From Non-Adaptive to Adaptive Pseudorandom Functions

Itay Berman Iftach Haitner*

January 11, 2012

Abstract

Unlike the standard notion of pseudorandom functions (PRF), a non-adaptive PRF is only
required to be indistinguishable from a random function in the eyes of a non-adaptive distin-
guisher (i.e., one that prepares its oracle calls in advance). A recent line of research has studied
the possibility of a direct construction of adaptive PRFs from non-adaptive ones, where direct
means that the constructed adaptive PRF uses only few (ideally, constant number of) calls to
the underlying non-adaptive PRF. Unfortunately, this study has only yielded negative results,
showing that “natural” such constructions are unlikely to exist (e.g., Myers [EUROCRYPT ’04],
Pietrzak [CRYPTO ’05, EUROCRYPT ’06]).

We give an affirmative answer to the above question, presenting a direct construction of
adaptive PRFs from non-adaptive ones. The suggested construction is extremely simple, a
composition of the non-adaptive PRF with an appropriate pairwise independent hash function.

1 Introduction

A pseudorandom function family (PRF), introduced by Goldreich, Goldwasser, and Micali [11],
cannot be distinguished from a family of ¢ruly random functions by an efficient distinguisher who
is given an oracle access to a random member of the family. PRFs have an extremely important
role in cryptography, allowing parties, which share a common secret key, to send secure messages,
identify themselves and to authenticate messages [10, 13]. In addition, they have many other
applications, essentially in any setting that requires random function provided as black-box [2, 3,
6, 7, 14, 18]. Different PRF constructions are known in the literature, whose security is based on
different hardness assumption. Constructions relevant to this work are those based on the existence
of pseudorandom generators [11] (and thus on the existence of one-way functions [12]), and on, the
so called, synthesizers [17].

In this work we study the question of constructing (adaptive) PRFs from non-adaptive PRFs.
The latter primitive is a (weaker) variant of the standard PRF we mentioned above, whose security
is only guaranteed to hold against non-adaptive distinguishers (i.e., ones that “write” all their
queries before the first oracle call). Since a non-adaptive PRF can be easily cast as a pseudorandom
generator or as a synthesizer, [11, 17] tell us how to construct (adaptive) PRF from a non-adaptive
one. In both of these constructions, however, the resulting (adaptive) PRF makes ©(n) calls to the
underlying non-adaptive PRF (where n being the input length of the functions).!

*School of Computer Science, Tel Aviv University. E-mail: iftachh@cs.tau.ac.il, itayberm@post.tau.ac.il.
We remark that if one is only interested in polynomial security (i.e., no adaptive PPT distinguishes with more
than negligible probability), then w(logn) calls are sufficient (cf., [8, Sec. 3.8.4, Exe. 30]).

A recent line of work has tried to figure out whether more efficient reductions from adaptive to
non-adaptive PRF’s are likely to exist. In a sequence of works [16, 19, 20, 5], it was shown that
several “natural” approaches (e.g., composition or XORing members of the non-adaptive family
with itself) are unlikely to work. See more in Section 1.3.

1.1 Our Result

We show that a simple composition of a non-adaptive PRF with an appropriate pairwise indepen-
dent hash function, yields an adaptive PRF. To state our result more formally, we use the following
definitions: a function family F is T'= T'(n)-adaptive PRF, if no distinguisher of running time at
most 7', can tell a random member of F from a random function with advantage larger than 1/7.
The family F is T-non-adaptive PRF, if the above is only guarantee to hold against non-adaptive
distinguishers. Given two function families F; and Fa, we let Fj o Fy [resp., F1 € F2| be the
function family whose members are all pairs (f,g) € F1 X Fa2, and the action (f,g)(z) is defined
as f(g(x)) [resp., f(z) @ g(z)]. We prove the following statements (see Section 3 for the formal
statements).

