
Relatively-Sound NIZKs and Password-Based

Key-Exchange ∗

Charanjit Jutla

IBM T. J. Watson Research Center,

Yorktown Heights,

NY 10598, USA

Arnab Roy

Fujitsu Labs of America,

Santa Clara,

CA, USA

Abstract

We define a new notion of relatively-sound non-interactive zero-
knowledge (NIZK) proofs, where a private verifier with access to a
trapdoor continues to be sound even when the Adversary has access
to simulated proofs and common reference strings. It is likely that
this weaker notion of relative-soundness suffices in most applications
that need simulation-soundness. We show that for certain languages
which are diverse groups, and hence allow smooth projective hash func-
tions, one can obtain more efficient single-theorem relatively-sound
NIZKs as opposed to simulation-sound NIZKs. We also show that such
relatively-sound NIZKs can be used to build rather efficient publicly-
verifiable CCA2-encryption schemes.

By employing this new publicly-verifiable encryption scheme along
with an associated smooth projective-hash, we show that a recent PAK-
model single-round password-based key exchange protocol of Katz and
Vaikuntanathan, Proc. TCC 2011, can be made much more efficient.
We also show a new single round UC-secure password-based key ex-
change protocol with only a constant number of group elements as
communication cost, whereas the previous single round UC-protocol
required Ω(k) group elements, where k is the security parameter.

∗Authors were supported in part by the Department of Homeland Security under grant
FA8750-08-2-0091.

1

Contents

1 Introduction 4

2 NIZK Definitions 7
2.1 Relative Soundness . 7

2.1.1 Relation to Simulation-Soundness 8

3 Smooth Projective Hash Functions 10

4 Bilinear Assumptions 11

5 A Publicly-Verifiable CCA2-Encryption Scheme 11

6 l-SRS-NIZK for the DDH Language 13

7 Secure Protocol in the PAK Model 15

8 Secure Protocol in the UC Model 16
8.1 Universally Composable Security 16
8.2 UC Functionality for Password-Based Key Exchange 16
8.3 A Single Round UC Password-Based Key Exchange Protocol 18
8.4 The Simulator for the UC Protocol 20

8.4.1 New Session: Sending a message to A. 21
8.4.2 On Receiving a Message from A. 21

8.5 Proof of Indistinguishability for the UC Protocol 22

A Appendix: Publicly-Verifiable CCA2 Encryption 26

B Appendix: Proof of l-SRS-NIZK 32

C Appendix: Key Exchange in the PAK Model 35
C.1 PAK Model of Security . 35
C.2 Proof of Security of the PAK protocol 37

C.2.1 Passive Execute Queries 38
C.2.2 New Session: Sending a message to A 39
C.2.3 On Receiving a Message from A 39
C.2.4 Proof of Indistinguishability for the simulator 40

D More Efficient Unbounded Simulation Sound NIZKs 42

E Secure Protocols under DLIN Assumption 44
E.1 Single Theorem Relatively-Sound NIZK for the DLIN Language 45
E.2 Public Verifiable CCA2 Encryption 46
E.3 Secure Protocol in the PAK Model 46

2

E.4 Secure PWKE-Protocol in the UC/DLIN Model 47

3

1 Introduction

Authentication based on passwords is a significant security paradigm in to-
day’s world. Security in this scenario has been a challenging problem to solve
because passwords typically come from low-entropy domains resulting in in-
sufficient randomness for generating cryptographically secure keys. Gong et
al. [11] raised the problem of designing protocols resistant to offline pass-
word guessing attacks, where other than guessing the low-entropy password
by an online attack, the protocol must otherwise provide strong security
based on a security parameter. Beginning with the work of Bellovin and
Merritt [2], there has been considerable theoretical work in formalizing and
obtaining secure protocols in the setting where only passwords are shared by
peers (e.g. [1]), referred to as the PAK-security model. From [15] onwards,
these protocols employ smooth projective hash functions which have been a
standard tool in cryptography ever since Cramer and Shoup defined them
to give an efficient chosen ciphertext secure (CCA2) encryption scheme [7].

As illustrated by Gennaro and Lindell [10], who call this the non-malleable
commitment paradigm, these protocols require the two peers A and B to
non-malleably commit to their password to their peer (say B), e.g. by CCA2
encrypting the password under a public key given as a common reference
string (CRS). While, the peer B cannot decrypt this commitment, it might
be able to compute a smooth projective-hash on this commitment using a
smooth hash key that it generates. The projection of this smooth hash key
is sent to peer A, and peer A can compute the same smooth hash using the
witness it has for the commitment. The two peers then output a product
of two such smooth hashes, one for its own commitment and one for its
peer. The problem, however, is that smooth projective-hash for the lan-
guage, which in this case is the CCA2-ciphertext encrypting a password, is
not easy to define, and [10] requires an adaptive smooth hash key, which
makes the key-exchange protocol a multi-round protocol.

Recently, Katz and Vaikuntanathan [16] gave a single round protocol
for password-based authenticated key exchange, by utilizing a publicly-
verifiable CCA2-encryption scheme of Sahai [19]. A publicly-verifiable en-
cryption scheme allows a (non-interactive) public verification of well-formedness
of the ciphertext, i.e. it returns TRUE if and only if the decryption oracle
will not return an “invalid ciphertext” response when queried with this ci-
phertext. The public verification allows the smooth hash to be defined on
only a part of the ciphertext, which in [16] happens to be two El-Gamal
encryptions of the password. Such smooth projective hashes are easy to
define and compute.

4

While the resulting protocol requires only a constant number of group
elements, as it employs simulation-sound Groth-Sahai NIZKs [13], under the
decisional linear assumption (DLIN [3]) it still requires each party to send
65 group elements (and the run-time is proportionately high).

In this paper we show that the above scheme can be made much more
efficient by using a novel concept of relatively-sound NIZKs rather than using
simulation-sound NIZKs. Simulation-Sound NIZKs were first defined by
Sahai [19], where it was used to convert Naor-Yung [18] CCA1-encryption
scheme into the aforementioned CCA2-encryption scheme. In simulation-
sound NIZKs the NIZK (public) verifier continues to be sound even when
the Adversary is given the simulated CRS and proofs. We notice that in
most applications what is really required is that a (private) verifier with
access to a trapdoor continues to be sound in the simulated world, as long
as this private verifier is equivalent to the public verifier in the real-world.
The novel relatively-sound NIZKs captures this idea1.

While it is easy to check that relative-soundness suffices in Sahai’s orig-
inal proof, in this paper we consider a further optimized construction. We
prove that an augmented El-Gamal encryption scheme (reminiscent of [8]),
along with a labeled single-theorem relatively-sound NIZK leads to a publicly-
verifiable CCA2-encryption scheme. In the augmented El-Gamal scheme the
public key (under the DDH or SXDH assumptions) consists of g, ga, gk, and
the encryption of m with randomness x is gx, gax,m · gkx. The labeled
relatively-sound NIZK proves that the first two elements of the ciphertext
use the same randomness x, with the third element used as label.

While a single-theorem simulation-sound NIZK could also have been
used above, we show that one can obtain single-theorem relatively-sound
NIZK far more cheaply than simulation-sound NIZK for this language. We
use the fact that the language is a finite diverse group, and hence allows
simple 2-universal projective hash functions [7], which allows us to build
a private verifier. Under the SXDH assumption [13], converting a NIZK
for this language to a relatively-sound NIZK only requires two more group
elements, whereas the best-known simulation-sound extension would require
nine group elements. Similarly, under the DLIN assumption, our extension
requires only three more elements, whereas a simulation-sound extension
requires at least 18 more elements [16]. Overall under the DLIN assumption,
our publicly-verifiable CCA2 ciphertexts have only 19 group elements versus
the 47 group elements in the Sahai scheme [19].

1 Relatively-sound NIZKs can be considered a hybrid of designated-verifier simulation-
sound NIZKs [9] and simulation-sound NIZKs.

5

We show that using the new encryption scheme in the PAKE protocol
of [16], leads to a new protocol which is two to three times more efficient
(under both SXDH and DLIN assumptions), with the SXDH-based scheme
requiring only 10 group elements to be communicated2.
UC Security. Canetti et al. [6] proposed a definition of security for password-
based key exchange protocols within the Universally Composable (UC) se-
curity framework [5], which has the benefit of the universal composition
theorem and as such can be deployed as a part of larger security contexts.
In addition, their definition of security considers the case of arbitrary and
unknown password distributions.

Katz and Vaikuntanathan [16] also gave a single round UC-secure pro-
tocol for password-based authenticated key exchange. However, their single
round UC protocol is still inefficient as it uses general purpose NIZKs (for
NP languages), and further requires proof of knowledge NIZKs. Even if the
language for which zero knowledge proofs are required can be made to be
given by simple algebraic relations in bilinear groups, the proof of knowl-
edge for exponents of elements as required in their protocol makes it rather
expensive.

A second main contribution of this paper is an efficient UC-secure single-
round protocol for password based key exchange. The main new ideas re-
quired for this efficient protocol are as follows: (a) The shared secret key
is obtained in the target group of the bilinear pairings used in the NIZKs
which allows for efficient simulator-extraction of group elements correspond-
ing to the smooth-hash trapdoor keys. Such an extraction is required for
UC-simulatability. (b) The NIZK proof of knowledge (for extraction) re-
quires the NIZKs to be unbounded simulation-sound. A general construc-
tion for unbounded simulation-soundness was given in [4] which is based on
a construction due to Groth [12], both of which can be seen to be using
relative-soundness implicitly. This leads us to give an optimized version of
this general construction. (c) We continue to use the Damgard style [8] en-
cryption scheme, which allows for even more optimization of the unbounded
simulation-sound construction for this specific language.

As a result, we get a single-round UC-secure protocol, where under the
DLIN-assumption, each party only communicates 63 group elements, which
is as efficient as the PAK-model protocol described in [16]. Under the SXDH
assumption, our UC-secure protocol only requires 33 group elements.

2It should be remarked that other efficient publicly-verifiable CCA2-encryption
schemes, such as [17], which allow hash proofs on the (proof-less) part of the ciphertext
can also be used in [16].

6

For sake of exposition, we focus on giving complete proofs only under
the SXDH assumption. All of the protocols are also given under the DLIN
assumption in the Appendix.

2 NIZK Definitions

In this section we give some definitions related to Non Interactive Zero
Knowledge (NIZK) proofs. We will assume familiarity with usual defini-
tions of NIZKs (see e.g. [19, 13]). A proof for a relation R consists of a key
generation algorithm K which produces the CRS ψ, a probabilistic polyno-
mial time (PPT) prover P and a PPT verifier V .
Zero-Knowledge. We call (K,P, V) a NIZK proof for R if there exists a
poly-time simulator (S1, S2), such that for all non-uniform PPT adversaries
A we have Pr[ψ ← K(1m) : AP (ψ,·,·)(ψ) = 1] ≈ Pr[(σ, τ) ← S1(1

m) :
AS(σ,τ,·,·)(σ) = 1],
where S(σ, τ, x, w) = S2(σ, τ, x) for (x,w) ∈ R and both oracles output
failure if (x,w) 6∈ R.
One-time Simulation Soundness A NIZK proof is one-time simulation
sound NIZK if for all non-uniform PPT adversaries A = (A1,A2) we have
Pr[(σ, τ)← S1(1

m); (x, s)← A1(σ);π ← S2(σ, τ, x); (x
′, π′)← A2(x, π, σ, s) :

((x′, π′) 6= (x, π)) and ¬∃w′ s.t. (x′, w′) ∈ R, and V (σ, x′, π′) = 1] ≈ 0.
Unbounded Simulation Sound Extractability (uSS-NIZK).Consider
a NIZK proof (K,P, V, S1, S2) along with an initialization algorithm SE1 and
a knowledge extractor E2, such that SE1 outputs (σ, τ, ξ) with (σ, τ) iden-
tical to values output by S1. Such a proof is said to have the Unbounded
Simulation Sound Extractability property if for all non-uniform PPT adver-
saries A we have
Pr[(σ, τ, ξ)← SE1(1

k); (x, π) ← AS2(σ,τ,·)(σ);w ← E2(σ, ξ, x, π) :
(x, π) /∈ Q and (x,w) /∈ R and V (σ, x, π) = 1] ≈ 0

where Q is the set of simulation queries and responses (xi, πi). For some
subset of witnesses the extractor E2 may extract witnesses in polynomial
time, which will be the focus in this paper.

