
A Dichotomy for Local Small-Bias Generators

Benny Applebaum∗ Andrej Bogdanov† Alon Rosen‡

September 17, 2011

Abstract

We consider pseudorandom generators in which each output bit depends on a constant
number of input bits. Such generators have appealingly simple structure: they can be described
by a sparse input-output dependency graph and a small predicate that is applied at each output.
Following the works of Cryan and Miltersen (MFCS’01) and by Mossel et al (STOC’03), we focus
on the study of “small-bias” generators (that fool linear distinguishers).

We prove that for most graphs, all but a handful of “degenerate” predicates yield small-
bias generators, f : {0, 1}n → {0, 1}m, with output length m = n1+ε for some constant ε > 0.
Conversely, we show that for most graphs, “degenerate” predicates are not secure against linear
distinguishers. Taken together, these results expose a dichotomy: every predicate is either very
hard or very easy, in the sense that it either yields a small-bias generator for almost all graphs
or fails to do so for almost all graphs.

As a secondary contribution, we attempt to support the view that small-bias is a good
measure of pseudorandomness for local functions with large stretch. We do so by demonstrating
that resilience to linear distinguishers implies resilience to a larger class of attacks.

Keywords: small-bias generator, dichotomy, local functions, NC0.

∗School of Electrical Engineering at Tel-Aviv University, Email: benny.applebaum@gmail.com. Supported by Alon
Fellowship, by the Israel Science Foundation (grant No. 1155/11), and by the Check Point Institute for Information
Security.
†Department of Computer Science and Engineering and Institute for Theoretical Computer Science and Commu-

nications, Chinese University of Hong Kong. Email: andrejb@cse.cuhk.edu.hk. Supported in part by Hong Kong
RGC GRF grant CUHK 410309.
‡Efi Arazi School of Computer Science, IDC Herzliya. Email: alon.rosen@idc.ac.il. Supported by the Israel

Science Foundation (grant No. 334/08).

1 Introduction

In recent years there has been interest in the study of cryptographic primitives that are implemented
by local functions, that is functions in which each output bit depends on a constant number of in-
put bits. This study has been in large part spurred by the discovery that, under widely accepted
cryptographic assumptions, local functions can achieve rich forms of cryptographic functionality,
ranging from one-wayness and pseudorandom generation to semantic security and existential un-
forgeability [6].

Local functions have simple structure: they can be described by a sparse input-output depen-
dency graph and a sequence of small predicates applied at each output. Besides allowing efficient
parallel evaluation, this simple structure makes local functions amenable to analysis, and gives hope
for proving highly non-trivial statements about them. Given that the cryptographic functionalities
that local functions can achieve are quite complex, it is very interesting and appealing to try to
understand which properties of local functions (namely, graphs and predicates) are necessary and
sufficient for them to implement such functionalities.

In this work we focus on the study of local pseudorandom generators with large stretch. We give
evidence that for most graphs, all but a handful of “degenerate” predicates yield pseudorandom
generators with output length m = n1+ε for some constant ε > 0. Conversely, we show that for
almost all graphs, degenerate predicates are not secure even against linear distinguishers. Taken
together, these results expose a dichotomy: every predicate is either very hard or very easy, in the
sense that it either yields a generator for almost all graphs or fails to do so for almost all graphs.

1.1 Easy, sometimes hard, and almost always hard predicates

Recall that a pseudorandom generator is a length increasing function f : {0, 1}n → {0, 1}m such
that no efficiently computable test can distinguish with noticeable advantage between the value
f(x) and a randomly chosen y ∈ {0, 1}m, when x ∈ {0, 1}n is chosen at random. The additive
stretch of f is defined to be the difference between its output length m and its input length n.

In the context of constructing local pseudorandom generators of superlinear stretch, we may
assume without loss of generality that all outputs apply the same predicate P : {0, 1}d → {0, 1}.1
We are interested in understanding which d-local functions fG,P : {0, 1}n → {0, 1}m, described by
a graph G and a predicate P , are pseudorandom generators. For a predicate P , we will say

• P is easy if fG,P is not pseudorandom (for a given class of adversaries) for every G,

• P is sometimes hard if fG,P is pseudorandom for some G, and

• P is almost always hard if fG,P is pseudorandom for a 1− o(1) fraction of G.2

Cryan and Miltersen [17] and Mossel et al. [27] identified several classes of predicates that are
easy for polynomial time algorithms when the stretch is a sufficiently large linear function. These
include (1) unbalanced predicates, (2) linear predicates, (3) predicates that are biased towards one

1If this is not the case, project on the outputs labeled by the most frequent predicate.
2One cannot hope for always hard predicates, for which fG,P is pseudorandom for all graphs, as some easy graphs

fatally fail to provide pseudorandomness. This is the case, for example, when the graph connects two outputs to
the same d inputs. In fact, an inverse polynomial fraction of all dependency graphs (with m outputs, n inputs, and
degree d) are easy.

1

input (i.e., Prw[P (w) = 1] 6= 1
2), and (4) predicates that are biased towards a pair of inputs (i.e.,

Prw[P (w) = wi ⊕ wj] 6= 1
2). We call such predicates degenerate. Degenerate predicates include all

predicates of locality at most 4.
On the positive side, Mossel et al. [27] also gave examples of 5-bit predicates that are sometimes

(exponentially) hard against linear distinguishers. Applebaum et al. [5] show that when the locality
is sufficiently large, almost always hard predicates against linear distinguishers exist.

Pseudorandomness against linear distinguishers means that there is no subset of output bits
whose XOR has noticeable bias. This notion, due to Naor and Naor [28], was advocated in the
context of local pseudorandom generators by Cryan and Miltersen [17]. A bit more formally, for a
function f : {0, 1}n → {0, 1}m, we let

bias(f) = max
L
|Pr[L(f(Un)) = 1]− Pr[L(Um) = 1]| ,

where the maximum is taken over all affine functions L : Fm2 → F2. A small-bias generator is a
function f for which bias(f) is small (preferrably negligible) as a function of n.

1.2 Our Results

We fully classify predicates by showing that all predicates that are not known to be easy, are almost
always hard.

Theorem 1.1 (Non-degenerate predicates are hard). Let P : {0, 1}d → {0, 1} be any non-
degenerate predicate. Then, for every ε < 1/4 and m = n1+ε:

Pr
G

[bias(fG,P) ≤ δ(n)] > 1− o(1),

where δ(n) = exp(−Ω(n1/4−ε)) and G is randomly chosen from all d-regular hypergraphs with n
nodes (representing the inputs) and m hyperedges (representing the outputs).

The theorem shows that, even when locality is large, the only easy predicates are degenerate
ones, and there are no other “sources of easiness” other than ones that already appear in predicates
of locality 4 or less.

