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A New Second Order Side Channel Attack
Based on Linear Regression

Guillaume Dabosville, Julien Doget, and Emmanuel Prouff

Abstract—Embedded implementations of cryptographic primitives need protection against Side Channel Analysis. Stochastic
attacks, introduced by Schindler et al. at CHES 2005, are an example of such an analysis. They offer a pertinent alternative to
template attacks which efficiency is optimal, and they can theoretically defeat any kind of countermeasure including masking. In
both template and stochastic attacks, the adversary needs to be able to carry out a profiling stage on a perfect copy of the target
device. This makes them interesting tools to study the resistance of implementations against such a powerful adversary, but it
limits their pertinency in practice. It is indeed difficult to have an open access to a copy of the device under attack and, even
when it is possible, it remains difficult to exploit templates acquired on one device to attack another one.
In this paper, we propose a new attack technique which shares many similarities with stochastic attacks but does not require any
profiling stage. As a consequence, no copy of the device is needed anymore. We conduct an in-depth analysis of this new attack
to highlight its core foundations. Then, we apply it to widely used masking schemes and we illustrate its interest by a series of
experiments on simulated and real curves.
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1 INTRODUCTION

Side Channel Analysis (SCA for short) exploits in-
formation that leaks from physical implementations
of cryptographic algorithms. This leakage (e.g. the
power consumption or the electro-magnetic emana-
tions) may indeed reveal information on the secret
data manipulated during the execution. Among SCA
attacks, two classes may be distinguished. The set
of so-called profiling SCA [1], [8], [26] corresponds
to a powerful adversary who controls a copy of the
attacked device and uses it to evaluate the distribution
of the leakage according to the processed values. Once
such an evaluation is obtained, a maximum likelihood
approach is carried out to recover the secret data
manipulated by the attacked device. The second set
of attacks is the set of so-called non-profiling SCA. It
corresponds to a weaker adversary who is only able
to observe the device behaviour and has no a priori
knowledge about the implementation details. In those
attacks, the physical leakage is compared to some
simulated leakage obtained from a key-dependent
model. Since the seminal work of Kocher et al. in the
late nineties [16], a large variety of statistical tests,
also called distinguishers, have been introduced for this
purpose [3], [5], [13], [18]. Their goal was to better take
advantage of the available information, e.g., by allow-
ing the adversary to incorporate more precise leakage
models in the statistics. This paper pays particular
attention to the non-profiling SCA threats, since it
relates to the classical kind of adversary encountered
e.g., by the smartcard industry.

A SCA targeting the manipulation of a single vari-
able is said to be univariate. To avoid instantaneous in-
formation leakage and thus to thwart univariate SCA,

the classical strategy is to protect the implementation
of a given algorithm by using secret sharing (a.k.a.
masking) techniques [4], [27]. In such schemes, the
internal state of the processing is usually randomly
split into two shares. When this strategy is followed,
a so-called second order SCA can still be performed by
combining the leakages resulting from the manipu-
lation of the shares. This enables the construction of
a new signal that statistically depends on the secret
that was shared. Those attacks are said to be multi-
variate. In view of the analyses in [12], [21], [28] and
the experiments reported in [11], [22], it seems that
multivariate SCA with Pearson correlation coefficient
as distinguisher and with pre-processing as proposed
in [21] is always the most efficient non-profiled attack
when the noise is non-negligible.

Recently, a paper [10] has argued that the linear
regression attack (a.k.a. stochastic attack) was a sound
alternative to classical univariate non-profiled SCA.
Continuing the seminal analysis in [26], the authors
of [10] show that, whereas attacks like CPA or MIA
require a sound model for the leakage (and the attack
efficiency strongly depends on this choice), a linear
regression attack needs a much weaker assumption. It
indeed only requires that the deterministic part of the
leakage can be expressed as a linear combination of
functions chosen according to the nature of the device
and the algorithm under attack. Actually, [10] shows
that linear regression attacks encompass the classical
CPA as a particular case and, thanks to their generic
nature, they can succeed in situations where CPA fails.
In view of this result, it seems natural to investigate
whether linear regression attacks can be extended in
multivariate contexts, and if yes, whether they remain
a good alternative to the classical multivariate non-
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profiled SCA.
In the particular context where a leakage pro-

filing step is allowed, stochastic methods against
masked implementations have already been studied
by Lemke-Rust and Paar in [17]. However, nothing is
said in this paper about how to apply the techniques
when profiling is impossible (which is the case in
practice). A first step toward this line has been done
by Schindler in [25]. However, no details about the
attack itself is given and several issues regarding the
way how to implement it concretely are let open. This
paper starts from the same observations as [25] and
aims at fully specifying a second-order attack based
on linear regression techniques. It moreover studies
the relationship between this new attack and classical
second-order SCA (with and without profiling step).
In the second part of the paper, the attack is carried
out against the Boolean masking [7], [15] and the arith-
metic masking [9].

Thanks to those simulations and experimentations,
we show that it is a valuable alternative to the classical
second-order CPA, especially when the adversary has
no precise knowledge about how the targeted device
leaks information on the manipulated data.

2 PRELIMINARIES AND NOTATIONS

2.1 Statistics and Probability
In the sequel random variables are denoted by large
letters. A realization of a random variable X is de-
noted by the corresponding lowercase letter x. A
sample of several observations of X is denoted by (x)
or by (xi) if an indexation is needed. It will sometimes
be viewed as a vector defined over the definition set
of X . The notation (x)←↩ X denotes the instantiation
of the set of observations (x) from X .

The mean of X is denoted E [X], its variance
by var (X). The later equals E

[
(X − E [X])2

]
. The

covariance of random variables X and Y is de-
noted by cov (X , Y ) and satisfies cov (X , Y ) =
E [(X − E [X])(Y − E [Y ])]. The estimator of the mean
of X based on a sample of observations is denoted by
Ê (·).

