
Non-Malleable Zero Knowledge: Black-Box Constructions and

Definitional Relationships

Abhishek Jain∗ Omkant Pandey†

Abstract

This paper deals with efficient non-malleable zero-knowledge proofs forNP, based on general
assumptions. We construct a simulation-sound zero-knowledge (ZK) protocol for NP, based
only on the black-box use of one-way functions. Constructing such a proof system has been an
open question ever since the original work of Dolev, Dwork, and Naor [DDN91]. In addition
to the feasibility result, our protocol has a constant number of rounds, which is asymptotically
optimal.

Traditionally, the term non-malleable zero-knowledge (NmZK) refers to the original defini-
tion of [DDN91]; but today it is used loosely to also refer to simulation-soundness (SimSound)
[Sah99], and simulation-extractability (SimExt) [PR05b]. While SimExt implies NmZK, the
common perception is that SimExt is strongest of the three notions. A formal study of the
definitional relationship between these three notions, however, has never been done.

In the second part of this work, we try to correct this situation by initiating such a study.
We show that in the “static” case, if an NmZK protocol is also an argument-of-knowledge, then
it is in fact SimExt. Furthermore, in the most strict sense of the definition, SimSound does
not necessarily follow from SimExt. These results are somewhat surprising because they are
opposite to the common perception that SimExt is the strongest of the three notions.

1 Introduction

The concept of non-malleability was introduced in the seminal work of Dolev, Dwork, and Naor
[DDN91, DDN00]. It has proven fundamental to several developments in cryptography such as
CCA2-secure encryption schemes [NY90, DDN91, Sah99], composable multiparty computation
[CLOS02, Pas04, LPV09], privacy amplification and non-malleable extractors [DW09], tamper-
resilience [DPW10], hash functions [BCFW09], etc.

This paper is about non-malleability in zero-knowledge (ZK) interactive proofs [GMR85].
Roughly speaking, [DDN91] define a ZK proof to be non-malleable, if no man-in-the-middle can
improve his chances in proving a statement x̃ even if it receives a proof for a “related” statement
x. An O(log n) round NmZK protocol for NP, was given in [DDN91] based on the existence of
one-way functions (Owf). The protocol of [DDN91] makes non-black-box use of one-way functions
since it uses Cook-Levin reductions to NP-complete problems [Coo71, Kar72, Lev84]. Such reduc-
tions are usually a large source of inefficiency both in terms of computation and communication,
and are highly undesirable.

∗UCLA. E-mail: abhishek@cs.ucla.edu.
†Microsoft Redmond. Email:omkantp@microsoft.com.

1

Black-box Constructions. A protocol A is said to make only black-box use of a cryptographic
primitive B if the implementation of A uses B only as an oracle —i.e., only refers to the in-
put/output behavior of B. Such a black-box construction does not depend on the actual imple-
mentation details of B, and therefore precludes the use of Cook-Levin reductions in the protocol
explicitly. This results in much more efficient protocols, which are more suitable for actual imple-
mentations.

Despite intensive research on non-malleable ZK in recent years [DDN91, Sah99, DDO+01,
Bar02, Pas04, PR05b, PR05a, PPV08, LP09, PW10, Wee10, Goy11, LP11], the complexity of
NmZK protocols from the point of view of black-box use of cryptographic assumptions (such as
Owf), is still not very well understood. And in particular, the following question has remained
open thus far:

Do non-malleable ZK proofs, based only on black-box use of general assumptions, exist?

This stands in sharp contrast to the case of non-malleable commitment schemes, where we know
much better. The following works show that non-malleable commitment schemes based only on
black-box use of Owfs exist: Pass and Wee [PW09], Wee [Wee10], and finally Goyal [Goy11] in
O(log n), O(log∗ n), and O(1) rounds, respectively.1

