
The Cryptographic Power of Random Selection

Matthias Krause and Matthias Hamann

Theoretical Computer Science
University of Mannheim

Mannheim, Germany

Abstract. The principle of random selection and the principle of adding
biased noise are new paradigms used in several recent papers for con-
structing lightweight RFID authentication protocols. The cryptographic
power of adding biased noise can be characterized by the hardness of
the intensively studied Learning Parity with Noise (LPN) Problem. In
analogy to this, we identify a corresponding learning problem for ran-
dom selection and study its complexity. Given L secret linear func-
tions f1, . . . , fL : {0, 1}n −→ {0, 1}a, RandomSelect (L, n, a) denotes the
problem of learning f1, . . . , fL from values (u, fl (u)), where the secret
indices l ∈ {1, . . . , L} and the inputs u ∈ {0, 1}n are randomly chosen by
an oracle. We take an algebraic attack approach to design a nontrivial
learning algorithm for this problem, where the running time is domi-
nated by the time needed to solve full-rank systems of linear equations
over O

(
nL
)

unknowns. In addition to the mathematical findings relating
correctness and average running time of the suggested algorithm, we also
provide an experimental assessment of our results.

Keywords: Lightweight Cryptography, Algebraic Attacks, Algorithmic
Learning, Foundations and Complexity Theory

1 Introduction

The very limited computational resources available in technical devices like RFID
(radio frequency identification) tags implied an intensive search for lightweight
authentication protocols in recent years. Standard block encryption functions
like Triple-DES or AES seem to be not suited for such protocols largely because
the amount of hardware to implement and the energy consumption to perform
these operations is too high (see, e.g., [7] or [17] for more information on this
topic).

This situation initiated two lines of research. The first resulted in proposals
for new lightweight block encryption functions like PRESENT [4], KATAN and
KTANTAN [10] by use of which standard block cipher-based authentication
protocols can be made lightweight, too. A second line, and this line we follow in
the paper, is to look for new cryptographic paradigms which allow for designing
new symmetric lightweight authentication protocols. The two main suggestions
discussed so far in the relevant literature are the principle of random selection
and the principle of adding biased noise.

The principle of adding biased noise to the output of a linear basis function
underlies the HB-protocol, originally proposed by Hopper and Blum [16] and
later improved to HB+ by Juels and Weis [17], as well as its variants HB# and
Trusted-HB (see [13] and [6], respectively). The protocols of the HB-family are
provably secure against passive attacks with respect to the Learning Parity with
Noise Conjecture but the problem to design HB-like protocols which are secure
against active adversaries seems to be still unsolved (see, e.g., [14], [20], [12]).

The principle of random selection underlies, e.g., the CKK-protocols of Ci-
choń, Klonowski, and Kuty lowski [7] as well as the Ff -protocols in [3] and the
Linear Protocols in [18]. It can be described as follows.

Suppose that the verifier Alice and the prover Bob run a challenge-response
authentication protocol which uses a lightweight symmetric encryption operation
E : {0, 1}n×K −→ {0, 1}m of block length n, whereK denotes an appropriate key
space. Suppose further that E is weak in the sense that a passive adversary can
efficiently compute the secret key K ∈ K from samples of the form (u,EK(u)).
This is obviously the case if E is linear.

Random selection denotes a method for compensating the weakness of E by
using the following mode of operation. Instead of holding a single K ∈ K, Alice
and Bob share a collection K1, . . . ,KL of keys from K as their common secret
information, where L > 1 is a small constant. Upon receiving a challenge u ∈
{0, 1}n from Alice, Bob chooses a random index l ∈ {1, . . . , L} and outputs the
response y = E(u,Kl). The verification of y with respect to u can be efficiently
done by computing E−1Kl (y) for all l = 1, . . . , L.

The main problem this paper is devoted to is to determine the level of security
which can be reached by applying this principle of random selection.

Note that the protocols introduced in [7], [3], and [18] are based on random
selection of GF (2)-linear functions. The choice of linear basis functions is moti-
vated by the fact that they can be implemented efficiently in hardware and have
desirable pseudo-random properties with respect to a wide range of important
statistical tests.

It is quite obvious that, with respect to passive adversaries, the security
of protocols which use random selection of linear functions can be bounded
from above by the complexity of the following learning problem referred to as
RandomSelect (L, n, a): Learn GF (2)-linear functions f1, . . . , fL : {0, 1}n −→
{0, 1}a from values (u, fl (u)), where the secret indices l ∈ {1, . . . , L} and the
inputs u ∈ {0, 1}n are randomly chosen by an oracle. In order to illustrate
this notion, we sketch in appendix B how an efficient learning algorithm for
RandomSelect (L, n, a) can be used for attacking the linear (n, k, L)+-protocol
described by Krause and Stegemann [18].

In this paper, we present an algebraic attack approach for solving the above
learning problem RandomSelect (L, n, a). The running time of our algorithm is
dominated by the effort necessary to solve a full-rank system of linear equa-
tions of O(nL) unknowns over the field GF (2a). Note that trivial approaches for
solving RandomSelect (L, n, a) lead to a running time exponential in n.

In recent years, people from cryptography as well as from complexity and
coding theory devoted much interest to the solution of learning problems around
linear structures. Prominent examples in the context of lightweight cryptography
are the works by Goldreich and Levin [15], Regev [21], and Arora and Ge [2]. But
all these results are rather connected to the Learning Parity with Noise Problem.
To the best of our knowledge, there are currently no nontrivial results with
respect to the particular problem of learning randomly selected linear functions,
which is studied in the present paper.

We are strongly convinced that the complexity of RandomSelect also de-
fines a lower bound on the security achievable by protocols using random se-
lection of linear functions, e.g., the improved (n, k, L)++-protocol in [18]. Thus,
the running time of our algorithm hints at how the parameters n, k, and L
should be chosen in order to achieve an acceptable level of cryptographic secu-
rity. Note that choosing n = 128 and L = 8 or n = 256 and L = 4, solving
RandomSelect (L, n, a) by means of our algorithm implies solving a system of
around 228 unknowns, which should be classified as sufficiently difficult in many
practical situations.

The paper is organized as follows. In sections 2, 3, and 4, our learning algo-
rithm, which conducts an algebraic attack in the spirit of [22], will be described
in full detail. We represent the L linear basis functions as assignments A to
a collection X =

(
xli
)
i=1,...,n,l=1,...,L

of variables taking values from the field

K = GF (2a). We will then see that each example (u, fl (u)) induces a degree-
L equation of a certain type in the X-variables, which allows for reducing the
learning problem RandomSelect (L, n, a) to the problem of solving a system of
degree-L equations over K. While, in general, the latter problem is known to be
NP-hard, we can show an efficient way to solve this special kind of systems.

One specific problem of our approach is that, due to inherent symmetries of
the degree-L equations, we can never reach a system which has full linear rank
with respect to the corresponding monomials. In fact, this is the main difference
between our learning algorithm and the well-known algebraic attack approaches
for cryptanalyzing LFSR-based keystream generators (see, e.g., [19], [8], [9], [1]).

We circumvent this problem by identifying an appropriate set T (n,L) of basis
polynomials of degree at most L which allow to express the degree-L equations as
linear equations over T (n,L). The choice of T (n,L) will be justified by Theorem
2 saying that if |K| ≥ L, then the system of linear equations over T (n,L) induced
by all possible examples has full rank |T (n,L)|. (Note that according to Theorem
1, this is not true if |K| < L.) Our experiments, which are presented in section
5, indicate that if |K| ≥ L, then with probability close to one, the number of
examples needed to get a full rank system over T (n,L) exceeds |T (n,L)| only by
a small constant factor. This implies that the effort to compute the unique weak
solution t (A) = (t∗ (A))t∗∈T (n,L) corresponding to the strong solution A equals

the time needed to solve a system of |T (n,L)| linear equations over K.
But in contrast to the algebraic attacks in [19], [8], [9], [1], we still have

to solve another nontrivial problem, namely, to compute the strong solution
A, which identifies the secret functions f1, . . . , fL, from the unique weak so-

lution. An efficient way to do this will complete our learning algorithm for
RandomSelect (L, n, a) in section 4. Finally, we also provide an experimental
evaluation of our estimates using the computer algebra system Magma [5] in
section 5 and conclude this paper with a discussion of the obtained results as
well as an outlook on potentially fruitful future work in section 6.