Theorem 1.1 (Informal). Let F be a (p(n) - T'(n))-non-adaptive PRF, where p € poly is function
of the evaluating time of F, and let H be an efficient pairwise-independent function family mapping
strings of length n to [T'(n)](o1)n, where [T];o1yn is the first T elements (in lexicographic order) of

{0,1}™. Then FoH is a (\3/T(n)/2) -adaptive PRF.

For instance, assuming that F is a (p(n) - 2°")-non-adaptive PRF and that H maps strings of
length n to [2°"]¢p 1}», Theorem 1.1 yields that F o H is a (2%71)—adaptive PRF.

Theorem 1.1 is only useful, however, for polynomial-time computable 7”s (in this case, the
family H assumed by the theorem exists, see Section 2.2.2). Unfortunately, in the important case
where F is only assumed to be polynomially secure non-adaptive PRF, no useful polynomial-time
computable T is guaranteed to exists.?

We suggest two different solutions for handling polynomially secure PRFs. In Appendix A we
observe (following Bellare [1]) that a polynomially secure non-adaptive PRF is a T-non-adaptive
PRF for some T € n®(). Since this 7' can be assumed without loss of generality to be a power
of two, Theorem 1.1 yields a non-uniform (uses n-bit advice) polynomially secure adaptive PRF,
that makes a single call to the underlying non-adaptive PRF. Our second solution is to use the
following “combiner”, to construct a (uniform) adaptively secure PRF, which makes w(1) parallel
calls to the underlying non-adaptive PRF.

Corollary 1.2 (Informal). Let F be a polynomially secure non-adaptive PRF, let H = {Hn }nen
be an efficient pairwise-independent length-preserving function family and let k(n) € w(1l) be
polynomial-time computable function.

For n € N and i € [n], let ’;[:LZ be the function family ”;'T[;Z = {h:h € H},
where h(x) = 0"7Y|h(z)1..i (|’ stands for string concatenation). — Then the ensemble
— |i-logn
{®ie[k(n)] (]:n o”;'-[nL erl tnen 18 a polynomially secure adaptive PRF.

2Clearly F is p-non-adaptive PRF for any p € poly, but applying Theorem 1.1 with T' € poly, does not yield a
polynomially secure adaptive PRF.

1.2 Proof Idea

To prove Theorem 1.1 we first show that F o H is indistinguishable from IT o A, where II being the
set of all functions from {0, 1} to {0, 1} (letting ¢(n) be F’s output length), and then conclude
the proof by showing that Il o H is indistinguishable from II.

F o H is indistinguishable from IT1o #H. Let D be (a possibly adaptive) algorithm of running
time T'(n), which distinguishes F o H from IT o H with advantage £(n). We use D to build a
non-adaptive distinguisher D of running time p(n)-T(n), which distinguishes F from II with
advantage £(n). Given an oracle access to a function ¢, the distinguisher D?(17) first queries
¢ on all the elements of [T'(n)]{o,13». Next it chooses at uniform h € H, and uses the stored
answers to its queries, to emulate D?°"(1™).

Since D runs in time p(n)-T(n), for some large enough p € poly, makes non-adaptive queries,
and distinguishes F from II with advantage e(n), the assumed security of F yields that

£(n) < STy

IT o H is indistinguishable from II. We prove that Il o H is statistically indistinguishable from
I1. Namely, even an unbounded distinguisher (that makes bounded number of calls) cannot
distinguish between the families. The idea of the proof is fairly simple. Let D be an s-query
algorithm trying to distinguish between II o H and II. We first note that the distinguishing
advantage of D is bounded by its probability of finding a collision in a random ¢ € IloH
(in case no collision occurs, ¢’s output is uniform). We next argue that in order to find a
collision in ¢, the distinguisher D gains nothing from being adaptive. Indeed, assuming that
D found no collision until the #’th call, then it has only learned that h does not collide on
these first ¢ queries. Therefore, a random (or even a constant) query as the (i 4+ 1) call, has
the same chance to yield a collision, as any other query has. Hence, we assume without loss
of generality that D is non-adaptive, and use the pairwise independence of H to conclude
that D’s probability in finding a collision, and thus its distinguishing advantage, is bounded

by s(n)?/T(n).