Conversely, we show that degenerate predicates are easy for linear distinguishers (as opposed
to general polynomial-time distinguishers).

Theorem 1.2 (Linear tests break degenerate predicates). For every m = n + Ω(n), and
every degenerate predicate P : {0, 1}d → {0, 1}

Pr
G

[bias(fG,P) > 1/poly(n)] > 1− o(1),

where G is randomly chosen from all d-regular hypergraphs with n nodes and m hyperedges.

The proof of Thm. 1.2 mainly deals with degenerate predicates that are correlated with a pair
of their inputs; In this case, we show that the non-linear distinguisher which was previously used
in [27] and was based on a semi-definite program for MAX-2-LIN [21] can be replaced with a simple
linear distinguisher. (The proof for other degenerate predicates follows from previous works).

Taken together, Theorems 1.1 and 1.2 expose a dichotomy: a predicate can be either easy (fail
for almost all graphs) or hard (succeeds for almost all graphs). One possible interpretation of our

2

results is that, from a designer point of view, a strong emphasis should be put on the choice of the
predicate, while the choice of the input-output dependency graph may be less crucial (since if the
predicate is appropriately chosen then most graphs yield a small-bias generator). In some sense,
this means that constructions of local pseudorandom generators with large stretch are robust: as
long as the graph G is “typical,” any non-degenerate predicate can be used (our proof classifies
explicitly what is a typical family of graphs and in addition shows that even a mixture of different
non-degenerate predicates would work).

1.3 Why Polynomial Stretch?

While Applebaum et al. [6] give strong evidence that local pseudorandom generators exist, the
stretch their construction achieves is only sublinear (m = n + n1−ε). In contrast, the regime of
large (polynomial or even linear) stretch is not as well understood, and the only known constructions
are based on non-standard assumptions. (See Section 1.5.)

Large-stretch local generators are known to have several applications in cryptography and com-
plexity, such as secure computation with constant overhead [24] and strong (average-case) inap-
proximability results for constraint-satisfaction problems [7]. These results are not known to follow
from other (natural) assumptions. It should be mentioned that it is possible to convert small poly-
nomial stretch of m = n1+ε into arbitrary (fixed) polynomial stretch of m = nc at the expense of
constant blow-up in the locality. (This follows from standard techniques, see [4] for details). Hence,
it suffices to focus on the case of m = n1+ε for some fixed ε.

The proof of Theorem 1.1 yields exponentially small bias when m = O(n), and sub-exponential
bias for m = n1+ε where ε < 1/4. We do not know whether this is tight, but it can be shown that
some non-degenerate predicates become easy (to break on a random graph) when the output length
is m = n2 or even m = n3/2. In general, it seems that when m grows the number of hard predicates
of locality d decreases, till the point m? where all predicates become easy. (By [27], m? ≤ nd/2.)
It will be interesting to obtain a classification for larger output lengths, and to find out whether a
similar dichotomy happens there as well.

1.4 Why Small-Bias?

Small-bias generators are a strict relaxation of cryptographic pseudorandom generators in that
the tests L : Fm2 → F2 are restricted to be affine (as opposed to arbitrary efficiently computable
functions). Even though affine functions are, in general, fairly weak distinguishers, handling them
is a necessary first step towards achieving cryptographic pseudorandomness. In particular, affine
functions are used extensively in cryptanalysis and security against them already rules out an
extensive class of attacks.

For local pseudorandom generators with linear stretch, Cryan and Miltersen conjectured that
affine distinguishers are as powerful as polynomial-time distinguishers [17]. In Section 5, we attempt
to support this view by showing that resilience against small-bias, by itself, leads to robustness
against other classes of attacks.

Small-bias generators are also motivated by their own right being used as building blocks in
constructions that give stronger forms of pseudorandomness. This includes constructions of local
cryptographic pseudorandom generators [7, 4], as well as pseudorandom generators that fool low-
degree polynomials [14], small-space computations[23], read-once formulas[11].

3

1.5 Related Work

The function fG,P was introduced by Goldreich [22] who conjectured that when m = n, one-wayness
should hold for a random graph and a random predicate. This view is supported by the results
of [22, 29, 3, 16, 26, 20, 25] who show that a large class of algorithms (including ones that capture
DPLL-based heuristics) fail to invert fG,P in polynomial-time.

At the linear regime, i.e., when m = n + Ω(n), it is shown in [12] that if the predicate is
degenerate the function fG,P can be inverted in polynomial-time. (This strengthens the results
of [17, 27] who only give distinguishers.) Recently, a strong self-amplification theorem was proved
in [13] showing that for m = n + Ωd(n) if fG,P is hard-to-invert over tiny (sub-exponential small)
fraction of the inputs with respect to sub-exponential time algorithm, then the same function is
actually hard-to-invert over almost all inputs (with respect to sub-exponential time algorithms).

Pseudorandom generators with sub-linear stretch can be implemented by 4-local functions based
on standard intractability assumptions (e.g., hardness of factoring, discrete-log, or lattice prob-
lems) [6], or even 3-local functions based on the intractability of decoding random linear codes [8].
However, it is unknown how to extend this result to polynomial or even linear stretch since all known
stretch amplification procedures introduce a large (polynomial) overhead in the locality. In fact,
for the special case of 4-local functions (in which each output depends on at most 4 input bits),
there is a provable separation: Although such functions can compute sub-linear pseudorandom
generators [6] they cannot achieve polynomial-stretch [17, 27].

Alekhnovich [1] conjectured that for m = n + Θ(n), the function fG,P is pseudorandom for a
random graph and when P is a randomized predicate which computes z1 ⊕ z2 ⊕ z3 and with some
small probability p < 1

2 flips the result. Although this construction does not lead directly to a local
function (due to the use of noise), it was shown in [7] that it can be derandomized and transformed
into a local construction with linear stretch. (The restriction to linear stretch holds even if one
strengthen Alekhnovich’s assumption to m = poly(n).)

More recently, [4] showed that the pseudorandomness of fG,P with respect to a random graph
and output length m, can be reduced to the one-wayness of fH,P with respect to a random graph H
and related output length m′. The current paper complements this result as it provides a criteria
for choosing the predicate P .3

2 Techniques and Ideas

In this section we give an overview of the proof of our Theorem 1.1. Let f : {0, 1}n → {0, 1}m
be a d-local function where each output bit is computed by applying some d-local predicate P :
{0, 1}d → {0, 1} to a (ordered) subset of the inputs S ⊆ [n].4 Any such function can be described
by a list of m d-tuples G = (S1, . . . , Sm) and the predicate P . Under this convention, we let
fG,P : {0, 1}n → {0, 1}m denote the corresponding d-local function.