A continuous random variable X is associated with
a probability density function (pdf for short). In our
context, a particular pdf called Gaussian pdf plays an
important role. The Gaussian pdf of dimension d is
defined w.r.t. a mean vector ~m ∈ Rd and a covariance
matrix Σ ∈ Md,d(R) such that, for every ~u ∈ Rd we
have:

Φ~m,Σ(~u) =
1√

(2π)d|Σ|
e−

1
2 (~u−~m)Σ−1(~u−~m)′ . (1)

2.2 Linear Algebra
Let F be a R-vector space of functions defined over
a field E (e.g. E = Fn2 for some n). For a set
of d functions g1, ..., gd in F , we shall denote by

< g1, ..., gd > the vector space spanned by all the
linear combinations of the gi with coefficients in R. For
two functions f and g in F , we call distance between f
and g and we denote by d(f, g) the real value defined
by:

d(f, g) =
∑
x∈E

(f(x)− g(x))2 . (2)

It corresponds to the Euclidean distance between the
vectorial representations of f and g. For a function f
and a set G, we call distance between f and G the real
value d(f,G) defined by:

d(f,G) = min
g∈G

d(f, g) . (3)

If G is the space < g1, ..., gd >, then (3) can be
rewritten:

d(f,G) = min
(a1,··· ,ad)∈Rd

d(f,

d∑
i=1

aigi) . (4)

3 NEW ATTACK DESCRIPTION AND ANALY-
SIS

3.1 Attack Context

In this paper, we consider an adversary who has ac-
cess to a physical implementation of a cryptographic
algorithm and observes the side-channel leakage of
successive processings over known inputs. During
those computations, it is assumed that an intermedi-
ate variable Z = Fk(X) is manipulated. It depends on
both a known variable X and a secret k, called key in
the rest of the paper. Variables X and k are assumed
to be defined over Fn2 for some integer value n (e.g.
n = 8) and the function F : X, k 7→ Fk(X) is a known
function from F2n

2 into Fm2 with m such that m ≤ n
(e.g. F is an s-box and Fk(X) = F (X⊕k)). We denote
by F−1k a reciprocal function of Fk which maps each
image of Fk to one of its pre-image.

It is moreover assumed that the cryptosystem is
protected by first-order masking. This implies that
Z is never accessed directly but is randomly split
into two shares that are manipulated at different
times. The manipulation of each share results in two
observable physical leakages L1 and L2. The analyses
conducted in this paper are done under the assump-
tion that the leakages satisfy:

L1 = δ(Z ? V) +B1 and L2 = δ(V) +B2 (5)

where ? is an operation law such that (Fn2 , ?) is a
group1, δ(·) is a deterministic unknown function and
B1 and B2 are independent but identical unidimen-
sional Gaussian variables. Random variables Z and V
are also assumed to be independent from B1 and B2.

1. for instance ? may be the bitwise addition ⊕ or the addition
+ modulo 2n where Z and V are viewed as elements of Z/nZ
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3.2 Attack Description
In what follows, a new second-order attack is intro-
duced, extending to a masked context the strategy
proposed in [10], [25]. The core idea is to discriminate
the key-candidates by processing a linear regression on
a key-dependent variable, denoted Y hereafter, which
combines the two leakages defined in (5). To apply
such a linear regression, the adversary must have
chosen a basis (gi)i=1,··· ,d of functions beforehand (see
Sect. 3.4 on the basis choice). With this basis on hand,
he then computes for each key-candidate a discrim-
inating value and finally outputs the key-candidate
which gave rise to the smallest value. For the sake
of explanations, the linear regression at Step 5 of the
attack below, is expressed in terms of distance from a
function to a subspace of functions as introducted in
Sect. 2.2 (see Appendix A for details). More precisely,
the new attack is composed of the following six steps:

[Basis choice] Choose a family of functions
(gi)i=1,··· ,d defined from Fm2 into R. The set spanned
by the functions gi is denoted by H.
[Measurement step] For N plaintexts, collect mea-
surements together with the corresponding plain-
texts sub-parts: (`i1, `

i
2, xi)i ←↩ (L1, L2, X).

[Partitioning step] Partition the pair of leakage mea-
surements into sets Lx defined for every x such that
Lx = {(`i1, `i2);xi = x}.
[Combining step] For every x, compute:

yN (x) =
1

|Lx|
∑

(`1,`2)∈Lx

(`1 − µ1) (`2 − µ2) , (6)

where yN is a function of x parametrized by the
number of collected measurements, and µ1 and µ2

respectively denote E [L1] and E [L2].
[Linear regression] For every key hypothesis k̂, com-
pute:

∆k̂(N) = d
(
yN ,Gk̂

)
, (7)

where Gk̂ denotes the space < g1 ◦ Fk̂, . . . , gd ◦ Fk̂ >.
[Key candidate decision] Select the key hypothesis
for which ∆k̂(N) is minimal.
A detailed discussion of the new attack soundness

will be conducted in the next section. We can how-
ever sum-up the main steps in the following way.
First, and due to the univariate aspect of the linear
regression, the leakages L1 and L2 are combined to
form an univariate random variable Y . This is the
purpose of the fourth step, which can be viewed as
the computation of a noisy observation yN (x) of the
covariance between L1 and L2 knowing X = x. In the
rest of the paper, we shall associate the value yN (x) to
the random variable Y |X = x, with Y being defined
by:

Y = cov (L1 , L2) . (8)

The pertinence of this definition of Y (and hence of
the construction of yN (x) in the attack) is discussed
in Sect. 3.5.

The computation of the minimum distance at Step 5
involves a linear regression to model the functional re-
lationship between Y and X . The function is searched
into a set which basis is constructed by composing
the functions gi with the key-hypothesis dependent
function Fk̂ defined in Sect. 3.1. This point is detailed
in the next section while the way how to choose the
family of functions (gi)i is discussed in Sect. 3.4. The
linear regression technique itself together with its link
with the distance d(·) between functions can be found
in Appendix A.

3.3 Attack Soundness

Since L1 and L2 satisfy (5), and random variables B1,
B2 and V are independent, (8) can be rewritten

Y = ϕ[Fk(X)] , (9)

where ϕ denotes the function

z 7→ cov (δ(z ? V) , δ(V)) .

