Policy-Enhanced Private Set Intersection:
Sharing Information While Enforcing Privacy Policies

Emil Stefanov
UC Berkeley
emil@cs.berkeley.edu

ABSTRACT

Companies, organizations, and individuals often wish to share

information to realize valuable social and economic goals.
Unfortunately, privacy concerns often stand in the way of
such information sharing and exchange.

This paper proposes a novel cryptographic paradigm called
Policy-Enhanced Private Set Intersection (PPSI), allowing
two parties to share information while enforcing the de-
sired privacy policies. Our constructions require minimal
additional overhead over traditional Private Set Intersection
(PSI) protocols, and yet we can handle rich policy semantics
previously not possible with traditional PSI and Authorized
Private Set Intersection (APSI) protocols. Our scheme in-
volves running a standard PSI protocol over carefully crafted
encodings of elements formed as part of a challenge-response
mechanism. The structure of these encodings resemble tech-

niques used for aggregating BLS signatures in bilinear groups.

We prove that our scheme is secure in the malicious model,
under the CBDH assumption, the random oracle model, and
the assumption that the underlying PSI protocol is secure
against malicoius adversaries.

Keywords

authorized private set intersection; multiple authorities; rich
policies; secure 2-party computation

1. INTRODUCTION

The need for two parties to exchange privacy-sensitive in-
formation arises in numerous application domains. Often,
the two parties involved in the exchange are mutually dis-
trustful and do not wish to reveal any additional information
other than what is necessary. In particular, we consider the
scenario where two parties each hold a set of elements and
wish to find the intersection of their elements without re-
vealing other elements that are not in the intersection. In
such applications, it is important to ensure that each data
item being exchanged is properly authenticated or authorized

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Elaine Shi
UC Berkeley/PARC
elaines@cs.berkeley.edu dawnsong@cs.berkeley.edu

Dawn Song
UC Berkeley

by the owner(s) or creator(s) of that data item due to the
following reasons:

e Thwart dishonest behavior. Unless some form of
authentication is required, a malicious party can claim
possession of fictitious data items, in an attempt to
find out whether the other party possesses these data
items. For example, if hospitals A and B are trying to
find out their common patients, a malicious hospital
A can fictitiously claim that Carol is their patient, in
an attempt to find out whether Carol is a patient with
hospital B.

e Comply with privacy policies. Sharing of privacy-
sensitive information may be governed by certain pri-
vacy regulations, either made by the government or
individual organizations. For example, two healthcare
providers A and B may wish to exchange information
about their common patients to improve service and
facilitate diagnosis. However, due to privacy regula-
tions such as the Health Insurance Portability and Ac-
countability Act (HIPAA), they can only share a pa-
tient’s record if both providers have obtained the pa-
tient’s consent. The above is an example of a simple
privacy policy. In other application scenarios, we may
also desire the ability to support richer privacy policies.
We demonstrate how to support rich privacy policies
in Section 4 and give applications in the healthcare
space in Section 6.

In this paper, we propose Policy-Enhanced Private Set
Intersection (PPSI). In PPSI, each party has a set of ele-
ments, where each element may be authorized (signed) by a
different authority or authorities. PPSI allows two parties
to find the intersection of their sets, while enforcing rich pri-
vacy policies. The policies specify what authorizations each
party must possess for its elements. Our scheme thwarts dis-
honest behavior by preventing a malicious party from using
unauthorized elements during the set intersection to violate
the privacy of the other party.

1.1 Results and Contributions

New problem definitions. One important contribution
we make is the definition of a new problem, namely, Policy-
Enhanced Private Set Intersection (PPSI). Exisiting Private
Set Intersection (PSI) protocols and Authorized Private Set
Intersection (APSI) protocols are not general enough and fail
to adequately address the needs of above-mentioned appli-
cation scenarios. To resolve this problem our PPSI scheme

offers the following rich capabilities not previously possible
with existing PSI and APSI protocols:

e Multiple authorities. PPSI supports privacy poli-
cies where each element may be authorized by a dif-
ferent authority or different authorities. This makes
PPSI particularly useful when each data item may not
be owned or created by the same entity.

e Rich privacy policies. Many applications desire the
ability to support expressive privacy policies. For ex-
ample, we describe some useful policies in healthcare
applications in Section 6. Our PPSI constructions can
support rich policy semantics during the information
sharing process, including conjunctive and disjunctive
policies, asymmetric policies, policies with attributes,
and bundles of elements.

Novel, provably secure constructions. We propose
novel PPSI constructions that offer two main functionali-
ties: 1) a signing functionality which allows an authority
to authenticate or authorize an element for a party; 2) a
set intersection protocol that allows two parties to find the
intersection of their elements, while enforcing the desired
privacy policy.

We prove the security of our scheme against malicious
adversaries, assuming that the underlying PSI scheme is also
secure in the malicious model. The proof also relies on the
CBDH assumption and the random oracle model.

Efficiency. Our constructions are efficient in practice. Specif-
ically, we require O(n) communication bandwidth and O(nm+

nloglogn) computation, where n is the maximum number
of elements per party and m is the maximum number of au-
thorities per element. Also, our protocol executes in O(1)
rounds.

Notably, our constructions require only minimal overhead
over standard Private Set Intersection (PSI) protocols, but
can support rich policies that are not possible with standard
PSI. We need one additional round of communication over
standard PSI, during which the parties exchange two group
elements (elliptic points). In terms of computation, we incur
an additional overhead of at most nm bilinear pairings over
the traditional PSI protocols.

Table 1 summarizes the efficiency of our basic construction
described in Section 3.3.

1.2 Technical Challenges and Highlight of Our
Techniques

It turns out that the problem is non-trivial, even with rel-
atively simple policies. A straightforward idea is to adopt
an existing PSI protocol and require that each party demon-
strate a zero-knowledge proof that each element encoded in
a cryptographic commitment has the appropriate authoriza-
tions. However, the complication is that when each element
has a different authority or different authorities, one can-
not reveal the identity of the authority when performing the
zero-knowledge proofs, as the identity of the authority can
leak information about the corresponding element.

Special encodings. Our techniques may be of indepen-
dent interest. Our scheme leverages a type of special en-
coding that allows us to circumvent the need for performing
complicated and costly zero-knowledge proofs. Each party

computes the special encodings over their elements and then
runs a standard PSI protocol over these encodings.

A party’s encoding for an element z is essentially a prod-
uct of terms demonstrating its authorization on = and the
anticipated terms demonstrating the other party’s autho-
rization on x. The terms are cleverly crafted so that a party
can compute its own terms by combining its own authoriza-
tions and a challenge sent by the other party. It can also
compute the anticipated terms of the other party without
having the other party’s authorizations.