2.1 Relative Soundness

We now define a novel weaker notion of simulation soundness, which might
suffice for most applications, especially in the case of single theorem (or
one-time) simulation. It is possible that this weaker notion may be more
efficient to implement, as we demonstrate later for a particularly important

7

language, where we also show that the weaker notion suffices for the appli-
cation at hand. In a nutshell, the weaker notion allows for the simulator
to have a private verifier of its own, with access to a trapdoor. Simulation-
soundness is now defined with respect to simulator’s private verifier, and
hence the name relative-soundness. There is an important further stipu-
lation in the definition that the zero-knowledge property should hold even
when the Adversary is given oracle access to private verifier in the simulated
world (and public verifier in real world).
Labeled Single-Theorem Relatively-Sound NIZK (l-SRS-NIZK).
Consider a sound and complete (labeled) proof (K,P, V) for a relation R
along with a PPT private-verifier W and a PPT simulator (S1, S2). In a
labeled proof, the prover P takes an input label, in addition to the statement
to be proven. The verifier takes a statement, a label, and a proof. Such a
proof is called a labeled single-theorem relatively-sound NIZK for R
if for all non-uniform PPT adversaries A = (A1,A2,A3,A4) we have

relative-ZK:
Pr[(ψ)← K(1m); (x,w, lbl, s)← A

V (ψ,·,·,·)
1 (ψ); π ← P (ψ, x,w, lbl) :

A
V (ψ,·,·,·)
2 (π, s) = 1] ≈

Pr[(σ, τ)← S1(1
m); (x,w, lbl, s)← A

W (σ,τ,·,·,·)
1 (σ); π ← S2(σ, τ, x, lbl) :

A
W (σ,τ,·,·,·)
2 (π, s) = 1],

for A1 restricted to producing (x,w) satisfying R, and

relative-simulation-soundness:
Pr[(σ, τ)← S1(1

m); (x, lbl, s)← A
W (σ,τ,·,·,·)
3 (σ);π ← S2(σ, τ, x, lbl);

(x′, lbl′, π′)← A
W (σ,τ,·,·,·)
4 (π, s) : ((x′, lbl′, π′) 6= (x, lbl, π)) and

¬∃w′ s.t. R(x′, w′) = 1, andW (σ, τ, x′, lbl′, π′) = 1] ≈ 0.

Note that there is no other requirement on W other that those listed
above. It is critical that relative-ZK is required only w.r.t. adversaries (A1)
that produce language members. Otherwise, relative-simulation-soundness
would already imply normal simulation-soundness. Although it remains
an open problem whether relatively-sound NIZKs are strictly weaker than
simulation-sound NIZKS, the following shows the relation to non-adaptive
simulation soundness, i.e. where the statements for which the proofs need
to be simulated are chosen randomly.

2.1.1 Relation to Simulation-Soundness

In this section we consider non-adaptive simulation-soundness, i.e. where the
statements for which the proofs need to be simulated are chosen randomly.

8

Thus, consider the following variant of One-time Simulation Soundness de-
fined in Section 2.
Non-Adaptive Labeled One-time Simulation Soundness A NIZK
proof for language L ⊆ X is a non-adaptive one-time simulation sound
NIZK if for all non-uniform PPT adversaries A = (A3,A4) we have

Pr[(σ, τ)← S1(1
m);x

$
←− X; (lbl, s)← A3(σ, x);π ← S2(σ, τ, x, lbl);

(x′, lbl′, π′)← A4(π, s) : ((x′, lbl′, π′) 6= (x, lbl, π))

and ¬∃w′ R(x′, w′) = 1, and V (σ, x′, lbl′, π′) = 1] ≈ 0.

Now, assume that the language L is efficiently witness-samplable, i.e.
there is PPT machine which can efficiently sample from L along with the
witness for the language member. Also, a language L, subset of a domain
X, is called hard if no PPT adversary can distinguish between a (uniformly)
random element of L from a random element of X.

For hard and efficiently witness-samplable languages we show that relative-
soundness implies non-adaptive simulation-soundness.

Lemma 1 For a hard and efficiently witness samplable language L, a labeled
1-SRS-NIZK for L also satisfies the non-adaptive labeled one-time simula-
tion soundness property for L.

Proof: Assume to the contrary that the 1-SRS-NIZK for L does not satisfy
the the non-adaptive simulation-soundness property, and let the probability
of the event in the definition be a non-negligible ∆. By, the relative-SS
property it follows that

Pr[(σ, τ)← S1(1
m);x

$
←− X; (lbl, s)← A3(σ, x);π ← S2(σ, τ, x, lbl);

(x′, lbl′, π′)← A4(π, s) : ((x′, lbl′, π′) 6= (x, lbl, π)) and ¬∃w′ s.t. R(x′, w′) = 1,

and V (σ, x′, lbl′, π′) = 1 andW (σ, τ, x′, lbl′, π′) = 0] ≈ ∆. (1)

Now, consider the simulation world where S1 generates a CRS σ. Also con-
sider an adversary A′

1(σ) which just generates a random x ∈ X, and uses
A3(σ, x) to get label lbl and state s. Further consider an (oracle) adver-
sary A2(π, s) which first uses A4(π, s) to get x′, lbl′, π′, and then applies
V (σ, x′, lbl′, π′) and equates it with the oracle response on input x′, lbl′, π′.
If equality holds A2 outputs 0, otherwise it outputs 1. It follows from Equa-
tion (1) that

Pr[(σ, τ)← S1(1
m); (x, lbl, s)← A′

1(σ);π ← S2(σ, τ, x, lbl) :

A
W (σ,τ,·,·,·)
2 (π, s) = 1] > ∆. (2)

9

Now, consider an adversary A1 which is identical to A′

1 except that it sam-
ples x from L instead of X. Then, by hardness of the language L, it follows
that (from Equation (2) and the fact that S1, S2,W, V,A3,A4 are all PPT
machines)

Pr[(σ, τ)← S1(1
m); (x, lbl, s)← A1(σ);π ← S2(σ, τ, x, lbl) :

A
W (σ,τ,·,·,·)
2 (π, s) = 1] > ∆.

Next, since L is efficiently witness samplable, we let A1 also generate the
witness w of x along with x. Since state s is independent of w, the above
probability remains same. Now, by relative-ZK property of 1-SRS-NIZK it
follows that

Pr[(ψ)← K(1m); (x,w, lbl, s)← A1(ψ);π ← P (ψ, x,w, lbl) :

A
V (ψ,·,·,·)
2 (π, s) = 1] > ∆.

Now, A2 outputs 1 only if V (ψ, ·, ·, ·) (internally) applied to some triple is not
same as response of oracle on the same triple. But, since the oracle itself is
the same V (ψ, ·, ·, ·) the above non-zero probability leads to a contradiction.

�

3 Smooth Projective Hash Functions

Fix a cyclic group G = 〈g, ·〉 of prime order q, such that 1/q is a negligible
function of the security parameter. We define the El-Gamal encryption
function as follows. For K,m in G, and x, define

enc
eg
K (m;x) = 〈gx,Kx ·m〉

For K and pwd in G, define

LK,pwd = {c = 〈R,P 〉 | ∃x : c = enc
eg
K (pwd;x)} ∩G×G.

A projective hash function [7] is a keyed family of functions mapping
elements in some message space X to the group G, and is associated with a
language. Further, it comes with a projection function α : K → S, where
K is the key space and S is the projected key space. For our hash family,
the key space is Zq × Zq, and the projected key space is G. The message
space X is the space of ciphertexts. For n, n̂ in Zq, c in G

2, and K, pwd in

G, define the hash family HK,pwd associated with LK,pwd by

10

H
pwd
n,n̂ (c = 〈R,P 〉) = (P/pwd)n̂ ·Rn, αK,pwd(n, n̂) = gn · (K)n̂.

It is straightforward to see that, if c = enc
eg
K (pwd;x) for some x, then

H
pwd
n,n̂ (c) = αK,pwd(n, n̂)x.

For any K and pwd in G, HK,pwd is said to be smooth [7] w.r.t. L =
LK,pwd, if for any c

′ in G2, but not in L, the statistical distance between the

distribution of the pair (H
K,pwd
n,n̂ (c′), αK,pwd(n.n̂)) and the pair (gd1 , gd2)

is negligible, where n, n̂, d1, d2 are chosen randomly and independently from

Zq. It is a simple exercise to see that HK,pwd is smooth with respect to
LK,pwd.

We also define a projective hash function family associated with any
language L to be 2-universal [7] if for all s ∈ S, x, x′ ∈ X, and π, π′ ∈ G
with x 6∈ L∪ {x′}, it holds that Prk[Hk(x) = π | Hk(x

′) = π′ ∧ α(k) = s] ≤
1/q.

4 Bilinear Assumptions

Throughout the paper, we use (bilinear) groups G1, G2, GT each of prime
order q, which allow an efficiently computable Zq-bilinear pairing map e :
G1 ×G2 → GT .
SXDH: [13] The symmetric external decisional Diffie-Hellman (SXDH) as-
sumption states that the decisional Diffie-Hellman (DDH) problem is hard
in both groups G1 and G2.
DLIN: [3] In groups such that G1 is same as G2, the decisional linear
(DLIN) assumption states that given (αP, βP, rαP, sβP, tP) for random
α, β, r, s ∈ Zq, and arbitrary generator P of G1, it is hard to distinguish
between t = r + s and a random t.

5 A Publicly-Verifiable CCA2-Encryption Scheme

In this section we describe a CCA2-Encryption scheme that has the property
that a potential ciphertext can be publicly verified to be a valid ciphertext of
some message. Note that Sahai [19] had previously given a publicly-verifiable
CCA2-encryption scheme employing the Naor-Yung CCA1-scheme [18], but
our scheme is simpler and more efficient.

One might be tempted to take the Cramer-Shoup encryption scheme,
and extend the ciphertext by including a NIZK proof that the 2-universal
smooth projective-hash [7] was correctly computed. However, since the

11

NIZK scheme by itself may be malleable, this may render the scheme inse-
cure in the CCA2-model. There are two potential fixes to this: (a) make
the NIZK single theorem simulation-sound, or (b) include the NIZK com-
mitments to the witness in the projective-hash. While it is not that difficult
to see that (a) may lead to a correct publicly-verifiable CCA2-scheme (just
as in [19]), the second idea (b) may seem far-fetched.

We now show that it suffices to make the NIZK proof a labeled single-
theorem relatively-sound NIZK, and further one just needs to prove in this
NIZK that the Diffie-Hellman tuple in the ciphertext is well-formed, i.e.
it is of the form gx, Ax. We later show that there exists a very efficient
way to extend a single-theorem Groth-Sahai NIZK of this statement to be
a relatively-sound proof, such that the resulting publicly-verifiable CCA2-
scheme is just the idea (b) mentioned above.

To formally define publicly-verifiable CCA2-encryption schemes, one just
extends the standard IND-CCA2 definition of encryption with a public ver-
ification function V which takes the public key and a potential ciphertext
as arguments, and it returns true iff the decryption function when supplied
with the same ciphertext does not return “invalid ciphertext”.

For given g,A, let the relationR = {((ρ, ρ̂), x) | ρ = gx, ρ̂ = Ax}. We now
define a labeled publicly-verifiable public-key encryption scheme DHENC as
follows:

Key Generation: Generate g,A
$
←− G1, and k

$
←− Zq. Let K = gk. Let ψ

be the CRS for an l-SRS-NIZK. The public key is (g,A,K,ψ) and the
private key is k.

Encrypt: Given plaintext m ∈ G1, and label lbl. Choose x
$
←− Zq. Let

the triple 〈ρ, ρ̂, γ〉 be 〈gx, Ax,mKx〉. Let π be an l-SRS-NIZK proof of
((ρ, ρ̂), x) ∈ R with label γ, lbl. The ciphertext is (ρ, ρ̂, γ, π).

Decrypt: Given ciphertext c = (ρ, ρ̂, γ, π) and label lbl. Verify if π is
an l-SRS-NIZK proof for (ρ, ρ̂) and label γ, lbl. If verification fails
output ⊥. Otherwise output m = γ

ρk
.

Verify: Given ciphertext c = (ρ, ρ̂, γ, π) and label lbl. Verify if π is an l-
SRS-NIZK proof for (ρ, ρ̂) and label γ, lbl. If verification fails output
false else output true.

Theorem 2 The scheme DHENC is publicly-verifiable (labeled) IND-CCA2
secure.

12

The full proof of this theorem can be found in the Appendix, but the main
idea is that the decryption can be done as either γ/ρk, or as γ/(ρk

′

ρ̂k
′′

),
where the Simulator chooses the public key K as gk

′

Ak
′′

. The encryption
oracle hides the message by employing DDH as follows: (1) The NIZK CRS
in the original experiment is the binding-CRS, and the decryption oracle in
the original experiment does a public verification of proofs in each adversar-
ially supplied ciphertext. (2) The NIZK CRS is switched to be the hiding
CRS, the proof switched to a simulator generated proof, and decryption
oracle now uses private-verification. This is an indistinguishable change by
the relative-ZK property of l-SRS-NIZK. Note, x is no more used in the sim-
ulated proof. (3) The decryption is done as γ/(ρk

′

ρ̂k
′′

), which is equivalent
because of relative-simulation soundness property of l-SRS-NIZK. (4) DDH
is employed, as only ga instead of a is being used in simulation. This leads
to Ax being replaced by an independent X ′. (5) The decryption is done as
γ/ρk, which is again equivalent by relative-soundness. (6) the message in
the encryption can be switched by pairwise independence in k, and this step
is information-theoretic. More precisely, gxk

′

(X ′)k
′′

is random and indepen-
dent of gx, X ′, K, A, as well as Adversary’s coins with high probability. (7)
Next we do all the above steps (2)-(5) in reverse.

6 l-SRS-NIZK for the DDH Language

Let G1 and G2 be two groups with a bilinear pairing e : G1×G2 → GT and
|G1| = |G2| = |GT | = q, a prime number. Also assume that DDH is hard
for both G1 and G2. Recall that this is the SXDH assumption. Let Lg,A be
the language: {(ρ, ρ̂) ∈ G1

2 | ∃x. ρ = gx ∧ ρ̂ = Ax}, with g,A in G1.
Note that this language is actually a cyclic group with generator 〈g,A〉,

and forms a diverse group system [7]. In [7], Cramer and Shoup show how
to obtain 2-universal projective hash functions for such languages, and we
use these hash functions for private-verification.

