is at most k, and it is greater than or equal to 1 since 7} cannot have
degree n when |L| < n [10, Prop 1]. Since L is minimal for inclusion and

Hio(x) =Y [J0+Pahi),

L'CcLiel’

it is clear that Hpy r has degree (n — k) if and only if the restriction of 7} to the set {z €
Fy :x; = 1,i € K} has degree (n — k). However, the algebraic normal form of 7 contains the
monomial Ty, 41 ...2, Higz K Ti, implying that H ;, has degree at least (n — k). It follows that,
for these particular choices of L and K, ax,;, = 1 implying that there exists some product of k
or fewer coordinates of F' which has degree greater than or equal to (n — ¢). Finally, it follows
that all three properties are equivalent. ad

A corollary similar to Corollary 2 can be deduced now for the case of non-injective balanced
functions.

Corollary 5. Let F' be a balanced function from F4 into F3' and G a function from F5' into
F’zC For any permutation F* expanding F', we have

n—1—degG
dog(Go F) < n— | Pl deB G
BGoF)<n deg(F*1)
Proof. Let F* be a permutation expanding F. We have shown in the proof of Corollary 2 that
the trivial bound implies that 6,(F*~!) < n — degG for any

)< Ln—l—degGJ
— L deg(F* 1)

It follows that, when ¢ satisfies this condition, the product of any ¢ coordinates of F*~1 does

not contain any monomial of degree (n — deg GG). Since Condition (i) in Theorem 3 is satisfied,

we deduce that

n—1—degG J

deg(G o F) < baeg(F) <n — { deg(F*—1)

O

It is known that the product of k& coordinates of a balanced function F' with n input variables
has degree n if and only if & = n (see e.g. [10, Prop 1]. Moreover, when F' is a permutation,
we have shown in Corollary 4 that the degree of F~! determines whenever the product of some
coordinates of F' has degree (n — 1). Here, we provide a similar result in the case where F' is a
non-injective balanced function.

12



Corollary 6. Let F' be a balanced function from F4 to F3', with m < n. Then, 6,(F) <n—2
if and only if, for any y € F3', the 2"~ preimages of y by F' sum to zero, i.e.,

> a0
x:F(z)=y
where the sum corresponds to the addition in F1.

Proof. From Theorem 3 applied to & = m and ¢ = 1, we know that 6,,(F) < n — 2 if and
only if there exists some permutation Pr expanding F' such that any monomial with degree
at least (n —m) in the ANF of any coordinate of P 1'is not a factor of Tmal - - - Tp. Since a
monomial of degree less than (n —m) cannot be a factor of ;41 ...y, this equivalently means
that any monomial in the ANF of any coordinate of P, ! is not a factor of T+l --- T Let

fIFR X FI™ R,
(x7y) = [PF_l(x7y)]’L y

for some i. For any (u,v) € F§* x F;™™, a,, denotes the coefficient in the ANF of f of
the monomial qul 20 Ti le £0 Tm-+1+i- Let 1,,—,, denote the all-one vector in F§ ™. For any
z € F§' and y € F;™™, we have

f(x,y)zz Zau7y mod2,

vy |u=sz

where z =< y means that z; < y; for all 7. Then

Z f(xay): Z Z Zau,v = Z Ny Zau,v mod 2,

yeFy yeFy—m vy |use veRym |use

where
N,=#{y e F}™™ : v <y} mod 2 =2""""v"") mod 2.

Then, N, = 0 except when v is the all-one vector. Therefore,

Yo flay) =) au,, mod2.

yeFy;™™ uzw
We then deduce that all a, 1, ,, = 0 for v € F3" if and only if
Z f(z,y) mod 2 =0
yeFy; ™™

for all z € F3'. It is worth noticing that this property is similar to the property used in cube
attacks (see [16, Theorem 1]).
Since this property holds for any coordinate f of Pp ! the required condition equivalently

means that, for any z € F3,
> Pil(zy) =0,

yeFy ™™

where the sum is an addition in F%. By definition of Pp, all elements P, Yz, y) when y € |
correspond to the preimages of x under F'. The condition can then be written as

Z z=0.

z:F(z)=x
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5 Applications to some symmetric primitives

In this section, we will show how the previous results can be used in order to predict the
evolution of the algebraic degree of some chosen permutations that are the main building blocks
of some well-known block ciphers and hash functions. We will start with the case of the block
cipher A described in Section 2.3.
5.1 Attacking the KAN’-cipher