If both parties satisfy their respective policies for an ele-
ment, then both parties obtain the same encoding for that
element, and this particular encoding appears in the set in-
tersection. However, if a party does not possess the correct
authorizations for an element, it is unable (computationally
intractable) to compute the correct encoding for this ele-
ment. As a result, this party is unable to learn whether the
other party owns the element.

We point out that our encoding idea bears resemblance to
techniques used for aggregating BLS signatures in bilinear
groups [4].

1.3 Applications

Healthcare privacy. One application is to allow health-
care providers to exchange medical information in a way
that complies with privacy regulations. For example, two
hospitals wish to find their common patients. However, a
hospital can only exchange information about a patient if
they have the permission of that patient. Moreover, the two
hospitals may be competitors, and may not wish to leak the
identity of the patients who are not in the set intersection.
In Section 6, we will describe more usage scenarios in the
healthcare space, and demonstrate the rich policy semantics
required by these applications.

Social networking. Consider a social network application
where two users would like to find out their common friends
without revealing other friends that are not in the intersec-
tion. To prevent a dishonest user from including fake friends
in its input set, a friendship relation with any user U must
be vouched for by the user U.

In the above example, each element is authorized by a sin-
gle party. Sometimes, each element may need to be certified
by multiple authorities. For example, consider a variant of
the above-mentioned social network application. Two users
would like to find out the common Facebook groups they
have joined without revealing all of their groups. Member-
ship in a group should be authorized by its administrator(s).
As each group may have multiple administrators, each ele-
ment (group) in this case may have multiple authorities.

Inner joins for distributed databases. Suppose that
two organizations A and B each have a database table with
entries authorized by third-party authorities. They would
like to run an INNER JOIN SQL query between their tables
such that each party only learns the entries that appear
in the query’s result and not the remaining entries of the
other party’s table. Additionally, they require that only
properly authorized elements appear in the result. In other
words, our PPSI scheme enables A and B to run authorized

Overall

Additional overhead over PSI

Computation | O(nm + nloglogn)

at most nm pairings

Bandwidth O(n)

2 group elements

Rounds 0(1)

1 round

Table 1: Efficiency of our construction in Section 3.3. n is the maximum number of elements per user and m is the
maximum number of authorities per element. The complexities are calculated assuming that we use [14] as the underlying

PSI scheme.

privacy-preserving SQL queries of the form:

SELECT * FROM TableA INNER JOIN TableB ON
TableA.Attribute; = TableB.Attribute;

1.4 Related Work

A Private Set Intersection (PSI) protocol [8-17] allows two
parties to find the intersection of their respective sets such
that neither party can infer elements in the other party’s
set that are not in the intersection. However, PSI protocols
allow each party to place any element in their own set. A
dishonest party can therefore insert fabricated elements in
its set that she suspects the other party might have. The
intersection will reveal if the other party indeed has those
elements in its set.

To address this issue, Authorized Private Set Intersection
(APSI) and variants [5,7,9] ensure that each party can only
use elements certified by a trusted authority in the intersec-
tion protocol. Existing APSI protocols assume that for each
party, there exists a single authority responsible for certi-
fying all of its elements. Therefore, these schemes do not
support rich privacy policies coming from multiple authori-
ties, such as the application scenarios mentioned earlier.

1.5 Organization

For ease of exposition, in Sections 2 and 3, we first present
definitions and constructions supporting symmetric policies.
Recall that symmetric policies are where each party must
be authorized by the same authority or set of authorities
for a given element x. In other words, the correct authority
(or authorities) for an element depends only on the element
and not the party. Then, in Section 4, we show how our ba-
sic construction can be naturally extended to support more
expressive privacy policies, including asymmetric policies,
attributes, bundles, and disjunctive policies. We provide se-
curity definitions and a proof overview in Sections 2.3 and
3.4 respectively. The full proofs are in Appendix A.

2. PROBLEM DEFINITIONS

2.1 Notations and Terminology

Let U denote a (countable) universe of all possible ele-
ments. Let A denote the set of all authorities.

As mentioned earlier, two parties, P4 and Pp, wish to
find the intersection of their sets in a way that complies
with certain privacy policies, that is, only when both parties
have the appropriate authorizations for an element should
it appear in the intersection.

Policy. A privacy policy defines which authority or author-
ities must sign an element for a given party. For ease of
exposition, we will first focus on symmetric policies, where

each element needs to be authorized by one or more author-
ities, and the set of authorities is determined by the element
itself, but is not dependent on the parties. Below are a few
examples of symmetric policies.

e Claimed friendship with Alice needs to be authorized
by Alice.

e Claimed membership in a social group needs to be au-
thorized by the administrator(s) of the group.

As each element’s authorities is determined by the ele-
ment itself, we can use a function F' to describe symmetric
policies. Formally, let F : U4 — 2%l denote a publicly-
known policy function that maps each element to the set
of authorities that must sign it. For example, let © € U, if
F(z) = {authy, auths}, this means that element x has to be
signed by authorities auth; and auths. One simple policy
function is the identity function, e.g., each patient’s record
must be authorized by the patient herself, or claimed friend-
ship with a user must be authorized by that user herself.

We say that « € U is an authorized element for party P, if
party P has received all the necessary signatures for z, i.e.,
P has received a signature o; for every auth; € F(z).

2.2 Basic Problem Definitions

Apart from the necessary setup and key generation func-
tionalities, a PPSI scheme should offer two main function-
alities: 1) a signature scheme allowing an authority auth; to
authorize an element x for a party P; 2) a set intersection
protocol that allows two parties to find the intersection of
their authorized elements.

We now present formal definitions for a basic PPSI scheme
supporting symmetric policies. A Policy-Enhanced Private
Set Intersection (PPSI) scheme (supporting symmetric poli-
cies) should provide the following algorithms or protocols:

e Setup(\): The Setup algorithm is run only once at sys-
tem initialization to generate public parameters param.
The input A represents the security parameter.

e KeyGen(param): Each authority auth; runs the KeyGen
algorithm to generate a signing and verificaition key
pair (ski,vk;). auth; then announces the public verifi-
cation key vk; but keeps the private signing key sk; to
itself.

e Authorize(param,sk;, z, P;): The Authorize algorithm
allows an authority auth; to grant a party P; a signa-
ture on a specific element x.

e Intersect(P;, P;, Si, S;): Let S;,S; C U. Intersect is
an interactive protocol run by any two parties P; and
P; on input sets S; and S; respectively. When both
parties are honest, and assuming that P; and P; both

n Max number of elements in each party’s set.

m Max number of authorities per element.
u The set of all possible elements.
xeU An element.
A The set of all authorities
auth; € A An authority that signs elements.
P; A party participating in our protocol.
Si P;’s set.
1 The resulting intersection.
vk, sk; auth;’s public verfication key and secret signing key.
o or o; A signature issued by an authority.
attr An attribute attached to a signature.
F(x) Authorities for element z (for symmetric policies).
F(z,P;) | Authorities for element z and party P; (for asymmetric policies).
g A random generator for the bilinear group.
Ri=g"t P;’s challenge for the other party.