2 The Approach

We fix positive integers n, a, L and secret GF (2)-linear functions f1, . . . , fL :
{0, 1}n −→ {0, 1}a. The learner seeks to deduce specifications of f1, . . . , fL from
an oracle which outputs in each round an example (u,w) ∈ {0, 1}n × {0, 1}a in
the following way. The oracle chooses independently and uniformly a random
input u ∈U {0, 1}n, then chooses secretly a random index l ∈U [L]¬, computes
w = fl (u) and outputs (u,w).

It is easy to see that RandomSelect can be efficiently solved in the case
L = 1 by collecting examples

(
u1, w1

)
, . . . , (um, wm) until

{
u1, . . . , um

}
contains

a basis of GF (2)n. The expected number of iterations until the above goal is
reached can be approximated by n+ 1.61 (see, e.g., the appendix in [11]).

We will now treat the case L > 1, which immediately yields a sharp rise in
difficulty. First we need to introduce the notion of a pure basis.

Definition 1. Let us call a set V =
{(
u1, w1

)
, . . . , (un, wn)

}
of n examples a

pure basis, if
{
u1, . . . , un

}
is a basis of GF (2)n and there exists an index l ∈ [L]

such that wi = fl
(
ui
)

is satisfied for all i = 1, . . . , n.

Recalling our preliminary findings, we can easily infer that form ∈ Ln+Ω (1),
a set of m random examples contains such a pure basis with high probability.
Moreover, note that for a given set Ṽ =

{(
ũ1, w̃1

)
, . . . , (ũn, w̃n)

}
the pure basis

property can be tested efficiently. The respective strategy makes use of the fact
that in case of a random example (u,w), where u =

⊕
i∈I ũ

i and I ⊆ [n]­, the

probability p that w =
⊕

i∈I w̃i holds is approximately L−1 if Ṽ is pure and at

most (2 · L)
−1

otherwise. The latter estimate is based on the trivial observation
that if Ṽ is not a pure basis, it contains at least one tuple

(
ũj , w̃j

)
, j ∈ [n], which

would have to be exchanged to make the set pure. As j ∈ I holds true for half
of all possible (but valid) examples, the probability that w =

⊕
i∈I w̃i is fulfilled

although Ṽ is not pure can be bounded from above by (2 · L)
−1

.

However, it seems to be nontrivial to extract a pure basis from a set of
m ∈ Ln+Ω (1) examples. Exhaustive search among all subsets of size n yields

¬For a positive integer N , we denote by [N] the set {1, . . . , N}.
­Let B =

{
v1, . . . , vn

}
denote a basis spanning the vector space V . It is a simple

algebraic fact that every vector v ∈ V has a unique representation I ⊆ [n] over B, i.e.,
v =

⊕
i∈I v

i.

a running time exponential in n. This can be shown easily by applying Stirling’s
formula® to the corresponding binomial coefficient

(
m
n

)
.

We exhibit the following alternative idea for solving RandomSelect (L, n, a)
for L > 1. Let e1, . . . , en denote the standard basis of the GF (2)-vector space
{0, 1}n and keep in mind that {0, 1}n = GF (2)n ⊆ Kn, where K denotes the
field GF (2a). For all i = 1, . . . , n and l = 1, . . . , L let us denote by xli a variable
over K representing fl

(
ei
)
. Analogously, let A denote the (n× L)-matrix with

coefficients in K completely defined by Ai,l = fl
(
ei
)
. Henceforth, we will refer to

A as a strong solution of our learning problem, thereby indicating the fact that
its coefficients fully characterize the underlying secret GF (2)-linear functions
f1, . . . , fL.

Observing an example (u,w), where u =
⊕

i∈I e
i, the only thing we know

is that there is some index l ∈ [L] such that w =
⊕

i∈I Ai,l. This is equivalent
to the statement that A is a solution of the following degree-L equation in the
xli-variables.

(⊕
i∈I

x1i ⊕ w

)
· . . . ·

(⊕
i∈I

xLi ⊕ w

)
= 0. (1)

Note that equation (1) can be rewritten as

⊕
J⊆I,1≤|J|≤L′

L⊕
j=|J|

wL−jtJ,j = wL, (2)

L′ = min {L, |I|}, where the basis polynomials tJ,j are defined as

tJ,j =
⊕

g,|dom(g)|=j,im(g)=J

mg

for all J ⊆ [n], 1 ≤ |J | ≤ L, and all j, |J | ≤ j ≤ L. The corresponding monomials
mg are in turn defined as

mg =
∏

l∈dom(g)

xlg(l)

for all partial mappings g from [L] to [n], where dom (g) denotes the domain of
g and im (g) denotes its image.

Let T (n,L) = {tJ,j | J ⊆ [n] , 1 ≤ |J | ≤ L, |J | ≤ j ≤ L} denote the set of all
basis polynomials tJ,j which may appear as part of equation (2). Moreover, we
define

Φ (a, b) =

b∑
i=0

(
a

i

)
®Stirling’s formula is an approximation for large factorials and commonly written

n! ≈
√

2πn
(
n
e

)n
.

for integers 0 ≤ b ≤ a and write

|T (n,L)| =
L∑
j=1

(
n

j

)
(L− j + 1)

= (L+ 1) (Φ (n,L)− 1)−
L∑
j=1

n

(
n− 1

j − 1

)
= (L+ 1) (Φ (n,L)− 1)− nΦ (n− 1, L− 1) . (3)

Consequently, each set of examples V =
{(
u1, w1

)
, . . . , (um, wm)

}
yields a

system of m degree-L equations in the xli-variables, which can be written as
m K-linear equations in the tJ,j-variables. In particular, the strong solution
A ∈ Kn×L satisfies the relation

M (V) ◦ t (A) = W (V) , (4)

where

– Kn×L denotes the set of all (n× L)-matrices with coefficients from K,

– M (V) is an (m× |T (n,L)|)-matrix built by the m linear equations of type
(2) corresponding to the examples in V,

– W (V) ∈ Km is defined by W (V)i = wLi
¯ for all i = 1, . . . ,m,

– t (A) ∈ KT (n,L) is defined by t (A) = (tJ,j (A))J⊆[n],1≤|J|≤L,|J|≤j≤L.

Note that in section 3, we will treat the special structure of M (V) in further
detail. Independently, it is a basic fact from linear algebra that if M (V) has full
column rank, then the linear system (4) has the unique solution t (A), which we
will call the weak solution.

Our learning algorithm proceeds as follows:

(1) Grow a set of examples V until M (V) has full column rank |T (n,L)|.
(2) Compute the unique solution t (A) of system (4), i.e., the weak solution of our

learning problem, by using an appropriate algorithm which solves systems
of linear equations over K.

(3) Compute the strong solution A from t (A).

We discuss the correctness and running time of steps (1) and (2) in section
3 and an approach for step (3) in section 4.

¯Keep in mind that, unlike for the previously introduced K-variables x1s, . . . , x
L
s ,

s ∈ [n], the superscripted L in case of wL
i is not an index but an exponent. See, e.g.,

equation (2).

3 On Computing a Weak Solution

Let n and L be arbitrarily fixed such that 2 ≤ L ≤ n holds. Moreover, let
V ⊆ {0, 1}n×K denote a given set of examples obtained through linear functions
f1, . . . , fL : {0, 1}n −→ K, where K = GF (2a). By definition, for each tuple
(u,w) ∈ V, where u =

⊕
i∈I e

i and I ⊆ [n] denotes the unique representation
of u over the standard basis e1, . . . , en of {0, 1}n, the relation w = fl′ (u) =⊕

i∈I fl′
(
ei
)

is bound to hold for some l′ ∈ [L]. We denote by Kmin ⊆ K the

subfield of K generated by all values fl
(
ei
)
, where l ∈ [L] and i ∈ [n]. Note that

w ∈ Kmin for all examples (u,w) induced by f1, . . . , fl.
In the following, we show that our learning algorithm is precluded from suc-

ceeding if the secret linear functions f1, . . . , fL happen to be of a certain type
or if K itself lacks in size.