By construction, the function yN defined in Step 4
tends towards Y as the number of measurements
increases. Therefore from (9) and some terms rear-
rangement, one deduces the following limit of ∆k̂(N),
where Y is considered as a function of X :

lim
N→∞

∆k̂(N) = lim
N→∞

d
(
yN ,Gk̂

)
= d(Y,Gk̂)

= min
h∈H

d
(
ϕ ◦ Fk ◦ F−1k̂

◦ Fk̂, h ◦ Fk̂
)
. (10)

Assuming that Fk̂ is balanced, (10) simplifies to

lim
N→∞

∆k̂(N) = 2n−m · d
(
ϕ ◦ Fk ◦ F−1k̂

,H
)
. (11)

Now, depending on whether k̂ equals k or not, we
have the two following situations:

Good hypothesis (k̂ = k): Equation (11) becomes
limN→∞∆k̂(N) = 2n−m · d (ϕ,H).
Wrong hypothesis (k̂ 6= k): Equation (11) cannot be
simplified.

From those two situations, we deduce that the new
attack outputs the correct key if the distance between
ϕ◦Fk◦F−1k̂

andH is minimized when k̂ = k (e.g. when
ϕ ◦Fk ◦F−1k̂

equals ϕ). It highlights the importance of
the choice of the basis (gi)i. This choice is discussed
in the next section.

3.4 Basis Choice

As pointed out in previous section, the basis choice is
essential since it directly impacts the attack efficiency.
Ideally, the basis should guarantee the adversary that
d
(
ϕ ◦ Fk ◦ F−1k̂

,H
)

is minimal when k̂ = k. In this
section, we propose a strategy for the adversary to
choose it.



4

By definition, the function ϕ to be approximated be-
longs to the space F of all the functions from Fm2 into
R. We recall that any function in F can be represented
by a multivariate polynomial in R[z1, . . . , zm]/(z1

2 −
z1, . . . , zm

2 − zm) (i.e. the degree of every zi in every
monomial is at most 1). Consequently, there exists a
unique set of real coefficients (αu)u∈Fm

2
such that for

every z ∈ Fm2 we have:

ϕ(z) =
∑

u=(u1,...,um)∈Fm
2

αu · zu , (12)

where each term zu denotes the monomial (function)
z 7−→ zu1

1 zu2
2 · · · zum

m with values in F2 [6]. The degree of
such a monomial is defined as the Hamming weight
of u. It can moreover be checked that the family
of functions (zu)u∈Fm

2
spans F . In the following, we

denote by Fd the subset of F that contains all the
functions of degree lower than or equal to d. This set
is spanned by the basis (zu)u∈Fm

2 ,HW(u)≤d.
Let us now come back to the attack described in

Sect. 3.2 and analysed in Sect. 3.3. If the setH spanned
by the functions (gi)i equals F (i.e. (gi)i is also a
basis of F), then for any Fk̂ and Fk it is obvious that
ϕ ◦ Fk ◦ F−1k̂

is in H. As a consequence, the distance

d
(
ϕ ◦ Fk ◦ F−1k̂

,H
)

is always null, the key hypothesis

k̂ being equal to k or not. This implies that choosing
the basis (gi)i as large as possible is not a sound
approach in the context of our attack. Let us now
denote by J the set of functions {Fk ◦ F−1k̂

; k 6= k̂}.
The ideal strategy an adversary can follow is to look
at a subspace H such that ϕ ∈ H (i.e. the distance
between ϕ and H is null) while the distance between
the two sets H and H◦J is as high as possible (Fig. 1
illustrates it). For such a purpose, we propose here to
make an assumption on the degree d of ϕ and to set
H = Fd. This amounts to choose the basis such that
(gi)i = (zu)u∈Fm

2 ,HW(u)≤d. Since the composition of
functions Fk ◦F−1k̂

is very likely to have a high degree
(close to m) due to the cryptographic properties2 of F ,
if d is small enough none of the functions ϕ◦Fk ◦F−1k̂ 6=k
is in Fd whereas ϕ◦Fk◦F−1k̂=k

= ϕ does (by hypothesis).
To conclude this section, we give hereafter an ex-

ample of our strategy in a realistic context of attack.
Example 1: Let us assume that Fk is an AES s-box.

Then the set J contains all the functions composed of
two AES s-boxes parameterized by two different keys.
By property of the AES s-box, every function in J will
be at a large distance to the set of linear functions (this

2. This property relates to the fact that, by construction, functions
Fk and Fk̂ must be as independent as possible when parameterized
by different keys. Moreover, the family of functions Fk must have
a high algebraic degree (close to m) to defeat linear and differential
cryptanalyses. As a consequence, the composition of functions Fk

and Fk̂ , with k 6= k̂, must act as a random composition of functions
with high algebraic degrees. With very high probability, such a
composition results in a function with high degree. If required, this
hypothesis may be tested for a target function F by computing the
minimim degree of the functions in J .

Fig. 1: Relationship between the different spaces.

relates to the high non-linearity of the s-box). Hence,
a good strategy is to assume that ϕ belongs to the set
of linear functions F1 (i.e. (gi)i = (zu)u∈Fm

2 ,HW(u)≤1 ).
Indeed, in this case the linear regression will compute
a good approximation of ϕ in F1, while by definition
of J , it will not be able to compute a good approxi-
mation (in term of distance) of ϕ ◦ j for any j ∈ J .

Remark 1: In our strategy, we assumed that the at-
tacker targets the result of a non-linear transformation
(e.g. an s-box) and thus that the function F is likely to
have a high degree. Nevertheless, one can choose to
target the result of a linear transformation (typically
the manipulation of the sensitive variable just before
the non-linear transformation). In this case, the choice
of the basis is less obvious and will be very dependent
on the algebraic properties of ϕ. Therefore the choice
of a basis must be adapted to the knowledge or
assumptions on both ϕ and F (i.e. it depends on the
nature of the leakage and the nature of the targeted
sensitive variable).