Combining the above two observations, we conclude that an adaptive distinguisher whose running

time is bounded by ¢/T'(n), cannot distinguish 7 o H from II (i.e., from a random function) with

2
ia)r;{;dvantage better than T(}L():)M + p(n)lf(n) <2/Y/T(n). Namely, FoH is a <\3/T(n)/2)—adaptive

1.3 Related Work

Maurer and Pietrzak [15] were the first to consider the question of building adaptive PRFs from
non-adaptive ones. They showed that in the information theoretic model, a self composition of a
non-adaptive PRF does yield an adaptive PRF.?

In contrast, the situation in the computational model (which we consider here) seems very
different: Myers [16] proved that it is impossible to reprove the result of [15] via fully-black-box
reductions. Pietrzak [19] showed that under the Decisional Diffie-Hellman (DDH) assumption,

3Specifically, assuming that the non-adaptive PRF is (Q,)-non-adaptively secure, no Q-query non-adaptive algo-
rithm distinguishes it from random with advantage larger than e, then the resulting PRF is (Q, e(1+1n 1))-adaptively
secure.

composition does not imply adaptive security. Where in [20] he showed that the existence of non-
adaptive PRFs whose composition is not adaptively secure, yields that key-agreement protocol
exists. Finally, Cho et al. [5] generalized [20] by proving that composition of two non-adaptive
PRFs is not adaptively secure, iff (uniform transcript) key agreement protocol exists. We mention
that [16, 19, 5], and in a sense also [15], hold also with respect to XORing of the non-adaptive
families.

2 Preliminaries

2.1 Notations

All logarithms considered here are in base two. We let ‘|| denote string concatenation. We use
calligraphic letters to denote sets, uppercase for random variables, and lowercase for values. For
an integer ¢, we let [t] = {1,...,t}, and for a set S C {0,1}* with |S| > ¢, we let [t|s be the first
t elements (in increasing lexicographic order) of S. A function p: N — [0, 1] is negligible, denoted
p(n) = neg(n), if u(n) = n=<M. We let poly denote the set all polynomials, and let PPT denote
the set of probabilistic algorithms (i.e., Turing machines) that run in strictly polynomial time.
Given a random variable X, we write X (z) to denote Pr[X = z], and write x <— X to indicate
that x is selected according to X. Similarly, given a finite set S, we let s - S denote that s
is selected according to the uniform distribution on S§. The statistical distance of two distribu-
tions P and @ over a finite set U, denoted as SD(P,(Q), is defined as maxgscy |P(S) — Q(S)| =

3 Lueu | P(w) = Q(u)].

2.2 Ensemble of Function Families

Let F = {Fn: Dy — Rp}nen stands for an ensemble of function families, where each f € F,, has
domain D,, and its range contained in R,,. Such ensemble is length preserving, if D,, = R,, = {0,1}"
for every n.

Definition 2.1 (efficient function family ensembles). A function family ensemble F = {F, }nen is
efficient, if the following hold:

Samplable. F is samplable in polynomial-time: there exists a PPT that given 1", outputs (the
description of) a uniform element in F,.

Efficient. There exists a polynomial-time algorithm that given x € {0,1}" and (a description of)
f € Fn, outputs f(z).

2.2.1 Operating on Function Families

Definition 2.2 (composition of function families). Let F! = {F}: D} — R}y and F? =
{F2: D2 R2%},en be two ensembles of function families with RL C D2 for every n. We define
the composition of F1 with F2 as F2o F! = {F2o F}L: D} — R2},en, where F2 o FL = {(f2, f1) €
T x Futs and (f2, fi)(z) = fo(fi(2)).