We construct an l-SRS-NIZK proof system for Lg,A, as follows:

CRS Generation: Generate P
$
←− G2 and u, v, d1, d2, e1, e2

$
←− Zp. Com-

pute (P,Q,R, S, d, e) = (P, Pu, Pv , Puv+1, gd1Ad2 , ge1Ae2). The
CRS is ψ = (P,Q,R, S, d, e). The first four elements are as in the
Groth-Sahai NIZK for SXDH (binding CRS), and the last two are the
projection keys for a 2-universal projective-hash for the DDH language
(just as [7]), to be used in the relatively-sound system.

The simulation CRS σ is (P,Q,R, S, d, e) = (P, Pu, Pv , Puv, gd1Ad2 ,

13

ge1Ae2). This is the hiding CRS of GS-NIZK for SXDH along with d
and e as above. The trapdoor is τ = (u, d1, d2, e1, e2).

Prover: Given witness x, candidate (gx, Ax), and label lbl, construct proof

as follows. Generate s
$
←− Zq. Compute t← H(gx, Ax, QxP s, SxRs, lbl),

whereH is a collision resistant hash function. Then compute: (β, c1, c2, θ, φ, χ)←(
(det)x, QxP s, SxRs, gs, As, (det)s

)
. Output proof π = (β, c1, c2, θ, φ, χ).

The first element is a 2-universal projective-hash computed on the
candidate with witness x. The last five elements can be interpreted
as generated by the Groth-Sahai NIWI proof (which also happens to
be a NIZK proof) for the language {ρ, ρ̂, h | ∃x : ρ = gx, ρ̂ = Ax, h =
(det)x}, where t is a hash of ρ, ρ̂, lbl, and the commitment to x in
the NIWI system, i.e. QxP s, SxRs.

Simulator: Given a candidate (ρ, ρ̂), generate the proof as follows. Gener-

ate s
$
←− Zq and compute t← H(ρ, ρ̂, P s, Rs, lbl). Then compute

π = (β, c1, c2, θ, φ, χ) =
(
ρd1 ρ̂d2(ρe1 ρ̂e2)t, P s, Rs, ρ−ugs, ρ̂−uAs, β−u(det)s

)

Public Verify: Given π = (β, c1, c2, θ, φ, χ) as a candidate proof of (ρ, ρ̂)
with label lbl, compute t ← H(ρ, ρ̂, c1, c2, lbl). Then check the fol-
lowing equations:




e(g, c1)
?
= e(ρ,Q) · e(θ, P), e(g, c2)

?
= e(ρ, S) · e(θ,R)

e(A, c1)
?
= e(ρ̂, Q) · e(φ, P), e(A, c2)

?
= e(ρ̂, S) · e(φ,R)

e(det, c1)
?
= e(β,Q) · e(χ,P), e(det, c2)

?
= e(β, S) · e(χ,R)




Private Verify: Given π = (β, c1, c2, θ, φ, χ) as a candidate proof of (ρ, ρ̂)
with label lbl, compute t ← H(ρ, ρ̂, c1, c2, lbl). Then first do public
verification and if that succeeds then check the following equation:

β
?
= ρd1 ρ̂d2(ρe1 ρ̂e2)t.

Note that this private verifier is well-defined in the real world as well.
In addition, its trapdoor (d1, d2, e1, e2) is identically generated in both
the real and the simulated worlds.

Theorem 3 The above system is an l-SRS-NIZK proof system for Lg,A.

A detailed proof of this theorem can be found in the appendix, but the
following proof sketch is instructive.

14

Proof Sketch: We focus on Relative-ZK and Relative-SS properties. For
the former, we need to show that the simulation CRS, and a proof for (ρ, ρ̂)
with label lbl is computationally indistinguishable from the real CRS and a
real proof, even when the Adversary has oracle access to respective veriifers.
This is accomplished by a sequence of games, where the first game is same as
te real world game. In the second game, the CRS and the proof remain the
same but the verifier in the oracle is changed to be the private verifier. We
need to show that public verification implies private verification, but this
follows from soundness of the Groth-Sahai NIZK, as well as the fact that
on a valid DDH tuple the projection hash is same whether it is computed
using the witness and the projection key or using the private hash keys. In
the final game we switch to the simulation CRS and simulated proof, and
indistinguishability follows from ZK property of Groth-Sahai NIZKs and the
fact that the private verification trapdoor is independent of the Groth-Sahai
NIZK CRS (hiding or binding).

The relative-simulation-soundness property is proven using the 2-universal
property of the projective smooth hash (just as in [7]), but additionaly using
the fact that in Groth-Sahai NIZKs, once the commitments to the witnesses
are fixed, there is a unique proof satisfying the linear equations of the type
used in the above NIZK proof. This holds for both the SXDH and the DLIN
assumptions. �

The l-SRS-NIZK proof for DDH language above consists of six group
elements. The l-SRS-NIZK proof for the DLIN language (and under the
DLIN assumption), given in the appendix, consists of 15 group elements.

7 Secure Protocol in the PAK Model

In this section we present a password-based key exchange protocol secure in
the PAK model of security due to Bellare, Pointcheval and Rogaway [1]. We
instantiate the single-round scheme due to Katz and Vaikuntanathan [16],
which is described in Figure 1, with the more efficient publicly-verifiable
CCA-secure encryption scheme DHENC of Section 5, which enables a more
efficient hash proof as well. The common reference string (CRS) is just the
public key of this scheme. More details can be found in the Appendix.

The projective-hash family used in this scheme is Hpw along with the
projection function αK,pw defined in Section 3, where K is from the public-
key (i.e. CRS). Note that the input label to the hash function is ignored in
Hpw. Also, α does not depend on pw.

15

CRS = pk

Party Pi A Party Pj

ki
$
←− Hash-K; si ← α(ki)

labeli,Ci
−−−−−→

labelj ,Cj

←−−−−−−

kj
$
←− Hash-K; sj ← α(kj)

labeli ← (Pi, Pj , si) labelj ← (Pj , Pi, sj)
Ci ← encpk(labeli, pw) Cj ← encpk(labelj, pw)

label′j ,C
′

j

←−−−−−−
label′i,C

′

i−−−−−→
Reject if C′

j is not a publicly Reject if C′

i is not a publicly
verified ciphertext with label verified ciphertext with label
label′j. label′i.
ski ← Hki(label

′

j, C
′

j , pw) skj ← Hkj (label
′

i, C
′

i, pw)
·Hkj (labeli, Ci, pw) ·Hki(labelj, Cj , pw)

Figure 1: Single-round PAK-Model Secure Password-based Authenticated
KE.

Theorem 4 Assume the existence of SXDH-hard groups G1 and G2. Then
the protocol in Figure 1 is secure in the PAK model.

The proof of this theorem is same as the proof in [16], as we have modularized
the various constructs required in that proof. The main idea is that once the
CCA2-encryption scheme is publicly verifiable, then the smooth hash needs
to be just over the language LK,pw, which are CPA encryptions of password.
However, we provide an alternate stand-alone proof in Appendix C.2.

8 Secure Protocol in the UC Model

8.1 Universally Composable Security

The Universally Composable (UC) framework [5] is a formal system for prov-
ing security of computational systems such as cryptographic protocols. The
framework describes two probabilistic games: The real world that captures
the protocol flows and the capabilities of an attacker, and the ideal world
that captures what we think of as a secure system. The notion of security
asserts that these two worlds are essentially equivalent.

8.2 UC Functionality for Password-Based Key Exchange

The essential elements of the Universal Composability framework can be
found in [5]. We adopt the definition for password-based key exchange from

16

Functionality FpwKE

The functionality FpwKE is parameterized by a security parameter k. It interacts with an adversary
S and a set of parties via the following queries:

Upon receiving a query (NewSession, sid, Pi, Pj , pw, role) from party Pi:
Send (NewSession, sid, Pi, Pj , role) to S. In addition, if this is the first NewSession query, or if
this is the second NewSession query and there is a record (Pj , Pi, pw

′), then record (Pi, Pj , pw)
and mark this record fresh.

Upon receiving a query (TestPwd, sid, Pi, pw
′) from the adversary S:

If there is a record of the form (Pi, Pj , pw) which is fresh, then do: If pw = pw′, mark the record
compromised and reply to S with “correct guess”. If pw 6= pw′, mark the record interrupted

and reply with “wrong guess”.

Upon receiving a query (NewKey, sid, Pi, sk) from S, where |sk| = k:
If there is a record of the form (Pi, Pj , pw), and this is the first NewKey query for Pi, then:

• If this record is compromised, or either Pi or Pj is corrupted, then output (sid, sk) to
player Pi.

• If this record is fresh, and there is a record (Pj , Pi, pw
′) with pw′ = pw, and a key sk′

was sent to Pj , and (Pj , Pi, pw) was fresh at the time, then output (sid, sk′) to Pi.

• In any other case, pick a new random key sk′ of length k and send (sid, sk′) to Pi.

Either way, mark the record (Pi, Pj , pw) as completed.

Figure 2: The password-based key-exchange functionality FpwKE

Canetti et al [6]. The following description is a summary from [6]. The
formal description is given in Figure 2.

Like the key exchange functionality, if both participating parties are
not corrupted, then they receive the same uniformly distributed session key
and the adversary learns nothing of the key except that it was generated.
However, if one of the parties is corrupted, then the adversary determines
the session key. This power to the adversary is also given in case it succeeds
in guessing the parties’ shared password. Participants also detect when the
adversary makes an unsuccessful attempt. If the adversary makes a wrong
password guess in a given session, then the session is marked interrupted

and the parties are provided random and independent session keys. If the
adversary makes a successful guess, then the session is marked compromised.
If a session is marked fresh, this means that it is neither interrupted nor
compromised. Such sessions between uncorrupted parties conclude with
both parties receiving the same, uniformly distributed session key.

17

8.3 A Single Round UC Password-Based Key Exchange Pro-
tocol

The single-round UC protocol under the SXDH assumption uses labeled
unbounded simulation sound G2-extractable NIZKs (uSS-NIZK). Consider
parties Pi and Pj involved in the protocol with SSID ssid. The CRS is three
group elements g,A(= ga),K(= gk) chosen randomly from G1, another el-
ement P chosen randomly from G2, and a uSS-NIZK CRS ψ. Since g, P
are also part of the uSS-NIZK CRS, having chosen the NIZK CRS, g, P
are already determined. The protocol is symmetric and asynchronous with
each party computing a message to be sent, then receiving a correspond-
ing message and computing a key. Therefore, we just describe it from the
perspective of one party; the other is symmetric.

Party Pi generates x
$
←− Zq and computes c1 = 〈gx, Ax,Kx · pw〉. It

also generates hash key (n1, n̂1)
$
←− (Zq)

2 and computes the projection key

η1 = αK,pwd(n1, n̂1) = gn · K n̂. Finally it computes a NIZK proof of
consistency in the following way:

π1 = uSS-NIZKψ(g
x, Ax, η1;x,P

n1 ,P n̂1) with label 〈Pi, Pj , ssid〉

Note that π here denotes the commitments to the witnesses as well as the
further proof as in the Groth-Sahai system. The NP language L for the
NIZK is

L = {ρ, ρ̂, η | ∃x,N, N̂ : ρ = gx, ρ̂ = Ax, e(η,P) = e(g,N)e(K, N̂)}

Now, the message sent by Pi is 〈c1, η1, π1〉. Let the message received by
Pi in this session, supposedly from Pj , be 〈c

′

2, η
′

2, π
′

2〉. Let c′2 be parsed as

(ρ′2, ρ̂
′

2, γ
′

2). If any of ρ′2, ρ̂
′

2, γ
′

2, η
′

2 is not inG1\{1}, or uSS-NIZK-Verify(π′2; ρ
′

2, ρ̂
′

2, η
′

2)
with label 〈Pj , Pi, ssid〉 turns out to be false, then it sets its session key sk1
randomly from the target group of e, GT . Otherwise it is computed as
follows:

h′2 = (
γ′2
pwd

)n̂1(ρ′2)
n1 h1 = (η′2)

x1 h3 = h′2 · h1 sk1 = e(h3,P).

Theorem 5 Assume the existence of a SXDH-hard group, a labeled un-
bounded simulation-sound G2-extractable NIZK proof system. Then the pro-
tocol in Figure 3 securely realizes the F̂pwKE functionality in the F crs hybrid
model, in the presence of static corruption adversaries.

18

CRS = g,P , A,K, ψ : g,A,K
$
←− G1 P

$
←− G2 ψ = uSS-NIZK CRS

Party Pi Adv A

Input (NewSession, sid, ssid, Pi, Pj , pwd, initiator/responder)

Choose x1, n1, n̂1
$
←− Zq.

c1,η1,π1

−−−−−→ A
Set ρ1 = gx1 , ρ̂1 = (A)x1 , γ1 = pwd ·Kx1 , η1 = gn1(K)n̂1 ,
Let c1 = 〈ρ1, ρ̂1, γ1〉, and
π1 = uSS-NIZKψ(ρ1, ρ̂1, η1;x1,P

n1 ,P n̂1) with label 〈Pi, Pj , ssid〉.
c′
2
,η′

2
,π′

2←−−−−− A
Let c′2 = 〈ρ′2, ρ̂

′

2, γ
′

2〉.
If any of ρ′2, ρ̂

′

2, γ
′

2, η
′

2 is not in G1\{1}, or
not uSS-NIZK-Verify(π2; ρ

′

2, ρ̂
′

2, η
′

2) with label 〈Pj , Pi, ssid〉

set sk1
$
←− GT , else

compute h′2 = (
γ′

2

pwd
)n̂1(ρ′2)

n1 , h1 = (η′2)
x1 , sk1 = e(h′2 · h1,P).

Output (sid, ssid, sk1).