We view G as a d-regular hypergraph with n nodes (representing inputs) and m hyperedges

3The reduction of [4] has some overhead which leads only to weak (inverse-polynomial) security. This is fixed
(without violating locality) in the case of linear stretch, but in the case of polynomial stretch it only yield inverse-
polynomial security (for arbitrary fixed polynomial). Furthermore, in the polynomial regime, the predicate is required
to be of the form P (w) = w1⊕P ′(w2, . . . , wd). Fortunately, such predicates can be classified as hard in our dichotomy.

4We can assume that the same predicate is being used for all outputs at the expense of shortening the output

length by a constant factor (as there are only 22d different predicates).

4

(representing outputs) each of size d. (We refer to such a graph as an (m,n, d)-graph.) Since we are
mostly interested in polynomial stretch we think of m as n1+ε for some fixed ε > 0, e.g., ε = 0.1.

We would like to show that for almost all (m,n, d)-graphs G, the function fG,P fools all linear
tests T , where P is non-degenerate. Following [27], we distinguish between light linear tests which
depend on less than k = Ω(n1−2ε) outputs, and heavy tests which depend on more than k outputs.

Recall that a non-degenerate predicate satisfies two forms of “non-linearity”: (1) (2-resilient)
P is uncorrelated with any linear function that involves less than 3 variables; and (2) (degree 2)
the algebraic degree of P as a polynomial over F2 is at least 2. Both properties are classical
design criteria which are widely used in practical cryptanalysis (cf. [30]). It turns out that the first
property allows to fool light tests and the second property fools heavy tests.

2.1 Fooling light-tests

Our starting point is a result of [27] which shows that if the predicate is the parity predicate ⊕ and
the graph is a good expander, the output of fG,⊕(Un) perfectly fools all light linear tests. In terms
of expectation, this can be written as

E
x
[L(fG,⊕(x)) = 0],

where we think of {0, 1} as {±1}, and let L : {±1}m → {±1} be a light linear test. Our key insight
is that the case of a general predicate P can be reduced to the case of linear predicates.

More precisely, let ξ denote the outcome of the test L(fG,P (x)). Then, by looking at the Fourier
expansion of the predicate P , we can write ξ as a convex combination over the reals of exponentially
many summands of the form ξi = L(fGi,⊕(x)) where the Gi’s are subgraphs of G in the sense that
the j-th hyperedge of Gi is a subset of the j-th hyperedge of G. (The exact structure of Gi is
determined by the Fourier representation of P .) When x is uniformly chosen, the random variable
ξ is a weighted sum (over the reals) of many dependent random variables ξi’s. However, if all the
subgraphs are good expanders, the expectation of each summand ξi is zero, and so, by the linearity
of expectation, the expectation of ξ is also zero.

It turns out that when the predicate is 2-resilient the size of each hyperedge of Gi is at least
3, and therefore if every 3-uniform subgraph of G is a good expander fG,P (perfectly) passes all
light linear tests. Fortunately, it turns out that most graphs G satisfy this property. We emphasize
that the argument crucially relies on the perfect bias of XOR predicates, as there are exponentially
many summands. (See Section 3.1 for full details.)

2.2 Fooling heavy-tests

Consider a heavy test which involves t ≥ k outputs. Switching back to zero-one notation, assume

that the test outputs the value ξ = P (xS1) + . . . + P (xSt) (mod 2) where x
R← Un. Our goal is to

show that ξ is close to a fair coin. For this it suffices to show that the sum ξ can be rewritten as
the sum (over F2) of ` random variables

ξ = ξ1 + . . .+ ξ` (mod 2), (1)

where each random variable ξi is an independent non-constant coin, i.e., Pr[ξi = 1] ∈ [2−d, 1−2−d].
In this case, the statistical distance between ξ and a fair coin is exponentially small (in `), and we
are done as long as ` is large enough.

5

In order to partition ξ, let us look at the hyperedges S1, . . . , St which are involved in the test.
As a first attempt, let us collect ` distinct “independent” hyperedges that do not share a single
common variable. Renaming the edges, we can write ξ as

(P (xT1) + . . .+ P (xT`)) +
(
P (xS`+1

) + . . .+ P (xSt)
)

(mod 2),

where the first ` random variables are indeed statistically independent. However, the last t − `
hyperedges violate statistical-independence as they may be correlated with more than one of the
first ` hyperdges. This is the case, for example, if Sj has a non-empty intersection with both Ti and
Tr. This problem is fixed by collecting ` “strongly-independent” hyperedges T1, . . . , T` for which
every Sj intersects at most a single Ti. (Such a big set is likely to exist since t is sufficiently large.)
In this case, for any fixing of the variables outside the Ti’s, the random variable ξ can be partitioned
into ` independent random variables of the form ξi = P (xTi) +

∑
P (xSj), where the sum ranges

over the Sj ’s which intersects Ti. This property (which is a relaxation of Eq. 1) still suffices to
achieve our goal, as long as the ξi’s are non-constant.

To prove the latter, we rely on the fact that P has algebraic degree 2. Specifically, let us assume
that Si and Tj have no more than a single common input node. (This condition can be typically
met at the expense of throwing a small number of the Ti’s.) In this case, the random variable
ξi = P (xTi) +

∑
P (xSj) cannot be constant, as the first summand is a degree 2 polynomial in xTi

and each of the last summands contain at most a single variable from Ti. Hence, ξi is a non-trivial
polynomial whose degree is lower-bounded by 2. This completes the argument. Interestingly, non-
linearity is used only to prove that the ξi’s are non-constant. Indeed, linear predicates fail exactly
for large tests for which the ξi’s become fixed due to local cancelations. (See Section 3.2 for details.)

2.3 Proving Theorem 1.2

When P is a degenerate predicate and G is random, the existence of a linear distinguisher follows
by standard arguments. The cases of linear or biased P are trivial, and the case of bias towards
one input was analyzed by Cryan and Miltersen. When P is biased towards a pair of inputs, say
the first two, we think of P as an “approximation” of the parity x1 ⊕ x2 of its first two inputs.
If P happened to be the predicate x1 ⊕ x2, one could find a short “cycle” of output bits that,
when XORed together, causes the corresponding input bits to cancel out. In general, as long as
the outputs along the cycle do not share any additional input bits, the output of the test will be
biased, with bias exponential in the length of the cycle. In Section 4 we show that a random G is
likely to have such short cycles, and so the corresponding linear test will be biased.

3 Non-Degenerate Predicates are Hard

In this section we prove Theorem 1.1. We follow the outline described in Section 2 and handle light
linear tests and heavy linear tests separately.

3.1 Fooling Light Tests

In this section we show that if the predicate P is 2-resilient (see definition below) and the graph G
is a good expander, the function fG,P is k-wise independent, and in particular fools linear tests of
weight smaller than k. We will need the following definitions.