Round Complexity. Traditionally, in theory of cryptography, the round-complexity of protocols
has often been an important measure of efficiency. Recent implementations show that the latency
of sending and receiving messages back and forth can in fact be a dominating factor in running
cryptographic protocols [MNPS04, BNP08]. Unlike the “black-box use” complexity, however, the
round-complexity of non-malleable ZK is much well understood. In a series of results, round-
efficient non-malleable protocols for both, ZK and commitments, based on general assumptions
were presented in [Bar02, PR05b, LP09, PW10, Wee10]. Very recently and independently, Goyal
[Goy11] and Lin-Pass [LP11] have constructed constant round non-malleable ZK protocols for all
of NP, assuming only one-way functions. Both of these works, however, still use the Owf in a
non-black-box manner. In light of these recent results, we can make our previous question even
more strict:

Do constant-round non-malleable ZK proofs, based only on black-box use of general assumptions,
exist?

The first part of this work resolves this question in the affirmative. Specifically, we construct
a simulation-sound ZK protocol for NP, based on the existence of a non-malleable commitment
scheme. In addition, the protocol uses this commitment scheme only as a black-box and adds
only a constant number of rounds more. Then, by instantiating our protocol with a (suitable)
non-malleable commitment schemes we get the desired result. In particular, by using [PW09], we
get an O(log n) round solution, and using Goyal [Goy11] gives a constant round solution. We note
that using Goyal’s scheme [Goy11] is in fact more difficult since it does not satisfy the standard
notion of “non-malleability w.r.t. commitment” [PR05a]. Instead, it satisfies the so called notion
of “non-malleability w.r.t. replacement” in the one-many setting [PR05b, PR05a]. Nevertheless,
we are able to argue security of our protocol even in this case.

1The black-box constructions of Wee [Wee10] and Goyal [Goy11] only satisfy slightly weaker notions of non-
malleability: namely, “non-malleability w.r.t. extraction” and “non-malleability w.r.t. replacement” respectively.

2

Relationship between Various Notions of Non-malleability. As noted earlier, today the
term non-malleable ZK is used loosely and can refer to any of the following three notions: NmZK
as formulated by DDN [DDN00] (see also [PR05b]), simulation soundness (SimSound) as formu-
lated by Sahai [Sah99] in the context of non-interactive zero-knowledge [BFM88, BSMP91],2, and
simulation-extractability (SimExt) as formulated by Pass and Rosen [PR05b] (see also [DDO+01,
Lin01]). Briefly, NmZK requires that for every man-in-the-middle M , there exists an M∗ who can
succeed in proving the concerned statement x̃ on its own with almost the same probability (in a
given ZK protocol). SimSound requires that no M can prove a false statement even when it can
receive proofs to many false statements from the simulator. Finally, SimExt requires that there
exist a single machine called the “simulator-extractor” which simulates the view of M and output
witnesses for all statements that M proves successfully.

We note that while SimExt is perceived as the strongest notion of all three, an exact relationship
between the three notions of non-malleability (as described above) is not known. In particular, the
only known result in this context is due to Pass and Rosen [PR05b] who proved that SimExt
implies NmZK. Given the importance of non-malleable ZK in cryptography, this is not a good
state of affairs. Since definitions represent our intuitive understanding of a given cryptographic
object, various definitions should be consistent in representing this object. Knowing the relationship
between the various definitions tells us what exactly can be expected from a given security notion.
Indeed, studying the formal relationships between various security notions is a well established line
of research. For example, see the works in [BDPR98, KY00, BFOR08, BFO08] for an extensive
study of such relationships between security notions of encryption schemes.

In the second part of this work, we take this direction and consider the definitional equivalence
of these three notions. If a protocol satisfies a security notion A, does it also satisfy some other
security notion B? If yes, then we write A ⇒ B, otherwise we write A ; B. Notation A ⇔ B
implies that the two notions are equivalent, i.e. A⇒ B, and B ⇒ A. Barring some technicalities,
we arrive at the following conclusions:

NmZK-AoK⇔ SimExt ; SimSound

Here NmZK-AoK is short for NmZK argument-of-knowledge. Pass and Rosen [PR05b] showed
that SimExt implies NmZK-AoK, and the common perception is that it is in fact stronger than
the other two notions. Our conclusion are therefore somewhat surprising.