Figure 3: Single round UC-secure Password-based KE under SXDH As-
sumption.

In the next section we demonstrate a simulator which uses F̂pwKE to
simulate the protocol to an adversary, thus proving Theorem 6.

For sake of exposition, we describe the protocol based on the SXDH
(symmetric external Diffie-Hellman) assumption. In the appendix, we give
the protocol under the Decisional Linear assumption (DLIN). The SXDH
based protocol is given in Fig 3, and a detailed description follows.

The protocol uses labeled unbounded simulation sound G2-extractable
NIZKs (uSS-NIZK). Consider parties Pi and Pj involved in the protocol
with SSID ssid. The CRS is three group elements g,A(= ga),K(= gk) chosen
randomly from G1, another element P chosen randomly from G2, and a uSS-
NIZK CRS ψ. Since g, P are also part of the uSS-NIZK CRS, having chosen
the NIZK CRS, g, P are already determined. The protocol is symmetric
and asynchronous with each party computing a message to be sent, then
receiving a corresponding message and computing a key. Therefore, we just
describe it from the perspective of one party; the other is symmetric.

Party Pi generates x
$
←− Z∗

q and computes c1 = 〈gx, Ax,Kx · pw〉. It

also generates hash key (n1, n̂1)
$
←− (Z∗

q)
4 and computes the projection key

η1 = αK,pwd(n1, n̂1) = gn · K n̂. Finally it computes a NIZK proof of

19

consistency in the following way:

π1 = uSS-NIZKψ(g
x, Ax, η1;x,P

n1 ,P n̂1) with label 〈Pi, Pj , ssid〉

Note that π here denotes the commitments to the witnesses as well as the
further proof as in the Groth-Sahai system. The NP language L for the
NIZK is

L = {ρ, ρ̂, η | ∃x,N, N̂ : ρ = gx, ρ̂ = Ax, e(η,P) = e(g,N)e(K, N̂)}

Now, the message sent by Pi is 〈c1, η1, π1〉. Let the message received by
Pi in this session, supposedly from Pj , be 〈c

′

2, η
′

2, π
′

2〉. Let c′2 be parsed as

(ρ′2, ρ̂
′

2, γ
′

2). If any of ρ′2, ρ̂
′

2, γ
′

2, η
′

2 is not inG1\{1}, or uSS-NIZK-Verify(π′2; ρ
′

2, ρ̂
′

2, η
′

2)
with label 〈Pj , Pi, ssid〉 turns out to be false, then it sets its session key sk1
randomly from the target group of e, GT . Otherwise it is computed as
follows:

h′2 = (
γ′2
pwd

)n̂1(ρ′2)
n1 h1 = (η′2)

x1 h3 = h′2 · h1 sk1 = e(h3,P).

Theorem 6 Assume the existence of a SXDH-hard group, a labeled un-
bounded simulation-sound G2-extractable NIZK proof system. Then the pro-
tocol in Figure 3 securely realizes the F̂pwKE functionality in the F crs hybrid
model, in the presence of static corruption adversaries.

In the next section we demonstrate a simulator which uses F̂pwKE to
simulate the protocol to an adversary, thus proving Theorem 6.

A more optimized version of such a general labeled unbounded simulation
sound G2-extractable NIZK [7] is given in the Appendix in Section D. In
fact, for the language above for which such a NIZK is required, we give a
further optimization in Appendix ??. Based on this optimized construction,
the uSS-NIZK requires 29 group elements. A similar construction under the
DLIN assumption, and for the DLIN based UC-secure PWKE-construction
(see Appendix E.4) requires 54 group elements.

8.4 The Simulator for the UC Protocol

The trapdoor keys a, k for the CRS are chosen differently by the simulator.
Instead of choosing a, k randomly from Zq, the simulator chooses a, k′, k′′

from Zq and sets k = k′ + a · k′′. It outputs A = ga and K = gk = gk
′

(ga)k
′′

as before. Note that this does not change the distribution of A and K, as

20

Zq is a field. (We will continue to write k for k′ + ak′′, except when the
simulation in some experiments needs to be done with ga, instead of a).

Simulator S also invokes the initialization phase SE1 of the labeled uSS-
NIZK (with security parameter m) to obtain (σ, τ, ξ). S then gives A, K,
and σ to the real world adversary A as the common reference string. There-
after, the simulator S interacts with the environment Z, the functionality
F̂pwKE, and uses A as a subroutine. The messages between Z and A are
just forwarded by S.

The main difference in the simulation of the real world parties is that
S uses a dummy message µ instead of the real password which it does not
have access to. Further, it generates all proofs using the NIZK simulator S2
instead of real prover.

8.4.1 New Session: Sending a message to A.

On message (NewSession, sid, ssid, i, j, role) from F̂pwKE, S starts simulating
a new session of the protocol Π for party Pi, peer Pj , session identifier
ssid, and CRS = (A,K,ψ). We will denote this session by (Pi, ssid). To
simulate this session, S chooses x1 at random, and sets c1 (= 〈ρ1, ρ̂1, γ1〉) to
〈gx1 , Ax1 , µ ·Kx1〉. It also chooses hash keys n1, n̂1 at random, and computes
the smooth-hash projected key η1 as in the real protocol as well. S obtains
a fake NIZK proof π1 using the simulator S2 of the NIZK, and the CRS σ,
and simulation trapdoor τ . It then hands c1, η1, π1 to A on behalf of this
session.

More succinctly, the simulator behavior is as follows:

x1, n1, n̂1,
$
←− Z

∗

q (3)

c1 (= 〈ρ1, ρ̂1, γ1〉) = 〈gx1 , Ax1 , µ ·Kx1〉 (4)

η1 = αK,µ(n1, n̂1) = gn1+kn̂1 (5)

π1 = uSS-NIZK-SIMψ(ρ1, ρ̂1, η1) with label 〈Pi, Pj , ssid〉. (6)

8.4.2 On Receiving a Message from A.

On receiving a message c′2, η
′

2, π
′

2 from A intended for this session (Pi, ssid),
the simulator S makes the real world protocol checks including verifying the
NIZK proof using the NIZK-verifier. If any of the checks fail, it issues a
TestPwd call to F̂pwKE with the dummy password µ, followed by a NewKey

call with a random session key, which leads to the functionality issuing a
random and independent session key to the party Pi (regardless of whether
the session was interrupted or compromised).

21

Otherwise, it computes pwd′ by decrypting c′2, i.e. setting it to γ′2/(ρ
′

2)
k.

If the message received from A is same as message sent by S on behalf of
peer Pj in session ssid, then S just issues a NewKey call for Pi. Otherwise,

S calls F̂pwKE with (TestPwd, ssid, Pi, pwd
′). Regardless of the reply from

F , it then issues a NewKey call for Pi with key computed as follows (this is
different from the real-world protocol.). This has the effect that if the pwd′

was same as the actual pwd in F̂pwKE then the session key is determined by
the Simulator, otherwise the session key is set to a random and independent
value. Here is the complete simulator code (stated as it’s overall experiment
with Z, including F ’s communication with Z):

1. Let c′2 = 〈ρ′2, ρ̂
′

2, γ
′

2〉.

2. If any of ρ′2, ρ̂
′

2, γ
′

2, η
′

2 is not inG1\{1}, or not uSS-NIZK-Verify(π′2; ρ
′

2, ρ̂
′

2, η
′

2)

with label 〈Pj , Pi, ssid〉, output sk1
$
←− GT , else compute as follows.

3. If msg rcvd == msg sent in same session (same SSID) by peer, set

sk1
$
←− GT , unless the peer also received a legitimate message and its

key has already been set, in which case that same key is used to set
sk1.

4. Else, compute N ′

2, N̂
′

2 from the proof π′2, using the extraction trapdoor
ξ.

5. Compute pwd′ = γ′2/(ρ
′

2)
k. If (pwd′ 6= pwd) then sk1

$
←− GT , else

6. h′2 = (
γ′
2

pwd′)n̂1(ρ′2)
n1 , h1 = (η′2)

x1 ; set sk1 = e(h′2,P) · e(h1,P) ·

e(µ/pwd, N̂ ′

2).

Note that the main difference is the additional factor e(µ/pwd, N̂ ′

2).

8.5 Proof of Indistinguishability for the UC Protocol

We now describe a series of experiments between the Simulator and the envi-
ronment, starting with Expt0 which is the same as the experiment described
as the Simulator in Section 8.4 above, and ending with an experiment which
is identical to the real world execution of the protocol in Fig 3. We will
show that the environment has negligible advantage in distinguishing be-
tween these experiments, leading to a proof of realization of FpwKE by the
protocol Π.

22

For each instance, we will use subscript 2 along with a prime, to refer to
variables after the reception of the message from A, and use subscript 1 to
refer to variables computed before sending the message to A. We will call
a message legitimate if it was not altered by the adversary, and delivered in
the correct session, and to the correct party.
Expt1: The experiment Expt1 is same as Expt0 except for the following mod-
ified step 3 in the reception code: If msg rcvd == msg sent in same session
by peer, set sk1 to

e(H
pwd
n1,n̂1

(enc
eg
gk
(µ;x2)) · H

pwd
n2,n̂2

(enc
eg
gk
(µ;x1)),P).

Because the hash proof system is for languages with messages encrypting
real password, the smooth-hash-proof yields random values from the ad-
versary’s point of view. Note that we only employ the hash proof system
corresponding to n1 and n̂1, and note that the second factor corresponding
to n2 and n̂2 is independent of the first. In step 6, n1 and n̂1 are being used,
but the code never gets there if the msg received is same as message sent by
legitimate peer.
Expt2: Next, we replace all occurrences of e(h1,P) (= e((η′2)

x1 ,P)) in
the computation of sk1 in Step 6 of the reception code by e(g,N ′

2)
x1 ·

e(K, (N̂ ′

2)
x1), which is the same as e(gx1 , N ′) · e(Kx1 , N̂ ′). This leads to

an indistinguishable change as the simulator had verified the NIZK proofs,
and the NIZK proofs have unbounded simulation extractability property,
and thus e(η′2,P) = e(g,N ′

2)e(K, N̂
′

2).
Expt3: The next change in simulation is to replace µ by the real password in
the outgoing message element γ. However, since the simulator is employing
k to compute pwd′, one cannot directly employ DDH to replace µ by pwd in
outgoing γ. However, since we are using an augmented El-Gamal encryption
scheme, i.e. also including ρ̂ in the outgoing message along with a proof of
its relation to ρ, we can use the pairwise independence in k to accomplish
our goal, just as in CCA2 scheme DHENC described in Section 5.

At this point, not only is the outgoing γ1 being computed as Kx1 · pwd,
i.e. c1 = enc

eg
K (pwd;x1), but also in the reception phase of the same (ssid,

Pi), the term e(µ/pwd, N̂ ′

2) has been replaced by 1. Recall that in Expt2,
e(h1,P) was replaced by e(gx1 , N ′) · e(Kx1 , N̂ ′), and now e(Kx1 , N̂ ′) has
been replaced by e(pwd/µ ·Kx1 , N̂ ′), which is then equivalent to replacing
e(µ/pwd, N̂ ′

2) by 1 in Step 6. Further, if the message received was legitimate,
then sk1 is now set to

e(H
pwd
n1,n̂1

(enc
eg
gk
(µ;x2)) · H

pwd
n2,n̂2

(enc
eg
gk
(pwd;x1),P).

23

Similarly, if the peer received a legitimate message, its computation of sk1
has a similar change, i.e. its first factor has µ replaced by pwd. Thus,
at the end of these sequence of hybrid experiments, if the message re-

ceived was legitimate, then sk1 is now set to e(H
pwd
n1,n̂1

(enc
eg
gk
(pwd;x2)) ·

H
pwd
n2,n̂2

(enc
eg
gk
(pwd;x1)),P).

Expt4: In this experiment we drop the condition if (pwd′ 6= pwd) then set
sk1 to random in Step 5, and always output as follows

h′2 = (
γ′2
pwd

)n̂1/ssid(ρ′2)
n1 , h1 = (η′2)

x1 ; set sk1 = e(h′2,P)·e(g
x1 , N ′

2)·e(K
x1 , N̂ ′

2).

This is accomplished by a series of hybrid experiments, one for each (ssid, Pi),
we employ the hash proof smoothness, as pwd′ 6= pwd implies the tuple c′2
is not in the language, and hence h′2 is anyway random and independent.
Expt5: In this experiment we set sk1 in the last step as e(h′2,P) · e(η

′x1
2 ,P).