Theorem 1 If
∣∣Kmin

∣∣ < L, then the columns of M (V) are linearly dependent
for any set V of examples, i.e., a unique weak solution does not exist.

Proof: Let n, K, L, and f1, . . . , fL be arbitrarily fixed such that 2 ≤∣∣Kmin
∣∣ < L ≤ n holds and let V denote a corresponding set of examples. Obvi-

ously, for each tuple (u,w) ∈ V, where u =
⊕

i∈I e
i and I ⊆ [n], the two cases

1 ∈ I and 1 /∈ I can be differentiated.
If 1 ∈ I holds, then it follows straightforwardly from equation (2) that the

coefficient with coordinates (u,w) and t{1},(L−1) in M (V) equals wL−(L−1) =
w1. Analogously, the coefficient with coordinates (u,w) and t{1},(L−|Kmin|) in

M (V) equals wL−(L−|Kmin|) = w|K
min|. Note that t{1},(L−|Kmin|) is a valid (and

different) basis polynomial as

|{1}| = 1 ≤
(
L−

∣∣Kmin
∣∣) ≤ (L− 2) < (L− 1) < L

holds for 2 ≤ |Kmin| < L. As Kmin ⊆ K is a finite field of characteristic 2, we
can apply Lagrange’s theorem and straightforwardly conclude that the relation

z1 = z|K
min| holds for all z ∈ Kmin (including 0 ∈ Kmin). Hence, if 1 ∈ I

holds for an example (u,w), then in the corresponding row of M (V) the two
coefficients indexed by t{1},(L−1) and t{1},(L−|Kmin|) are always equal.

If 1 /∈ I holds for an example (u,w), then the coefficient with coordinates
(u,w) and t{1},(L−1) in M (V) as well as the coefficient with coordinates (u,w)
and t{1},(L−|Kmin|) in M (V) equals 0.

Consequently, if
∣∣Kmin

∣∣ < L holds, then the column of M (V) indexed by
t{1},(L−1) equals the column indexed by t{1},(L−|K|) for any set V of examples,
i.e., M (V) can never achieve full column rank. �

Corollary 1 If K is chosen such that |K| < L, then the columns of M (V) are
linearly dependent for any set V of examples, i.e., a unique weak solution does
not exist. �

While we are now aware of a lower bound for the size of K, it yet re-
mains to prove that step (1) of our learning algorithm is, in fact, correct.

This will be achieved by introducing the ((2n |K|)× |T (n,L)|)-matrix M∗ =
M ({0, 1}n ×K), which clearly corresponds to the set of all possible examples,
and showing that M∗ has full column rank |T (n,L)| if L ≤ |K| holds.

However, be careful not to misinterpret this finding, which is presented below
in the form of Theorem 2. The fact that M∗ has full column rank |T (n,L)| by
no means implies that, eventually, this will also hold for M (V) if only the corre-
sponding set of observations V is large enough. In particular, the experimental
results summarized in section 5 (see, e.g., table 1) show that there are cases in
which the rank of M (V) is always smaller than |T (n,L)|, even if L ≤ |K| is
satisfied and V equals the set {(u, fl (u)) | u ∈ {0, 1}n , l ∈ [L]} ⊆ {0, 1}n ×K°

of all possible valid examples.
Still, as a counterpart of Theorem 1, the following theorem proves the pos-

sibility of existence of a unique weak solution for arbitrary parameters n and
L satisfying 2 ≤ L ≤ n. In other words, choosing T (n,L) to be the set of ba-
sis polynomials does not necessarily lead to systems of linear equations which
cannot be solved uniquely.

Theorem 2 Let n and L be arbitrarily fixed such that 2 ≤ L ≤ n holds. If K
satisfies L ≤ |K|, then M∗ has full column rank |T (n,L)|.

Proof: We denote by Z (n) the set of monomials zd00 · . . . · zdnn , where 0 ≤
di ≤ |K| − 1 for i = 0, . . . , n. Obviously, the total number of such monomials

is |Z (n)| = |K|n+1
. Let us recall the aforementioned fact that the relation

z1 = z|K| holds for all z ∈ K (including 0 ∈ K). This straightforwardly implies
that each monomial in the variables z0, . . . , zn is (as a function from Kn+1 to
K) equivalent to a monomial in Z (n). Let µJ,j denote the monomial µJ,j =

zL−j0

∏
r∈J zr for all J ⊆ [n] and j, 0 ≤ j ≤ L. The following lemma can be

easily verified:

Lemma 2.1 For all J ⊆ [n], 1 ≤ |J | ≤ L, and j, |J | ≤ j ≤ L, and examples
(u,w) ∈ {0, 1}n ×K, it holds that µJ,j (w, u) equals the coefficient in M∗ which
has the coordinates (u,w) and tJ,j. �

For i = 1, . . . , |K|, we denote by ki the i-th element of the finite field K.
Moreover, we suppose the convention that 00 = 1 in K. Let (u,w) be an example
defined as above and keep in mind that we are treating the case L ≤ |K|. It
should be observed that the coefficients in the corresponding equation of type
(2) are given by wL−j , where 1 ≤ j ≤ L. Thus, the set of possible exponents
{L− j | 1 ≤ j ≤ L} is bounded from above by (L− 1) < L ≤ |K|. It follows
straightforwardly from Lemma 2.1 that the (distinct) columns of M∗ are columns
of the matrix W ⊗B⊗n, where

W =
(
kji

)
i=1,...,|K|,j=0,...,|K|−1

and B =

[
1 0
1 1

]
.

°It can be seen easily that for random linear functions f1, . . . , fL, the relation
{(u, fl (u)) | u ∈ {0, 1}n , l ∈ [L]} 6= {0, 1}n × K will always hold if L < |K| and is
still very likely to hold if L = |K|.

As W and B are regular, W ⊗ B⊗n is regular, too. This, in turn, implies that
the columns of M∗ are linearly independent, thus proving Theorem 2. �

We will see in section 4 that for |K| ∈ O
(
dnL4

)
, the strong solution can

be reconstructed from the weak solution in time nO(L) with error probability at
most d−1. Furthermore, section 5 will feature an experimental assessment of the
number of random (valid) observations needed until M (V) achieves full column
rank |T (n,L)| for various combinations of n, L, and K (see table 2).

4 On Computing a Strong Solution from the Unique
Weak Solution

Let n, K, L, and f1, . . . , fL be defined as before. Remember that the goal of our
learning algorithm is to compute a strong solution fully characterized by the L
sets

{(
ei, fl

(
ei
))
| i ∈ [n]

}
, l = 1, . . . , L, where ei denotes the i-th element of the

standard basis of GF (2)n and fl
(
ei
)

= xli ∈ K. Obviously, this information can

equivalently be expressed as a matrix A ∈ Kn×L defined by Ai,· =
(
x1i , . . . , x

L
i

)
for all i = 1, . . . , n.

Hence, we have to solve the following problem: Compute the matrix A ∈
Kn×L from the information t (A), where

t (A) = (tJ,j (A))J⊆[n],1≤|J|≤L,|J|≤j≤L

is the unique weak solution determined previously. But before we lay out how
(and under which conditions) a strong solution A can be found, we need to
introduce the following two definitions along with an important theorem linking
them:

Definition 2. Let for all vectors x ∈ KL the signature sgt (x) of x be defined
as sgt (x) = (|x|k)

k∈K , where |x|k denotes the number of components of x which
equal k.