Other Related Works. In this paper, we only focus on constructions based on general assump-
tions, and in the plain model. If one is willing to give up on general assumptions, then under specific
number-theoretic assumptions, efficient constructions are known for both non-malleable zero knowl-
edge and commitments, e.g., see [PPV08, OPV10]. Likewise, if one is willing to depart from the
plain model, and use setup assumptions such as a CRS, then efficient constructions are known for
both non-malleable zero knowledge and commitments, e.g. see [CKOS01, GMY06, Lin11].

1.1 Overview of Main Ideas

The Simulation Sound Protocol. Intuitively, to construct NmZK, we should use a non-
malleable commitment (NmCom) to obtain some sort of “independence” between left and right

2We note that simulation-soundness in the interactive case has never been explicitly formalized in the plain
model; Garay, MacKenzie, and Yang presented a formulation for the same in the CRS model [GMY06]. We present
a formulation in the plain model by building upon [Sah99, GMY06, PR05b].

3

execution. Consider using NmCom in Blum’s Hamiltonicity (BH) protocol. Clearly, replacing the
commitment scheme in BH by NmCom will not work since NmCom is not necessarily concur-
rent non-malleable [DDN91, PR05a].3 Another idea is to use a Feige-Shamir style construction
[FS89, FS90] to establish a “trapdoor” and commit to a fake witness using NmCom. Clearly, this
approach does not suffer from the earlier issue of concurrent non-malleability. However, any such
approach where NmCom will not be later “opened” must somehow prove something about the
committed value (since otherwise, intuitively, such a commitment is of no use in the protocol).
Note that this will require one to use Cook-Levin reductions unless one is able to leverage some
“cut-and-choose” style techniques. Unfortunately, however, there is no hope of using “cut-and-
choose” style protocols to circumvent this issue, since such protocols will run into the issues of
concurrent non-malleability.

With these observations, our initial idea is to change the direction of the use of NmCom, i.e.,
construct a protocol where the verifier (instead of prover) commits to some value using NmCom,
which must be opened later. One possible approach is to have the prover P and the verifier V
perform coin-tossing to determine the “challenge” in the BH-protocol in the following manner: V
first commits to a random string r1 using NmCom and then opens it after P sends a random string
r2; the BH-challenge is then set to be r1 ⊕ r2.

While a-priori this sounds like a promising approach, unfortunately, we run into the following
problem in the proof. Note that during the simulation, the simulator S must simulate the outcome
of the above coin-tossing phase to a fixed challenge value (say) ch for which it knows how to respond
successfully. Therefore, in the simulated experiment, there will be sufficient information about ch
in the first message of BH. This can be exploited by the man-in-the-middle M while preparing its
NmCom, thus failing the simulation.

To this end, our next idea is to move the verifier’s commitment to the “top” of the protocol.
Specifically, we adopt the Goldreich-Kahan [GK96] approach and require V to commit its challenge
ch using NmCom before it sees any information from P (or S) — use of NmCom guarantees that
M ’s challenge will be independent of V ’s. Since NmCom used will be statistically binding4, this
approach compromises even the stand alone soundness of the scheme. Our first key-idea is to fix
this stand-alone soundness. We do this by noting that the BH protocol has a special structure: once
prover sends its message, then for a false statement x′, there is at most one challenge ch′ for which
he can succeed. Therefore, to succeed, it must set ch′ = ch. Hence, we replace the commitment
scheme in BH-protocol by a special 3-round extractable commitment scheme [PRS02, Ros04]; this
ensures that if prover sets ch′ = ch, we can extract ch′ using the extractable-commitment, without
ever opening it.

When we move to the non-malleability setting, however, this approach runs into a second
problem. To simulate a false proof, our simulator S will indeed rewind M and prepare the first
message of BH, based on the value revealed by M , say chM . It is possible that M will set its value
in right interaction, depending upon the message on its left. To overcome this situation, our second
key-observation is to argue independence without rewinding M at all. In particular, we use the
strong definition of non-malleability, which simply gives the value chM to S (or the distinguisher
in the non-malleability experiment—see, e.g., [LPV08, PR05b]). Therefore, using this we can show

3Indeed there is no known construction of concurrent non-malleable commitments for tags of length n that uses
Owf as a black-box. Furthermore, even if there existed one, it may not be suffice here since some of the commitments
sent by the prover are opened later in the third round of BH protocol.