3.5 Relationship with Other Attacks

3.5.1 Relationship with Second-Order CPA

A second-order CPA using the centered product com-
bining function has been introduced in [21] and com-
pared favorably to other attacks based on the correla-
tion coefficient. In fact, this CPA may be viewed as a
particular case of our attack where the space spanned
by the basis (gi) is reduced to a single function ϕ̂
that is assumed to approximate the function ϕ defined
in (9) (e.g. the Hamming weight function is chosen
for ϕ̂). Indeed, in such a particular case, the distance
computation (7) can be rewritten:

∆k̂(N) = d(yN ,H ◦ Fk̂) = d(yN , ϕ̂ ◦ Fk̂) , (13)

since we have H = {ϕ̂}.
Now asymptotically (13) becomes:

lim
N→∞

∆k̂(N) = d(Y, ϕ̂ ◦ Fk̂) = d(Y, Ŷ ) ,

where we have denoted ϕ̂ ◦ Fk̂ by Ŷ and where we
recall that Y denotes ϕ ◦ Fk.

As a consequence, if ρ(Y, Ŷ ) denotes the coefficient
of correlation between Y and Ŷ , we get that (see
Appendix C for the development details):

lim
N→∞

∆k̂(N) = a · ρ(Y, Ŷ ) + b , (14)
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where a and b are independent of the key hypothesis
provided σY , σŶ , E

[
Y 2
]
, E
[
Ŷ 2
]
, E [Y ] and E

[
Ŷ
]

are
also independent of the key hypothesis. This is clearly
the case with typical first-order masking schemes
involving an addition, like Boolean and arithmetic
masking schemes.

Equation (14) above shows that our new attack
with space H reduced to a function ϕ̂ is asymptot-
ically equivalent to a second-order CPA involving
the centered product as combining function and ϕ̂ as
prediction function.

3.5.2 Relationship with Maximum Likelihood Ap-
proach

In a second-order attack based on a maximum like-
lihood approach [8], [14], [19], [26], the adversary
knows for every z a good estimation of the pdf fz
of the random variable (L1, L2)|Z = z. With such a
knowledge and a sample (`i1, `

i
2, xi)i ←↩ (L1, L2, X)

measured on the targeted device, the adversary then
computes for each key candidate k̂, a set of predictions
(ẑi)i = (Fk̂(xi))i and selects the key that maximizes
the product

∏
i fẑi(`

i
1, `

i
2). This class of attack, which

has first been introduced in [8] under the name of
template attacks, is very powerful. However, as previ-
ously observed in many papers, the assumption about
the a priori knowledge of the fz strongly limits the
attack practicability and raises the need for alternative
approaches. To some extent, the attack presented in
Sect. 3.2 can be viewed as such an alternative. More
precisely, it may be viewed as an application of the
template attacks principle in a context where the
adversary has no a priori knowledge of the fz but tries
to reconstruct them on-the-fly. To further discuss on
this statement, the pdfs fz must be developed.

When the leakage is defined as in (5), the fz are
mixture of elliptic normal distributions [20], namely they
are defined such that:

fz =
1

2n

∑
v∈Fn

2

Φ~mz,v ,Σ , (15)

where ~mz,v and Σ satisfy:

~mz,v = (δ(z ? v), δ(v)) and Σ =

(
σ2 0
0 σ2

)
.

Our attack implicitly tries to approximate the dis-
tribution fz by a bivariate Gaussian pdf and this is
actually the main difference between it and template
attacks. The use of such an approximation is known in
the literature as the technique of merging the mixture
components [24] with a limited and fixed number of
components (here 2). It leads us to make the following
approximation:

fz ∼ Φ~m,Σz
, (16)

where ~m = (E [δ(z ? V)],E [δ(V)]) and3

Σz =

(
σ2 Y | Z = z

Y | Z = z σ2

)
.

where we recall that Y equals cov (L1 , L2).
In view of the definitions of ~m and Σz it is clear

that the only key-dependent parameter of the pdf ap-
proximation (16) is Y |Z = z. Thus, testing whether an
observation (`1, `2) comes from a distribution Φ~m,Σz

reduces to test whether (`1, `2) comes from a bivariate
distribution with covariance Y |Z = z. As explained
in Sect. 3.3, our new attack computes an estimation
of this variable, the estimation being parametrized by
a key hypothesis. Then, to validate the hypothesis
(or equivalently the quality of the approximation of
Y |Z = z for every z), a mean-of-square test is com-
puted. It is well known that this test is equivalent to
a maximum likelihood computation under the Gaus-
sian Assumption. Some simulations can be found in
Appendix D.

Remark 2: Another more precise way of approxi-
mating the distributions may be to look for approx-
imations by mixtures of Gaussian distributions. This
approach has already been suggested in [17] but its
soundness is still under discussion since it involves
a class of algorithms, called expectation-maximization
(EM) algorithms, which are difficult to deal with.

4 APPLICATION ON MASKING SCHEMES

In previous sections, we exhibited a way to attack
a masked implementation by using linear regression
techniques. In the following we aim at confronting our
analyses with simulations in realistic scenarios (Sect.
4.1 and 4.2) and experiments (Sect. 4.3). To ease the
comparison, several attack parameters are considered:
the underlying masking scheme that is used to protect
the sensitive variable, the distinguisher on which
the key discrimination is based, some distinguisher-
related parameters to customize the attack, the origin
of the leakage (simulation or real curves) and the
efficiency of the attack (number of messages, etc.).

Remark 3: Our main purpose is to compare the
new attack with the CPA techniques which are the
most widely used in practice. However, in order to
have an analysis as exhaustive as possible, we also
implemented second-order MIA attacks. Among the
different techniques which have been proposed to
process the MIA, we chose to implement the one
which is based on histogram approximation methods
since it seems to be the most efficient in practice [2].
Further works may consist in deeper comparing the
new attack with all the various MIA techniques [30]
and also with the recently introduced attacks based on

3. Note that ~m exactly corresponds to the development of the
mean vector (E [L1|Z = z],E [L2]) when using the linearity of the
expectation and the fact that the noise is assumed to have zero
mean
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Kolmogorov-Smirnov distance estimator [31]. Those
attacks indeed also aim to target masked implemen-
tations when the leakage has unpredictible behavior.