Definition 2.3 (XOR of function families). Let F! = {F}: D} RL}, ey and F? = {F2: D2 —
R2}nen be two ensembles of function families with RL,R2 C {0,1}"™) for every n. We define
the XOR of F' with F? as F2@F' = {F2@ FL: D n D2 — {0,1}*™},.cn, where F2 R FL =
{(f2, f1) € Fi x Fo}, and (fo, f1)(z) := fa(2) @ fi(2).

2.2.2 Pairwise Independent Hashing

Definition 2.4 (pairwise independent families). A function family H = {h: D — R} is pairwise
independent (with respect to D and R), if

1
Prpoylh(x1) = y1 A h(z2) = y2] = W’

for every distinct x1,x9 € D and every y1,y2 € R.

For every ¢ € poly, the existence of efficient pairwise-independent family ensembles mapping
strings of length n to strings of length £(n) is well known ([4]). In this paper we use efficient pairwise-
independent function family ensembles mapping strings of length n to the set [T'(n)];,1}», where
T(n) < 2" and is without loss of generality a power of two.* Let H be an efficient length-preserving,
pairwise-independent function family ensemble and assume that t(n) := log T'(n) is polynomial-time
computable. Then the function family H = {”;[; ={h':heH,hx)= 0”_t(")||h(3:)17_”’t(n)}}, is
an efficient pairwise-independent function family ensemble, mapping strings of length n to the set
)] 0.1y

2.2.3 Pseudorandom Functions

Definition 2.5 (pseudorandom functions). An efficient function family ensemble F =
{Fpn: {0,1}" — {0,1}M}, cy is a (T(n),e(n))-adaptive PRF, if for every oracle-aided algorithm
(distinguisher) D of running time T'(n) and large enough n, it holds that

Pr. 7, [Df(1") = 1] = Prye 1, [D™(17) = 1]| < (n),

where I, is the set of all functions from {0,1}" to {0,1}™) . If we limit D above to be non-adaptive
(i.e., it has to write all his oracle calls before making the first call), then F is called (T'(n),e(n))-
non-adaptive PRF.

The ensemble F is a t-adaptive PRF, if it is a (t,1/t)-adaptive PRF according to the above
definition. It is polynomially secure adaptive PRF (for short, adaptive PRF), if it is a p-adaptive
PRF for every p € poly. Finally, it is super-polynomial secure adaptive PRF, if it T-adaptive PRF
for some T'(n) € n*). The same conventions are also used for non-adaptive PRFs.

Clearly, a super-polynomial secure PRF is also polynomially secure. In Appendix A we prove
that the converse is also true: a polynomially secure PRF is also super-polynomial secure PRF.

3 Our Construction

In this section we present the main contribution of this paper — a direct construction of an adaptive
pseudorandom function family from a non-adaptive one.

Theorem 3.1 (restatement of Theorem 1.1). Let T be a polynomial-time computable integer
function, let H = {Hn: {0,1}" = [T'(n)]go1)n} be an efficient pairwise independent function

4For our applications, see Section 3, we can always consider T (n) = 2U°g<T("m, which only causes us a factor of
two loss in the resulting security.

family ensemble, and let F = {Fn: {0,1}* — {0,1}*™} be a (p(n) - T(n),e(n))-non-adaptive

PRF, where p € poly is determined by the computation time of T, F and H. Then FoH is a
2

<s(n), e(n) + s(n))—adaptive PREF for every s(n) < T(n).

T(n)
Theorem 3.1 yields the following simpler statement.

Corollary 3.2. Let T, p and H be as in Theorem 3.1. Assuming F is a (p(n)T(n))-non-adaptive
PRF, then FoH is a ({“/T(n) /2)—adaptive PRF.

Proof. Applying Theorem 3.1 with respect to s(n) = ¢/T(n)/2 and £(n) = m, yields that

. 1 s(n)? . : 1 1 s(n)? 1 :
FoHisa (s(n), TOROR %)-adaptlve PRF. Since ST < 2s(n) and T((T)L) < 53(n) it follows
that F o #H is a (s,1/s)-adaptive PRF. O

To prove Theorem 3.1, we use the (non efficient) function family ensemble II o H, where II = II,
(i.e., the ensemble of all functions from {0,1}" to {0,1}¢), and £ = £(n) is the output length of F.
We first show that F o H is computationally indistinguishable from II o H, and complete the proof
showing that I o H is statistically indistinguishable from II.