4In case of statistical hiding, we must rely on “non-malleability w.r.t. opening”, and that is a troublesome
proposition since no single value is defined in the commitment. This creates several new difficulties of its own.

4

that if M ’s preparation of the first BH-message on right changes as we go from real to the simulated
world, we can once again extract using our first idea, while simulating in straight-line on left. A
non-synchronous adversary is handled using simple scheduling arguments and standard-techniques.

This essentially summarizes the high-level ideas in our protocol. To obtain a constant round
construction, we need to work a little more since the only known black-box scheme of Goyal [Goy11]
satisfies only a weaker notion of non-malleability then what the above approach needs.

Definitional Relationships. We briefly highlight here how we obtain these results. First, it is
not hard to see that NmZK-AoK implies SimExt if non-malleability property uses the adversary
only as a black-box. That is, if M∗ (guaranteed by NmZK) uses M as a black-box only, then M∗

and the AOK property can be (easily) combined to construct a “simulator-extractor” for SimExt
property. However, in general, it is not obvious if such a simulator-extractor can be constructed at
all.

We show that in the static case, where M declares x̃ (after seeing x) before any execution
begins, we can in fact construct such a simulator-extractor by combining M∗ with the knowledge
extractor E guaranteed by AOK property. The central difficulty that arises is that the success
probability of M∗ may differ negligibly from that of M in the real world. Since the extraction of
the witness, intuitively, must come from M∗ via rewinding, this negligible difference can result in
exponential time during extraction. This is a problem akin to Goldreich-Kahan [GK96], and we
use their techniques to overcome this situation. To the best of our knowledge, this is the first time
that the techniques of [GK96] (to ensure expected polynomial-time simulation) have been applied
in the context of non-malleability. The ideal result, of course, would be to prove equivalence even
for the adaptive case. We leave this as an important open question.

Finally, the result SimExt ; SimSound is obtained by exploiting the fact that SimExt does
not require any security guarantee in the case when the input message is false. Since SimSound
explicitly deals with false messages, we are able to exploit this situation to obtain a counter-example.

2 Basic Definitions

We assume familiarity with standard definitions such as commitment schemes, interactive proofs,
zero knowledge, and arguments of knowledge. For completeness, some of these notions in Appendix
B.2. In this section, we first describe the man-in-the-middle setting for commitment protocols and
then move on to the case of interactive proofs. Let 〈C,R〉 be a commitment protocol where C is
the algorithm for honest committer and R is the algorithm for honest receiver. The protocol may
be interactive, i.e., may require C to send more than one message to R. We assume that 〈C,R〉 is
a string commitment scheme for strings at least as long as the security parameter, say n. Also, we
assume that 〈C,R〉 is statistically binding (and hence only computationally hiding).

Man-in-the-Middle Experiment for Commitment Schemes. Let A be a (non-uniform)
probabilistic Turing machine, specifying a man-in-the-middle strategy. A runs in time polynomial in
the security parameter n. Let z ∈ {0, 1}∗ be an arbitrary string (denoting the non-uniform “advice”
for A). Further let v ∈ {0, 1}n be an arbitrary string. The experiment begins by selecting uniform
randomness for A, and honest parties C and R. A(z) interacts with C, receiving a commitment
to the string v, and acting as a receiver; A simultaneously participates in another interaction with
an honest receiver R, acting as a committer. A’s interaction with C is called the left interaction,
and its interaction with R is called the right interaction. Let ṽ denote the string committed by

5

A in the right execution.5 As soon as A completes its interaction on right, value ṽ is provided to
A—irrespective of the state of left interaction.6

We prefer to work with tag based definitions; and hence every execution of 〈C,R〉 defines a tag
string. We stick to the simple class of protocols where the tag string is chosen by the receiver.7

Let the tag string on right be tag, and ˜tag on left (chosen by A). Without loss of generality, we
assume that the length of the tag strings is the same as the security parameter n. If ˜tag = tag,
A’s interaction on right is set to the abort symbol ⊥.