Attack Target. The attacks exploit the leakage related
to the manipulation of two shares that jointly depend
on a sensitive variable Z satisfying

Z = Fk(X) = F (X ⊕ k) , (17)

where X corresponds to an 8-bit uniformly dis-
tributed random value known by the adversary and F
denotes the AES s-box. Depending on the underlying
masking scheme, the definition of the two shares
differ. The following masking schemes are considered
in our attacks:

1) 1st-order Boolean masking: the operation ? in (5)
is the bitwise addition over F8

2. The two shares
are Z ⊕ V and V, with V a uniformly distributed
random variable independent of Z.

2) 1st-order arithmetic masking: the operation ? in
(5) is the modular addition over Z/256Z. The two
shares are Z + V mod 256 and V, with V a uni-
formly distributed random variable independent
of Z.

Leakage Simulations. Leakages have been simulated
in accordance with (5) for different definitions of δ(·),
leading to the three following scenarios:

Scenario 1 (Hamming Weight Leakage): Equation (5)
becomes:

L1 = HW (Z ? V)︸ ︷︷ ︸
δ(Z?V)

+B1 and L2 = HW (V)︸ ︷︷ ︸
δ(V)

+B2 .

(18)
In our attack settings, this first scenario is ideally
suited for CPA since the model used by the adversary
exactly corresponds to the deterministic function δ(·).
Scenario 2 (Linear Leakage): Equation (5) becomes:

L1 = α0 +

8∑
i=1

αi · (Z ? V) [i]︸ ︷︷ ︸
δ(Z?V)

+B1 and

L2 = α0 +

8∑
i=1

αi · V [i]︸ ︷︷ ︸
δ(V)

+B2 , (19)

with coefficients (αi)06i68 uniformly picked from
[−1, 1]. This scenario is used to observe the distin-
guishers behaviour when the deterministic part of the
leakage differs from the model used by the adversary.
We restricted ourselves to functions δ(·) that are linear
combinations in R of the bit-coordinates of the shared
values.

Scenario 3 (Quadratic Leakage): Equation (5) becomes:

L1 = δ(Z ? V) +B1

= α0 +

8∑
i=1

αi · (Z ? V) [i]

+

8∑
i1,i2=1
i1<i2

αi1,i2 · (Z ? V) [i1] · (Z ? V) [i2] +B1

L2 = δ(V) +B2

= α0 +

8∑
i=1

αi · V [i]

+

8∑
i1,i2=1
i1<i2

αi1,i2 · V [i1] · V [i2] +B2 , (20)

with coefficients (αi)06i636 uniformly picked from
[−1, 1]. This scenario is used to observe the distin-
guishers behaviour when the deterministic part of
the leakage differs in degree from the model used
by the adversary. We restricted ourselves to functions
δ(·) that are quadratic combinations in R of the bit-
coordinates of the shared values.

Leakage Measurements. The details about the
leakage used in experiments have been confined to a
dedicated section (see Sect.4.3).

Attack Distinguisher.
1) Correlation Power Analysis (CPA). Those attacks

approximate ρ(C(L1, L2), τ(Fk̂(X))) to discrimi-
nate the key candidates, where C(·) is a com-
bining function from R2 to R and τ is a model
function deduced from C(·) and an hypothesis on
δ(·). A second-order CPA with model τ is denoted
by CPAτ

2) Linear Regression (LR) is used as described in
this paper (see Sect. 3.2).

3) Mutual Information Analysis (MIA) with his-
togram estimation (the choice of the bin-width
is done using the rule proposed in [13]) and
Hamming weight model.

Model and Basis Choice. Albeit Z?V and V jointly de-
pend on Z, each masking scheme induces a different
dependency relationship which implies to adapt the
attack strategy accordingly. Namely, for each of the
attacks above, the choice of the consumption model
(in CPA) or the choice of the basis (in LR attacks)
requires a careful attention.

To perform the second-order CPA, we chose the
centered product combining of the leakages and de-
fined the optimal model function4 τ as described in
[23] under the assumption δ(·) = HW (·). This kind of
CPA is denoted CPAOpt in the sequel.

4. Notice that the optimal model function τ differs from one
masking scheme to another and must therefore be computed for
each different masking scheme.
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As argued in Sect. 3.4, linear regression requires
similarly a set of well-chosen basis functions to per-
form efficiently. To approximate the function ϕ :
z 7→ cov (δ(z ? V) , δ(V)), we have analysed different
choices of basis5:

lin where the gi are the degree-1 monomials z 7→
zu with HW (u) 6 1.

quad where the gi are the monomials z 7→ zu with
HW (u) 6 2.

cub where the gi are the monomials z 7→ zu with
HW (u) 6 3.

full where the gi are the monomials z 7→ zu with
HW (u) 6 8.

deg2 where the gi are the degree-2 monomials z 7→
zu with HW (u) = 2.

Opt where the basis is reduced to the constant
function z 7→ 1 and a function g defined as
the optimal (prediction) function as defined
in [23]. In Sect. 4.1 (i.e. Boolean case), the
basis Opt is denoted by HW to emphasis
the affine equivalence between the optimal
function and the Hamming weight when
the optimal function is designed under the
assumption δ(·) = HW and ? = ⊕.

In the sequel, an attack using the linear regression
with basis basis will be denoted by LR-basis, where
basis is chosen among lin, quad, cub, deg2, full and Opt.

Remark 4: It has been shown in Sect. 3.5 that
CPAOpt is equivalent to LR-Opt, nevertheless we
have conducted both attacks to confront this result
to experimentations.

Attack Efficiency. In the following, an attack is said
to be successful if the good key is output by the
attack. An attack is said to be more efficient than
another if it needs less messages to achieve the same
success rate. Success rate is measured over 1, 000 tries.

We report and analyse in next sections our attack
simulations results for Scenarios 1, 2 and 3 in case of
Boolean (Sect. 4.1) and arithmetic masking schemes
(Sect. 4.2). We inform the reader that we have plotted
only attacks which are relevant. In other terms, some
attacks never succeed and thus have not been plotted
to ensure readability of figures.