Table 2: Table of notations.

have the necessary signatures for elements in S; and
S; respectively, then both parties would learn the in-
tersection S; N S; at the end of the protocol.

2.3 Security Definitions

We prove the security of our protocol against a malicious
adversary, who may deviate arbitrarily from the specified
protocol. We define security by comparing what a malicious
adversary can do in the real protocol execution against what
the adversary can do in an ideal world. In the ideal-world
execution, both parties would submit their sets to an imagi-
nary trusted third-party denoted as T. The trusted party T
would make sure that both parties have the correct autho-
rizations on the elements they submitted. If a party submits
an element without the necessary authorizations, T simply
ignores that element. T then computes the intersection of
the elements satisfying the privacy policy and returns the in-
tersection to both parties. In the real-world, we do not use
T and the parties communicate directly to execute the real
set intersection protocol. Roughly speaking, the security
definition implies that any attack that a polynomial-time
adversary can perform in the real world is also possible in
the ideal world. Intuitively, this suggests that the real-world
set intersection protocol is as secure as the protocol in the
ideal world that relies on a trusted third-party.

We now formally define the ideal functionality. The secu-
rity definition involves multiple parties a subset of which is
controlled by the adversary.

Authorize. T receives an authorization request from party
P;, requesting auth; to authorize element z. T forwards the
request to auth;, who can either accept or reject the request.
If auth; accepts the authorization request, T replies accept
to P; and remembers that T has authorized P; on element
x. Otherwise, T replies reject to P;.

SetIntersect. T receives a request from party P; to perform
set intersection with party P;. T forwards the request to P;.
P; and P; now run an ideal set intersection protocol as below
(unless P;j replies abort).

e i) P, sends a set S; to T, and T sends |S;| to P;; or ii)
P; sends abort.

e i) P; sends a set S; to T, and T sends |S;| to P;; or ii)
P; sends abort.

e T now checks whether each element in S; and S; has
appropriate authorizations. Let S; C S; and S; C S
denote maximal subsets of S; and S; that have ap-
propriate authorizations. T computes the intersection
I+ S;NnS;.

e T sends I to P;, and P; reponds ok or abort.

e T sends I to P;, and P; reponds ok or abort.

Definition 1 Let E = (E1, Es, ..., En) denote a sequence
of events, where each E; is of the form (Authorize, P;, auth;)
or (SetIntersect, P;, P;). Let IDEALs g denote the joint out-
put distribution of all parties and the adversary S in the
ideal world under event sequence E. Let REAL4,r denote
the joint output distribution of all parties and the adversary
A in the real world under event sequence E.

We say that a PPSI scheme is secure, if for any polynomial-
time adversary A in the real world, there exists simulator S
in the ideal world, such that for any sequence of events F,

IDEALs g = REALA B
where = denotes computational indistinguishability.

Note that we cannot prevent an adversary from refusing
to participate in the protocol or aborting in the middle of
the protocol execution. As a result, our definition explicitly
allows the ideal-world adversary to abort any time during
the ideal-world protocol. Our definition also allows each
party to use only a subset of their authorized elements as
inputs the protocol.

Our protocol is not size-hiding, i.e., each party can learn
the size of the other party’s set. Therefore, in the ideal func-
tionality, the trusted third-party reveals to each party the
size of the other party’s set. In particular, when both par-
ties honestly use their authorized elements as inputs, i.e.,
§A = S and §B = SB, each party learns the size of the
other party’s authorized set. However, notice that a party
can potentially fuzz the size of its set by padding the in-
put set with random dummy elements for which it does not

possess appropriate authorizations. These dummy random
elements will not appear in the final set intersection due to
lack of authorizations; however, they can hide the number
of authorized elements each party has.

3. CONSTRUCTION

3.1 Strawman Schemes

One strawman approach would be for the two parties to
perform a regular Private Set Intersection (PSI) over the
elements’ signatures, thereby revealing the signed elements
that they have in common. However, this requires that both
parties have the exact same signature for the same element.
This does not allow authorities to bind a signature to a spe-
cific party. The signature can thus be easily transferred to
unauthorized parties.

It is conceivable that there are other solutions based on
standard techniques for the problem than our construction.
For example, we can imagine schemes based on secure multi-
party computation, verifiable shuffles, and matching pairs
of blinded elements. However, to the best of our knowl-
edge, these approaches all tend to have much higher com-
putational and bandwidth complexity than our construction
which achieves O(nm + nloglogn) computational overhead
and O(n) bandwidth overhead — both almost linear in the
number of elements n if we assume the number of authorities
per element m to be a constant.

3.2 Preliminaries

Bilinear group. Our scheme utilizes a bilinear G group
of primary order p. There exists a non-degenerate bilinear
mapping e : G Xx G — Gr such that Vg1,92 € G,Va,b €
Z,e(g¢,g5) = e(g1, g2)*®. Our scheme relies on the following
computational assumption.

Computational Bilinear Diffie-Hellman (CBDH) As-
sumption. Let g € G denote a random generator of the
group. The CBDH assumption posits the computational
hardness of the following problem. Given randomly chosen
g%, g%, g° € G, compute e(g, g)**°.

Private Set Intersection. A Private Set Intersection (PSI)
protocol allows two parties to compute their set intersection
without revealing other elements. Our protocol utilizes a
standard PSI protocol (e.g., the scheme by Hazay and Nis-
sim [14]) as a blackbox. We assume that the PSI protocol is
secure in the malicious model, and refer the readers to [14]
for a formal security definitions of PSI.

3.3 Main Construction

Our construction involves running a standard PSI pro-
tocol over special encodings formed as part of a challenge-
response protocol. Below, we first describe our construction,
including the key generation and authorization algorithm, as
well as the intersection protocol. Then, in Section 3.4, we
explain in detail how to construct the encodings used in the
set intersection protocol, and the properties required for the
encodings.

Setup. The Setup algorithm chooses a bilinear group G of
prime order p with pairing function e : G x G — Gp. It
then chooses a random generator g € G. Next, it picks a
hash function H : {0,1}" — G which will be modelled as
a random oracle. Finally, the Setup algorithm publishes a

description of the bilinear group, the generator g, as well as
the hash function.

Key generation algorithm. To pick a signing and verifi-
cation key pair, each authority auth; randomly selects sk; €r
Zp. The verficiation key is vki:=¢™¢. Each authority ¢ pub-
lishes its public verfication key vk;, but withholds its secret
signing key sk;.