Furthermore, consider the following new family of polynomials:

Definition 3. a) For all L ≥ 1 and j ≥ 0 let the simple symmetric polynomial
sj over the variables x1, . . . , xL be defined by s0 = 1 and

sj =
⊕

S⊆[L],|S|=j

mS ,

where mS =
∏
i∈S xi for all S ⊆ [L]. Moreover, we denote

s (x) = (s0 (x) , s1 (x) , . . . , sL (x))

for all x ∈ KL.

b) Let n, L, 1 ≤ L ≤ n, hold as well as j, 0 ≤ j ≤ L, and J ⊆ [n]. The
symmetric polynomial sJ,j : Kn×L −→ K is defined by

sJ,j (A) = sj

(⊕
i∈J

Ai,·

)

for all matrices A ∈ Kn×L. Moreover, we denote

sJ (A) = (sJ,0 (A) , . . . , sJ,L (A)) .

The concept of signatures introduced in Definition 2 and the family of simple
symmetric polynomials described in Definition 3 will now be connected by the
following theorem:

Theorem 3 For all L ≥ 1 and x, x′ ∈ KL it holds that s (x) = s (x′) if and
only if sgt (x) = sgt (x′).

Proof: See appendix A.

Building on this result, we can then prove the following proposition, which
is of vital importance for computing the strong solution A on the basis of the
corresponding weak solution t (A):

Theorem 4 Let A ∈ Kn×L and t (A) be defined as before. For each subset
I ⊆ [n] of rows of A, the signature of the sum of these rows, i.e., sgt

(⊕
i∈I Ai,·

)
,

can be computed by solely using information derived from t (A), in particular,
without knowing the underlying matrix A itself.

Proof: We first observe that the s-polynomials can be written as linear
combinations of the t-polynomials. Trivially, the relation t{i},j = s{i},j holds for
all i ∈ [n] and j, 1 ≤ j ≤ L. Moreover, for all I ⊆ [n], |I| > 1, it holds that

sI,j =
⊕

Q⊆I,1≤|Q|≤j

 ⊕
g:[L]−→[n],|dom(g)|=j,im(g)=Q

mg

 =
⊕

Q⊆I,1≤|Q|≤j

tQ,j . (5)

Note that for all J ⊆ [n] and j, |J | ≤ j ≤ L, relation (5) implies

tJ,j = sJ,j ⊕
⊕
Q⊂J

tQ,j . (6)

By an inductive argument, we obtain from relation (6) that the converse is
also true, i.e., the t-polynomials can be written as linear combinations of the
s-polynomials.

We have seen so far that given t (A), we are able to compute sI,j for all j,
1 ≤ j ≤ L, and each subset I ⊆ [n] of rows of A. Recall

sI,j (A) = sj

(⊕
i∈I

Ai,·

)
and sI (A) = (sI,0 (A) , . . . , sI,L (A))

from Definition 3 and let x ∈ KL be defined by x =
⊕

i∈I Ai,·. It can be easily
seen that sI (A) = s (x) holds.

In conjunction with Theorem 3, this straightforwardly implies the validity of
Theorem 4. �

Naturally, it remains to assess the degree of usefulness of this information
when it comes to reconstructing the strong solution A ∈ Kn×L. In the following,
we will prove that if K is large enough, then with high probability, A can be
completely (up to column permutations) and efficiently derived from the signa-
tures of all single rows of A and the signatures of all sums of pairs of rows of
A:

Theorem 5 Let K = GF (2a) fulfill |K| ≥ 1
4 ·d·n·L

4, i.e., a ≥ log (n)+log (d)+
4 log (L)− 2. Then, for a random matrix A ∈U Kn×L, the following is true with
a probability of approximately at least

(
1− 1

d

)
: A can be completely reconstructed

from the signatures sgt (Ai,·), 1 ≤ i ≤ n, and sgt (Ai,· ⊕Aj,·), 1 ≤ i < j ≤ n.

Proof: See appendix A.

As we have seen now that, under certain conditions, it is possible to fully
reconstruct the strong solution A by solely resorting to information obtained
from the weak solution t (A), we can proceed to actually describe a conceivable
approach for step (3) of the learning algorithm:

We choose a constant error parameter d and an exponent a, i.e., K =
GF (2a), in such a way that Theorem 5 can be applied. Note that L ≤ n and
|K| ∈ nO(1). In a pre-computation, we generate two databases DB1 and DB2 of
size nO(L). While DB1 acts as a lookup table with regard to the one-to-one rela-
tion between s (x) and sgt (x) for all x ∈ KL, we use DB2 to store all triples of
signatures S, S′, S̃ for which there is exactly one solution pair x, y ∈ KL fulfilling
sgt (x) = S and sgt (y) = S′ as well as sgt (x⊕ y) = S̃.

Given t (A), i.e., the previously determined weak solution, we then compute
sgt (Ai,·) for all i, 1 ≤ i ≤ n, and sgt (Ai,· ⊕Aj,·) for all i, j, 1 ≤ i < j ≤ n, in
time nO(1) by using DB1 and relation (5), which can be found in the proof of
Theorem 4. According to Theorem 5, it is now possible to reconstruct A by the
help of database DB2 with probability at least 1− 1

d .

5 Experimental Results

To showcase the detailed workings of our learning algorithm as well as to evaluate
its efficiency at a practical level, we created a complete implementation using
the computer algebra system Magma. In case of success, it takes approximately
90 seconds on standard PC hardware (Intel i7, 2.66 GHz, with 6 GB RAM) to
compute the unique strong solution on the basis of a set of 10,000 randomly
generated examples for n = 10, a = 3 (i.e., K = GF (2a)), and L = 5. Relating
to this, we performed various simulations in order to assess the corresponding

Parameters Performed Iterations

Rank of M (V) < |T (n,L)| Rank of M (V) = |T (n,L)| Total

n K L Number Ratio Number Ratio Number

4 GF
(
22
)

2 37 0.37 % 9,963 99.63 % 10,000
4 GF

(
22
)

3 823 8.23 % 9,177 91.77 % 10,000
4 GF

(
22
)

4 7,588 75.88 % 2,412 24.12 % 10,000
5 GF

(
22
)

4 4,556 45.56 % 5,444 54.44 % 10,000
5 GF

(
22
)

5 10,000 100.00 % 0 0.00 % 10,000
6 GF

(
23
)

4 0 0.00 % 1,000 100.00 % 1,000
8 GF

(
23
)

4 0 0.00 % 1,000 100.00 % 1,000
8 GF

(
23
)

6 0 0.00 % 100 100.00 % 100
8 GF

(
23
)

7 0 0.00 % 100 100.00 % 100
8 GF

(
23
)

8 0 0.00 % 100 100.00 % 100
9 GF

(
23
)

8 0 0.00 % 10 100.00 % 10
9 GF

(
23
)

9 10 100.00 % 0 0.00 % 10

Table 1. An estimate of the rank of M (V) on the basis of all possible valid observations
for up to 10,000 randomly generated instances of RandomSelect (L, n, a). For each
choice of parameters, |T (n,L)| denotes number of columns of M (V) as defined in
section 2 and listed in table 2.

probabilities, which were already discussed in sections 3 and 4 from a theoretical
point of view.

The experimental results summarized in table 1 clearly suggest that if |K|
is only slightly larger than the number L of secret linear functions, then in all
likelihood, M (V) will eventually reach full (column) rank |T (n,L)|, thus allowing
for the computation of a unique weak solution. Moreover, in accordance with
Corollary 1, the columns of M (V) were always linearly dependent in the case
of n = 5, K = GF

(
22
)

and L = 5, i.e., |K| = 4 < 5 = L. A further analysis
of the underlying data revealed in addition that, for arbitrary combinations
of n, K, and L, the matrix M (V) never reached full column rank if at least
two of the corresponding L random linear functions f1, . . . , fL were identical
during an iteration of our experiments. Note that, on the basis of the current
implementation, it was not possible to continue table 1 for larger parameter sizes
because, e.g., in the case of n = 8, K = GF

(
23
)

and L = 7, performing as few
as 100 iterations already took more than 85 minutes on the previously described
computer system.