4.1 Simulation with Boolean Masking Scheme
In this section we assume that L1 and L2 satisfy (18)
(Scenario 1), or (19) (Scenario 2), or (20) (Scenario 3).
For each attack listed in the previous section, we have
plotted in Fig(s). 2–4 the success rate as a function of
the number of messages. We did this in two different
contexts: a non-noisy one (B1 and B2 are null) and
a noisy one (B1 and B2 have mean 0 and standard
deviation 4). In Scenario 1 the most efficient attack

5. Every basis contains the constant function, g1 : z 7→ 1

0

10

20

30

40

50

60

70

80

90

100

100 101 102 103 104 105 106 107

su
cc

es
s

ra
te

messages

CPA-HW

LR-lin

LR-quad

LR-cub

LR-deg2

LR-full

LR-HW

MIA

(a) No noise

0

10

20

30

40

50

60

70

80

90

100

100 101 102 103 104 105 106 107
su

cc
es

s
ra

te
messages

CPA-HW

LR-lin

LR-quad

LR-cub

LR-deg2

LR-full

LR-HW

MIA

(b) σ = 4

Fig. 2: Attacks against Boolean masking in Scenario 1

is LR-HW except without noise where MIA is more
efficient. As expected CPAHW is as efficient as LR-
HW while the LR-lin attack is ranked second. This
is due to the fact that the hypothesis made over
δ(·) induces a model that exactly corresponds to the
leakage function. Nevertheless, LR-HW and CPAHW
stop to be the most efficient attacks in Scenarios 2
and 3. This must be a consequence of the fact that, in
those cases the model τ is built under the incorrect
hypothesis δ(·) = HW (·). In Scenario 2, LR-lin is
the most efficient attack. The efficiency of the linear
regression with basis lin is explained by the fact
that yN (·) in (6) is linear when δ(·) does (this is a
straightforward extension from the Hamming weight
case shown in [23] to any linear function of the bit-
coordinates) and it is thus well approximated in the
linear basis. In Scenario 3, the results are rather the
same than in Scenario 2 since LR-lin is still the most
efficient attack. At first glance, this may appear as a
surprising result since we could expect the LR-quad
attack to be more efficient. Indeed, in this scenario yN
can be exactly approximated given the basis quad but
cannot with basis lin. So the estimation of yN returned
by the linear regression is better in the quadratic
case than in the linear one. Despite this difference,
the attack with linear basis discriminates faster. This
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Fig. 3: Attacks against Boolean masking in Scenario 2

shows that in some circumstances, it may be sufficient
to approximate only the linear part of the leakage and
that the computation overhead that a quadratic (or
higher) basis brings on, does not worth.

Eventually, it seems that for each attack in each
scenario, the presence of noise makes the curves to be
closer from each other. Namely, attacks which reach
a 100% success rate seem to become asymptotically
equivalent when noise increases. It is explained by the
fact that the number of messages needed to annihilate
the noise is largely sufficient to have a great approxi-
mation with linear regression whatever the size of the
basis.

Remark 5: As expected, MIA is always the less effi-
cient attack except in a perfect condition (i.e. without
noise and with the leakage deterministic part equal to
the attack model – here Hamming weight –).

4.2 Simulation with Arithmetic Masking Scheme
In this section, L1 and L2 satisfy either (18) (Scenario
1), or (19) (Scenario 2), or (20) (Scenario 3). For each
attack listed before, we have performed the same
attack simulations as in Sect. 4.1. The results are
plotted in Fig(s). 5–7.

In the arithmetic case, all attacks based on the
optimal model are the most efficient ones, even in Sce-
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Fig. 4: Attacks against Boolean masking in Scenario 3

narios 2 and 3. The LR-quad attack is ranked second
for each scenario and its efficiency is close to that of
LR-Opt and CPAOpt. In particular, it is always better
than CPAHW and LR-lin which actually do not achieve
a success rate greater than 85%. This situation can be
explained by the fact that the quadratic terms of the
function yN defined in (6) have an important influence
on the leakage when the masking is arithmetic and
not Boolean. To illustrate this, focusing on LR-deg2
attack, it can be checked that its efficiency is close to
that of LR-quad (namely the attack performs almost
equivalently with and without the linear terms in yN ).
The LR-cub attack is ranked third, behind the LR-
quad. Therefore, due to the computation overhead
induced by the use of a basis with cubic terms, the
adversary will benefit from applying the LR-quad
attack instead of the LR-cub one.

Remark 6: In the arithmetic case, MIA is often the
less efficient attack. Only in the first scenario (leakage
modeled as Hamming weight), MIA overpasses LR-
deg2, LR-lin and CPA-HW.

4.3 Attacks Experiments in Real Life

In previous sections, we have confronted our theoret-
ical analyses with simulations in realistic scenarios.
In the following, we aim at confronting our results



9

0

10

20

30

40

50

60

70

80

90

100

100 101 102 103 104 105 106 107

su
cc

es
s

ra
te

messages

CPA-Opt

CPA-HW

LR-lin

LR-quad

LR-cub

LR-deg2

LR-full

LR-Opt

MIA

(a) No noise

0

10

20

30

40

50

60

70

80

90

100

100 101 102 103 104 105 106 107

su
cc

es
s

ra
te

messages

CPA-Opt

CPA-HW

LR-lin

LR-quad

LR-cub

LR-deg2

LR-Opt

MIA

(b) σ = 4

Fig. 5: Attacks against arithmetic masking in Scenario
1

against real measurements. Attack parameters like
the attack target, the masking scheme and the attack
distinguisher remain the same as previously defined
while the leakage now comes from real power con-
sumption curves.

4.3.1 Leakage Measurements

Power consumption leakages have been measured on
a 8051 8-bit micro-controller. In each measurement
curve the parts related to the manipulation of Z ? V
and V are composed each of 100, 000 points. We
assume the curves to be synchronized (a glitch is
used to synchronize at the beginning of the manip-
ulation processing). Before mounting each attack, a
pre-processing step has been performed on the curves
to determine the two most pertinent points of interest
(the first point corresponding to Z ?V and the second
one corresponding to V). By definition, this pair of
points is the one that optimizes the attack efficiency
among the 100, 0002 possible pair of points. This more
or less corresponds to the definition given in [29]. For
the CPA, the pair corresponds to the pair of points
for which the error resulting from the approximation
of the leakage by the attack model is minimal. For
the regression-based attacks, the points of interest
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Fig. 6: Attacks against arithmetic masking in Scenario
2

are those for which the error resulting from the ap-
proximation of the leakage in the basis is minimal.
During the pre-processing, we have used the fact that
we knew the values Z ? V and V manipulated by
the device. Even if this does not correspond to a
real life adversary, this pre-processing allows us to
perform each attack with the optimal choice of points
of interest, which is a fair context to compare them
together.