This change is indistinguishable as the simulator is checking the validity of
the NIZK proofs, and by simulation-soundness extractability.
Expt6: In this experiment we can drop the extraction of N ′

2 and N̂ ′

2, as they
are no longer needed, and further we drop step 3. Note that currently that

step is computing sk1 as e(H
pwd
n1,n̂1

(enc
eg
gk
(pwd;x2))·H

pwd
n2,n̂2

(enc
eg
gk
(pwd;x1)),P),

but since η′2 = η2, and c′2 = c2 for this session, then the above expression
is same as e(h′2,P) · e(η

′x1
2 ,P). We replace all simulator generated proofs

by proofs generated by real prover, and switch from the CRS generated by
SE1 to the real world CRS. Experiment Expt6 is indistinguishable from the
real-world experiment by completeness of the hash proof system, i.e. when
the labeled tuple c, ssid is in the language, then the hash can be computed
from the projection keys and the witness x1 of c. This completes the proof
of Theorem 6. �

References

[1] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key ex-
change secure against dictionary attacks. In EUROCRYPT 2000, vol-
ume 1807 of LNCS, pages 139–155. Springer, May 2000. 1, 7, C.1

[2] S. M. Bellovin and M. Merritt. Encrypted key exchange: Password-
based protocols secure against dictionary attacks. In 1992 IEEE Sym-
posium on Security and Privacy, pages 72–84. IEEE Comp. Soc. Press,
May 1992. 1

24

[3] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In
CRYPTO 2004, volume 3152 of LNCS, pages 41–55. Springer, Aug.
2004. 1, 4

[4] J. Camenisch, N. Chandran, and V. Shoup. A public key encryption
scheme secure against key dependent chosen plaintext and adaptive cho-
sen ciphertext attacks. In EUROCRYPT 2009, volume 5479 of LNCS,
pages 351–368. Springer, Apr. 2009. 1, D, 1, 2, D

[5] R. Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In 42nd FOCS, pages 136–145. IEEE Comp. Soc.
Press, Oct. 2001. 1, 8.1, 8.2

[6] R. Canetti, S. Halevi, J. Katz, Y. Lindell, and P. D. MacKenzie. Univer-
sally composable password-based key exchange. In EUROCRYPT 2005,
volume 3494 of LNCS, pages 404–421. Springer, May 2005. 1, 8.2

[7] R. Cramer and V. Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In EURO-
CRYPT 2002, volume 2332 of LNCS, pages 45–64. Springer, Apr. / May
2002. 1, 3, 5, 6, 6, 8.3, B, E, E.1

[8] I. Damg̊ard. Towards practical public key systems secure against chosen
ciphertext attacks. In CRYPTO’91, volume 576 of LNCS, pages 445–
456. Springer, Aug. 1992. 1

[9] E. Elkind and A. Sahai. A unified methodology for constructing public-
key encryption schemes secure against adaptive chosen-ciphertext at-
tacks. Cryptology ePrint Archive: Report 2002/042. 1

[10] R. Gennaro and Y. Lindell. A framework for password-
based authenticated key exchange. In EUROCRYPT 2003,
volume 2656 of LNCS, pages 524–543. Springer, May 2003.
http://eprint.iacr.org/2003/032.ps.gz. 1

[11] L. Gong, T. M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting
poorly chosen secrets from guessing attacks. IEEE JSAC, 11(5):648–
656, June 1993. 1

[12] J. Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In ASIACRYPT 2006, volume 4284 of
LNCS, pages 444–459. Springer, Dec. 2006. 1

25

http://eprint.iacr.org/2003/032.ps.gz

[13] J. Groth and A. Sahai. Efficient non-interactive proof systems for bi-
linear groups. In EUROCRYPT 2008, volume 4965 of LNCS, pages
415–432. Springer, Apr. 2008. 1, 2, 4, B, 1, D

[14] C. Jutla and A. Roy. Relatively-sound NIZKs and password-based
key-exchange. Cryptology ePrint Archive, Report 2011/507, 2011.
http://eprint.iacr.org/. D

[15] J. Katz, R. Ostrovsky, and M. Yung. Efficient password-authenticated
key exchange using human-memorable passwords. In EURO-
CRYPT 2001, volume 2045 of LNCS, pages 475–494. Springer, May
2001. 1, C.1

[16] J. Katz and V. Vaikuntanathan. Round-optimal password-based au-
thenticated key exchange. In TCC 2011, volume 6597 of LNCS, pages
293–310. Springer, Mar. 2011. 1, 2, 7, 7, 9, E.3

[17] E. Kiltz. Chosen-ciphertext security from tag-based encryption. In
TCC 2006, volume 3876 of LNCS, pages 581–600. Springer, Mar. 2006.
2

[18] M. Naor and M. Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In 22nd ACM STOC. ACM Press,
May 1990. 1, 5

[19] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In 40th FOCS, pages 543–553. IEEE Comp.
Soc. Press, Oct. 1999. 1, 2, 5

A Appendix: Publicly-Verifiable CCA2 Encryp-
tion

Theorem 2 The scheme DHENC is publicly-verifiable IND-CCA2 secure.
The definition of IND-CCA2 security is now standard and can be found

in [?]. In the labeled version [?], the Adversary calls the encryption oracle
with two messages m0, and m1 and a label lbl. The encryption oracle re-
turns c, an encryption of mb with label lbl, with b chosen randomly. The
Adversary can make arbitrary decryption calls, except that after receiving
the encryption c, it cannot call the decryption oracle with c and the same
label lbl. It is however allowed to call the decryption oracle with the same

26

http://eprint.iacr.org/

ciphertext c, but a different label lbl′. The notion of security is the advan-
tage of the adversary in guessing b.
Proof: The public-verification part is straightforward, and we focus on
the IND-CCA2 security part. We demonstrate a sequence of experiments
showing indistinguishability of an encryption of an arbitrary m with an
encryption of a fixed dummy message µ also in the message space. All
experiments are identical to the previous experiment except for the noted
modifications.

Expt1: This is the same as the real protocol, where if a ciphertext and label
pair, i.e. (ρ, ρ̂, γ, π, lbl) is same as encryption query output and encryption
query input label, then decryption oracle does not decrypt. Otherwise,
decryption of a message (ρ, ρ̂, γ, π) with label lbl, after verifying the l-SRS-
NIZK proof π with label (γ, lbl) (using public-verifier V), is m = γ

ρk
.

Expt2: In this experiment, the simulator chooses k′, k′′
$
←− Zq and sets

K = gk
′

Ak
′′

in the public key. It decrypts a message (ρ, ρ̂, γ, π) with label
lbl, after public verifying π with label (γ, lbl), as m = γ

ρk′ ρ̂k′′
.

The (regular) soundness of the l-SRS-NIZK implies that ρ̂ = ρa whp and
hence ρk = ρk

′

ρ̂k
′′

. Also the distribution of k remains the same. Expt2 is
therefore indistinguishable from Expt1.

Expt3: In this experiment, the simulator switches to a l-SRS-NIZK CRS
generated by S1 and simulated proof of membership of (gx, Ax) generated
by S2. Simulator retains the trapdoor τ . Further, the public verifica-
tion V (ψ, ...) in each decryption request is replaced by private verification
W (σ, τ, ...).

Note that, given challenge plaintext m, it now returns the ciphertext

c =
(
gx, Ax, gk

′xAk
′′x ·m,Simulated π

)
. Because of the switching, x is not

needed as a witness in the l-SRS-NIZK proof.
Expt3 is indistinguishable from Expt2 by the relative-ZK property of

the l-SRS-NIZK, noting that gx, Ax are in the language of the NIZK.

Expt4: In this experiment, the simulator replaces Ax by a fresh random
value X ′ from the group G. Further, instead of choosing x from Z

∗

q and
using gx in the challenge ciphertext, we directly choose X randomly from
G. Thus the Simulator code in this experiment is the following:

27

k′, k′′
$
←− Z

∗

q; A
$
←− G; K = gk

′

Ak
′′

; X,X ′
$
←− G ;

c =
(
X, X ′,Xk′(X ′)k

′′

·m ,Simulated π
)
.

Public Key output is (g,A,K, S1 generated 1-SRS-NIZK CRS σ). Chal-
lenge Ciphertext output is c. Decryption queries are served by private-
verifying the proof and then outputing γ

ρk′ ρ̂k′′
.

Expt4 is computationally indistinguishable from Expt3 due to the DDH
assumption, as in the previous experiment X ′ was AlogX (further, choosing
X randomly from G is same as choosing x from Z

∗

q and computing gx, as G
is a prime-order cyclic group).

Expt5: In this experiment, the simulator chooses a at random from Z
∗

q and
sets A to ga. Now, the simulator decrypts as follows: on a message (ρ, ρ̂, γ, π)
and label lbl, after private-verifying the l-SRS-NIZK π with label (γ, lbl),
output m = γ

ρk′+ak′′
. Thus the Simulator code in this experiment is the

following:

k′, k′′
$
←− Z

∗

q; a
$
←− Z

∗

q; A = ga ; K = gk
′

Ak
′′

; X,X ′
$
←− G;

c =
(
X,X ′,Xk′(X ′)k

′′

·m,Simulated π
)
.

Public Key output is (g,A,K, S1 generated 1-SRS-NIZK CRS σ). Chal-
lenge Ciphertext output is c. Decryption queries are served by private-

verifying the proof and then outputing γ

ρk′+ak′′
.

Note that the Experiment continues to ignore decryption queries if (ρ, ρ̂, γ, π, lbl)
is same as encryption query output and encryption query input label pair.
Thus, the l-SRS-NIZK relative-simulation-soundness property implies that
ρ̂ = ρa whp and hence ρk

′+ak′′ = ρk
′

ρ̂k
′′

. Technically, this experiment should
be broken up into several sub-experiments, where in each sub-experiment
an additional decryption request is served by outputting m = γ/ρk

′+ak′′

(instead of γ/ρk
′

ρ̂k
′′

). Since the adversary (in particular A3 and A4) in
definition of l-SRS-NIZK has access to private-verification oracle, one can
employ relative-simulation-soundness for each sub-experiment. Further dis-
tribution of A is same as in the previous experiment as G is a prime-order
cyclic group. Thus, Expt5 is indistinguishable from Expt4.

28

Expt6: In this experiment, in response to encryption oracle request on m,

the challenge ciphertext becomes c =
(
X,X ′,Xk′(X ′)k

′′

· µ,Simulated π
)
,

i.e. m is replaced by µ.
Decryption of (ρ, ρ̂, γ, π), after verifying the l-SRS-NIZK, is same as be-

fore, i.e. γ

ρk′+ak′′
.

Thus the Simulator code in this experiment is the following:

k′, k′′
$
←− Z

∗

q; a
$
←− Z

∗

q; A = ga; K = gk
′

Ak
′′

; X,X ′ $
←− G;

c =
(
X,X ′, Xk′(X ′)k

′′

· µ ,Simulated π
)
.

Public Key output is (g,A,K, S1 generated 1-SRS-NIZK CRS σ). Chal-
lenge Ciphertext output is c. Decryption queries are served by private-
verifying the proof and then outputing γ

ρk′+ak′′
.

Lemma 7 Expt6 is statistically indistinguishable from Expt5.

Proof: First note that in bothExpt5 andExpt6, the quantities k
′, k′′, a,X,X ′

are chosen randomly and independently of each other as well as all Adversary
inputs (the first three from Z

∗

q and the latter two from G). Further note that
in both experiments, the decryption queries can be served by logK = k′ +
ak′′. Let coins be the random coins used by the Adversary. Thus, if we show
that for allm,µ ∈ G, the distribution of (X,X ′, A,K,Xk′ (X ′)k

′′

·m, coins) is
statistically indistinguishable from the distribution of (X,X ′, A,K, Xk′(X ′)k

′′

·
µ, coins) under a, k′, k′′ chosen randomly from Z

∗

q, and X,X ′ chosen ran-
domly from G, and coins chosen randomly, then we are done (simulated
proof π does not need any witnesses; technically we should also include pri-
vate verification keys σ, τ also in the joint distribution, but they are same
in the two experiments and the rest of the elements above are chosen inde-
pendently of them).

Let g be any fixed generator of G. In the following we will use x as log
of X w.r.t. g, and similarly x′ as log of X ′. Now with k′, k′′ and a chosen
randomly from Z

∗

q, and X,X
′ chosen randomly from G, for all m,µ ∈ G, and

for all α, κ, χ, χ′, δ ∈ G, and c in domain of coins, we have

Pr[(X,X ′,K,A, coins) = 〈χ, χ′, κ, α, c〉 ∧ Xk′(X ′)k
′′

·m = δ]

= Pr[(gx, gx
′

, gk
′+ak′′ , ga, coins) = 〈χ, χ′, κ, α, c〉 ∧ gxk

′+x′k′′ ·m = δ]

= Pr[gk
′+ak′′ = κ ∧ gxk

′+x′k′′ ·m = δ | (gx, gx
′

, ga, coins) = 〈χ, χ′, α, c〉] ∗

Pr[(gx, gx
′

, ga, coins) = 〈χ, χ′, α, c〉]

29

We first focus on the case that log χ′ 6= (log χ ∗ log α). Then, in this case for
a fixed value of x, x′, a and coins (which are log χ, log χ′, log α, c resp.), the
probability that k′ + logα · k′′ is log κ and logχ · k′ + log χ′ · k′′ is log(δ/m)
is exactly 1/|G|2, as the two terms are linearly independent.

Since this probability is same for any δ and any m, the probability is
also the same for any δ and any µ.

Since the statistical difference between Expt5 and Expt6 is at most the
sum over all α, κ, χ, χ′, δ ∈ G (and all c) of the absolute value of the difference
in the above probabilities, it is seen to be at most the probability that
gx

′

= gx∗a (i.e. summing over all χ, χ′, α such that logχ′ = (log χ ∗ log α),
as in other cases the distributions are the same), which is just 1/q. Hence,
the statistical difference between Expt5 and Expt6 is at most 1/q, which is
negligible.

�

Expt7: In this experiment, the simulator decrypts as follows: On a mes-
sage (ρ, ρ̂, γ, π) and label lbl, after private-verifying the l-SRS-NIZK with
label γ, lbl, output γ

ρk̃′ ρ̂k̃′′
.

Thus the Simulator code in this experiment is the following:

k′, k′′
$
←− Z

∗

q; a
$
←− Z

∗

q; A = ga; K = gk
′

Ak
′′

; X,X ′ $
←− G;

c =
(
X,X ′,Xk′(X ′)k

′′

· µ,Simulated π
)
.