6

Super expansion. Let G be an (m,n, d)-graph. A graph H is (k, a) subgraph of G if it can
be constructed by choosing ` ≤ k distinct hyperedges of G and for each selected hyperedge Sj
removing some of the nodes while leaving bj ≥ a nodes. We say that G is (k, a) super-expander if
the hyperedges T = T1, . . . , T` of every (k, a)-subgraph H of G touch more than b`/2 nodes where
b =

∑
|Tj | /` is the average cardinality of the hyperedges of H. We say that G is (k, a)-linear if

the hyperedges of every (k, a)-subgraph of G are linearly independent viewed as vectors in Fn2 .

Fourier coefficients. The Fourier expansion of a predicate P : {±1}d → {±1} is given by∑
T⊆[d] αTχT where χT (x1, . . . , xd) = (−1)

∑
t∈T xi is Parity on the coordinates in the set T . The

predicate is a-resilient if αT is zero for every T of size smaller or equal to a.

The following lemma shows that resiliency combined with (k, a)-linearity leads to k-wise inde-
pendence.

Lemma 3.1. If P is (a− 1)-resilient and the (m,n, d)-graph G is (k, a)-linear then fG,P is k-wise
independent generator, i.e., the m r.v.’s (y1, . . . , ym) = fG,P (Un) are k-wise independent.

Proof. Fix an ` ≤ k outputs of fG,P , and let S1, . . . , S` be the corresponding hyperedges. We should
show that Ex[

∏
i P (xSi)] = 0. For every x ∈ {0, 1}n we have:

∏̀
i=1

P (xSi) =
∏̀
i=1

∑
T⊆[d],|T |≥a

αTχT (xSi) =
∑

~T=(T1,...,T`),|Ti|≥a

∏
i

αTiχSi,Ti
(x),

where Si,{K1,...,Kb} denotes the tuple Si,K1 , . . . , Si,Kb
. Hence, by the linearity of expectation, it

suffices to show that

E
x

[∏
i

χSi,Ti
(x)

]
= 0,

for every (T1, . . . , T`) where Ti ⊆ [d], |Ti| ≥ a. (Recall that the αTi ’s are constants and thus can be
ignored.) Observe that

∏
i χSi,Ti

(x) is just a parity function, which, by (k, a)-linearity, is non-fixed.
Since every non-fixed parity function is balanced (guaranteed to have zero expectation value), the
claim follows.

Next, we show that (k, a)-linearity is implied by super-expansion, and that a random graph is
likely to be super-expanding.

Lemma 3.2. Let d ≥ 3 be a constant. Let ∆ ≤
√
n/ log n and 3 ≤ a ≤ d.

1. Every (∆n, n, d)-graph which is (k, a)-super-expander is also (k, a)-linear.

2. A random (∆n, n, d)-graph is whp (αn/∆2, a)-super-expander where α is a constant that
depends on a, d.5

Proof. The proof of the first item parallels the standard relation between lossless-expansion and
unique/odd-expansion. Let G be a (k, a)-super-expander. Observe that if G is not (k, a)-linear
then there must be (k, a)-subgraph H whose edges sum-up to zero (over Fn2). We argue that G

5An event occurs with high probability (whp in short) if it happens with probability 1 − o(1).

7

cannot have such a subgraph. Indeed, by counting edges, in each (k, a)-subgraph H the average
degree of the participating nodes is smaller than 2, and so there exists at least one node which
participates in a single hyperedge. Hence, the sum of the hyperedges (over Fn2) is non-zero.

To prove the second item, we calculate the probability that a random (∆n, n, d)-graph fails to
be (k, a)-super-expander. First we bound the probability that there exists a subgraph H with `
hyperedges and average degree b ≥ a that violates expansion. This probability is bounded by(

∆n

`

)
· 2d` ·

(
n

b`/2

)
·
(
b`

2n

)b`
<

(
e∆n

`
· 2d ·

(
2en

b`

)b/2(b`
2n

)b)`

=

(
e2d
(
be

2

)b/2
∆

(
`

n

)b/2−1
)`

≤

(
cd,a∆

(
`

n

)a/2−1
)`

where cd,a is a constant which depends on d and a, and the second inequality is due to a ≤ b ≤ d.
Let us denote the above quantity by p`,n,∆,a,d. By a union-bound G fails to be (k, a)-super-expander
with probability at most

∑
2≤`≤k p`,n,∆,a,d.

Let us fix a ≥ 3, and assume that ∆ ≤ n
1
2 / log n and k = αn/∆2 where α = 1/(2cd,a)

2 is a
constant. Indeed, in this case

p` ≤

(
cd,a

∆
√
`√
n

)`
≤

(
cd,a

√
`

log n

)`
.

Observe that for ` = 1, 2, 3, the quantity p` is o(1), for 4 ≤ ` ≤ 10 log n the quantity p` ≤
O(1/ log2 n) and for 10 log n ≤ ` ≤ αn/∆2 the quantity p` is at most O(1/n10). It follows that each
of these three intervals contributes o(1) to the overall failure probability.

By combining the lemmas, we obtain the following corollary.

Corollary 3.3. If P is 2-resilient and m = ∆n for constant ∆, then whp over the choice of an
(m,n, d)-graph G, the function fG,P is k-wise independent for k = Ω(n). If ∆ = nε, the above
holds with k = Ω(n1−2ε).

By taking ε < 1/4, 2-resiliency suffices for ω(
√
n)-wise independence, whp .

3.2 Fooling Heavy Tests

In this section we show that if the predicate P is non-linear and the graph G has large sets of
“independent” hyperedges, the function fG,P fools linear tests of weight larger than k. Formally,
we will need the following notion of independence.

(k, `, b)-independence. Let S be a collection of k distinct hyperedges. A subset T ⊆ S of `
distinct hyperedges is an (`, b)-independent set of S if the following two properties hold: (1) Every

8

pair of hyperedges (T, T ′) ∈ T are of distance at least 2, namely, for every pair Ti 6= Tj ∈ T and
S ∈ S,

Ti ∩ S = ∅ or Tj ∩ S = ∅;

and (2) For every Ti ∈ T and S 6= Ti in S we have

|Ti ∩ S| < b.

A graph is (k, `, b)-independent if every set of hyperedges of size larger than k has an (`, b)-
independent set.

Our key lemma shows that good independence and large algebraic degree guarantee resistance
against heavy linear tests.

Lemma 3.4. If G is (k, `, b)-independent and P has an algebraic degree of at least b, then every

linear test of size at least k has bias of at most 1
2e
−2`/2d.

Proof. Fix some test S = (S1, . . . , Sk) of size k, and let T = (T1, . . . , T`) be an (`, b)-independence
set of S. Fix an arbitrary assignment σ for all the input variables which do not participate in any
of the Ti’s and choose the other variables uniformly at random. In this case, we can partition the
output of the test y to ` summands over ` disjoint blocks of variables, namely

y =
∑
i∈[k]

P (xSi) =
∑
i∈[`]

zi(xTi),

where the sum is over F2 and

zi(xTi) = P (xTi) +
∑

S:Ti 6=S∩Ti 6=∅

P (xS∩Ti , σS\Ti).