Authorization algorithm. Let H : {0,1}" — G denote a
hash function modelled as a random oracle. We assume that
each party P; has a publicly-known unique name (e.g., an
assigned name or a randomly generated identifier). Without
risk of ambiguity, we overload the notation P; to denote
either the party or its name.

For authority auth; to authorize element z for party P;,
auth; computes the following BLS signature [4] and issues it
to Pj.

g H(w,Pj)Ski

In the above, the hash function is computed over the name
of the element concatenated with the name of the receiving
party. Notice that since the name of the party is incorpo-
rated into the signature, the signature cannot be transferred
to another party.

Intersection protocol. Our protocol takes place in follow-
ing four phases. The detailed construction is presented in
Figure 1.

1. Challenge Phase. P4 sends Pp a random challenge
R4, and Pp sends P4 a random challenge Rp.

2. Encoding Phase. Each party computes an encoding
for each element it possesses and with the appropri-
ate authorizations. The encoding is dependent on the
random challenges R4 and Rp. Figure 2 specifies the
encoding function.

3. Set Intersection Phase. Both parties perform a
standard Private Set Intersection (PSI) protocol us-
ing their respective encodings as the inputs. For the
underlying PSI scheme we use the protocol described
in [14].

4. Recovery Phase. At the end of the PSI protocol,
each party learns the intersection of the encodings.
Through the intersection of encodings, each party re-
covers the original elements in the intersection.

3.4 Encodings for Symmetric Policies

As shown in Figure 2, the encoding is computed as a prod-
uct of multiple terms, where each term is the result of a bilin-
ear pairing. Intuitively, the encodings satisfy the following
properties:

e Conformity. If both parties have an element =z € U
and the appropriate authorizations, their respective
encodings of the element z will be the same. There-
fore, the encoding for element = will appear in the
intersection at the end of the PSI protocol.

e Unforgeability. If a party does not have appropriate
authorizations for the element z, it is unable to forge
the correct encoding for x. In this way, a dishonest
party who does not possess authorizations for element
x cannot find out whether the other party has element
x.

Inputs:
Outputs: Pa, Pg each obtains I:=54 N Sp

Protocol:
1. Pa:

P4, Pp each has sets S4 and Sp, with the appropriate authorizations.

Select random r4 €r Zyp, let Ra < g"™4

Pgp : Select random 7B €r Zp, let Rp < g"8

Ps— Ps: Ra
Ps — Ps: Rp

2. Pa: Ca + {EncodeElem(z,74, Rp, Pa, Pg)|x € Sa}
Pg: Cp + {EncodeElem(z, 75, Ra, P, Pa)|z € S}
3. Ps < Pp: Engage in a PSI protocol with input sets Ca and Cp respectively.
Both parties obtain the set C’:=C4 N Cp of encodings at the end of the PSI protocol.
4. Pa,Pp: Recover the intersection I from their encodings C’.

Figure 1: Intersection protocol.

Figure 2 The EncodeElem function.

function EncodeElem(z, 7seif, Rother, Pself; Pother)
c+—1e€Gr
for auth; € F(z) do
Let 0; denote Pseif’s signature on x from auth;.
c<cC- e(giy Rother) ° e(H(:ry Pother)y Vki)TSCIf
end for
return c
end function

x € U is the element to encode. Tseif € Zy is the random
exponent generated by the party itself. Rother € G is the
random challenge received from the other party. Psey and
Phother represent the names of the party itself and the party
it is communicating with.

The encoding contains two corresponding terms for each
element-authority pair (x, auth;):

e Response to the other party’s challenge. The first term,
e(0i, Rother), 1s a response to the other party’s chal-
lenge Rother- Intuitively, if a party does not possess an
authorization from auth;, then it will not be able to
generate this part of the encoding.

e Anticipated response from the other party to one’s own
challenge. The second term,
e(H (z, Pother), vki)™, is the anticipated response from
the other party for one’s own challenge Rger. Note
that a party is always able to compute the anticipated
response for its own challenge, even without knowing
the other party’s signature, since a party knows the
exponent rseif of a challenge generated by itself. Let
ol:=H(x, Potner)™ denote the signature given to Pogper
from auth; on element z. It is not hard to see that

(0}, Reelf) = e(H(x, Pother), vk;)

In other words, if Pother has the correct signature from
auth;, its actual response to Pse¢’s challenge should match
the response anticipated by Peer. In summary, this term
enforces that the other party can only compute the encoding
if it has a signature from the correct authority.

Theorem 1 The PPSI scheme described in this section is
secure against malicious adversaries, assuming 1) the un-

derlying PSI protocol is simulatable in the malicious model;
2) the Computational Bilinear Diffie-Hellman (CBDH) as-
sumption holds in the bilinear group G; and 8) the hash func-
tion H is a random oracle.

Proof overview. We now give an overview of our proof,
and defer the detailed proof to Appendix A. We first define
a hybrid protocol by replacing the PSI protocol with an
ideal functionality for PSI. Due to the sequential modular
composition theorems by Canetti [6], it suffices to prove that
the hybrid protocol securely computes the ideal functionality
defined in Section 2. We then construct a simulator which is
given black-box access to a hybrid-world adversary A. We
show that if the encoding scheme is unforgeable in some
sense, then the joint output distribution of all parties in
the ideal world is indistinguishable from the joint output
distribution in the hybrid world.

The description of our protocol in Figure 1 does not hide
the number of authorized elements from the other party. If
this number is also considered sensitive, a party can pad its
set of encodings with random dummy encodings, and use the
resulting set as inputs to the PSI protocol. Effectively, this
reveals to the other party the total number of authorized
elements and dummy elements.

Another possible method to hide the size of one’s set is
to use a Size-Hiding PSI protocol in place of the PSI proto-
col used in our construction. Our security proofs would still
hold if the Size-Hiding PSI protocol is simulatable in the
malicious model. Notably, Ateniese et al. recently propose
a Size-Hiding PSI protocol secure under the semi-honest
model [2]. Therefore, it is conceivable that a Size-Hiding
PSI protocol in the malicious model will become available
in the near future.

4. EXTENSIONS FOR RICHER POLICIES

In this section, we describe how to compute the encod-
ings in the intersection protocol for different kinds of poli-
cies. Our main construction in Section 3.3 supports simple
symmetric policies, and we now incrementally add support
for asymmetric policies, attributes, bundles, and DNFs.

4.1 Asymmetric Policies

So far we have focused on symmetric policies, where the
authorities associated with each element depend on the ele-
ment itself.

Figure 3 The EncodeElem function for asymmetric poli-
cies.
function EncodeElem(z, rseif, Rother, Pself; Pother)
c+1eGr
for auth; € F(x, Pscit) do
Let o; denote auth;’s signature for Picjs on z.
¢ < c-e(0i, Rother)
end for
for auth; € F(z, Pother) do
Let o; denote auth;’s signature for Pother On .
¢+ c-e(H(x, Pother), vki) !t
end for
return c
end function

In other application scenarios (such as Use Case 3 in Sec-
tion 6), the right authority may depend on both the element
and the party performing set intersection.