Public Key output is (g,A,K, S1 generated 1-SRS-NIZK CRS σ). Chal-
lenge Ciphertext output is c. Decryption queries are served by private-

verifying the proof and then outputing γ

ρk′ ρ̂k′′
.

Note that the Experiment continues to ignore decryption queries if (ρ, ρ̂, γ, π, lbl)
is same as encryption query output and encryption query input label pair.
Say, the encryption query output on input label lbl∗ is (ρ∗, ρ̂∗, γ∗, π∗). Let
the i-th decryption query be (ρi, ρ̂i, γi, πi, lbli). If (ρi, ρ̂i, πi, 〈γi, lbl1〉) is
same as (ρ∗, ρ̂∗, π∗, 〈γ∗, lbl∗〉) then the decryption query ignores this decryp-
tion request. Since 〈γ, lbl〉 was the label used in the NIZK proof generation,
it follows from the l-SRS-NIZK relative-simulation-soundness property that
ρ̂ = ρa whp and hence ρk = ρk̃

′

ρ̂k̃
′′

. Also the distribution of k remains the
same. Expt7 is therefore indistinguishable from Expt6.

Expt8: In this experiment, instead of choosing X randomly from G, the
simulator chooses x randomly from Z

∗

q and sets X = gx, and further simu-
lator replaces X ′ back by Ax.

30

Thus the Simulator code in this experiment is the following:

k′, k′′
$
←− Z

∗

q; a
$
←− Z

∗

q; A = ga; K = gk
′

Ak
′′

; x
$
←− Z

∗

q; X = gx;X ′ = Ax ;

c =
(
X,X ′,Xk′(X ′)k

′′

· µ,Simulated π
)
.

Public Key output is (g,A,K, S1 generated 1-SRS-NIZK CRS σ). Chal-
lenge Ciphertext output is c. Decryption queries are served by private-
verifying the proof and then outputing γ

ρk′ ρ̂k′′
.

Expt8 is indistinguishable from Expt7 due to the DDH assumption.
Let the DDH challenge be gx, A (= ga),X ′\Ax. In experiment Expt7, the
Simulator uses the first component of the DDH challenge tuple, i.e. gx, for
X, second component for A, and the third component of the tuple for X ′.
In experiment Expt8 also, the Simulator uses the first component, i.e. gx,
for X, second component for A, and the third component of the tuple for
X ′. Thus, if an efficient adversary can distinguish Expt7 from Expt8, the
Simulator can break the DDH challenge.

Expt9: In this experiment, the simulator switches back to the real CRS,
and proofs generated by real prover with witness x. Therefore the response
to the encryption challenge m becomes

c =
(
gx, Ax, gk̃

′xAk̃
′′x · µ, π

)
.

Further, the decryption queries now use public verifier instead of private-
verifier. Expt9 is indistinguishable form Expt8 by the relative-ZK property
of l-SRS-NIZK, noting that gx, Ax is in the language of the NIZK.

Expt10: In this experiment, the simulator just uses k instead of k̃′, k̃′′.
Therefore the response to the encryption challengem becomes c = (gx, Ax,Kx · µ, π).
Decryption of a message (ρ, ρ̂, γ, π), after (public) verifying the l-SRS-NIZK,
is m = γ

ρk
.

The (regular) soundness of the l-SRS-NIZK implies that ρ̂ = ρa whp and

hence ρk = ρk̃
′

ρ̂k̃
′′

. Also the distribution of k remains the same. Expt10 is
therefore indistinguishable from Expt9.

This proves that DHENC is CCA2 secure because the protocol is indis-
tinguishable from Experiment 10, in which everything is same except that
in the response to an encryption request a constant message is encrypted,
instead of the request message.

�

31

B Appendix: Proof of l-SRS-NIZK

Theorem 3: The system in Section 6 is an l-SRS-NIZK proof system for
Lg,A.
Proof:

We will refer to d1, d2, e1, e2 as the private-verifier trapdoor ξ.
Completeness and Soundness. Since the first four tests in the Public Verifi-
cation above are same as the tests in the Groth-Sahai NIWI for the language
Lg,A, soundness follows from soundness of the NIWI system [13]. Complete-
ness follows by simple verification.
Relative Zero-Knowledge. We construct a simulator as follows. Generate

P
$
←− G2; and u, v, d1, d2, e1, e2

$
←− Zp. Set CRS σ = (P,Q,R, S,d, e) =

(P,Pu,Pv , Puv , gd1Ad2 , ge1Ae2). The simulation trapdoor τ is u, d1, d2, e1, e2 ,
i.e. u and the private-verifier trapdoor ξ.

Given a candidate (ρ, ρ̂) and label lbl, generate the proof as follows.

Generate s
$
←− Zp and compute t← H(ρ, ρ̂, P s, Rs, lbl). Then compute

π = (β, c1, c2, θ, φ, χ) =
(
ρd1 ρ̂d2(ρe1 ρ̂e2)t, P s, Rs, ρ−ugs, ρ̂−uAs, β−u(det)s

)

We now show that this CRS and a proof for (ρ, ρ̂) = (gx, Ax) ∈ Lg,A
with label lbl is computationally indistinguishable from a real CRS and
a real proof for the same candidate and label, given the DDH assumption
for G2, even when the Adversary has oracle access to respective verifiers.
To this end, we enumerate a sequence of games each indistinguishable from
the previous starting from a real CRS and a real proof and ending at the
simulated CRS and a simulated proof:

Game 1: This is the real CRS and real proof:

CRS ψ = (P,P u, P v , P uv+1,d, e)

Proof for (x : ρ, ρ̂) = (x : gx, Ax) with label lbl can be seen to be
computed as follows:

Generate s← Zp

Compute c1 ← P ux+s, c2 ← (P uv+1)x(P v)s

Compute t← H(ρ, ρ̂, c1, c2, lbl)

Compute β ← (det)x, θ ← gs, φ← As, χ← (det)s

Proof π = (β, c1, c2, θ, φ, χ)

32

Game 2: In this game, the CRS and the proof remains the same as real
CRS and real proof, but the verifier in the oracle is changed to be the
private verifier. Thus, this requires that the key generation algorithm
generate a trapdoor, which is set to (u, d1, d2, e1, e2), i.e. u along with
ξ. Indistinguishablity of Game 1 and 2 will follow if we show that the
private verifier and public verifier are equivalent.

Since the private verifier also tests the public verifier, the success of
private verification implies the success of public verification. We now
argue that the converse also holds. That is the success of public veri-
fication implies the success of private verification.

Observe that β is a 2-universal projective hash computed on the can-
didate with witness x. From the projection property of the projec-
tive hash function, on a valid DDH tuple the projective hash is same
whether it is computed using the witness or the projection keys (ξ)–
this is straightforward to check.

The elements c1, c2, θ, φ, χ can be interpreted as generated by the
Groth-Sahai NIWI proof (which also happens to be a NIZK proof)
for the language {(ρ, ρ̂, β) | ∃x : ρ = gx, ρ̂ = Ax, β = (det)x}, where t
is a hash of ρ, ρ̂, lbl, and the commitment to x in the NIWI system,
i.e. c1, c2. Hence the soundness of this NIZK implies that β has the
correct form, that is, private verification would succeed. This is indeed
the case as the NIZK CRS is the binding CRS of the GS-NIZK, which
assures soundness of public verifier.

Game 3: In this game the CRS is modified as follows:

CRS σ = (P,P u, P v, P uv ,d, e)

By DDH for G2, this is computationally indistinguishable from Game
2 (note the verification trapdoor ξ is independent of the DDH tuple).

Proof for (x : ρ, ρ̂) = (x : gx, Ax) is computed identically as Game 2,
except it uses the CRS σ:

Generate s← Zp

Compute c1 ← P ux+s, c2 ← (P uv)x(P v)s

Compute t← H(ρ, ρ̂, c1, c2, lbl)

Compute β ← (det)x, θ ← gs, φ← As, χ← (det)s

Proof π = (β, c1, c2, θ, φ, χ)

33

Game 4: In this game the NIZK CRS remains σ. The simulator is given
the trapdoor u, d1, d2, e1, e2.

The proof is computed as follows:

Generate s′ ← Zp

Compute c1 ← P s
′

, c2 ← (P v)s
′

Compute t← H(ρ, ρ̂, c1, c2, lbl)

Compute β ← ρd1 ρ̂d2(ρe11 ρ̂
e2)t, θ ← ρ−ugs

′

, φ← ρ̂−uAs
′

, χ← β−u(det)s
′

NIZK Proof π = (β, c1, c2, θ, φ, χ)

The proof for a language member (x : ρ, ρ̂) = (x : gx, Ax) with label
lbl is identical to Game 3, except that it uses the variable s′ = ux+s.
Observe that s′ is distributed uniformly given uniform distribution of
s. Also gs = ρ−ugs

′

and As = ρ̂−uAs
′

.

Indistinguishability from Game 3 is information theoretic. Since Game
4 is just the simulator game, we are through.

Labeled Single-theorem Relative-Simulation-Soundness. Suppose the adver-
sary is provided a simulated proof π = (β, c1, c2, θ, φ, χ) for a language candi-
date (ρ, ρ̂) and label lbl chosen by the adversary. We have to show that any
candidate, label and proof (ρ′, ρ̂′, lbl′, π′) 6= (ρ, ρ̂, lbl, π) provided by the
adversary such that (ρ′, ρ̂′) /∈ Lg,A, will fail the private verification test with
high probability. Let π′ = (β′, c′1, c

′

2, θ
′, φ′, χ′) and t′ = H(ρ′, ρ̂′, c′1, c

′

2, lbl
′).

We analyze two cases:

Case t′ 6= t: If the private verification succeeds, then we have the following
linear equations, where A = ga, ρ = gx1 , ρ̂ = gx2 , ρ′ = gx

′

1 , ρ̂′ = gx
′

2 :




1 a 0 0
0 0 1 a
x1 x2 tx1 tx2
x′1 x′2 t′x′1 t′x′2







d1
d2
e1
e2


 =




log d
log e
log β
log β′




Observe that if t′ 6= t and x′2 6= ax′1, then the left-hand-side four
by four matrix is full-ranked. Note, d1, d2, e1, e2 are chosen randomly
and independently. However, the adversary (i.e. A3 and A4) has
oracle access to the private-verifier W . Just as in [7], we show that a
polynomial number p of oracle accesses to W does not substantially
increase adversary’s chances of passing private verification on a non-
language tuple. We prove the claim by induction on the number of

34

oracle accesses of A3 and A4. In the base case, when there are no
oracle accesses, log β′ is uniformly distributed even conditioned on
logd, log e, log β. Since the latter three constitute the only information
available to the adversary about d1, d2, e1, e2, the adversary succeeds
in providing the correct β′ only with negligible probability.

Next, consider the case where A3 and A4 make p oracle calls. By
induction, we can assume that these calls are either with language
elements or simulator generated proof or the oracle W responds neg-
atively. In the first two cases the adversary gets linear equations in
d1, d2, e1, e2 which are linear combinations of the first three equations
above. In the last case, adversary gets an inequality. Already due to
the first three equations above, d1, d2, e1, e2 is restricted to be a ran-
dom point on a line in (Zq)

4. The inequality, rules out one point on
this line. Thus, a maximum of p such inequalities rule out p points
from a total of q points on the line. Since q = 2k where, k is the secu-
rity parameter, the probability of the fourth equation holding above
is 1/(2k − p).

Case t′ = t: In this case, by the collision resistance property of the hash,
whp (ρ′, ρ̂′, c′1, c

′

2, lbl
′) = (ρ, ρ̂, c1, c2, lbl). If private verification suc-

ceeds (which includes public verification), then

β′ = ρd1 ρ̂d2 (ρe1 ρ̂e2)t = β

e(θ′, P) = e(g, c1) · e(ρ,Q)−1 = e(θ, P)

e(φ′, P) = e(A, c1) · e(ρ̂, Q)−1 = e(φ, P)

e(χ′, P) = e(det, c1) · e(β
′, Q)−1 = e(det, c1) · e(β,Q)−1 = e(χ,P)

Since the group GT is a prime order group, using the bi-linearity of
e, we get π′ = π. Since (ρ′, ρ̂′, lbl′) = (ρ, ρ̂, lbl) as well, we get a
contradiction.

�

C Appendix: Key Exchange in the PAK Model

C.1 PAK Model of Security

We describe a definition of security, which we refer to as PAK model in
this paper, due to Bellare, Pointcheval and Rogaway [1]. This description
summarizes a version depicted in [15].

35

Participants, passwords, and initialization. Prior to any execution of
the protocol there is an initialization phase during which public parameters
are established. We assume a fixed set User of protocol participants. For ev-
ery distinct U,U ′ ∈ User, we assume U and U ′ share a password pwU,U ′. We
make the simplifying assumption that each pwU,U ′ is chosen independently

and uniformly randomly from the set [D]
def
= {1, . . . ,D} for some integer D.

Execution of the protocol. We denote instance i of user U as ΠiU .

• sidiU , pid
i
U , and skiU denote the session key, partner id and session key

for an instance, respectively.

• acciU and termi
U are boolean variables denoting whether a given in-

stance has accepted or terminated, respectively.

The adversary’s interaction with the principals (more specifically, with
the various instances) is modeled via access to oracles which we describe
now:

• Send(U, i,msg) — This sends message msg to instance ΠiU . This in-
stance runs according to the protocol specification. The output of ΠiU
is given to the adversary.

The adversary can “prompt” instance ΠiU to initiate the protocol with
partner U ′ by query Send(U, i, U ′). In response to this query, instance
ΠiU outputs the first message of the protocol.