Table 2 features additional statistical data with respect to the number of
examples needed (in case of success) until the matrix M (V) reaches full col-
umn rank |T (n,L)|. Please note that, in contrast to the experiments underlying
table 1, such examples (u, fl (u)) are generated iteratively and independently
choosing random pairs u ∈U {0, 1}n and l ∈U [L], i.e., they are not processed
in their canonical order but observed randomly (and also repeatedly) to sim-
ulate a practical passive attack. While we have seen previously that for most
choices of n, K and L, the matrix M (V) is highly likely to eventually reach
full column rank, the experimental results summarized in table 2, most no-

Parameters Number of Random Examples until Rank (M (V)) = |T (n,L)|

n K L |T (n,L)| Avg. Max. Min. Q0.1 Q0.25 Q0.5 Q0.75 Q0.9

4 GF
(
22
)

1 4 5.5 18 4 4 4 5 6 8
4 GF

(
22
)

2 14 24.4 93 14 18 20 23 27 32
4 GF

(
22
)

3 28 71.8 273 33 51 58 67 81 99
4 GF

(
22
)

4 43 226.2 701 95 147 175 211 261 317
5 GF

(
22
)

4 75 218.5 591 140 176 192 211 237 263
6 GF

(
23
)

4 124 201.6 318 162 184 192 200 211 220
8 GF

(
23
)

4 298 378.7 419 345 365 371 378 386 393
8 GF

(
23
)

6 762 1401.6 1565 1302 1342 1364 1405 1427 1458
8 GF

(
23
)

7 1016 2489.7 2731 2275 2369 2417 2477 2547 2645
8 GF

(
23
)

8 1271 5255.3 7565 4302 4706 4931 5227 5557 5706
9 GF

(
23
)

8 2295 6266.1 6553 6027 6078 6136 6199 6415 6504

Table 2. An estimate of the number of randomly generated examples (u, fl (u)) which
have to be processed (in case of success) until the matrix M (V) reaches full column
rank |T (n,L)|. Given a probability p, we denote by Qp the p-quantile of the respective
sample.

tably the observed p-quantiles, strongly suggest that our learning algorithm for
RandomSelect (L, n, a) will also be able to efficiently construct a corresponding
LES which allows for computing a unique weak solution.

Parameters Performed Iterations
(
i.e., randomly chosen A ∈U Kn×L

)
A not sgt (2)-identifiable A was sgt (2)-identifiable Total

n K L Number Ratio Number Ratio Number

4 GF
(
22
)

2 0 0.00 % 10,000 100.00 % 10,000
4 GF

(
22
)

3 69 0.69 % 9,931 99.31 % 10,000
4 GF

(
22
)

4 343 3.43 % 9,657 96.57 % 10,000
6 GF

(
23
)

4 0 0.00 % 10,000 100.00 % 10,000
8 GF

(
23
)

4 0 0.00 % 10,000 100.00 % 10,000
8 GF

(
23
)

6 0 0.00 % 1,000 100.00 % 1,000
8 GF

(
23
)

7 0 0.00 % 1,000 100.00 % 1,000
8 GF

(
23
)

8 0 0.00 % 100 100.00 % 100
9 GF

(
23
)

8 0 0.00 % 100 100.00 % 100

Table 3. An estimate of the ratio of sgt (2)-identifiable (n× L)-matrices over K.

It remains to clear up the question, to what extent Theorem 5 reflects reality
concerning the probability of a random (n× L)-matrix over K being sgt (2)-
identifiable (see Definitions 5.1 and 5.2 in the proof of Theorem 5), which is
necessary and sufficient for the success of step (3) of our learning algorithm. Our
corresponding simulations yielded table 3, which immediately suggests that even
for much smaller values of |K| than those called for in Theorem 5, a strong solu-
tion A ∈U Kn×L can be completely reconstructed from the signatures sgt (Ai,·),

1 ≤ i ≤ n, and sgt (Ai,· ⊕Aj,·), 1 ≤ i < j ≤ n. In conjunction with the ex-
perimental results concerning the rank of M (V), this, in turn, implies that our
learning algorithm will efficiently lead to success in the vast majority of cases.

6 Discussion

The running time of our learning algorithm for RandomSelect (L, n, a) is dom-
inated by the complexity of solving a system of linear equations with |T (n,L)|
unknowns. Our hardness conjecture is that this complexity also constitutes a
lower bound to the complexity of RandomSelect (L, n, a) itself, which would im-
ply acceptable cryptographic security for parameter choices like n = 128 and
L = 8 or n = 256 and L = 6. The experimental results summarized in the previ-
ous section clearly support this view. Consequently, employing the principle of
random selection to design new symmetric lightweight authentication protocols
might result in feasible alternatives to current HB-based cryptographic schemes.

A problem of independent interest is to determine the complexity of recon-
structing an sgt (r)-identifiable matrix A from the signatures of all sums of at
most r rows of A. Note that this problem is wedded to determining the complex-
ity of RandomSelect (L, n, a) with respect to an active learner, who is able to
receive examples (u,w) for inputs u of his choice, where w = fl (u) and l ∈U [L] is
randomly chosen by the oracle. It is easy to see that such learners can efficiently
compute sgt (f1 (u) , . . . , fL (u)) by repeatedly asking for u. As the approach for
reconstructing A which was outlined in section 4 needs a data structure of size
exponential in L, it would be interesting to know if there are corresponding
algorithms of time and space costs polynomial in L.

From a theoretical point of view, another open problem is to determine the
probability that a random (n× L)-matrix over K is sgt (r)-identifiable for some
r, 2 ≤ r ≤ L. Based on the results of our computer experiments, it appears more
than likely that the lower bound derived in Theorem 5 is far from being in line
with reality and that identifiable matrices occur with much higher probability
for fields K of significantly smaller size.

References

1. F. Armknecht and M. Krause. Algebraic attacks on combiners with memory. In
Proceedings of Crypto 2003, volume 2729 of LNCS, pages 162–176. Springer, 2003.

2. S. Arora and R. Ge. New algorithms for learning in presence of errors. Submitted,
2010. http://www.cs.princeton.edu/~rongge/LPSN.pdf.

3. E.-O. Blass, A. Kurmus, R. Molva, G. Noubir, and A. Shikfa. The Ff -family
of protocols for RFID-privacy and authentication. In 5th Workshop on RFID
Security, RFIDSec’09, 2009.

4. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. H. Vikkelsoe. PRESENT: An ultra-lightweight block
cipher. In Proceedings of Cryptographic Hardware and Embedded Systems (CHES)
2007, volume 4727 of LNCS, pages 450–466. Springer, 2007.

5. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997.

6. J. Bringer and H. Chabanne. Trusted-HB: A low cost version of HB+ secure against
a man-in-the-middle attack. IEEE Trans. Inform. Theor., 54:4339–4342, 2008.

7. J. Cichoń, M. Klonowski, and M. Kuty lowski. Privacy protection for RFID with
hidden subset identifiers. In Proceedings of Pervasive 2008, volume 5013 of LNCS,
pages 298–314. Springer, 2008.

8. N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback. In
Proceedings of Crypto 2003, volume 2729 of LNCS, pages 176–194. Springer, 2003.

9. N. Courtois and W. Meier. Algebraic attacks on stream ciphers with linear feed-
back. In Proceedings of Eurocrypt 2003, volume 2656 of LNCS, pages 345–359.
Springer, 2003.

10. C. De Cannière, O. Dunkelman, and M. Knežević. KATAN and KTANTAN – A
family of small and efficient hardware-oriented block ciphers. In Proceedings of the
11th International Workshop on Cryptographic Hardware and Embedded Systems
(CHES) 2009, volume 5747 of LNCS, pages 272–288. Springer, 2009.

11. Z. Go lebiéwski, K. Majcher, and F. Zagórski. Attacks on CKK family of RFID
authentication protocols. In Proceedings Adhoc-now 2008, volume 5198 of LNCS,
pages 241–250. Springer, 2008.