3.1 FoH is Computationally Indistinguishable From Il o H

Lemma 3.3. Let T', F and H be as in Theorem 3.1. Then for every oracle-aided distinguisher
D of running time T, there exists a non-adaptive oracle-aided distinguisher D of running time
p(n) - T(n), for some p € poly (determined by the computation time of T, F and H), with

[Prye7,[D9(1") = 1] = Prgen, [DY(1") = 1]] =[Prge 7,0, [D(1") = 1] = Prgei,on, [D/(1") = 1]]
for every n € N, where IL,, is the set of all functions from {0,1}" to {0,1}4(),

In particular, the pseudorandomness of F yields that F o ‘H is computationally indistinguishable
from the ensemble {II,, o H,, },en by an adaptive distinguisher of running time 7'

Proof. The distinguisher D is defined as follows:
Algorithm 3.4 (D).
Input: 1.
Oracle: a function ¢ over {0,1}".
1. Compute ¢(z) for every x € [T'(n)]{0,13n-
2. Set g = ¢ o h, where h is uniformly chosen in H,.

3. Emulate DI(1™): answer a query x to ¢ made by D with g(x), using the information obtained
in Step 1.

Note that D makes T(n) non-adaptive queries to ¢, and it can be implemented to run in
time p(n)T(n), for large enough p € poly. We conclude the proof by observing that in case ¢ is
uniformly drawn from F,,, the emulation of D done in D? is identical to a random execution of DY
with g < F, o H,,. Similarly, in case ¢ is uniformly drawn from II,,, the emulation is identical to
a random execution of D™ with m + II,,.]

3.2 IIoH is Statistically Indistinguishable From II

The following lemma is commonly used for proving the security of hash based MACs (cf., [9,
Proposition 6.3.6]), yet for completeness we give it a full proof below.

Lemma 3.5. Letn,T be integers with T < 2™, and let H be a pairwise-independent function family
mapping string of length n to [T']o1y». Let D be an (unbounded) s-query oracle-aided algorithm
(i.e., making at most s queries), then

IPr ye 110 [DY = 1] — Pr e [D™ = 1]| < s*/T,
where 11 is the set of all functions from {0,1}" to {0,1}* (for some £ € N).

Proof. We assume for simplicity that D is deterministic (the reduction to the randomized case is
standard) and makes exactly s valid (i.e., inside {0,1}") distinct queries, and let Q = ({0,1})%.
Consider the following random process:

Algorithm 3.6.

1. Emulate D, while answering the i’th query q; with a uniformly chosen a; € {0,1}.
Setq = (q1,...,qs) anda = (a,...,as).
2. Choose h < H.

3. Emulate D again, while answering the i’th query ¢} with a; = a; (the same a; from Step 1), if
h(g;) & {h(q})}jefi-1)» and with a} = a;, if h(q}) = h(q}) for some j € [i —1].

Set ¢ = (q},...,q.) and a’ = (a,...,dl).

Let A, Q, A/, Q' and H be the (jointly distributed) random variables induced by the values of
G, @, ¢, @’ and h respectively, in a random execution of the above process. It is not hard to verify
that A is distributed the same as the oracle answers in a random execution of D™ with 7 < II, and
that A’ is distributed the same as the oracle answers in a random execution of DI with g « IT o H.
Hence, for proving Lemma 3.5, it suffices to bound the statistical distance between A and A’.