• Execute(U, i, U ′, j) — If ΠiU and ΠjU ′ have not yet been used, this oracle
executes the protocol between these instances and gives the transcript
of this execution to the adversary. This oracle call represents passive
eavesdropping of a protocol execution.

• Reveal(U, i) — This outputs the session key skiU , modeling leakage of
session keys.

• Test(U, i) — A random bit b is chosen; if b = 1 the adversary is given
skiU , and if b = 0 the adversary is given a session key chosen uniformly
from the appropriate space.

Partnering. Let U,U ′ ∈ User. Instances ΠiU and ΠjU ′ are partnered if: (1)

sidiU = sid
j
U ′ 6= null; and (2) pidiU = U ′ and pid

j
U ′ = U .

36

Correctness. If ΠiU and ΠjU ′ are partnered then acciU = acc
j
U ′ = true

and skiU = sk
j
U ′ .

Advantage of the adversary. An instance ΠiU is fresh unless one of the
following is true at the conclusion of the experiment:

1. at some point, the adversary queried Reveal(U, i);

2. or, at some point, the adversary queried Reveal(U ′, j), where ΠjU ′ and
ΠiU are partnered.

An adversary A succeeds if it makes a single query Test(U, i) to a fresh
instance ΠiU , and outputs a bit b′ with b′ = b. We denote this event by Succ.

The advantage of the adversary A in attacking Π is given by advA,Π(k)
def
=

2 · Pr[Succ] − 1, where the probability is taken over the random coins used
during the course of the experiment (including the initialization phase).

Definition 8 Protocol Π is a secure protocol for password-based authenti-

cated key exchange if, for all dictionary sizes D and for all ppt adver-
saries A making at most Q(n) on-line attacks, it holds that advA,Π(n) ≤
Q(n)/D + negl(n).

C.2 Proof of Security of the PAK protocol

Theorem 9 ([16]) The the protocol in Figure 1 is secure in the PAK model
provided that the encryption scheme is CCA2 secure and the hash function
is smooth projective with respect to the language of labeled encryption of the
password.

Proof. We construct a simulator for the protocol execution which infor-
mation theoretically hides the password in messages sent to the adversary
and the keys generated. Hence the only way for the adversary to influence
the key generation non-trivially is to demonstrate knowlege of the password
pwd.

The secret key sk for the CCA2-secure encryption scheme is given to the
simulator. The main difference in the simulation from the protocol is that
S uses a dummy message µ instead of the real password which it does not
have access to.

37

C.2.1 Passive Execute Queries

When the adversary asks for the transcript of a session between parties Pi
and Pj , the simulator uses encryptions of µ, instead of the password:

ki
$
←− Hash-K; si ← α(ki) (7)

labeli ← (Pi, Pj , si) (8)

Ci
$
←− encpk(labeli, µ) (9)

Send (labeli, Ci) (10)

Similarly for the party Pj. The key of both parties for this session is set to
a common random value. We show that this transcript is indistinguishable
from the real protocol by outlining a sequence of games starting from the real
transcript and ending with the simulated transcript. Suppose Pj generates
the message (labelj , Cj) = (Pj , Pi, sj , Cj).

Game 0: This is just the real protocol. We note that Pi computes its key
as follows: ski ← privHki(labelj , Cj ,pwd) · pubHsj(labeli, Ci,pwd;xi).
The private hash algorithm privH uses the private hash key for Pi,
whereas the public hash algorithm pubH uses the public hash key
received and the witness for the encryption produced by Pi, that is,
xi.

Game 1: This is the real protocol with the following change. Since sj is
the public hash key actually generated by a session of Pj , the sim-
ulator knows the corresponding private hash key kj. In this game,
Pi computes its key using private hash keys only. That is, ski ←
privHki(labelj , Cj ,pwd) · privHkj(labeli, Ci,pwd). The transcript re-
mains identical to Game 0.

Game 2: This is Game 1 with the following change. Ci and Cj are both
computed as encryptions of µ. This is indistinguishable from Game
1 due to CCA2 security of the encryption scheme and because the
encryption randomness is not used anywhere.

Game 3: This is Game 2 with the following change. The key of both
parties for this session is set to a common random value. In Game
2 the key computated by both peers was privHki(labelj , Cj ,pwd) ·
privHkj(labeli, Ci,pwd). Since both the ciphertexts are encryptions
of µ, the hashes are over non-members of the language associated
with it. Also the private hash keys ki and kj are not used by any

38

other sessions of any principal. Hence the generated key is distributed
uniformly from random. Therefore Game 3 is indistinguishable from
Game 2.

Since Game 3 is just the simulated transcript we are done with this part.

C.2.2 New Session: Sending a message to A

Next we look at the active attack queries. S starts simulating a new session
of the protocol Π for party Pi, peer Pj , and CRS = pk. To simulate this
session, S uses encryptions of µ, instead of the password:

ki
$
←− Hash-K; si ← α(ki) (11)

labeli ← (Pi, Pj , si) (12)

Ci
$
←− encpk(labeli, µ) (13)

Send (labeli, Ci) (14)

C.2.3 On Receiving a Message from A

On receiving a message (label′j , C
′

j) = (Pj , Pi, s
′

j, C
′

j) from A purportedly
from Pj , intended for this session of Pi, the simulator S first public verifies
C ′

j to be a ciphertext with label (Pj , Pi, s
′

j). If the checks fail, the session is
aborted.

We call a tuple (Pj , Pi, s, C) well formed for this session of Pi, if C can be
public verified to be a valid ciphertext with label label. We call a well formed
tuple to be legitimate if there is an actual session of Pj which generated this
message. Two sessions of principals Pi and Pj are called partnered if Pi and
Pj are peers in both sessions, and if the session of Pi receives the message
produced by the session of Pj and vice versa.

If (Pj , Pi, s
′

j, C
′

j) is legitimate for this session and this is a partnered
session with peer Pj , then choose a key value uniformly and independently
from random and set it as the key for both the sessions. If there is no partner
for this session, then set its key to be uniformly and independently random.

If the message is not even well formed then, as in the real protocol,
the session is terminated. However, if the message is well formed but not
legitimate for this session, then the simulator behavior is as follows. Let p′

be the decryption of C ′

j with label (Pj , Pi, s
′

j). If p′ = pwd, then declare A
to be successful and terminate. Otherwise set ski to be random.

Since the messages sent out are information theoretically independent
of the password, the probability of the decryption equaling the password is

39

at most the probability of guessing the password by the adversary. In the
next section, we describe a sequence of games leading from the real protocol
finally ending up at the simulator, which will complete the proof.

C.2.4 Proof of Indistinguishability for the simulator

Now we outline a sequence of games leading from the real protocol, which
we denote Expt0 finally ending up at the simulator described above.

Expt1: In this experiment, just as in the real protocol, Pi computes
the first message as follows: generate private hash key ki and let si ←
α(ki) be the public hash key. Generate randomness xi and compute an
encryption of pwd with label labeli = (Pi, Pj , si). That is, compute Ci =
encpk(labeli,pwd;xi). Send (labeli, Ci) to the adversary A.

On receiving a message (Pj , Pi, s
′

j, C
′

j) from the adversary A in this ses-
sion, just as in the real protocol, the key ski is set to the actual com-
puted key in case the message is legitimate for this session. That is, ski ←
privHki(label

′

j , C
′

j ,pwd) · pubHs′j
(labeli, Ci,pwd;xi). The private hash al-

gorithm privH uses the private hash key for Pi, whereas the public hash
algorithm pubH uses the public hash key received and the witness for the
encryption produced by Pi, that is, xi.

If the message is not even well formed then, as in the real protocol,
the session is terminated. However, if the message is well formed but not
legitimate for this session, then the behavior is different and as follows. Let
p′ be the decryption of C ′

j with label (Pj , Pi, s
′

j). If p′ = pwd, then declare
A to be successful and terminate. Otherwise set ski to be random.

In the case of p′ 6= pwd, we have that (label′j , C
′

j ,pwd) is not in the
language of the smooth hash. Also note that the private hash key ki
is not used anywhere other than this session. Hence the private hash
privHki(label

′

j , C
′

j ,pwd) is uniformly random, even conditioned on si =
α(ki). Hence this step is indistinguishable to A from the real key com-
putation. Making A succeed if p′ = pwd can only increase the advantage of
A.

Expt2: This experiment is the same as Expt1 with the following change.
On receiving a message (Pj , Pi, s

′

j, C
′

j) from the adversary A in this ses-
sion, the key ski is computed in a different way in case the message is
legitimate for this session. Since the message is legitimate, the simula-
tor knows the private hash key k′j corresponding to s′j. It now computes
the second hash with the private key rather than the public key. That is,

40

ski ← privHki(label
′

j , C
′

j ,pwd) · privHk′j
(labeli, Ci,pwd). Since the message

was legitimate, the hash is over a language member and hence the compu-
tations are actually the same. Observe that now the encryption randomness
xi is not used anywhere.

Expt3: This experiment is the same as Expt2 with the following changes.
Pi sends out a message where the password pwd has been substituted by µ:
Ci ← encpk(labeli, µ). The key generation is changed in this experiment as
follows. For partnered sessions, a key is generated uniformly from random
and is set as the key for both the sessions. For all other sessions which re-
ceive legitimate messages, the key is generated uniformly and independently
from random. The experiment remains unchanged for sessions which do not
receive legitimate messages.

The indistinguishability of Experiments 2 and 3 follow by a sequence of
hybrid experiments, where we change, session by session, the message being
sent out from using the password pwd to using µ. Consider the sessions
in the order of sending the first message. In this order, the i-th session is
changed as follows, resulting in Expt2,i. Suppose the session is of principal
P and its peer is Q. We change the message being sent by P from (labeli, Ci)
to (labeli, Ĉi), where Ĉi = encpk(labeli, µ).

Consider the scenario where this session receives a legitimate message
(Pj , Pi, s

′

j, C
′

j) - a message generated by the j-th session in the order. We
have two cases depending on whether i is less than or greater than j. Con-
sider the case where i is less than j. In this case, set the key of session i
to be uniformly and independently random instead of being computed by
the projective hashes. If session j receives (Pi, Pj , si, Ĉi), then set the key
of session j to be the same as session i. The key of all other sessions which
receive (Pi, Pj , si, Ĉi), and are greater than i in the order, are set to be
uniformly and independently random. Consider the case where i is greater
than j. In this case, the key of session i was already set when the session
j was considered - we just retain that. The key of all other sessions which
receive (si, Ĉi), and are greater than i in the order, are set to be uniformly
and independently random.

We show that Expt2,i and Expt2,i−1 are indistinguishable. The ci-

phertexts Ci and Ĉi are indistinguishable by the CCA2 security of the en-
cryption scheme and the fact that the encryption randomness is not used
in any other computation. If session j is the partnered session of ses-
sion i and j is greater than i, then in Expt2,i they both compute the

key as privHki(labelj , Cj ,pwd) · privHkj(labeli, Ĉi,pwd). Observe firstly,

41

(labeli, Ĉi,pwd) is not in the language of the hash. Secondly, sessions other
than i which use the private key kj for computing the second hash in Expt2,i,
are all greater in order than i. Hence they compute hash over language mem-
bers only. Due to these two observations, sessions i and j compute the same
key, which is uniformly and independently random with respect to all other
sessions. If the partnered session j is less than i in the order, then the key
computation remains unchanged.

Now consider a session l 6= j greater than i in the order, which receives
(Pi, Pj , si, Ĉi). In Expt2,i it computes the key as privHki(labell, Cl,pwd) ·

privHkl(labeli, Ĉi,pwd). Again we have, (labeli, Ĉi,pwd) is not in the lan-
guage of the hash. Again, sessions which use the private key kl for comput-
ing the second hash in Expt2,i, are all greater in order than i. Hence they
compute hash over language members only. Due to these two observations,
session l computes a key, which is uniformly and independently random
with respect to all other sessions. If l is less than i in the order, then l’s key
computation remains unchanged.

We end up at Expt3 after all these hybrid experiments, and hence it
is indistinguishable from Expt2. Since Expt3 is just the simulator we are
through.

D More Efficient Unbounded Simulation Sound
NIZKs

In [4], an unbounded simulation sound NIZK scheme is given for bilinear
groups, building on the Groth-Sahai NIZKs and using Cramer-Shoup like
CCA2 encryption schemes under K-linear assumptions. In this section we
show various general optimizations for that construction, and further opti-
mizations for specific languages involving generalized Diffie-Hellman tuples.

The general optimizations can be summarized as follows.

1. The scheme in [4] uses a one-time signature scheme. However, since it
also uses a labeled CCA2 encryption scheme, the one-time signature
scheme can be dropped, and one can use the label in the CCA2 scheme
to get the signature property.

2. The scheme in [4] allows the simulator to generate a CCA2 encryp-
tion of ux (for trapdoor x) along with a proof, instead of the proof of
the statement. In order for the Adversary to cheat, it must also pro-
duce such an encryption, which is impossible under CCA2. However,

42

one notices that since the simulator knows ux, instead of a normal
encryption, the simulator can hide ux with just the smooth hash.

We now give this optimized version under the SXDH-assumption (for
ease of exposition). Similar optimizations can be obtained under the DLIN
assumption. Let the SXDH-group be (G1, G2, GT), each of the groups of
order q, with a Zq-bilinear map e from G1 × G2 to GT . We will write the
bilinear map e(A,B) in infix notation as A ·B. The group operation will be
written in additive notation.