We will show now how Theorem 1 can be used to attack the A’-cipher. At this aim, we study
the algebraic degree of the function which maps g, the left half of the plaintext, to x, which
is the left half of the output of the cipher after r rounds. Therefore, we need to express x, as a
function of zg. In the following, we denote by F} the function over F32 defined by:

Fp(z) =L oS (L(z)+ k) .
Then, we have

T2 = T0 + Fkl (yO)
x3 = yo + Fk, (zo + Fk, (v0))
T4 = To + Fk1(3/0) + Fi, (yO + Fy, (xo + Fkl(yo)))

Let us now denote by x the element of F30 defined by
r=E& (,C(xo + Fkl (yo)) + ]CQ)

where € is the linear expansion from F32 into F30 composed of 4 applications of the smaller
expansion e. Then, xy can be computed from z by

o = L7 (E%(x) + k) + Fi, (vo)

where £* is the function from F3° into F3? defined by £* (£(z)) = = and £*(x) = 0 if z & Imé&.
Such a function exists since £ has maximum rank. Then, x4 can be written as a function of x

T4 = L1 (5*(1‘) + ]{72) + Fk3 (yo +L oTo S(ZL‘)) ,

where S is the permutation of F3¢ corresponding to four parallel applications of o, and T is the
function from F3% into F32 defined by four applications of the truncation ¢t. Now, since

5 = X3 + Fk4(1‘4)
we deduce that
x5 +x3 = Fiyy [L71(EX(2) + ko) + Figy (yo + L 0 T 0 S(2))] .

The degree of x5 as a function of zg is at most the maximum between the degree of x3, which is
at most 5, and the degree of x5+ x3, seen as a function of . We then focus on this last quantity.
We write

x5+ w3 =GoS(x)

with
G(y) = Fr, [L71 (E7(S™H(y)) + k2) + Fiy (o + L o T(y))] -
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Degree of G. Since Fy, has degree 5, G can be decomposed as a sum of terms, each consisting
of the product of i coordinates of S~ multiplied by the product of at most (5 — i) coordinates
of S. Since S™! has degree 2, we get that

deg G < Jnax (20 + 05-i(5))

From Corollary 2, it is known that 65(5) < 36 — |22, implying that &5(S) < 20. Therefore, we
deduce that deg G < 22.

Degree of G o S. We now apply Corollary 2 for upper-bounding the degree of G o S, exploiting
the fact that S~! has degree 2. Then, we get

deg(G o §) < 36 — L% _ QQJ ,

2

or equivalently,
deg(GoS) <29,

and we finally find that x5 is a function of degree at most 29 of xy. This leads to a distinguisher
on 5 rounds of KA’ with data complexity 23° that improves the generic distinguisher. It is
worth noticing that the same upper bound can be derived from Theorem 2 which additionally
exploits the fact that S corresponds to the concatenation of 4 permutations o defined over F?.

Variant with non-bijective Sboxes. The nonlinear function in KN’ can also be seen as the
concatenation of 4 balanced Sboxes o’ from F9 into F§. Instead of applying Corollary 2 based
on the degree of the inverse of the nonlinear function S, we can then rely on the existence of a
permutation S* expanding the 36 x 32 Sbox, with deg((S*)~!) = 2. Then, Corollary 6 applies
and also shows that x5 is a function of degree at most 29 of x.

5.2 On the algebraic degree of Rijndael-256

Rijndael-128 [14] is the algorithm selected by the NIST in 2000 as the winner of the AES
competition in order to replace the DES. Rijndael-Ny, with N, € {128,160, 192,224,256} has
the form of a Substitution-Permutation-network. The key size INj varies between 128,192 and
256 bits. Its round transformation applies to a INp-bit state, that is represented as a 4 x t-byte
matrix A = (a; ), with t = N, /32. The states for Rijndael-128 and Rijndael-256 are for example
depicted on Figure 3.

@o,0 | @0,1 | @0,2 | @0,3 | A0,4 | G0,5 | Q0,6 | Q0,7 @o,0 | @o,1 | @0,2 | @0,3
a10(01,1|01,2|0A1,3|0A1,4|0A1,5|041,6|0a1,7 aio0|01,1(01,2|0a1,3
G20 |0d21 (022|023 |0A24 |A25|026|0A2.7 a20|0a21|0G22|0G23
a3,0|0a3,1|G3,2|03,3|0A34|03,5|03,6|0a3,7 a3,0|as,1|asz2|as;s

Fig. 3. The states of Rijndael-256 and Rijndael-128

Four basic layers are composing a round of the Rijndael-N, transformation.
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SubBytes: The only nonlinear transformation of the cipher. Every byte is updated by an

8 x 8 Sbox of degree 7. The inverse transformation has the same degree.