For the attack comparisons, only the pair of points
of interest resulting in the maximal distinguishing
value has been considered for each attack.

Remark 7: This preprocessing step is not a prereq-
uisite to the attacks thus it must not be assimilate to
a profiling step. In fact, in this section we adopt the
point of view of a defender which want to resist to
the most powerful attacker. In this case, it is sound
to assume that the defender (e.g. a chip designer)
knows exactly the points of interest (i.e. the most
favorable case for an attacker). In other words, from
an attacker point of view, even if the points of interest
are given, the attack must be inefficient. We notice that
usually an attacker does not have access to such an
information.
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Fig. 7: Attacks against arithmetic masking in Scenario
3

4.3.2 Experiments Results

For each attack, the distinguishing coefficient has been
computed for each key candidate and for a given
(increasing) number of power traces up to 460, 000.
We recorded the minimal number of messages needed
to have the real key ranked first (i.e. emerging from
others). Results are recorded in Tab. 1.

`````````Attack
Masking Boolean Arithmetic

CPAHW 933 42,330
CPAOpt 2,039
LR-HW 832 42,320
LR-Opt 2,043
LR-lin 976 6,384

LR-quad 3,907 5,907
LR-cub 15,737 6,620

LR-deg2 4,884 14,705

TABLE 1: Experimental results

Globally, the experiments confirm our simulations
results. That is the attacks are ranked in the same
order with the same difference magnitude between
them. It confirms the soundness of our attack.

4.4 Conclusion on the Attack Simulations and
Experiments
The theoretical analysis led in Sect. 3.5 is confirmed
by the experimental results. At first, it corroborates
the analysis which explains why the linear regression
is effective. More than validating the effectiveness of
LR attacks, experiments show that they are at least
as efficient as the CPA and therefore appears as a
real alternative to it. Secondly, it validates the great
importance of the choice of the basis. Although attacks
based on the optimal model in Scenario 1 (for both
masking schemes) are always at the first place, this is
no longer the case when the optimal model is built
from a wrong hypothesis on δ(·). For instance with
Boolean masking, choosing a linear basis is sufficient
to make LR more efficient than LR-Opt whereas with
arithmetic masking a quadratic basis is needed. Fi-
nally, as predicted in Sect. 3.4, the LR-full (i.e. H = F)
attacks always fail.

Remark 8: The presence of noise makes the curves
to be closer each one to another. Moreover, whereas
the maximal success rate of each attack is unchanged,
the higher the noise, the higher the measurements
number to achieve the same success rate. In fact the
number of messages needed to annihilate the noise is
largely sufficient to have a great approximation with
linear regression even with a large basis.

5 CONCLUSION

In this paper we have introduced a second-order
stochastic attack which does not assume any pro-
filing capability on the adversary side. The attack
was successfully applied to the two major first-order
masking schemes, namely the Boolean and arithmetic
ones. A theoretical analysis of the approach explains
the core foundations of the attack, giving the reasons
of its effectiveness together with its intrinsic limits.
The effectiveness of the attack is confirmed by the
experiments which show that it is a good alternative
to existing solutions like the second-order CPA with
a combining function. Both theoretical analysis and
experiments highlight the importance of the choice of
the basis involved in the attack. This point should be
investigated in future works to take into account other
masking schemes like the multiplicative or the affine
ones.
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APPENDIX A
LINEAR REGRESSION
In this section we describe the linear regression
technique when applied to our context. For a basis
of functions (gi)1≤i≤d, a set of noisy observations
(yN (x))x∈Fn

as defined in (6) and a key candidate k̂,
the goal is to estimate:

∆k̂ = min
(a1,··· ,ad)∈Rd

d

(
yN ,

(∑
i

aigi

)
◦ Fk̂

)
(21)

= min
∑
x∈Fn

2

(
yN (x)−

[
(
∑
i

aigi) ◦ Fk̂

]
(x)

)2

.
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The linear regression technique involved in this pa-
per starts by building the following regression matrix:

M =



g1(Fk̂(0)) · · · gd(Fk̂(0))
g1(Fk̂(1)) · · · gd(Fk̂(1))

...
. . .

...
g1(Fk̂(x)) · · · gd(Fk̂(x))

...
. . .

...
g1(Fk̂(2n − 1)) · · · gd(Fk̂(2n − 1))


,

where the value x in Fk̂(x) is represented as an integer
corresponding to the binary representation of x ∈ Fn2 .

From the vector ~yN = (yN (0), . . . , yN (2n − 1)) and
M, the following column vector ~α is computed:

~α =
t(
α1, . . . , αd

)
=
(
tM ·M

)−1 · tM · t~y .

Under the Gaussian assumption, the function
(g1, . . . , gd)·~α is the function in < gi >1≤i≤d that is the
closest one to x 7→ yN (x) for the Euclidean distance.
In other terms, we have:

∆k̂(N) = d(yN , (g1, . . . , gd) · ~α) + ε ,

and the error term ε tends towards 0 asymptotically.
Remark 9: We assumed that the function yN is de-

fined for every value in Fn2 . Nevertheless in some
cases (e.g. for a small N ) it may happen that yN is
defined only on a strict subset E of Fn2 . In this case, the
linear regression processing remains the same, except
that lines corresponding to the values in Fn2/E are
discarded from the matrix M.

APPENDIX B
LINEAR REGRESSION VS CPA: A TIMING
POINT OF VIEW

As demonstrated in [7], the efficiency of an attack
decreases exponentially with the order of masking. In
other terms, a successful attack will need a number of
messages N growing exponentially w.r.t. the masking
order. This implies that higher-order attacks must be
able to efficiently deal with a huge number of obser-
vations. In particular, the time spent on processing the
observations may become a bottleneck. Although the