Languages for the simulation-sound NIZK can be specified by equations
(relations) of the form ~x · ~A = T , where ~x are variables from Zq, ~A are
constants from G2, and T is a constant from GT , or vice-versa, and thus ~x
serves as witness for a member of a language specified by ~A and T . Lan-
guages can also be specified by equations of the form ~B ·~Y = T1 ·T2, where ~B
are elements from G1, ~Y are variables from G2, and T1 and T2 are constants
from G1 and G2 resp. One can also consider languages with multiple such
relations of both kinds.

Note that languages for which Groth-Sahai NIWI proofs can be given are
more general, including equations like ~x · ~A+~b · ~Y = T , as well as quadratic
equations.

The uss-NIZK CRS will consist of the usual Groth-Sahai NIWI CRS for
SXDH, along with g,A=ga,k= gk1Ak2 ,d=gd1Ad2 , e=ge1Ae2 , and h=gx,u=gu,
with g ∈ G1, and a, k1, k2, d1, d2, e1, e2, x, u chosen at random from Zq. One
could alternatively choose these values from G2. Let H be a collision resis-
tant hash function.

Given a set of relations as above, along with satisfying variables, the
prover does the following:

1. • For each equation of the kind ~x · ~A = T , it generates a modified
equation ~x · ~A = δ · T , where δ is a new global integer variable.

• Get modified equations of the form ~B · ~Y + T1 · V = 0, where V
is a new variable representing elements from G2, along with an
additional equation V − δ · T2 = 0 [13].

• Generate an additional quadratic equation δ(1 − δ) = 0.

2. Produce a Groth-Sahai NIWI proof for the above modified set of equa-
tions, with δ set to 1. Call this proof, which includes all commitments
to original variables as well as δ and V, as π1. Also append the original
statement to be proven in π1.

3. Generate ρ = gw, ρ̂ = Aw, with w chosen at random.

43

4. Produce a Groth-Sahai NIWI proof of the following statements (using
the same commitment to δ as in step 2, and w′, x′ committed to zero):
ρ1−δ = gw

′

, ρ̂1−δ = Aw
′

, h1−δ = gx
′

. Call this proof along with
commitments to x′, w′ as π2.

5. Set b = u · (kdet)w, where t = H(ρ, ρ̂, π1, π2).

6. Produce a Groth-Sahai NIWI proof of the following statement (using
the same commitment to δ as in step 2, and same commitment for
w′, x′ as in Step 4): b1−δ = ux

′

· (kdet)w
′

. Call this proof π3.

7. The uss-NIZK proof consists of (π1, π2, π3, ρ, ρ̂, b).

The proof of zero-knowledge is similar to the construction in [4]. The
proof of unbounded simulation sound extractability is also similar to as
in [4] but using the CCA2 encryption scheme (and its proof) as described
in Section 5.

It is noteworthy that the uss-NIZK CRS can just give the product of k
and d, and it follows that k can be deleted altogether from the scheme. The
above can also be made a labeled unbounded simulation-sound extractable
NIZK, by including the label in the collision-resistance hash computation t
in step 5.

Note that it takes 14 extra group elements to convert a NIZK proof
into a uSS-proof using this construction. This follows from the description
in [13] for the SXDH construction. In the case of DLIN assumption, one
would need 28 extra group elements. For the language in Section 8.3, the
NIZK proof requires 18 group elements. In the full paper [14] we show a
further optimization for this specific language, which saves another 3 group
elements, resulting in a total of 14+18-3 = 29 group elements for the uss-
NIZK proof for the language.

E Secure Protocols under DLIN Assumption

In this section, we instantiate the protocols under the DLIN assumption. Let
G be a group with a bilinear pairing e : G × G → GT and |G| = |GT | = q,
a prime number. Also assume that DLIN is hard for G. Let Lg,f,h be the
language: {(ρ, σ, τ) ∈ G3 | ∃x, y. ρ = gx∧ σ = f y∧ τ = hx+y}, with g, f, h in
G. The proofs are analogous to the SXDH versions and these generalizations
can be obtained as in [7].

44

E.1 Single Theorem Relatively-Sound NIZK for the DLIN
Language

We construct a single-theorem NIZK proof system, with a private verifica-
tion function for Lg,f,h, which is relatively-sound, as follows:

CRS Generation: Generate d1, d2, e1, e2, u1, u2
$
←− Zp and ψ̃, a CRS for a

Groth-Sahai NIWI under the DLIN assumption. Compute (d1, e1,d2, e2)
= (gd1hu1 , f e1hu1 , gd2hu2 , f e2hu2). The CRS is ψ = (ψ̃,d1, e1,d2, e2).
The last four elements are the projection keys for a 2-universal projective-
hash for the DLIN language (just as [7]), to be used in the relatively
simulation sound system. The private verification trapdoor key is
ξ = (d1, d2, e1, e2, u1, u2).

Prover: Given witness x, y and candidate (gx, f y, hx+y), construct proof
as follows. Let com be Groth-Sahai commitments to exponents x, y.
Compute t ← H(gx, f y, hx+y, com), where H is a collision resistant
hash function. Then compute β ← (d1e1

t)x(d2e2
t)y. This is a 2-

universal projective-hash computed on the candidate with witness x, y.
Let π̃ be the Groth-Sahai NIWI proof (which also happens to be a
NIZK proof) for the language {ρ, σ, τ, β | ∃x, y : ρ = gx, σ = f y, τ =
hx+y, β = (d1e1

t)x(d2e2
t)y, where t is a hash of ρ, σ, τ, and the com-

mitment to x, y in the NIWI itself. Output proof π = (β, π̃).

Public Verify: Given π = (β, π̃) as a candidate proof of (ρ, σ, τ), let com
be the witness commitments part of π̃. Compute t← H(ρ, σ, τ, com).
Then check π̃ as a Groth-Sahai NIWI proof for the statement ∃x, y :
ρ = gx, σ = f y, τ = hx+y, β = (d1e1

t)x(d2e2
t)y

Private Verify: Given π = (β, π̃) as a candidate proof of (ρ, σ, τ), let com
be the witness commitments part of π̃. Compute t← H(ρ, σ, τ, com).
Then first do public verification and if that succeeds then check the

following equation: β
?
=

(
ρd1σe1τu1

) (
ρd2σe2τu2

)t
.

Theorem 10 The above system is a single-theorem relatively-sound NIZK
proof system for Lg,f,h.

Again, it is worth pointing out here that we use the fact that in Groth-
Sahai NIZKs for DLIN, once the commitments to the witnesses are fixed,
there is a unique proof satisfying the linear equations of the type used in
the above NIZK proof.

45

Again, it is easy to extend this proof system to a labeled version in the
following way. Compute t as before, but additionally include the label. That
is, compute t as H(ρ, σ, τ, com, label).

E.2 Public Verifiable CCA2 Encryption

We now define a labeled publicly-verifiable public-key encryption scheme
DLENC as follows:

Key Generation: Generate g, f, h
$
←− G, and k1, k2

$
←− Zq. Let K1 = gk1

and K2 = fk2. Let ψ be the CRS for an l-SRS-NIZK for the language
Lg,f,h. The public key is (g, f, h,K1,K2, ψ) and the private key is
(k1, k2).

Encrypt: Given plaintext m ∈ G, and label lbl. Choose x, y
$
←− Zq. Let

the tuple 〈ρ, σ, τ, γ〉 be 〈gx, f y, hx+y,m ·K1
xK2

y〉. Let π be an l-SRS-
NIZK proof of (ρ, σ, τ) ∈ Lg,f,h with witness (x, y) and label (γ, lbl).
The ciphertext is (ρ, σ, τ, γ, π).

Decrypt: Given ciphertext c = (ρ, σ, τ, γ, π) and label lbl. Verify if π is an
l-SRS-NIZK proof for (ρ, σ, τ) and label (γ, lbl). If verification fails
output ⊥. Otherwise output m = γ

ρk1σk2
.

Verify: Given ciphertext c = (ρ, σ, τ, γ, π) and label lbl. Verify if π is an
l-SRS-NIZK proof for (ρ, σ, τ) and label (γ, lbl). If verification fails
output false else output true.

Theorem 11 The scheme DLENC is publicly-verifiable (labeled) IND-CCA2
secure under the DLIN assumption.

E.3 Secure Protocol in the PAK Model

We again instantiate the [16] scheme, but now under the DLIN assumption.
The public verifiable encryption is the scheme DLENC as described before.
Let the public key for the DLENC scheme be (g, f, h,K1,K2, ψ). The hash
proof system is described as follows:

Key Generation: Generate l,m, n
$
←− Zq. Compute η ← gl(K1)

n and
φ← fm(K2)

n. The public key is (η, φ) and the private key is (l,m, n).

46

Public Hash Computation: Given parameters (label, c,msg), where c =
〈ρ, σ, τ, γ, π〉. Also given (ρ, σ, τ ;x, y) ∈ Rf,g,h. Then compute hash
as:

Hη,φ(label, c,msg)← ηxφy

Private Hash Computation: Given parameters (label, c,msg), where c =
〈ρ, σ, τ, γ, π〉. Then compute hash as:

Hl,m,n(label, c,msg) ← ρlσm
(

γ

msg

)n

Theorem 12 Assume the existence of a DLIN hard group G which supports
a bilinear pairing operation. Then the protocol in Figure 1 with encryption
instantiated by DLENC and hash proof system instantiated as described, is
secure in the PAK model.

E.4 Secure PWKE-Protocol in the UC/DLIN Model

In Figure ??, we give a UC-secure PWKE-protocol under the Decisional
Linear assumption (DLIN).

Theorem 13 Assume the existence of a DLIN-hard group, a labeled un-
bounded simulation-sound G-extractable NIZK proof system. Then the pro-
tocol in Figure ?? securely realizes the F̂pwKE functionality in the Fcrs hybrid
model, in the presence of static corruption adversaries.

47

CRS = g, f, h,K1,K2,P , ψ : g, f, h,K1,K2
$
←− G P

$
←− G ψ = uSS-NIZK CRS

Party Pi Adversary A

Input (NewSession, sid, ssid, Pi, Pj , pwd, initiator/responder)

Choose xi, yi, li,mi, ni
$
←− Z

∗

q .

ci,ηi,φi,πi
−−−−−−−→ A

Set



ρi = gxi , σi = fyi , τ = hxi+yi ,

γi = pwd · (Kxi

1 K
yi
2)ssid,

ηi = gliKni

1 , φi = fmiKni

2




Let ci = 〈ρi, σi, τi, γi〉, and

πi = uSS-NIZKψ

(
ρi, σi, τi, ηi, φi;

xi, yi,P
li ,Pmi ,Pni

)
with label 〈Pi, Pj , ssid〉.

c′j ,η
′

j ,φ
′

j,π
′

j

←−−−−−−− A
Let c′j = 〈ρ

′

j , σ
′

j , τ
′

j , γ
′

j〉.
If any of ρ′j , σ

′

j , τ
′

j , γ
′

j , η
′

j , φ
′

j is not in G\{1}, or
not uSS-NIZK-Verify(π′

j; ρ
′

j , σ
′

j , τ
′

j , η
′

j , φ
′

j) with label 〈Pj , Pi, ssid〉

Set ski
$
←− GT ,

else compute

[
h′2 = (ρ′j)

li(σ′

j)
mi(

γ′

j

pwd)
ni

h1 = (η′j)
xi(φ′j)

yi

]

Set ski = e(h′2 · h1,P).
Output (sid, ssid, ski).

Single round UC-secure Password-based Authenticated Key Exchange in
DLIN Bilinear group G of prime order q. It assumes a group G with
a Zq-bilinear map e from G × G to GT . Let g and P be generators
of G. The shared password pwd is assumed to be in G, and ssid is as-
sumed to be in Zq. The uSS-NIZK(ρ, σ, τ, η, φ; x, y, L,M,N) is a labeled
unbounded-simulation G-extractable NIZK proof of membership in the lan-
guage L = {ρ, σ, τ, η, φ | ∃x, y, L,M,N : ρ = gx, σ = f y, τ = hx+y,
e(η,P) = e(g, L)e(K1, N), e(φ,P) = e(f,M)e(K2, N) }

Figure 4: UC Protocol for Password-based Key Exchange in DLIN Group
G

48

	Introduction
	NIZK Definitions
	Relative Soundness
	Relation to Simulation-Soundness

	Smooth Projective Hash Functions
	Bilinear Assumptions
	A Publicly-Verifiable CCA2-Encryption Scheme
	l-SRS-NIZK for the DDH Language
	Secure Protocol in the PAK Model
	Secure Protocol in the UC Model
	Universally Composable Security
	UC Functionality for Password-Based Key Exchange
	A Single Round UC Password-Based Key Exchange Protocol
	The Simulator for the UC Protocol
	New Session: Sending a message to A.
	On Receiving a Message from A.

	Proof of Indistinguishability for the UC Protocol

	Appendix: Publicly-Verifiable CCA2 Encryption
	Appendix: Proof of l-SRS-NIZK
	Appendix: Key Exchange in the PAK Model
	PAK Model of Security
	Proof of Security of the PAK protocol
	Passive Execute Queries
	New Session: Sending a message to A
	On Receiving a Message from A
	Proof of Indistinguishability for the simulator

	More Efficient Unbounded Simulation Sound NIZKs
	Secure Protocols under DLIN Assumption
	Single Theorem Relatively-Sound NIZK for the DLIN Language
	Public Verifiable CCA2 Encryption
	Secure Protocol in the PAK Model
	Secure PWKE-Protocol in the UC/DLIN Model