We need two observations: (1) the random variables zi’s are statistically independent (as each of
them depends on a disjoint block of inputs); and (2) the r.v. zi is non-constant and, in fact, it takes
each of the two possible values with probability at least 2−d. To prove the latter fact it suffices to
show that zi(x) is a non-zero polynomial (over F2) of degree at most d. Indeed, recall that zi is the
sum of the polynomial P (xTi) whose degree is in [b, d], and polynomials of the form P (xS∩Ti , σS\Ti)
whose degree is smaller than b (as |S ∩ Ti| < b). Therefore the degree of zi is in [1, d].

To conclude the proof, we note that the parity of ` independent coins, each with expectation in
(δ, 1− δ), has bias of at most 1

2(1− 2δ)`. (See, e.g., [27]).

We want to show that a random graph is likely to be (k, `, 2)-independent.

Lemma 3.5. For every positive ε and δ. A random (n1+ε, n, d)-graph is, whp , (n2ε+δ, nδ/2, 2)
independent.

Proof. We will need the following claim. Call a hyperedge S b-intersecting if there exists another
hyperedge S′ in the graph for which |S′ ∩ S| ≥ b. We first bound the number of b-intersecting
hyperedges.

Claim 3.6. Let b be a constant. Then, in a random (m = n1+ε, n, d)-graph, whp , the number of
b-intersecting hyperedges is at most n2(1+ε)−b log n.

9

Hence, whp , at most O(n2ε log n) of the hyperedges are 2-intersecting, and for ε < 1/4 there
are at most o(

√
n) such hyperedges.

Proof (of Claim 3.6). Let X be the random variable which counts the number of b-intersecting
hyperedges. First, we bound the expectation of X by m2d2b/nb = d2b · n2(1+ε)−b. To prove
this, it suffices to bound the expected number of pairs Si, Sj which b-intersects. Each such pair b-
intersects with probability at most d2b/nb, and so, by linearity of expectation, the expected number
of of intersecting pairs is at most m2d2b/nb. Now, by applying Markov’s inequality, we have that
Pr[X > logn

d2b
E[X]] < d2b/ log n = o(1), and the claim follows. (A stronger concentration can be

obtained via a martingale argument.)

We can now prove Lemma 3.5. Assume, without loss of generality, that ε > 1 (as if the claim
holds for some value of ε it also holds for smaller values). First observe that, whp , all the input
nodes in G have degree at most 2nε. As by a multiplicative chernoff bound, the probability that a
single node has larger degree is exponentially small in nε. We condition on this event and the event
that there are no more than r = n2ε log n 2-expanding edges. Fix a set of k = n2ε+δ hyperedges. We
extract an (`, 2)-independent set by throwing away the 2-expanding edges, and then by iteratively
inserting an hyperedge T into the independent set and removing all the hyperedges S that share
with T a common node, and the hyperedges which share a node with an edge, that shares a node
with T . At the beginning we removed at most r edges, and in each iteration we remove at most
(d2nε)2 edges, hence there are at least ` ≥ k−r

4d2n2ε > nδ/2 hyperedges in the independent set.

Combining the lemmas together we get:

Corollary 3.7. Fix some positive ε and δ. If P has an algebraic degree of at least 2 and m = n1+ε,
then, whp over the choice of a random (m,n, d)-graph, the function fG,P has at most sub-exponential
bias (i.e., exp(−Ω(nδ))) against linear tests of size at least n2ε+2δ.

By combining Corollaries 3.3 and 3.7, we obtain Theorem 1.1.

4 Linear Tests Break Degenerate Predicates

In this section we prove Theorem 1.2; That is, we show that the assumptions that P is non-linear
and 2-resilient are necessary for P to be a hard predicate. Clearly the assumption that P is
non-linear is necessary even when m = n+ 1.

When m ≥ Kn for a sufficiently large constant K (depending on d), it follows from work of
Cryan and Miltersen [17] that if P is not 1-resilient, then for any f : {±1}n → {±1}m, the output
of f is distinguishable from uniform with constant advantage by some linear test. When P is
1-resilient but not 2-resilient, Mossel, Shpilka, and Trevisan show that f is distinguishable from
uniform by a polynomial-time algorithm, but not by one that implements a linear test.

Here we show that if P is not 2-resilient, then the output of fG,P is distinguishable by linear
tests with non-negligible advantage with high probability over the choice of G.

Claim 4.1. Assume P is unbiased and 1-resilient but |E[P (z)z1z2]| = α > 0. Then for every
` = o(log n), with probability 1− (2−Ω(`) + d`/n) over the choice of G, there exists a linear test that
distinguishes the output of fG,P from random with advantage α`.

10

Proof. Let H be the directed graph with vertices {1, . . . , n} where every hyperedge (i1, i2, . . . , id)
in G induces the edge (i1, i2) in H.

Let ` be the length of the shortest directed cycle in H and without loss of generality assume
that this cycle consists of the inputs 1, 2, . . . , ` in that order. Let zi be the name of the output
that involves inputs i and i + 1 for i ranging from 1 to ` (where i is taken modulo `) and Si the
corresponding hyperedge. With probability at least 1 − d`/n, input i does not participate in any
hyperedge besides Si and Si+1 and all other inputs participate in at most one of the hyperedges
S1, . . . , S`.

We now calculate the bias of the linear test that computes z1 ⊕ . . . ⊕ z`. For simplicity, we
will assume that d = 3; larger values of d can be handled analogously but the notation is more
cumbersome. We will denote the entries in Si by i, i + 1 and i′. Then the fourier expansion of
zi(xSi) has the form

zi(xSi) = αxixi+1 + βxixi′ + γxi+1xi′ + δxixi+1xi′

The Fourier expansion of the expression E[z1(xS1) . . . z`(xS`
)] can be written as a sum of 4` products

of different monomials participating in the above terms. The only monomial that does not vanish
is the one containing all the α-terms, namely

E
[∏n

i=1
αxixi+1

]
= α`.

All the other products of monomials contain at least one unique term of the form xi′ , and this
causes the expectation to vanish.

It remains to argue that with high probability ` is not too large. We show that with probability
1 − O((4/K)`), H has a directed cycle of length `, as long as ` < log2K(n/4). Let X denote the
number of directed cycles of length ` in H. The number of potential directed cycles of length in H
is n(n− 1) . . . (n− `+ 1) ≥ (n− `)`. Each of these occurs uniquely in H with probability

(Kn)(Kn− 1) . . . (Kn− `+ 1)
(1

n(n− 1)

)`(
1− 1

n(n− 1)

)Kn−`
≥
(Kn− `

n2

)`
.