Let U denote a countable universe of elements, let P de-
note the set of all parties, and let A denote the set of au-
thorities. We denote asymmetric policies using a publicly
known policy function F : U x P — 221, F outputs the set
of appopriate authorities given an element and a party. For
example, if F'(z, P) = {auth,auths}, this means that auth;
and authy must sign element x for party P.

Figure 3 describes how to modify the EncodeElem function
to support asymmetric policies. The idea is essentially
the same as the symmetric case. If auth; must sign element
z for party Piels, then Picir computes the term e(o;, Rother),
which is a response to the challenge from Pyher. If authy
must sign element x for party Pother, then Pser computes
the term e(H (z, Pother), vkj) ™!, which is the anticipated
response from Pother to one’s own challenge. The final en-
coding for an element is basically the product of all responses
to the other party’s challenge, and all anticipated responses
from the other party.

4.2 Attributes

Authorities may wish to attach attributes to an element
when making authorizations. For example, attributes may
be used to determine the type or level of authorization given.
Use Case 4 in Appendix 6 illustrates a possible healthcare
application where attributes are used to specify the sensitiv-
ity of medical records. We show that our construction can
be extended to support policy attributes.

Let V denote the set of all possible attributes. Suppose
the a public function F : U x P — 2%V exists which outputs
the necessary (authority, attribute) pairs given an element
and a party. For example, if

F(z, P) = {(authy, attr1), (authy, attrs), (auths, attrs) },

it means that for party P to be a rightful owner of element
x, it is necessary that auth; has signed element x with at-
tributes attr; and attre for party P, and auths has signed
element x with attribute attrs for party P.

To support attributes, first, the authorities need to in-
corporate the attribute values in the hash when computing
signatures. To authorize element x with attribute attr to
party P, auth; now computes the following signature:

o+ H(z,attr, P)™

Second, the EncodeElem function needs to be modified to

Figure 4 The EncodeElem function supporting attributes
and asymmetric policies.

function EncodeElem(x, rseif, Rother, Pself; Pother)
c+—1eGr
for (auth;, attr) € F(z, Psir) do
Let o; denote auth;’s signature for Pies on x and
attribute attr.
c{cC- e(O'i, Rother)
end for
for (auth;, attr) € F(z, Pother) do
Let o, denote auth;’s signature for Pother On x and
attribute attr.
¢« c-e(H(zx,attr, Pother),g"ki)’"self
end for
return c
end function

incorporate the attributes as in Figure 4.

4.3 Bundles

A group of elements may form a bundle. The bundle
should appear in the intersection if both parties have all
elements in the bundle, as well as the appropriate autho-
rizations. Otherwise, the bundle should not appear in the
intersection, and neither party should learn any partial in-
formation about elements in the bundle that the other party
has.

Our scheme can be easily adapted to handle bundles by
combining the encoding of each element of the bundle to
produce a single encoding for the entire bundle. Specifically,
the bundle’s encoding is the product of the encodings of its
elements.

4.4 Disjunctions and DNFs

So far, we have considered conjunctive policies. More gen-
erally, policies may also contain disjuctions, or Disjunctive
Normal Forms (DNFs). For example, Section 6, Case 6
presents a scenario where for hospital A to share Carol’s
record with hospital B, either the record has low sensitiv-
ity, and hospital B has permissions to receive low sensitiv-
ity records from Carol, or the record is cardiology related,
and hospital B has permissions to retrieve Carol’s cardiology
records.

As another example, imagine two online stores (e.g., Dell
and Newegg) want to investigate a consumption pattern of
their shared customers. Specifically, they want to deter-
mine which customers have bought both a computer from
Dell and a monitor from Newegg. Therefore, they need to
perform a set intersection operation on their sales datasets.
Meanwhile, to prevent each company from inserting ficiti-
cious records, each sales record must be authorized by a
recognized credit company, Mastercard or Visa.

In general, for parties P4 and Pg to share an element z,
a DNF-style policy of the following form must be satisfied:

policy := CiVvCyV...VCy
where each C;(1 < ¢ < k) is a conjunctive clause of the form:

(authy,, Pa, z,attry) A ... A (auth;,, Pa, z, attry)
A(authj,, Pg,x,attr1) A ... A (authy,,, Pp,x, attry)

In the above, each tuple (auth;, P, x, attr) means that “auth;
gave authorizations to party P on element x with attribute

attr”. Specifically, each conjunctive clause specifies the poli-
cies for party P4 and Pp respectively.

Our basic construction can be extended to support DNF's,
with the caveat that each party reveals to the other party
which conjunctive clause is satisfied for an element. The idea
is quite straightforward: for each conjunctive clause, each
party uses the algorithm described in Figure 4 to compute an
encoding. The encoding for an element is now the union of
all encodings corresponding to all conjunctive clauses. Fur-
thermore, each party will use the union of all encodings for
all elements as inputs to the PSI protocol.

S. PERFORMANCE

In this section, we first explain a simple optimization for
reducing the total number of bilinear pairing operations.
Then, we present the asymptotic complexities and experi-
mental performance of our protocol.

5.1 Optimization

When generating the encodings of the elements (see Fig-
ures 2, 3, and 4), we need to compute an expression of the
form

e(0'17 Rothcr) . 8(0'2, Rothcr) e e(ak7 Rothcr)

Because bilinear pairings are much more expensive than
multiplication, we can compute the same quantity much
more efficiently by instead calculating

e(O'l 02Ok, Rother)

For our symmetric policy construction, this optimization re-
duces the number of pairings almost in half (as the trick does
not apply to the terms representing anticipated responses
from the other party).

5.2 Asymptotic Complexities

We first analyze the performance of our basic construc-
tion (described in Section 3.3) supporting symmetric poli-
cies. Later, in Section 5.4, we discuss the performance of
the various extensions (described in Section 4).

The efficiency of our protocol depends on both the number
of elements (n) and the number of authorities per element
(m). We now present asymptotic bounds for the amount
of computation, amount of bandwidth, and the number of
communication rounds.

Computation: O(nm + nloglogn). The encoding phase
performs a constant number of operations for each element-
authority pair and is hence O(nm). It computes a single en-
coding for each element resulting in O(n) encodings. Those
encodings are the input for the PSI phase, and by using the
protocol by Hazay and Nissim [14], we can perform the PSI
phase in O(nloglogn) time. The recovery phase is trivially
O(nm) and the challenge phase is O(1). Summing up the
above, the total computation is O(nm + nloglogn).