12. D. Frumkin and A. Shamir. Untrusted-HB: Security vulnerabilities of Trusted-HB.
Cryptology ePrint Archive, Report 2009/044, 2009. http://eprint.iacr.org.

13. H. Gilbert, M. J. B. Robshaw, and Y. Seurin. HB#: Increasing the security and
efficiency of HB+. In Proceedings of Eurocrypt 2008, volume 4965 of LNCS, pages
361–378, 2008.

14. H. Gilbert, M. J. B. Robshaw, and H. Sibert. Active attack against HB+: A
provable secure lightweight authentication protocol. Electronic Letters, 41:1169–
1170, 2005.

15. O. Goldreich and L. A. Levin. A hard-core predicate for all one-way functions. In
Proceedings of the twenty-first annual ACM symposium on Theory of computing
(STOC), pages 25–32. ACM Press, 1989.

16. N. J. Hopper and M. Blum. Secure human identification protocols. In Proceedings
of Asiacrypt 2001, volume 2248 of LNCS, pages 52–66. Springer, 2001.

17. A. Juels and S. A. Weis. Authenticating pervasive devices with human protocols.
In Proceedings of Crypto 2005, volume 3621 of LNCS, pages 293–308. Springer,
2005.

18. M. Krause and D. Stegemann. More on the security of linear RFID authentication
protocols. In Proceedings of SAC 2009, volume 5867 of LNCS, pages 182–196.
Springer, 2009.

19. W. Meier, E. Pasalic, and C. Carlet. Algebraic attacks and decomposition of
boolean functions. In Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages
474–491. Springer, 2004.

20. K. Ouafi, R. Overbeck, and S. Vaudenay. On the security of HB# against a man-
in-the-middle attack. In Proceedings of Asiacrypt 2008, volume 5350 of LNCS,
pages 108–124. Springer, 2008.

21. O. Regev. On lattices, learning with errors, random linear codes, and cryptogra-
phy. In Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing (STOC), pages 84–93. ACM Press, 2005.

22. A. Shamir, J. Patarin, N. Courtois, and A. Klimov. Efficient algorithms for solv-
ing overdefined systems of multivariate polynomial equations. In Proceedings of
Eurocrypt 2000, volume 1807 of LNCS, pages 474–491. Springer, 2000.

A The Proofs of Theorems 3 and 5

A.1 The Proof of Theorem 3

Theorem 3 For all L ≥ 1 and x, x′ ∈ KL it holds that s (x) = s (x′) if and
only if sgt (x) = sgt (x′).

Proof: The if -direction of Theorem 3 follows directly from the definitions of
sgt (x) and s (x).

We will prove the only-if -direction of Theorem 3 by induction on L. The
case L = 1 is obvious. Let us fix an arbitrary L > 1 and let us suppose that
the following is true for all L′ < L and all x, x′ ∈ KL′ : if s (x) = s (x′) then
sgt (x) = sgt (x′).

Lemma 3.1 For all x ∈ KL−1, k ∈ K and j, 1 ≤ j ≤ L, the following is true:
sj (x, k) = sj (x)⊕ k · sj−1 (x). �

Henceforth, for all k ∈ K, r ≥ 1 and x ∈ Kr, we write k ∈ x if some
component of x equals k.

Lemma 3.2 For all y, y′ ∈ KL, the following is true: if s (y) = s (y′) and there
is some k ∈ K with k ∈ y and k ∈ y′, then sgt (y) = sgt (y′).

Proof of Lemma 3.2: Suppose, w.l.o.g., that y = (x, k) and y′ = (x′, k),
where x, x′ ∈ KL−1. It suffices to prove that s (x) = s (x′) as this implies by
induction hypothesis that sgt (x) = sgt (x′) and, consequently, sgt (y) = sgt (y′).
We prove s (x) = s (x′) by showing via induction on j that sj (x) = sj (x′) holds
for all j, 0 ≤ j ≤ L. The case j = 0 follows straightforwardly from Definition
3. Let us fix some j > 0 and suppose that sr (x) = sr (x′) holds for all non-
negative integers r < j. As sj (y) = sj (y′) is satisfied, it follows from Lemma
3.1, in conjunction with the induction hypothesis, that

sj (x) + k · sj−1 (x) = sj (x′) + k · sj−1 (x′) = sj (x′) + k · sj−1 (x)

and, consequently, sj (x) = sj (x′) holds. �

Lemma 3.3 For all y, y′ ∈ KL, the following is true: if s (y) = s (y′) and 0 ∈ y,
then sgt (y) = sgt (y′).

Proof of Lemma 3.3: Trivially, s (y) = s (y′) implies that sL (y) = sL (y′).
As 0 ∈ y, it follows directly from Definition 3 that sL (y) = 0, which, in turn,
implies that sL (y′) = 0 and, consequently, 0 ∈ y′. The proof now follows from
Lemma 3.2. �

Finally, we have to consider the last remaining case of y, y′ ∈ KL given by

– s (y) = s (y′),
– 0 /∈ y and 0 /∈ y′,

– Y ∩ Y ′ = ∅,

where Y (Y ′) denotes the set of components of y (y′).

In order to proceed, we need the following technical definition, accompanied
by two technical lemmas:

Definition 3.1 For all r ≥ 1 and x ∈ Kr, we denote

S (x) =

r⊕
j=0

sj (x) .

Lemma 3.4 For all r ≥ 1 and x ∈ Kr, the following is true: S (x) = 0 if and
only if 1 ∈ x.

Proof of Lemma 3.4: We prove the lemma by induction on r. The case
r = 1 can be easily verified. Let us fix some r > 1 and suppose that for all q,
1 ≤ q ≤ (r − 1), and all z ∈ Kq, the following is true: S (z) = 0 if and only if
1 ∈ z. Furthermore, let us fix some x ∈ Kr satisfying S (x) = 0 and suppose
that x = (z, k) for z ∈ Kr−1 and k ∈ K. In conjunction with Lemma 3.1, this
yields the following equation:

0 = S (x) = 1⊕
r⊕
j=1

sj (x) = 1⊕
r⊕
j=1

(sj (z)⊕ k · sj−1 (z))

= 1⊕
r−1⊕
j=1

sj (z)⊕ k ·
r⊕
j=1

sj−1 (z)

=

r−1⊕
j=0

sj (z)⊕ k ·
r−1⊕
j=0

sj (z)

= (1⊕ k) · S (z)

Consequently, either k = 1 or, by induction hypothesis, 1 ∈ z. �

Lemma 3.5 For all r ≥ 1 and x, x′ ∈ Kr, the following is true: if s (x) = s (x′),
then s (k · x) = s (k · x′).

Proof of Lemma 3.5: This follows straightforwardly from the simple fact
that sj (k · x) = kj · sj (x) holds for all j, 0 ≤ j ≤ r. �

The finding given below will complete the proof of Theorem 3:

Lemma 3.6 For all y, y′ ∈ KL, the following is true: if 0 /∈ y as well as 0 /∈ y′
and the sets of components of y and y′ are disjoint, then s (y) 6= s (y′).

Proof of Lemma 3.6: Due to Lemma 3.5, we can, w.l.o.g., suppose that
yL = 1. Let us denote d = y′L, y = (x, 1), y′ = (x′, d) and keep in mind that
d /∈ {0, 1}. We will prove this lemma by contradiction. Hence, let us assume that
s (y) = s (y′) holds.

By applying Lemma 3.1 to the assumption, we can deduce that

sj (x)⊕ 1 · sj−1 (x) = sj (x′)⊕ d · sj−1 (x′)

holds for all j = 1, . . . , L. This implies

s1 (x)⊕ 1 = s1 (x′)⊕ d
⇔ s1 (x′) = s1 (x)⊕ d⊕ 1.

Analogously, we obtain

s2 (x)⊕ s1 (x) = s2 (x′)⊕ d · s1 (x′) ,

i.e.,

s2 (x′) = s2 (x)⊕ s1 (x)⊕ d (s1 (x)⊕ d⊕ 1)

= s2 (x)⊕ (d⊕ 1) s1 (x)⊕ d (d⊕ 1) .