linear regression processing proposed in Appendix A
is based on matrix operations, the regression matrix
has a constant size w.r.t. to N (thanks to an initial
averaging step – see (6) –). More precisely, the linear
regression complexity can be split into two parts: the
matrix operation which is constant w.r.t. to N and
only depends on the basis size; and the least-square
computation (a mean of square) which depends on N .
Concerning CPA, its complexity relies on the compu-
tation of a mean of product, a product of means and
two standard deviations that all depend on N . We
can thus expect to have a faster attack when using
a linear regression (when N is sufficiently large to
neglect the matrix operation). To quantify the timing

complexity of linear regression, we did several timing
measurements and we compared them with those for
CPA attacks. We have first processed linear regression
with a linear model as a common use case and with
a full basis model as the worst possible case (for
n = 8), that is with the largest regression matrix
(i.e. the slowest matrix computation). We remind the
reader that in the latter case, the attack always failed
(cf. Sect. 3.4) but here, we are interested in timings in
the worst case. The results are plotted in Fig. 8a with
a zoom on the small numbers of messages in Fig. 8b.
The timings represented in Fig. 8 are measured over
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Fig. 8: Timing comparison for CPA-HW, LR-lin and
LR-full attacks.

100 attacks in an univariate setting. Since CPA and
linear regression attacks are both univariate and, in
this paper, feed with the same preprocessed vector of
observations (a centered product combination of two
leakage vectors), only the core computation differs
from one to the other.

Results. First and as expected, it can be noticed that
the performances of all the attacks are in the same
order of magnitude (and thus are computationally
viable). Nevertheless, with a linear model, the linear
regression becomes noticeably faster than CPA attack
(i.e. the constant matrix operation cost is small and
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can be quickly neglected) for N > 25, 000 (Fig. 8b).
If we focus on linear regression with the full basis,
the cost of the matrix operation is not negligible and
thus a large number of messages (N > 107 messages)
is needed to counterbalance it. In both cases, when
the number of messages is sufficiently large to pass
the timing offset due to the matrix operation, linear
regression is faster than CPA as expected.
Conclusion. This brief analysis pinpointed the sound-
ness of our attack also in terms of computability. That
is in all cases the linear regression encompasses and
outmatches CPA.

APPENDIX C
RELATIONSHIP WITH SECOND-ORDER CPA -
THE DETAILS

The distance computation (7) can be rewritten:

∆k̂(N) = d(yN ,H ◦ Fk̂) = d(yN , ϕ̂ ◦ Fk̂) , (22)

since H = {ϕ̂}. Now asymptotically (22) becomes:

lim
N→∞

∆k̂(N) = d(Y, ϕ̂ ◦ Fk̂) = d(Y, Ŷ ) , (23)

where we have denoted ϕ̂ ◦ Fk̂ by Ŷ and where we
recall that Y denotes ϕ ◦ Fk.
Equation (23) can be rewritten:

lim
N→∞

∆k̂(N) =
∑
x∈Fn

2

(
[ϕ ◦ Fk](x)− [ϕ̂ ◦ Fk̂](x)

)2
= 2n · E

[
(Y − Ŷ )

2
]
. (24)

After developing (24), we get:

lim
N→∞

∆k̂(N)

= 2n ·
(
E
[
Y 2
]

+ E
[
Ŷ 2
]
− 2 · E

[
Y · Ŷ

])
. (25)

We recall that the coefficient of correlation ρ(Y, Ŷ )
satisfies:

ρ(Y, Ŷ ) =
cov

(
Y , Ŷ

)
σY · σŶ

(26)

=
1

σY · σŶ
·
(
E
[
Y · Ŷ

]
− E [Y ] · E

[
Ŷ
])

,

From (25) and (26), we deduce:

lim
N→∞

∆k̂(N) = a · ρ+ b , (27)

where

a = −2n+1 · σY · σŶ and

b = 2n ·
(
E
[
Y 2
]

+ E
[
Ŷ 2
]
− 2 · (E [Y ] · E

[
Ŷ
]
)
)

are independent of the key hypothesis provided σY ,
σŶ , E

[
Y 2
]
, E
[
Ŷ 2
]
, E [Y ] and E

[
Ŷ
]

are also indepen-
dent of the key hypothesis. This is clearly the case
with typical first-order masking schemes involving
an addition, like Boolean and arithmetic masking
schemes.

APPENDIX D
A WORD ABOUT MAXIMUM LIKELIHOOD AP-
PROACH

In Sect. 3.5.2, we have exhibited the link between our
attack and the Maximum Likelihood approach with a
merge of the mixture components. We propose here to
go a step further by using a Maximum Likelihood test
as the distinguisher of Step 6 instead of the mean-of-
square.

We recall that the Maximum Likelihood test simply
consists in computing the product

∏
i fẑi(`

i
1, `

i
2) as

already mentioned in Sect. 3.5. To be able to compute
this latter, the adversary must have on hand the pdf
fz for every z. In view of the approximation that is
made in (16), the only parameter of the pdf that he has
to guess is Y |Z = z. This latter is already available,
as an approximation, at Step 5 of the attack described
in Sect. 3.3. With this pdf approximation on hand, the
adversary replaces the mean-of-square distinguisher
used in Step 6 by the Maximum Likelihood test and
then outputs the key-candidate which gave rise to the
highest discriminating value.

In Sect. 3.5.2, we have already shown that this
maximum likelihood approach cannot be more effi-
cient than the mean-of-square approach. To confirm
and strengthen this fact experimentally, we have con-
ducted some simulations in the Boolean case and
scenario 1.

The simulations parameters are the same as in
Sect. 4 and the results are plotted in Fig. 9.

As expected, for the same basis, the maximum
likelihood approach is never more efficient than the
corresponding linear regression approach. More inter-
estingly, the maximum likelihood efficiency is largely
lower than the linear regression (by a factor of 3).
The reason is that, the approximation of Y returned
by the linear regression is chosen w.r.t. the distance
defined in (7). In other words, the approximation
of Y itself is the result of a discriminating process.
Then applying another discriminating test such as the
maximum likelihood can only bring more noise.
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Fig. 9: Comparison between mean-of-square and Max-
imum Likelihood approach against Boolean masking
in Scenario 1