Bandwidth: O(n). The communication between the two
parties consists of the PSI protocol’s communication and
the two group elements sent during the challenge phase.
Since the input size for the PSI is n, using the PSI protocol
by Hazay and Nissim [14], the bandwidth overhead for the
PSI phase is O(n). Therefore, the combined communication
bandwidth for our scheme is O(n).

Lm [t 12 [3 [4 [5]
average 1.70 | 3.10 | 4.45 | 5.65 | 7.07
std. dev. | 0.06 | 0.17 | 0.22 | 0.04 | 0.27

Table 3: The time (in ms) for encoding an element given
the number of authorities for that element. These results
are for the symmetric policy construction with attributes.

Rounds: O(1). The PSI protocol by Hazay and Nissim [14]
consists of O(1) communication rounds. We add one addi-
tional round for the challenge phase.

Note that our construction introduces only a small over-
head on top of PSI, namely, a single round of extra commu-
nication where 2 group elements are exchanged, and at most
nm bilinear pairings. And with this small additional over-
head, we provide the ability to support rich privacy policies
previously not possible with existing PST and APSI schemes.

5.3 Empirical Performance

Our protocol can be broken down into two time consuming
phases: (1) encoding elements, and (2) performing standard
Private Set Intersection (PSI). There is a large body of ex-
isting work on building efficient PSI protocols [8-12,14-17],
and one can plug into our construction any existing PSI
protocol that is fully simulatable under a malcious adver-
sary model. Therefore, our experimental analysis below fo-
cuses on the additional overhead introduced by the encoding
phase.

We generated 2,000 random elements with attributes and
then computed the signatures for 2 parties by 5 authorities.
We used different authorities for each element-authority pair,
hence we have the total number of authorities |A| = 10,000.
We set the maximum number of authorities per element to
be m = 5. We then varied m = 1,...,5 by choosing a
random subsets of the corresponding authorities for each el-
ement, and computed all of the the element encodings in
parallel.

After repeating this experiment 20 times, we calculated
the average encoding time per element and standard devia-
tion. The results are shown in Table 3.

Experiment Setup. Our experiment was implemented in
C# and was run on 64-bit Windows 7 with an Intel Core
i7 3.33 GHz CPU and 12GB of RAM (although the exper-
iment used much less memory). For all of the pairing and
elliptic curve operations, we used the Pairing Based Crypto
Library [18].

5.4 Performance for Rich Policies

So far, we focused on the performance of the basic con-
struction supporting symmetric policies. The performance
of our protocols supporting richer policies can be analyzed
in a similar fashion.

Asymmetric Policies. The performance for asymmetric
policies is essentially the same as the performance for sym-
metric policies. Therefore, encoding n elements each having
at most m authorities per element using an asymmetric pol-
icy is at least as fast as encoding using a symmetric policy
for the same n and m.

Attributes. With attribute-enriched policies, the number
of bilinear pairings is the number of (element, authority,

attribute) tuples for each party.

Bundles. The cost of encoding a bundle scales linearly with
the number of elements. For example, the cost of encoding
a bundle of b elements is b times times the cost of encoding
a single element. This is due to the fact that the elements of
the bundle have to be first encoded individually. Combining
them incurs a series of elliptic point multiplications, but
their cost is significantly outweighed by the pairing function
that is applied to each element.

DNF policies. Each DNF policy consists of multiple con-
junctive clauses. The cost of encoding an element under
a DNF policy is simply the sum of the cost of encoding
each conjunctive clause, where the cost for encoding a con-
junctive clause has been discussed earlier — depending on
whether the conjunctive clause is symmetric, asymmetric,
attribute-enriched, etc.

With a DNF policy consisting of k conjunctive clauses,
the encoding for an element will consist of k group elements
instead of one.

To summarize, suppose the maximum number of conjunc-
tive clauses for a DNF policy is k, and the maximum number
of literals for a conjunctive clause is m. Then, the commu-
nication overhead of our protocol will be O(nk), and the
computational overhead will be O(nmk + nkloglog(nk)).

6. USE CASES IN HEALTHCARE

In this section, we describe some motivating use cases in
the healthcare space. These use cases demonstrate the rich
policy semantics that we may wish to support. We choose
the medical space, as privacy is a particularly sensitive issue
when it comes to sharing health records. Furthermore, there
are various government and organizational regulations that
seek to protect the privacy of medical records. Beyond the
healthcare space, our constructions are also valuable in a
wide range of application domains, as mentioned earlier in
Section 1.

6.1 Symmetric Policies

We consider the following type of policies to be symmetric.
For two parties A and B to share an element x, both A and
B must have authorizations from the same authority or set
of authorities.

Below we describe two use cases where symmetric policies
are used. In Case 1, each element must be authorized by a
single authority depending on the element. In Case 2, each
element must be authorized by multiple authorities depend-
ing on the element.

Case 1: Policy-compliant medical information shar-
ing. Imagine that two hospitals A and B wish to share infor-
mation about their common patients. This can enhance doc-
tors’ understanding about a patient’s medical history and
therefore improve diagnosis accuracy. Due to privacy reg-
ulations such as HIPAA, the two hospitals can only share
information about Carol if both have Carol’s consent.

In this scenario, if we consider each patient to be an el-
ement in the set, then each element must be authorized by
the patient herself in order for the element to appear in the
set intersection.

Case 2: Detecting duplicate claims. Imagine that two
medical insurance companies wish to detect insurance fraud.
Each insurance company has a database of claim records,

where each record is a tuple (PATIENT, DOCTOR, DATE OF
VISIT). The two insurance companies wish to detect dupli-
cate claims. To protect the privacy of honest patients and
to prevent each insurance company from using ficiticious
records, we require that each claim record must be authen-
ticated by a patient and the corresponding doctor’s office.
In this scenario, each claim record can be considered as
an element, and an element must be authenticated by two
authorities, namely, the patient and the doctor’s office.

6.2 Asymmetric Policies

Asymmetric policies refer to cases where the policy re-
quirements are asymmetric for the two parties involved in
the protocol.

Case 3: Policy-compliant medical information ex-
change. A hospital A wishes to retrieve medical informa-
tion about its patients from a cloud service provider such
as Google Health. However, the cloud service provider can
only share Carol’s record with hospital A, if 1) hospital A
has permission from Carol to retrieve her records; and 2)
the cloud service provider has permissions from Carol and
her primary doctor to share Carol’s medical records.

In this example, the policy requirements for the cloud ser-
vice provider and the hospital are asymmetric.

6.3 Attributes, Bundles, and Disjunctions

Attributes may be attached to authorizations made to a
party, such as the following example.

Case 4: Sensitivity level of medical records. Some
medical records may be more privacy sensitive than others.
For example, a medical record related to HIV is generally
more privacy sensitive than a record related to the common
cold.