Iterating this, one can easily show that

sj (x′) = sj (x)⊕
j⊕
r=1

(
dr−1 (d⊕ 1) sj−r (x)

)
(7)

holds for all j, 1 ≤ j ≤ (L− 1). In conjunction with the fact that

1 · sL−1 (x) = sL (y) = sL (y′) = d · sL−1 (x′)

in the case of j = L, relation (7) implies

d−1sL−1 (x) = sL−1 (x)⊕
L−1⊕
r=1

(
dr−1 (d⊕ 1) sL−1−r (x)

)
⇔ 0 = d−1 (1⊕ d) sL−1 (x)⊕

L−1⊕
r=1

(
dr−1 (d⊕ 1) sL−1−r (x)

)
⇔ 0 =

L−1⊕
r=0

(
dr−1 (d⊕ 1) sL−1−r (x)

)
.

Multiplying this by
(
d−(L−2) (d⊕ 1)

−1
)

, where d /∈ {0, 1}, yields

0 =

L−1⊕
r=0

(
d−((1−r)+(L−2))sL−1−r (x)

)
⇔ 0 =

L−1⊕
r=0

(
d−((L−1)−r)s(L−1)−r (x)

)
⇔ 0 =

L−1⊕
j=0

(
d−jsj (x)

)
⇔ 0 = S

(
d−1 · x

)
.

In conjunction with Lemma 3.4, this implies that 1 ∈
(
d−1 · x

)
, which, in

turn, means that d ∈ x. Consequently, d ∈ y and also d ∈ y′, which violates
the condition that the sets of components of y and y′ are disjoint. Hence, the
assumption s (y) = s (y′) must be false. �

To conclude, Theorem 3 now follows straightforwardly from Lemma 3.2,
Lemma 3.3 and Lemma 3.6. �

A.2 The Proof of Theorem 5

Theorem 5 Let K = GF (2a) fulfill |K| ≥ 1
4 ·d·n·L

4, i.e., a ≥ log (n)+log (d)+
4 log (L)− 2. Then, for a random matrix A ∈U Kn×L, the following is true with
a probability of approximately at least

(
1− 1

d

)
: A can be completely reconstructed

from the signatures sgt (Ai,·), 1 ≤ i ≤ n, and sgt (Ai,· ⊕Aj,·), 1 ≤ i < j ≤ n.

Proof: In order to prove the theorem, we first need the following definition:

Definition 5.1 a) Two matrices A,B ∈ Kn×L are called column-equivalent if
A can be obtained from B by permuting the columns.

b) Two matrices A,B ∈ Kn×L are called sgt (r)-equivalent if

sgt

(⊕
i∈I

Ai,·

)
= sgt

(⊕
i∈I

Bi,·

)

holds for all I ⊆ [n], 1 ≤ |I| ≤ r.

Clearly, if the matrices A and B are column-equivalent, then they are also
sgt (r)-equivalent for all r, 1 ≤ r ≤ L. The converse is not necessarily true as

can be seen from the following example, where A,B ∈ GF (8)
2×3

:

A =

[
1 + z 1 + z2 0
z2 1 z

]
and B =

[
1 + z 1 + z2 0

1 z z2

]
.

This crucial observation leads to the following definition:

Definition 5.2 A matrix A ∈ Kn×L is called sgt (r)-identifiable if sgt (r)-
equivalence to A implies column-equivalence to A.

We show Theorem 5 by proving a lower bound on the probability of a random
matrix A ∈U Kn×L being sgt (2)-identifiable. In order to do so, we will now
introduce a sufficient condition for the sgt (2)-identifiability of an (n× L)-matrix
over K and further show that with high probability, it is fulfilled if |K| is large
enough.

Definition 5.3 a) For all L ≥ 1 and vectors x ∈ KL, we denote by {x} the
set of all k ∈ K occurring in x, i.e., {x} = {k ∈ K | |x|k > 0}.

b) For all subsets M ⊆ K, we denote by ∆ (M) the set of differences generated
by M , i.e., ∆ (M) = {k ⊕ k′ | k 6= k′ ∈M}.

c) Two subsets M,M ′ ⊆ K are called diff.disjoint if ∆ (M) ∩∆ (M ′) = ∅.
d) A matrix A ∈ Kn×L is called strongly diff.disjoint if there is some i ∈

[n] such that |{Ai,·}| = L and, for all j ∈ [n] \ {i}, {Ai,·} and {Aj,·} are
diff.disjoint.

In addition, we need the following technical lemma:

Lemma 5.1 Let M,M ′ ⊆ K be two given subsets which are diff.disjoint. For
all m1,m2 ∈M and m′1,m

′
2 ∈M ′, the following is true: if m1 ⊕m′1 = m2 ⊕m′2

then m1 = m2 and m′1 = m′2.

Proof of Lemma 5.1: Trivially, m1⊕m′1 = m2⊕m′2 can be transformed into
m1 ⊕m2 = m′1 ⊕m′2. The latter relation would obviously violate the condition
of M and M ′ being diff.disjoint if m1 6= m2 (and thus m′1 6= m′2) held. �

The following lemma states a sufficient condition for the sgt (2)-identifiability
of an (n× L)-matrix over K:

Lemma 5.2 If a matrix A ∈ Kn×L is strongly diff.disjoint, then A is also
sgt (2)-identifiable.

Proof of Lemma 5.2: Let us consider a strongly diff.disjoint matrix A ∈
Kn×L and suppose that, w.l.o.g., |{A1,·}| = L holds (i.e., the first row of A
contains the maximum number L of different elements). Furthermore, let us fix
some matrix B ∈ Kn×L which is sgt (2)-equivalent to A. In order to prove the
lemma, we have to show that A and B are column-equivalent.

As A and B are sgt (2)-equivalent, we know that sgt (A1,·) = sgt (B1,·) holds,
implying the existence of some column-permutation ρ ∈ SL such that A1,· =
ρ (B1,·). Now let us fix some arbitrary j, 1 < j ≤ n. From sgt (Aj,·), we learn
which elements occur in row Bj,· and from sgt (A1,· ⊕Aj,·), we learn which
elements occur in B1,· ⊕ Bj,·. As {B1,·} and {Bj,·} are diff.disjoint, Lemma
5.1 implies that for each element occurring in B1,· ⊕ Bj,·, there is exactly one
possibility of writing it as the sum of an element from B1,· and an element
from Bj,·. Moreover, these two elements have to be in the same column of B.

Due to this and the fact that all components of B1,· are different, the positions
of all elements occurring in Bj,· are uniquely determined. In particular, the
aforementioned column-permutation ρ not only satisfies A1,· = ρ (B1,·) but also
Aj,· = ρ (Bj,·) for all 1 < j ≤ n. Clearly, this proves the column-equivalence of
A and B, thus implying the correctness of the lemma. �

Consequently, Theorem 5 can be shown by proving an appropriate lower
bound on the probability of a random matrix A ∈U Kn×L being strongly
diff.disjoint. Our argument will be based on the following lemma:

Lemma 5.3 Given a subset M ⊆ K such that |M | = L holds and a sequence
x = (x1, . . . , xL) chosen randomly from KL with respect to the uniform distri-
bution, the lower bound on the probability of {x} being diff.disjoint from M can

be approximated by 1− L4

4|K| .

Proof of Lemma 5.3: In the course of this proof, we will make use of the

approximation
∏q−1
i=1

(
1− i

p

)
≈ e−

q2

2p , commonly found in the context of the

well-known birthday paradox, as well as the approximations e−
1
x ≈

(
1− 1

x

)
and(

1− 1
x

)x ≈ e−1. In order to obtain a sequence x ∈ KL whose set of components
is diff.disjoint from M , for all i, 1 < i ≤ L, the element xi needs to be chosen in
such a way that

∆ (M) ∩ {xi ⊕ x1, . . . , xi ⊕ xi−1} = ∅.