— ShiftRows: Linear transformation that rotates to the left the bytes in each row by a certain
offset. This offset depends on the block size N,. The offset is for example {0,1,2,3} for
Rijndael-128 and {0, 1, 3,4} for Rijndael-256.

— MixColumns: Linear transformation that applies in parallel to every column of the state.

AddRoundKey: The combination of the state with the round subkey using bitwise XOR.

A round R of the transformation applied to a state S corresponds thus to
AddRoundKey o MixColumns o ShiftRows o SubBytes(S).

The number of rounds depends on the block size and of the key size. These values can be found
in Table 1.

Table 1. Number of rounds for the Rijndael block cipher.

Ny
128 160 192 224 256
128/ 10 11 12 13 14
Ng(192| 12 12 12 13 14
256 14 14 14 14 14

As seen from the description, the only source of nonlinearity for Rijndael-V; is the SubBytes
transformation. This transformation has algebraic degree 7. By using the trivial bound as an
estimation for the degree, we can see that the degree after two rounds is at most 72 = 49 and
after three rounds it is bounded by max(N;, — 1, 7%). Thus, it may be believed that only 3 rounds
of encryption are enough for achieving the maximal degree.

We will show using the results of Section 3, that the above estimations are way too pes-
simistic. We will see in particular that for Rijndael-256, at least 7 rounds are needed to achieve
the maximal degree.

We start by giving a bound for the degree of two rounds of Rijndael-256. By using the
SuperShox view [15], we can see these two rounds as the parallel application of eight copies of
a function Sss operating on 32-bit words, followed by a linear transformation. Sso corresponds
to a so-called SDS transformation: it consists of two layers of four 8 x 8 balanced Sboxes of
degree 7, separated by a linear layer. Therefore, we can use Theorem 2 of [10] and get that

32-7

deg R? = deg S3p < 32 — <29.

As the state of Rijndael-256 is wide, after two rounds of the permutation, not all the parts
of the state have been mixed together. We can apply thus a similar approach as before and see
three rounds of the permutation as the parallel application of two copies of a function Siog,
operating now on 128-bit words, followed again by a linear layer. Theorem 2 of [10] gives now

128 — 28
deg R® = deg S1og < 128 — — < 114.

Let F' = R3. F is a permutation of degree at most 113 and clearly F? = RS. By bounding
thus the degree of F? we get a bound for the degree of Rijndael-256 after six rounds. From

16



Theorem 2, we get that the constant v associated to this permutation is at most 127 and we

deduce finally that

256 — 11
deg F? = deg R® < 256 — 56T73 < 255.

Therefore, at least 7 rounds are needed to achieve the maximal degree 255.

5.3 Application to the ECHO hash function

The ECHO [6] hash function has been designed by Benadjila et al. for the NIST SHA-3 com-
petition. It uses the HAIFA mode of operation. Its compression function has a 2048-bit input
(corresponding to the chaining value and a message block whose respective lengths depend on
the size of the message digest), and it outputs a 512-bit or a 1024-bit value. It relies on a 2048-bit
AES-based permutation P.

The permutation P updates a 2048-bit state, which can be seen as a 4 x 4 AES state,
composed of 128-bit words. In every round R, three operations modify the state. These are the
BIG.SubWords, BIG.ShiftRows and BIG.MixColumns transformations. These transformations
can be seen as generalizations of the three classical AES transformations. In particular,

— BIG.SubWords is a nonlinear transformation applied independently to every 128-bit cell. It
consists of two AES rounds.

— The BIG.ShiftRows and BIG.MixColumns transformations are exact analogues of the AES
ShiftRows and MixColumns transformations respectively, with the only difference that they
do not operate on bytes but on 128-bit words.

The number of rounds r is specified to be 8 for the 256-bit candidate. Finally, each bit in the
output of the compression function is defined as a linear combination of some output bits of P
and some input bits.

We will see how the algebraic degree of the permutation P varies with the number of rounds.
We will show that the degree does not increase as predicted and reaches its maximum value
much later than expected. The algebraic degree of the permutation P was believed to be high, as
in every round R the input has to pass twice through the Sbox layer, of degree 7. As 7* = 2401,
two rounds seemed to be enough to achieve the highest possible degree.