The patient or hospital might attach a sensitivity level
low, medium, or high to a medical record. The patient can
then sign-off on the record by authorizing it. A patient Carol
may authorize a hospital B to obtain records marked with
only “low” or “medium” sensitivity level.

Case 5: Bundles. Sometimes multiple elements may form
a bundle. A bundle appears in the set intersection if and
only if both parties have all elements in a bundle.

Two hospitals A and B may be interested in sharing pa-
tient’s prescription records for patients satisfying a certain
criterion. Each prescription record contains metadata of the
form (PATIENT, DRUG). Hospitals A and B wish to share
prescription records for patients who have been treated by
both drug 1 and drug 2. As before, each prescription record
must be authorized by the corresponding patient.

In this case, the records “(Carol, Drug 1)” and “(Carol,
Drug 2)” form a bundle. The bundle should appear in the
set intersection if and only if A and B each possesses both
records in the bundle. Otherwise, they should not be in-
cluded in the set intersection.

Case 6: Disjunctions. The previously cases are examples
of conjunctive policies. In other words, for an element to
appear in the set intersection, a set of requirements has to
be satisfied simultaneously.

We may also have disjunctive policies, or more generally,
Disjunctive Normal Forms (DNFs). For example, for hospi-
tal A to share Carol’s record with hospital B, the following
disjunctive policy must be satisfied:

e Either Carol’s medical record is marked by Carol with
low sensitivity, and Carol has given permission to hos-
pital B to retrieve her low-sensitivitiy medical records;

e Or Carol’s medical record has been classfied as “car-
diology” by an RHIO, and meanwhile, hospital B has
Carol’s permission to her cardiology related records.

7. CONCLUSION

We introduced a new cryptographic paradigm for private
set intersection with rich policies, allowing two parties to
selectively share data while satisfying privacy policies. Our
protocol ensures that only properly authorized elements which
satisfy certain privacy policies appear in the set intersection.
Our protocols support rich policies, including conjunctive
and disjunctive policies, attribute-enriched policies, asym-
metric policies, and bundles of elements. We prove that our
scheme is secure under the malicious model, given the CBDH
assumption, the security of the underlying PSI protocol, and
assuming the random oracle model.

8. REFERENCES

[1] A. I Anton, J. B. Eart, M. W. Vail, N. Jain, C. M.
Gheen, and J. M. Frink. HIPAA’s effect on web site
privacy policies. IEEE Security and Privacy, 5,
January 2007.
G. Ateniese, E. D. Cristofaro, and G. Tsudik.
Size-hiding private set intersection. Cryptology ePrint
Archive, Report 2010/220, 2010.
http://eprint.iacr.org/.
E. Bertino, B. C. Ooi, Y. Yang, and R. H. Deng.
Privacy and ownership preserving of outsourced
medical data. In ICDE, 2005.
D. Boneh, B. Lynn, and H. Shacham. Short signatures
from the weil pairing. pages 514-532. Springer-Verlag,
2001.
J. Camenisch and G. M. Zaverucha. Private
intersection of certified sets. In Financial
Cryptography, 2009.
R. Canetti. Security and composition of multi-party
cryptographic protocols. JOURNAL OF
CRYPTOLOGY, 1998.
E. Cristofaro, S. Jarecki, J. Kim, and G. Tsudik.
Privacy-preserving policy-based information transfer.
In PETS, 2009.
E. D. Cristofaro, J. Kim, and G. Tsudik.
Linear-complexity private set intersection protocols
secure in malicious model. In Asiacrypt, 2010.
E. D. Cristofaro and G. Tsudik. Practical private set
intersection protocols with linear complexity. In
Financial Cryptography, 2010.
D. Dachman-Soled, T. Malkin, M. Raykova, and
M. Yung. Efficient robust private set intersection. In
ACNS, 2009.
M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold.
Keyword search and oblivious pseudorandom
functions. In T'CC, 2005.
M. J. Freedman, K. Nissim, and B. Pinkas. Efficient
private matching and set intersection. In Furocrypt,
2004.
C. Hazay and Y. Lindell. Efficient protocols for set
intersection and pattern matching with security

10

against malicious and covert adversaries. In TCC,
2008.

C. Hazay and K. Nissim. Efficient set operations in
the presence of malicious adversaries. In Public Key
Cryptography, 2010.

S. Jarecki and X. Liu. Efficient oblivious
pseudorandom function with applications to adaptive
ot and secure computation of set intersection. In T'CC,
2009.

S. Jarecki and X. Liu. Fast secure computation of set
intersection. In SCN, 2010.

L. Kissner and D. Song. Private and threshold
set-intersection. In CRYPTO, 2005.

B. Lynn. Pairing-based cryptography library.
http://crypto.stanford.edu/pbc/.

(14]

(15]

(16]
(17]

(18]

APPENDIX
A. PROOFS OF SECURITY

Suppose the PSI protocol we use in the protocol is fully
simulatable under the malicious model. Due to the sequen-
tial modular composition theorems by Canetti [6], we can
replace the PSI module in our protocol with the ideal func-
tionality for PSI. We refer to the resulting protocol as the
hybrid protocol. We formally describe the hybrid protocol
below. Although not explicitly stated, parties P4 and Pg
may abort the protocol at any message boundary.

e P, picks random r4 € Z,, and sends to Pp the value

RA::gTA cG.
e Pp picks random 7 € Z,, and sends to P4 the value
Rp:=¢"B €G.

e P4 computes
C4a < {EncodeElem(z, 74, Rp, Pa, Pp)|z € Sa},

and sends Ca to Tpsr. Tpsr now sends |Cal to Pg.

e Pp computes
Cp <+ {EncodeElem(z, 75, Ra, Pg, Pa)|z € Sg},

and sends Cp to Tpsr. Tpsr now sends |Cg| to Pa.
e Tps1 computes C':=C4 N Cp, and sends C’ to Pa.
e Tpgr sends C’ to Ps.

Due to the sequential modular composition theorems by
Canetti [6], it suffices to show that the hybrid protocol is
secure as stated by Lemma 1.

Definition 2 Let E denote an event sequence. Let IDEALs,E
denote the joint output distribution of all parties and the ad-
versary S in the ideal world, under event sequence E. Let
HYBRID 4 g denote the joint output distribution of all par-
ties and the adversary A in the hybrid world, under event
sequence E. We say that the hybrid protocol securely com-
putes the ideal functionality defined in Section 2.3, if for
any polynomial-time adversary A in the hybrid world, there
exists simulator S in the ideal world, such that for any se-
quence of events F,

IDEALs g = HYBRID 4.

where = denotes computational indistinguishability.

Lemma 1 Assume that the CBDH assumption holds in the
bilinear group G, and the hash function H is a random ora-
cle. Then, the hybrid protocol described earlier securely com-
putes the ideal functionality defined in Section 2.3.