The probability of this being fulfilled for a randomly (i.e., independently and

uniformly) chosen xi can be bounded from below by |K|−(i−1)·|∆(M)|
|K| . Hence, in

case of a random sequence x ∈ KL, the probability of {x} being diff.disjoint
from M is at least

(|K| − |∆ (M)|) · (|K| − 2 |∆ (M)|) · . . . · (|K| − (L− 1) |∆ (M)|)
|K|L−1

=

(
1− 1

|K| / |∆ (M)|

)
·
(

1− 2

|K| / |∆ (M)|

)
· . . . ·

(
1− L− 1

|K| / |∆ (M)|

)
=

L−1∏
i=1

(
1− i

|K| / |∆ (M)|

)
.

By applying the above-mentioned approximations, we obtain that the lower
bound on the probability of {x} being diff.disjoint from M is around

e−
L2

2(|K|/|∆(M)|) ≈ 1− L2

2 (|K| / |∆ (M)|)
= 1− L2 · |∆ (M)|

2 |K|
.

As |∆ (M)| ≤
(
L
2

)
, an even coarser approximation can be given by

1−
L2 ·

(
L
2

)
2 |K|

= 1−
L2 · L·(L−1)2

2 |K|
> 1− L4

4 |K|
,

which proves the lemma. �

Now let A ∈U Kn×L be a random (n× L)-matrix over K. Similarly to the
argument in the previous proof, we can learn that with probability around 1 −
L2

2|K| , the first row of A contains L different coefficients. In this particular case,

it follows straightforwardly from Lemma 5.3 that for all j, 2 ≤ j ≤ n, the
lower bound on the probability of {A1,·} and {Aj,·} being diff.disjoint can be

approximated by 1− L4

4|K| .

Consequently, if K satisfies

L2

2 |K|
≤ L4

4 |K|
≤ 1

dn
, (8)

then due to the implication(
1− 1

dn

)n
≤
(

1− L2

2 |K|

)
·
(

1− L4

4 |K|

)n−1
,

in conjunction with Lemmata 5.2 and 5.3, the probability that A is sgt (2)-
identifiable can be bounded from below by approximately(

1− 1

dn

)n
≈ e− 1

d ≈ 1− 1

d
.

Observing that relation (8) holds if

|K| ≥ 1

4
· (dn) · L4,

i.e.,

a ≥ log (n) + log (d) + 4 log (L)− 2,

completes the proof of Theorem 5. �

B On attacking the (n, k, L)+-protocol by solving
RandomSelect (L, n, a)

The following outline of an attack on the (n, k, L)+-protocol by Krause and
Stegemann [18] is meant to exemplify the immediate connection between the
previously introduced learning problem RandomSelect (L, n, a) and the security
of this whole new class of lightweight authentication protocols. Similar to the
basic communication mode described in the introduction, the (n, k, L)+-protocol
is based on L n-dimensional, injective linear functions F1, . . . , FL : GF (2)n −→
GF (2)n+k (i.e., the secret key) and works as follows.

Each instance is initiated by the verifier Alice, who chooses a random vector
a ∈U GF (2)n/2 and sends it to Bob, who then randomly (i.e., independently and

uniformly) chooses l ∈U [L] along with an additional value b ∈U GF (2)n/2, in or-

der to compute his response w = Fl (a, b). Finally, Alice accepts w ∈ GF (2)
n+k

if there is some l ∈ [L] with w ∈ Vl and the prefix of length n/2 of F−1l (w)

equals a, where Vl denotes the n-dimensional linear subspace of GF (2)
n+k

cor-
responding to the image of Fl.

This leads straightforwardly to a problem called Learning Unions of L Lin-
ear Subspaces (LULS), where an oracle holds the specifications of L secret n-
dimensional linear subspaces V1, . . . , VL of GF (2)n+k, from which it randomly
chooses examples v ∈U Vl for l ∈U [L] and sends them to the learner. Knowing
only n and k, he seeks to deduce the specifications of V1, . . . , VL from a suffi-
ciently large set {w1, . . . , ws} ⊆

⋃L
l=1 Vl of such observations. It is easy to see

that this corresponds to a passive key recovery attack against (n, k, L)-type pro-
tocols. Note that there is a number of exhaustive search strategies to solve this
problem, e.g., the generic exponential time algorithm called search-for-a-basis
heuristic, which was presented in the appendix of [18].

It should be noted that an attacker who is able to solve the LULS prob-
lem needs to perform additional steps to fully break the (n, k, L)

+
-protocol as

impersonating the prover requires to send responses w ∈ GF (2)n+k which not

only fulfill w ∈
⋃L
l=1 Vl but also depend on some random nonce a ∈ GF (2)n/2

provided by the verifier. However, having successfully obtained the specifications
of the secret subspaces V1, . . . , VL allows in turn for generating a specification of
the image of Fl (a, ·) for each l ∈ [L] by repeatedly sending an arbitrary but fixed
(i.e., selected by the attacker) a ∈ GF (2)n/2 to the prover. Remember that, al-
though the prover chooses a random l ∈U [L] each time he computes a response
w based on some fixed a, an attacker who has determined V1, . . . , VL will know
which subspace the vector w actually belongs to. Krause and Stegemann pointed
out that this strategy allows for efficiently constructing specifications of linear
functions G1, . . . , GL : GF (2)n −→ GF (2)n+k and bijective linear functions
g1, . . . , gL : GF (2)n/2 −→ GF (2)n/2 such that

Fl (a, b) = Gl (a, gl (b))

for all l ∈ [L] and a, b ∈ GF (2)n/2 [18]. Hence, the efficiently obtained specifi-
cations of the functions ((G1, . . . , GL) , (g1, . . . , gL)) are equivalent to the actual
secret key (F1, . . . , FL). However, keep in mind that the running time of this
attack is dominated by the effort needed to solve the LULS problem first and
that RandomSelect (L, n, a) in fact refers to a special case of the LULS problem,
which assumes that the secret subspaces have the form

Vl = {(v, fl (v)) | v ∈ GF (2)n} ⊆ GF (2)n+k

for all l ∈ [L] and secret GF (2)-linear functions f1, . . . , fL : GF (2)n −→ GF (2)k.
This is true with probability p (n) ≈ 0.2887 as, given an arbitrary ((n+ k)× n)-
matrix A over GF (2), the general case V = {A ◦ v | v ∈ GF (2)n} can be written
in the special form iff the first n rows of A are linearly independent (see, e.g.,
[11]).

In order to solve this special problem efficiently, we suggest the following
approach, which makes use of our learning algorithm for RandomSelect (L, n, a)
and works by

– determining an appropriate number a ∈ O (log (n)) which, w.l.o.g., divides
k (i.e., k = γ · a for some γ ∈ N),

– identifying vectors w ∈ {0, 1}k with vectors w = (w1, . . . , wγ) ∈ GF (2a)
γ

and functions f : {0, 1}n −→ {0, 1}k with γ-tuples
(
f1, . . . , fγ

)
of compo-

nent functions f1, . . . , fγ : {0, 1}n −→ GF (2a) based on the following rule:
f i (u) = wi for all i = 1, . . . , γ if and only if f (u) = (w1, . . . , wγ),

– learning f1, . . . , fL : {0, 1}n −→ {0, 1}k by learning each of the corresponding
sets of component functions f i1, . . . , f

i
L : {0, 1}n −→ GF (2a) in time nO(L)

for i = 1, . . . , γ.

Clearly, for efficiency reasons, a should be as small as possible. However,
in section 4 we show that a needs to exceed a certain threshold, which can be
bounded from above by O (log (n)), to enable our learning algorithm to find a
unique solution with high probability.

Please note that, throughout this paper, a is assumed to be fixed as we
develop a learning algorithm for sets of secret GF (2)-linear functions f1, . . . , fL :
{0, 1}n −→ K, where K = GF (2a). In particular, for the sake of simplicity,
we write f1, . . . , fL while actually referring to a set of component functions as
explained above.