Let Coll be the event that H(Q;) = H(Q;) for some i # j € [s]. Since the queries and answers
in both emulations of 3.6 are the same until a collision with respect to H occurs, it follows that

Pr[A # A’] < Pr[Col]| (1)
On the other hand, since H is chosen after @ is set, the pairwise independent of H yields that
Pr[Coll] < s?/T, (2)

and therefore Pr[A # A’} < s?/T. Tt follows that Pr[A € C] < Pr[A’ € O] + s*/T for every C C €,
yielding that SD(A, A’) < s2/T. O

3.3 Putting It Together

We are now finally ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let D be an oracle-aided algorithm of running time s with s(n) < T'(n).
Lemma 3.3 yields that |Prger,on,[D9(1") = 1] — Prge,on, [DY(1") =1]|] < e(n) for large
enough n, where Lemma 3.5 yields that |Prgi,07, [D/(1") =1] —Prycm, [D7(1") =1]] <

s(n)?/T(n) for every n € N, Hence, the triangle inequality yields that
|Pryc 7,01, [DI(1") = 1] — Prreq, [D™(1") = 1]| < e(n) + s(n)?/T(n) for large enough n, as
requested.]

3.4 Handling Polynomial Security

Corollary 3.2 is only useful when the security of the underlying non-adaptive PRF (i.e., T) is
efficiently computable (or when considering non-uniform PRF constructions, see Section 1.1). In
this section we show how to handle the important case of polynomially secure non-adaptive PRF.
We use the following “combiner”.

Definition 3.7. Let H be a function family into {0,1}". Fori € [n], let Hi be the function family
H' = {h: h € H}, where h(x) = 0"*||h(z)1,. ;.

Corollary 3.8. Let F be a T'(n)-non-adaptive PRF, let H be an efficient length-preserving pairwise-
independent function family ensemble, and let Z(n) C [n] be polynomial-time computable (in n)
indez set. Define the function family ensemble G = {Gp}nen, where Gy, = ®iel(n) <]:n o ’;f[\nl)

There exists ¢ € poly such that G is a (\/3 2t(")/2) -adaptive PRF, for every polynomial-time
computable integer function t, with t(n) € Z(n) and 21" < T(n)/q(n).

Before proving the corollary, let us first use it for constructing adaptive PRF from non-adaptive
polynomially secure one.

Corollary 3.9 (restatement of Corollary 1.2). Let F be a polynomially secure non-adaptive
PRF, let H be an efficient pairwise-independent length-preserving function family ensemble and let

—~ |i-logn
k(n) € w(1) be polynomial-time computable function. Then G = {D;c(n) (]—"n o Hnl g J> Ve
1s polynomially secure adaptive PRF.

Proof. Let Z(n) := {|logn],|2-logn|...,|k(n)-logn|}. Applying Corollary 3.8 with respect to
F,H, T and t(n) = |c-logn], where ¢ € N, yields that G is a O(3/n¢)-adaptive PRF. It follows
that G is p-adaptive PRF for every p € poly. Namely, G is polynomially secure adaptive PRF. [

Remark 3.10 (unknown security). Corollary 3.8 is also useful when the security of F is “not
known” in the construction time. Taking T(n) = {1,2,4,...,208™} (resulting in logn calls to F)
and assuming that F is found to be T(n)-non-adaptive PRF' for some polynomial-time computable
T, the resulting PRF is guaranteed to be O({/T(n))-adaptive PRF (neglecting polynomial factors).

Proof of Corollary 3.8. It is easy to see that G is efficient, so it is left to argue for its security. Let
q(n) = ¢'(n)p(n), where p is as in the statement of Corollary 3.2, and ¢’ € poly to be determined
later. Let ¢ be a polynomial-time computable integer function with t(n) € Z(n) and 2{™ <

~ —~t
T(n)/q(n). It follows that H' = {H, (n)}neN is an efficient pairwise-independent function family
ensemble, and Corollary 3.2 yields that F o H! is a (\3/ q'(n)2tn)/ 2)—adaptive PRF.
Assume towards a contradiction that there exists an oracle-aided distinguisher D that runs in

time 7"(n) = V2t /2 and
Prgeq,[DI(1") = 1] — Prpeq, [D™(1") = 1]] > 1/T"(n) (3)

for infinitely many n’s. We use the following distinguisher for breaking the pseudorandomness of

FoH:
Algorithm 3.11 (6)
Input: 1".