Therefore E[X] ≥ (K/4)`. The variance can be upper bounded as follows. The number of pairs of
cycles of length ` that intersect in i edges is at most

(
`
i

)
n2`−i−1, and the covariance of the indicators

for these cycles is at most (K/n)2`−i. Adding all the covariances up as i ranges from 1 to `, it
follows that

Var[X] ≤ E[X] +
∑̀
i=1

(
`

i

)
n2`−i−1

(K
n

)2`−i
≤ E[X] +

2`K2`

n
.

By Chebyshev’s inequality,

Pr[X = 0] ≤ Var[X]

E[X]2
<

2

E[X]

as long as ` < log2K(n/4).

5 Implications of Small-Bias

For local functions with large stretch, small bias seems like a good approximation for cryptographic
pseudorandomness. Specifically, we are not aware of any local function fG,P with linear stretch that

11

fools linear distinguishers but can be distinguished by some polynomial-time adversary.6 One may
conjecture that if fG,P fools linear adversaries for most graphs, then it also fools polynomial-time
adversaries. In other words, local functions are too simple to “separate” between the two different
notions. We attempt to support this view by showing that resilience against small-bias, by itself,
leads to robustness against other classes of attacks.

First, we observe that, for local functions, k-wise independence follows directly from ε-bias.
(This is not the case for non-local functions.)

Lemma 5.1. Let f : {0, 1}n → {0, 1}m be a d-local function which is 2−kd-biased. Then, it is also
k-wise independent.

Proof. Assume towards a contradiction that f is not k-wise independent. Then, there exists a set of

k outputs T and a linear distinguisher L for which ε =
∣∣∣Pr

y
R←f(Un)

[L(yT) = 1]− Pr[L(Uk) = 1]
∣∣∣ > 0.

Since f is d-local, yT is sampled by using less than kd bits and therefore ε ≥ 2−kd.

Note that the proof of our main theorem establishes k-wise independent as an intermediate step
(Section 3.1). However, the above lemma is stronger in the sense that it holds for every fixed graph
and every output length including ones that are not covered by the main theorem.

By plugging in known results about k-wise independent distributions, it immediately follows
that if a local function is sufficiently small-biased, then it is pseudorandom against AC0 circuits [15],
linear threshold functions over the reals [18], and degree-2 threshold functions over the reals [19].

Moreover, attacks on local functions, which are actively studied at the context of algorithms for
constraint-satisfaction problems, appear to be based mainly on “local” heuristics (DPLL, message-
passing algorithms, random-walk based algorithms) or linearization [9]. Hence, it appears that in
the context of local functions, the small-bias property already covers all “standard” attacks. We
support this intuition by showing that small-biased local functions (on a random-looking input-
output graph) are not merely min-wise independent, but have a stronger property: Even after
reading an arbitrary set of t-outputs, the posterior distribution on every set of ` inputs, while not
uniform, still has h bits of min-entropy. We refer to this property as (t, `, h)-robustness.

Lemma 5.2. Suppose that P is a predicate for which fG,P : {0, 1}n → {0, 1}m is k-wise indepen-
dent, whp over the choice of a random (m,n, d) graph G. Then, whp over the choice of a random
(m′ = Ω(m), n, d) graph H, the function fH,P : {0, 1}n → {0, 1}m′ is (t = Ω(k), `, h)-robust, where
h = min

(
`,Ω(m · (`/n)d),Ω(k)

)
.

(See Section A for more details and proof.) Robustness holds with inverse-polynomial param-
eters (t = nα, ` = nβ, h = nγ) when m = n1+ε, and with linear parameters when m = O(n) is
linear. The notion of robustness is the main technical tool used by Cook et al. [16] to prove that
myopic backtracking algorithms cannot invert fG,P in polynomial time (for the case m = n).7 By
Lemma 5.2, robustness follows directly “for free” from small-bias, and thus we can derive a similar
lower-bound for larger output lengths (but for a smaller class of predicates). (See Section A for
details.)

6It can be shown that this is false when the stretch is sub-linear.
7The two other high-level ingredients are an upper-bound on the number of siblings of a random input, and

standard lower-bound on the resolution size of unsatisfiable formulas (cf. [10, 2]).

12

References

[1] M. Alekhnovich. More on average case vs approximation complexity. In FOCS, pages 298–307.
IEEE Computer Society, 2003.

[2] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson. Pseudorandom generators
in propositional proof complexity. SIAM Journal of Computation, 34(1):67–88, 2004.

[3] M. Alekhnovich, E. A. Hirsch, and D. Itsykson. Exponential lower bounds for the running
time of DPLL algorithms on satisfiable formulas. J. Autom. Reasoning, 35(1-3):51–72, 2005.

[4] B. Applebaum. Pseudorandom generators with long stretch and low locality from random local
one-way functions. Electronic Colloquium on Computational Complexity (ECCC), 18, 2011.

[5] B. Applebaum, B. Barak, and A. Wigderson. Public-key cryptography from different assump-
tions. In 42nd ACM Symposium on Theory of Computing, (STOC 2010), pages 171–180,
2010.

[6] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC0. SIAM Journal on Com-
puting, 36(4):845–888, 2006.

[7] B. Applebaum, Y. Ishai, and E. Kushilevitz. On pseudorandom generators with linear stretch
in NC0. Journal of Computational Complexity, 17(1):38–69, 2008.

[8] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography with constant input locality.
Journal of Cryptology, 22(4):429–469, 2009.

[9] S. Arora and R. Ge. New algorithms for learning in presence of errors. In ICALP (1), pages
403–415, 2011.

[10] E. Ben-Sasson and A. Wigderson. Short proofs are narrow - resolution made simple. In STOC,
pages 517–526, 1999.

[11] A. Bogdanov, P. Papakonstantinou, and A. Wan. Pseudorandomness for read-once formulas.
In Proceedings of the 52nd Annual Symposium on Foundations of Computer Science, 2011. To
appear.

[12] A. Bogdanov and Y. Qiao. On the security of goldreich’s one-way function. In APPROX-
RANDOM, pages 392–405, 2009.

[13] A. Bogdanov and A. Rosen. Input locality and hardness amplification. In Proc. of 8th TCC,
pages 1–18, 2011.

[14] A. Bogdanov and E. Viola. Pseudorandom bits for polynomials. SIAM J. Comput., 39(6):2464–
2486, 2010.

[15] M. Braverman. Poly-logarithmic independence fools AC0 circuits. Computational Complexity,
Annual IEEE Conference on, 0:3–8, 2009.

13

[16] J. Cook, O. Etesami, R. Miller, and L. Trevisan. Goldreich’s one-way function candidate and
myopic backtracking algorithms. In O. Reingold, editor, TCC, volume 5444 of Lecture Notes
in Computer Science, pages 521–538. Springer, 2009.