In the following sections, we prove Lemma 1.

A.1 Simulator Construction

We build an ideal-world simulator & who is given black-
box access to a hybrid-world adversary A.

S starts out by choosing a bilinear group G of prime order
p, with a pairing function denoted e : G X G — Gr. It
also picks a random generator g € G. S gives these system
parameters to A.

We assume that all authorities are honest. S now chooses
the signing and verification key pair (sk;, vk;) for every au-
thority, and gives the verification keys vk; to A. S interacts
with A as below:

e Hash query. Upon receiving a hash query on input
(z, P), S checks to see if that query has been made be-
fore. If so, return the same answer. If not, S generates
a random element in ¢’ € G and returns ¢’. S also
remembers the query and and answer.

e Authorize. Whenever A asks auth; to sign element z
for a corrupted party Pa, S first makes a hash query on
input (z, Pa). After determining the hash, S computes
the signature and returns it to the adversary. As S
knows the signing keys of all parties, S can compute a
signatuer for any requested element.

e Set intersection. Whenever A asks to perform the set
intersection protocol between a corrupted party Pa (con-
trolled by the adversary), and an honest party Pg, S
performs the following simulation. A may abort any
time during the following execution, in which case S
also sends abort to the trusted third-party T.

S chooses some Rp € G and sends it to A. A chooses
some R4 € G and sends it to S. A now outputs a set of
encodings. From these encodings, S can recover which
elements they correspond to. To do this, S basically it-
erates over the hash queries that .4 has made, computes
the expected encodings for these elements, and checks
to see if they match any encodings submitted by the
adversary. It is not hard to see that S can compute all
encodings, as it knows the secret signing keys sk; for
all authorities. S then sends these elements (recovered
from encodings) to the trusted third-party T. T replies
with |Sp| the length of Pp’s set, followed by elements
in the intersection represented by the set I. S sends A
the length |Sp|. Furthermore, S computes the encod-
ings for elements in I, and returns these encodings to

A.

Clearly, unless A is able to forge an encoding for an el-
ement for which it does not possess an appropriate signa-
ture, then the joint outputs of all parties in the ideal world
are identically distributed as those in the hybrid protocol.
Notice that if A did forge an encoding for some element z
for which it had not made an authorization query, then the
ideal-world trusted third-party T would filter out that ele-
ment from the resulting set intersection, causing the output
distribution to be different in the ideal protocol from the
hybrid protocol.

11

A.2 Unforgeability of Encodings

Lemma 2 Assume that the CBDH assumption holds in the
group G, and the hash function H is a random oracle. Let
A denote polynomial-time adversary in the hybrid protocol,
who has full control of all corrupted parties. Let Pa denote a
corrupted party, and assume that Pa has not received auth;’s
signature on element x. Then, during a set intersection pro-
tocol between Pa and any honest party Pg, A is unable to
compute the correct encoding EncodeElem(z, 74, Rp, Pa, Pg)
except with negligible probability. In the above, R €r G is
chosen at random by Pp, and ra € Zy is chosen arbitrarily
by the adversary A.

We now prove Lemma 2 formally. Imagine a simulator S’
who receives a CBDH instance (g, g%, g°, ¢¢). We will show
that if there exists a polynomial-time adversary A who can
successfully forge an encoding with non-negligible probabil-
ity, then S’ can leverage A to break the CBDH assumption,
and compute e(g, ¢)**® with non-negligible probability.

S’ gives to A a description of the bilinear group G, the
pairing function e : G X G — Gr, and the generator g. All
these parameters are inherited from the CBDH instance. S’
first chooses a random authority auth;«, and sets its public
verification key vk;=:=g®, where g% is from the CBDH in-
stance. Note that S8’ does not know the secret signing key
sk;+. Nevertheless, the S’ is able to perform the simulation.
For all other authorities, the simulator S’ picks their sign-
ing and verification key pairs as normal, and gives all the
verification keys to the adversary A.

e Hash query. Except for one hash query (z*, P*) chosen
at random by &', &’ picks a fresh random exponent
p € Zyp, and return g” to A. The simulator remembers
the query and p.

For the randomly chosen hash query (z*, P*) the sim-
ulator S8’ returns g¢ from the CBDH instance to A.

o Authorize. If A asks for a signature on element z* for a
corrupted party P*, the 8’ aborts. The probability of
not aborting is at least %, where ¢ is the total number
of hash queries and authorize queries made by A.

If the authorization request is for (z, P) # (2%, P"),
the simulator &’ first makes a hash query to obtain the
hash value H(z, P). Next the simulator &’ computes
the signature. Note that in this case, the simulator
is always able to compute the corrrect signature even
when the signer is auth;+ for whom S’ does not possess
the secret signing key. This is due to the fact that the
simulator S’ picked the exponent for H(z, P) = g” in
a hash query. With knowledge of p, the simulator can
compute the signature as vk?.

e Set intersection. A forges an encoding at least once
during a set intersection protocol. Suppose that the
adversary performs set intersection protocols at most
¢’ times. The simulator guesses at random that A4 will
make the first forgery during the j*-th protocol run,
where 1 < j* < ¢'. The guess is correct with probabil-
ity at least %.

We will assume that the j*-th protocol run is between
an honest party Pp and corrupted party P* (which the
simulator tries to guess in the hash queries) — if this is
not the case, S’ simply aborts. Now during the j*-th

protocol run, S’ sends Rp:=¢° to A, where ¢° is from
the CBDH instance. A sends R4 to S’. A now outputs
m encodings, and the simulator S8’ randomly guesses
one of them to be the forged encoding, denoted as c*.
We henceforth assume that ¢* encodes the element z*
— and this happens with at least 1 probability, where
q is the total number of hash queries and authoriza-
tion requests made by A. Note that ¢* will contain
two terms for every authority associated with the ele-
ment z* — one term for each party. Except for the term
e(H(z*, P*)™" Rp) = e(g, 9)*°, S’ can compute and
divide out all other terms. Therefore, what remains
will be the simulator’s guess of e(g, g)**°.

In the above simulation, &’ will succeed in guessing e(g, g)
if and only if:

e A is successful in forgery.

e S’ correctly guesses that A’s first successful forgery is
an encoding for corrupted party P*, and element 2.

e S’ correctly guesses that A’s first successful forgery
happens during the j*-th protocol interaction, and for
the k*-th element in that protocol interaction.

€

The probability that the above happens is at least ——,
aq/m
where ¢ is the total number of hash queries and authoriza-
tion requests made by the adversary, ¢’ is the total number of
set intersection protocols the adversary engages in, m is the
maximum number of encodings produced by the adversary
in every protocol interaction, and € is the success probabil-
ity of A. As the adversary A is polynomially bounded, this
means that the simulator S’ succeeds with probability at

€
least m .

abce

12