Oracle: a function ¢ over {0,1}".

1. For every i € I(n) \ {t(n)}, choose g' < F, o ’;f[;Z

2. Setg:=¢@ @iez(n)\{t(n)} gi'
3. Emulate DI(1™).

Note that D can be implemented to run in time |Z(n)| - r(n) - T'(n) for some r € poly, which is
smaller than {/q¢’(n)2(™) /2 for large enough ¢’. Also note that in case ¢ is uniformly distributed
over II,,, then g (selected by D?(1™)) is uniformly distributed in II,,, where in case ¢ is uniformly

—~t
distributed in F,, o H, (n), then ¢ is uniformly distributed in G,,. It follows that

Pr,. (o, [D707) = 1] = Procn, [B7(1%) = 1]] = [Prye 6, [DY(17) = 1] = ooy, [D7(17) = 1]

(4)

for every n € N. In particular, Equation (3) yields that

_ _ 2 2
=R grimny — o AN\ __
Py o), [D/(1) = 1] = Prre, [D7(17) = 1]’ Z e 3 ¢ (n)24

for infinitely many n’s, in contradiction to the pseudorandomness of F o H we proved above. [

Acknowledgment

We are very grateful to Omer Reingold for very useful discussions, and for challenging the second
author with this research question a long while ago.

References

1]
2]

[11]

[12]

[13]

[14]

[15]

[16]

M. Bellare. A note on negligible functions. Journal of Cryptology, pages 271-284, 2002.

M. Bellare and S. Goldwasser. New paradigms for digital signatures and message authentication
based on non-interative zero knowledge proofs. In Advances in Cryptology — CRYPTO 89,
pages 194-211, 1989.

M. Blum, W. S. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the correctness of
memories. Algorithmica, 12(2/3):225-244, 1994.

L. J. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer
and System Sciences, pages 143-154, 1979.

C. Cho, C.-K. Lee, and R. Ostrovsky. Equivalence of uniform key agreement and composition
insecurity. In Advances in Cryptology — CRYPTO 2010, pages 447—-464, 2010.

B. Chor, A. Fiat, M. Naor, and B. Pinkas. Tracing traitors. IEEFE Transactions on Information
Theory, 46(3):893-910, 2000.

O. Goldreich. Towards a theory of software protection. In Advances in Cryptology — CRYPTO
’86, pages 426-439, 1986.

O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2001.

O. Goldreich. Foundations of Cryptography — VOLUME 2: Basic Applications. Cambridge
University Press, 2004.

O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic applications of random
functions. pages 276-288, 1984.

O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal of
the ACM, pages 792-807, 1986.

J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM Journal on Computing, pages 1364-1396, 1999.

M. Luby. Pseudorandommness and cryptographic applications. Princeton computer science notes.
Princeton University Press, 1996. ISBN 978-0-691-02546-9.

M. Luby and C. Rackoff. How to construct pseudorandom permutations from pseudorandom
functions. SIAM Journal on Computing.

U. M. Maurer and K. Pietrzak. Composition of random systems: When two weak make one
strong. In Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004,
pages 410-427, 2004.

S. Myers. Black-box composition does not imply adaptive security. In Advances in Cryptology
—~ EUROCRYPT 2004, pages 189-206, 2004.

10

[17] M. Naor and O. Reingold. Synthesizers and their application to the parallel construction of
psuedo-random functions. In Proceedings of the 36th Annual Symposium on Foundations of
Computer Science (FOCS), pages 170-181, 1995.

[18] R. Ostrovsky. An efficient software protection scheme. In Advances in Cryptology — CRYPTO
’89, 19809.

[19] K. Pietrzak. Composition does not imply adaptive security. In Advances in Cryptology —
CRYPTO 2005, pages 55—65, 2005.