BIG.SubWords is the only source of nonlinearity in the round permutation. It is a 128-bit
transformation corresponding to two rounds of AES. Its degree thus matches the degree of the
S35 transformation of Rijndael-256 and is hence at most 28. The two-round permutation R? is a
permutation of the set of 2048-bit states, but it can be decomposed as four parallel applications
of a permutation S512 operating on 512-bit words, followed by a linear layer. We will determine
the degree of any of these four applications. After the first round of the permutation P every
bit of the state consists of polynomials of degree at most 28. By applying to this state the first
layer of Sboxes in every BIG.SubWords, the degree gets at most 7-28 = 196. We can apply now
the bound of Theorem 2 to get the following bound on the degree of R?:

12—-1
deg R? = deg S510 < 512 — w < 467 .

Let F' = R2. F is then a permutation of degree at most 466. From Theorem 2, the constant
~ associated to this permutation is at most 466, as the degrees of R? and of its inverse are both
upper-bounded by 466, therefore

2048 — 466
deg F? = degR* < 2048 — T 2046.
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The same bounds hold for the inverse round transformation. Due to this observation, we
are able to distinguish the inner permutation in ECHO from a random one. This can be done
for instance by constructing zero-sum structures [9,4]. By choosing the intermediate states after
4 rounds of the permutation in the cosets of any subspace V with dimension 22046, we get
zero-sum partitions for the entire P permutation.

5.4 Application to the JH hash function

JH [37] is a hash function family, having some members submitted to the NIST hash function
competition. It has been chosen in late 2010 to be one of the five finalists of the contest.

The compression function in JH is constructed from a block cipher with constant key. This
compression function is based on an inner permutation, named F,; and is composed of 42 steps
of a round function R4, where d = 8 for the SHA-3 candidate.

Ry applies to a state of 2912 bits, divided into 4-bit words. It consists of 3 different layers:
an Sbox layer, a linear layer and a permutation layer P,.

— The Sbox layer corresponds to the parallel application of 2¢ Sboxes to the state. Two
different Sboxes, Sy and S7, are used in JH. Both of them, as also their inverses, are of
degree 3. The selection of the Sbox to use is made by the round constant bits, which are not
xored to the state as done in other constructions.

— The linear layer mixes the 2¢ words two by two.

— The permutation P; permutes the words of the state.

Two rounds of Ry, for d = 4, can be seen in Figure 4.

by b by by by b by b b by by By by, by by by

Fig. 4. Two rounds of R4

A round of the permutation is of algebraic degree 3, as the only source of nonlinearity of
the cipher comes from the 4-bit Sboxes. Thus, if we try to estimate the evolution of the degree
by using the trivial bound, we can see that the degree of the permutation after 6 rounds is at
most deg(RS) < 3% = 729 and consequently the maximal degree seems to be reached just after 7
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rounds of encryption. We will show again by applying the results of Section 3 that the algebraic
degree of JH does not increase as expected.

An important observation on the structure of the Rg permutation is that for r < 8, r rounds
of R®, denoted by Rg, can be seen as the concatenation of 29=" permutations S, over F%TH.
Thus, for 2 < r < 8 a bound on the degree of Rg can be obtained with the help of Theorem 2
in [10]:

gt 2 des(RyY)
- 3

The bounds on the degree up to 8 rounds of the permutation, given by the above formula,
can be seen in Table 2. The same bounds hold for the inverse permutation.

deg(Ry)

# Rounds|Bound on deg(Rg)
1 3
6
12
25
51
102
204
8 409
Table 2. Upper bounds on the degree of up to 8 rounds of the JH permutation.

N OOt W N

Using now Theorem 2, we get that the constant «(Sg) of the permutation Sg over F3'2 is at
most 409. Thus we have that

1024 — deg(RS)
7(Ss)

deg R§® < 1024 — < 1023.

6 Conclusions

Our work points out that, in many situations, the algebraic degree of an iterated function does
not grow as fast as expected with the number of rounds. In particular, the degree of the inverse
of the iterated permutation or, in the case of a non-injective function, the minimal degree of the
inverse of a permutation expanding the function, has some influence on the degree of the iterated
function. This observation can be used for exhibiting non-ideal behaviors in some cryptographic
primitives, like block ciphers or hash functions. However, turning such distinguishers into real
attacks, like a key-recovery attack on a cipher or a (second)-preimage attack on a hash function,
is a difficult problem. The most promising approach consists in combining some properties of
the algebraic normal form of an inner function (e.g., its low degree) and the solving of some
algebraic system, as proposed in [28,18]. Another open problem is to determine the impact of
our result on some stream ciphers which appear to be vulnerable to several attacks exploiting
the existence of some function with a low degree [16,17].
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