[17] M. Cryan and P. B. Miltersen. On pseudorandom generators in NC0. In Proc. 26th MFCS,
2001.

[18] I. Diakonikolas, P. Gopalan, R. Jaiswal, R. A. Servedio, and E. Viola. Bounded independence
fools halfspaces. SIAM Journal of Computation, 39(8):3441–3462, 2010.

[19] I. Diakonikolas, D. M. Kane, and J. Nelson. Bounded independence fools degree-2 threshold
functions. In FOCS, pages 11–20, 2010.

[20] S. O. Etesami. Pseudorandomness against depth-2 circuits and analysis of goldreich’s candidate
one-way function. Technical Report EECS-2010-180, UC Berkeley, 2010.

[21] Goemans and Williamson. Improved approximation algorithms for maximum cut and satisfi-
ability problems using semidefinite programming. JACM: Journal of the ACM, 42, 1995.

[22] O. Goldreich. Candidate one-way functions based on expander graphs. Electronic Colloquium
on Computational Complexity (ECCC), 7(090), 2000.

[23] R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network algorithms. In
In Proceedings of the 26th Annual ACM Symposium on Theory of Computing, pages 356–364,
1994.

[24] Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai. Cryptography with constant compu-
tational overhead. In R. E. Ladner and C. Dwork, editors, STOC, pages 433–442. ACM,
2008.

[25] D. Itsykson. Lower bound on average-case complexity of inversion of goldreich’s function
by drunken backtracking algorithms. In Computer Science - Theory and Applications, 5th
International Computer Science Symposium in Russia, pages 204–215, 2010.

[26] R. Miller. Goldreich’s one-way function candidate and drunken backtracking algorithms. Dis-
tinguished major thesis, University of Virginia, 2009.

[27] E. Mossel, A. Shpilka, and L. Trevisan. On ε-biased generators in NC0. In Proc. 44th FOCS,
pages 136–145, 2003.

[28] J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications.
SIAM Journal on Computing, 22(4):838–856, 1993. Preliminary version in Proc. 22th STOC,
1990.

[29] S. K. Panjwani. An experimental evaluation of goldreich’s one-way function. Technical report,
IIT, Bombay, 2001.

[30] T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic
applications. IEEE Transactions on Information Theory, 30(5):776–778, 1984.

14

A Robustness and Myopic Backtracking Algorithms

Robustness. Let f : {0, 1}n → {0, 1}m. Let L ⊂ [n] be a set of inputs, and t, h ∈ [m]. We say
that f is (t, L, h)-robust if for every set of outputs T ⊂ [m] of size t and every string z ∈ {0, 1}t the
following holds. Let x ∈ {0, 1}n be a uniformly chosen string conditioned on the event f(x)T = z,
i.e., the outputs which are indexed by T equal to z. Then the random variable xL = (xi)i∈L
has min-entropy of h, namely, for every fixed w ∈ {0, 1}|L|, Pr[xL = w] ≤ 2−h. The function is
(t, `, h)-robust if it is (t, L, h)-robust for every `-size input set L.

We show that if fG,P is k-wise independent with respect to random graph, then it is also robust
for shorter output length. (The proof is deferred to Section A.1).

Lemma A.1 (Lemma 5.2 restated). Suppose that P is a predicate for which fG,P : {0, 1}n →
{0, 1}m is k-wise independent, whp over the choice of a random (m,n, d) graph G. Then, whp
over the choice of a random (m − r, n, d) graph H, the function fH,P : {0, 1}n → {0, 1}m−r is
(t, `, h)-robust, where h = min

(
`, r · (`/n)d/2, k − t

)
.

In the case of linear stretch, m = n + O(n), where k is linear as well (Corollary 3.3), one can
get (t, `, h)-robustness with linear parameters at the expense of linear decrease in the output length
(e.g., r = m/2). When the output is polynomial m = n1+ε (for ε < 1/4), we get (t, `, h)-robustness
for inverse-polynomial parameters, again at the expense of a linear decrease in the output length
(e.g., r = m/2).

Robustness is especially useful if the actual number of preimages of y = fG,P (x) is relatively
small compared to 2h. In this case, an algorithm which attempts to guess ` bits of a preimage x
based on t outputs is likely to be wrong (obtain a partial assignment that does not correspond to
any preimage of y.) We show that in our setting of parameters (when the output length is large)
most inputs have a small number of siblings under fG,P (where G is random). The proof of the
following lemma is deferred to Section A.2.

Lemma A.2. Let P be any nonconstant predicate. For m > Ωd(n log n),

Pr
G,x

[
∣∣{x′|x′ is a preimage of fG,P (x)

}∣∣ < M(n)] > 1− o(1),

where M(n) is any (arbitrary slow) increasing function M(n) = ω(1).

Myopic DPLL algorithms. We now show how the simple statistical properties proved in the
above lemmas yield lower-bounds for DPLL algorithms who attack fG,P . The high-level argument
is similar to the one used in [3, 16] and it is only sketched here. Consider the following myopic
backtracking DPLL algorithm, whose input consists of y = fG,P (x) where x is uniformly chosen.
The algorithm is allowed to read the entire graph G, but it reads the values of y in an incremental
way. Specifically, in each iteration the algorithm adaptively choose an input variable xi and asks
to reveal r new output bits of y. Then it guesses the value of xi based on its current state and
on the output bits that were already revealed (including the ones that were revealed in previous
iterations). If the algorithm reaches a contradiction, i.e., its partial assignment to x is consistent
with some output it backtracks.

Suppose that fG,P satisfies the above lemmas. (Think of M = O(log n) and k, t, `, h as poly-
nomial in n, or even linear in n when m = O(n).) Since fG,P is k-wise independent the algorithm

15

does not backtrack in the first k/r steps (as some patrial assignment is consistent with every value
of k outputs). Since f is (r · `, `, h)-robust and the number of siblings of a random x is (whp) M ,
the partial assignment chosen by the algorithm after ` < k steps is likely to be globally inconsis-
tent (there are 2h locally consistent assignments while there are only M � 2h globally consistent
assignments). Hence, with all but negligible probability, the algorithm will err during the first `
steps, and therefore will backtrack at some point after more than k steps. It can be shown (by
standard lower-bound on resolution [10, 2]) that, for a random graph, the backtracking phase takes
super-polynomial time. (By plugging in the exact parameters the lower-bound is exponential 2Ω(n)

when m = O(n) or sub-exponential exp(nδ) when m = n1+ε.)