[20] K. Pietrzak. Composition implies adaptive security in minicrypt. In Advances in Cryptology
-~ EUROCRYPT 2006, pages 328-338, 2006.

A From Polynomial to Super-Polynomial Security

The standard security definition for cryptographic primitives is polynomial security: any PPT trying
to break the primitive has only negligible success probability. Bellare [1] showed that for any
polynomially secure primitive there exists a single negligible function p, such that no PPT can
break the primitive with probability larger than p. Here we take his approach a step further,
showing that for a polynomially secure primitive there exists a super-polynomial function 7', such
that no adversary of running time 7" breaks the primitive with probability larger than 1/7".

In the following we identify algorithms with their string description. In particular, when con-
sidering algorithm A, we mean the algorithm defined by the string A (according to some canonical
representation). We prove the following result.

Theorem A.1. Let v: {0,1}* x N — [0,1] be a function with the following properties: 1) v(A,n) <
1/p(n) for every oracle-aided PPT A, p € poly and large enough n; and 2) if the distributions induced
by random executions of A (x) and B/ (x) are the same for any input x € {0,1}" and function f
(each distribution describes the algorithm’s output and oracle queries), then v(A,n) = v(B,n).

Then there ezists an integer function T'(n) € n®M) such that following holds: for any algorithm
A of running time at most T'(n), it holds that v(A,n) < 1/T'(n) for large enough n.

Remark A.2 (Applications). Let f be a polynomially secure OWF (i.e., Pr[A(f(U,)) €
Y f(UL))] = neg(n) for any pPT A). Applying Theorem A.1 with v(A,n) := Pr[A(f(U,)) €
FYHf(U)] (where if A expects to get an oracle, provide him with the constant function ¢(x) = 1),
yields that f is super-polynomial secure OWF (i.e., exists T(n) € n*(1) such that Pr[A(f(U,)) €
FYfU))] £ 1/T(n) for any algorithm of running time T and large enough n).

Similarly, for a polynomially secure PRE F = {F,}nen (see Definition 2.5), applying Theo-
rem A.1 with v(A,n) := ’Prﬂ_}-n [AT(1") = 1] — Pryeq, [AT(17) = 1”, where 11, is the set of all
functions with the same domain/range as Fy, yields that F is super-polynomial secure PRF.

Proof of Theorem A.1. Given a probabilistic algorithm A and an integer i, let A; denote the variant
of A that on input of length n, halts after n’ steps (hence, A; is a PPT). Let S; be the first i
strings in {0, 1}*, according to some canonical order, viewed as descriptions of 7 algorithms. Let
I(n) ={i€[n]: VA € S,k > n: v(A;, k) < 1/k*Y U {1}, let t(n) = maxZ(n) and T(n) = n'").

Let A be an algorithm of running time 7'(n), and let ip be the first integer such that A € S;,.
In Claim A.3 we prove that t(n) € w(1l), hence it follows that t(n) > ia for any large enough

11

n. For any such n, the definition of ¢ guarantees that v(Ayy),n) < 1/n*") = 1/T(n). Since A
is of running time 7'(n), the second property of v yields that v(A,n) = v(Ayx),n), and therefore
v(A,n) < 1/T(n). O

Claim A.3. It holds that t(n) € w(1).

Proof. Fix i € N. For each A € S;, let na be the first integer such that v(A;,n) < 1/n’ for every
n > na (note that such na exists by the first property of v), and let n; = max{na: A € §;}. It
follows that v(A;,n) < 1/n’ for every n > n; and A € S;, and therefore t(n;) > i. O

12

	Introduction
	Our Result
	Proof Idea
	Related Work

	Preliminaries
	Notations
	Ensemble of Function Families
	Operating on Function Families
	Pairwise Independent Hashing
	Pseudorandom Functions

	Our Construction
	FH is Computationally Indistinguishable From H
	H is Statistically Indistinguishable From
	Putting It Together
	Handling Polynomial Security

	From Polynomial to Super-Polynomial Security