A.1 Proving Robustness (Lemma A.1)

Proof. Observe that an (m− r, n, d) graph H with hyperedges (S1, . . . , Sm−r) can be extended to
an (m,n, d) graph G by adding r hyperedges (Sr+1, . . . , Sm). The additional edges can be packed
together in (r, n, d) graph H ′ to which we refer as an extension graph. Call H good if fH∪H′,P is
k-wise independent whp over the choice of the (r, n, d) graph H ′. Since fG,P is k-wise independent,
whp over a random (m,n, d) graph G, it follows from Markov’s inequality that all but o(1) of
the (m − r, n, d) graphs H are good. We show that if H is a good graph the function fH,P is
(t, `, h)-robust.

Fix some good H. Let L be an arbitrary `-size subset of the inputs. We say that an extension
graph H ′ = (Sr+1, . . . , Sm) is good (for L and G) if:

1. There is a set M ⊂ {r + 1, . . . ,m} of at least h hyperedges of H ′ which fall completely into
L, i.e.,

⋃
i∈M Si ⊆ L.

2. fH∪H′,P is k-wise independent.

Claim A.3. If there exists a good extension H ′, then fH,P : {0, 1}n → {0, 1}m−r is (t, L, h)-robust.

Proof. Fix some output set T ⊂ [m − r] of size t. Let x
R← {0, 1}n and let y = fH∪H′,P (x). Fix

the value of yT to some string z. Then, since the random variables y = (y1, . . . , ym) are k-wise
independent, the distribution of yM conditioned on yT = z is uniform over {0, 1}h. (Note that
h+ t ≤ k.) Since yM depends only on xL it follows that the conditional distribution of xL has min-
entropy at least |M | = h. (Otherwise, xL takes some value w with probability larger than 2−M and
the string fM,P (w) occurs in yM with probability larger than 2−M contradicting uniformity.)

Finally, a simple calculation shows that there exists a good extension graph (in fact, many of
them are good for L). Indeed, a random H ′ is expected to have r · (`/n)d ≥ 2h hyperedges in L,
and therefore by Markov’s inequality at most 1

2 of the extension graphs violate (1). Also, since
H is assumed to be good, at most o(1) of the extension graphs violate (2), and therefore at least
1
2 − o(1) of the extension graphs are good, and the lemma follows.

A.2 Bounding the number of siblings (Lemma A.2)

We prove Lemma A.2 via the following claim.

Claim A.4. Let P be any nonconstant predicate. For m > 2Kdn log n, PrG,x,y[fG,P (x) = fG,P (y)] <
K2−n, where K is some constant and n is sufficiently large.

16

We show that the claim implies Lemma A.2. For every fixedG and x define ξx,G = Pry[fG,P (x) =
fG,P (y)]. The claim shows that EG,x[ξG,x] < K2−n. Hence, by Markov’s inequality, for every M ,
PrG,x[ξG,x < MK2−n] > 1− 1/M , by taking M = ω(1), we get that, whp over the choice of G and
x, there are at most MK2−n2n = O(MK) siblings for x under fG,P . We now prove the claim.

proof of Claim A.4. We write

Pr
G,x,y

[fG,P (x) = fG,P (y)] = E
x,y

Pr
G

[fG,P (x) = fG,P (y)] = E
x,y

[Pr
I

[P (x|I) = P (y|I)]m]

where I is a random sequence of d indices from [n]. The value of the inner probability only depends
on x and y through the number of pairs xiyi of types 00, 01, 10, and 11. Let nab be the number
of pairs xiyi where xi = a and yi = b. Then D = (n00/n, n01/n, n10/n, n11/n) is a probability
distribution over {0, 1}2 and we can write

E
x,y

[Pr
I

[P (x|I) = P (y|I)]m] =
1

22n

∑
n00+n01+n10+n11=n

(
n

nD

)
Pr

uv∼Dd
[P (u) = P (v)]m

where u, v are d-bit strings,
(
n
nD
)

is shorthand for
(

n
n00,n01,n10,n11

)
, and Dd is the distribution on uv

obtained by choosing each pair uivi independently from the joint distribution D.
We divide the sum into four parts depending on the values n00, n01, n10, n11) as follows:

• Let UNBAL be those (x, y) such that nab ≥ 5/6 for some a, b ∈ {0, 1}.

• Let EQ− UNEQ be those (x, y) such that naa ≥ 1/36 and nbb ≥ 1/36 for some a, b ∈ B.

• Let EQ+ be those (x, y) outside UNBAL and EQ− UNEQ such that n00 + n11 ≥ 1/2.

• Let UNEQ+ be those (x, y) outside UNBAL and EQ− UNEQ such that n01 + n10 ≥ 1/2.

We bound the contribution of each of these sets to the sum.
An entropy calculation (see Section 6 in [13]) shows that the number of (x, y) in UNBAL is at

most 20.92n and so the contribution of UNBAL is at most 2−1.08n.
Let us now look at (x, y) ∈ EQ − UNEQ. For simplicity let’s take the case n00, n01 ≥ 1/36,

the other cases being similar. Then for any a ∈ {0, 1}d, the event “u = 0d and v = a” occurs with
probability at least 36−d, and so Pr[P (u) = P (v)] ≤ 1− 36−d, and∑

(x,y)∈EQ−UNEQ

Pr
uv∼Dd

[P (u) = P (v)]m ≤ 22n(1− 36−d)m ≤ 2−2n

by our choice of m.
We now consider the pairs (x, y) ∈ EQ+. By definition of EQ+, for all such pairs we have

n00, n11 ≥ 1/36. Let E = {i : xi = yi}. Since P is not constant, there must exist a pair u, v ∈ {0, 1}d
that differ in exactly one coordinate such that P (u) 6= P (v). Therefore

Pr[P (u) 6= P (v)] ≥ 1− 36−(d+1) · |E|
n
.

17

We can now write

∑
(x,y)∈EQ+

Pr
uv∼Dd

[P (u) = P (v)]m ≤
n/2∑
k=0

∑
|E|=k

∑
(x, y) agree on E

(
1− 36−(d+1) · k

n

)m

= 2n
n/2∑
k=0

(
n

k

)(
1− 36−(d+1) · k

n

)m
≤ 2n + 2n

n/2∑
k=1

(en
k

)k(
1− 36−(d+1) · k

n

)m
= 2n + 2n

n/2∑
k=1

exp(k ln(en/k)− k ln(2en)) = O(2n)

by our choice of m.
Finally we consider those (x, y) ∈ UNEQ+. Then we have n01, n10 ≥ 1/36. Say P is symmetric

if P (w) = P (w) for every w. If P is symmetric, we can bound the contribution of UNEQ+ by
O(2n) by a calculation analogous to the one for EQ+. If P is not symmetric, then P (w) 6= P (w)
for some w. The event event “u = w, v = w” then happens with probability at least 36−d and
we can bound the contribution of UNEQ+ by 2−2n by a calculation analogous to the one for
EQ− UNEQ.

18