The joint view (of A and R) in the experiment consists of: the randomness of A, the auxiliary
input z, all messages A receives in both interactions, the value ṽ, and the randomness of R. The
experiment is a random process, and hence the joint view of A is a random variable. For v ∈
{0, 1}n, z ∈ {0, 1}∗, tag ∈ {0, 1}n, n ∈ N, the joint view in the experiment (which includes ṽ given
to A after completion of right side commitment) is denoted by:

mimA
〈C,R〉(v, z, tag)

Definition 1 (Non-malleable Commitments) A commitment scheme 〈C,R〉 is said to be non-
malleable if for every non-uniform probabilistic polynomial time Turing machine A (man-in-the-
middle), for every pair of strings v0, v1 ∈ {0, 1}n, every tag-string tag ∈ {0, 1}n, every (advice)
string z ∈ {0, 1}∗, the following two random variables are computationally indistinguishable,

mimA
〈C,R〉(v0, z, tag) and mimA

〈C,R〉(v1, z, tag)

In general, in many schemes, tags of smaller length such as log n are also allowed. Ideally we
want schemes with longer tag length such as n.

Man-in-the-Middle Experiment for Interactive Proofs. Let A be a (non-uniform) proba-
bilistic Turing machine, specifying a man-in-the-middle strategy. A runs in time polynomial in the
security parameter n. Let z ∈ {0, 1}∗ be an arbitrary string (denoting the non-uniform “advice”
for A). Let 〈P, V 〉 be an interactive proof system for an NP complete language L. Let A and
z be as before (in the experiment for non-malleable commitments). Let x ∈ L be a statement of
length n; we assume that P is polynomial time and receives a witness w ∈ RL(x) as its auxiliary
input. The experiment begins by selecting uniform randomness for A, and honest parties P and V .
A(x, z) interacts with P (x,w) on left acting as a verifier in the proof for x ∈ L; A simultaneously
participates in a right proof with V , proving a related statement x̃, supposedly in L. At some
point, all parties halt.8 As before, let the tag strings on left and right be tag and ˜tag respectively
with |tag| = | ˜tag| = n, and if tag = ˜tag, right interaction is set to ⊥.

The joint view (of A and V) in the man-in-the-middle experiment consists of: statements x, x̃,
the randomness of A, the auxiliary input z, all messages A receives in both interactions, and the

5Value ṽ always exists, possibly set to ⊥ if A aborts or if A is not committed to a single value.
6Note that this is a slight deviation from standard definition, which provide A the value ṽ only at the end of both

interactions. Nevertheless, all non-malleable commitment schemes that we know of, are not affected by this change.
7Once again, this choice is in the interest of a cleaner exposition of our results, and without loss of generality.

Note that A is free to choose the tag in the left session adaptively, after viewing the tag chosen by the receiver in the
right session.

8String x̃ may be chosen either adaptively depending on the left execution, or statically by announcing it before
the left execution begins. More precisely, we say that A chooses x̃ statically, if A on input (x, z) outputs x̃. Then the
experiment proceeds as described.

6

randomness of V . The experiment is a random process, and hence the joint view of A is a random
variable. For x ∈ L, w ∈ RL(x), z ∈ {0, 1}∗, tag ∈ {0, 1}n, n ∈ N, the joint view in the experiment
(sometimes called the real experiment) is denoted by:

viewA〈P,V 〉(x,w, z, tag)

When a random variable representing a view, e.g., viewA〈P,V 〉(x,w, z, tag) is accepting, we abuse

the notation and write: “viewA〈P,V 〉(x,w, z, tag)=1”. We now recall two formulations of non-
malleability from literature: non-malleable zero-knowledge and simulation-extractability.

Informally, a system 〈P, V 〉 is non-malleable, if for every man-in-the-middle adversary A, there
exists a stand-alone machine A∗ such that A∗ convinces an external verifier with essentially the same
probability as A would in the real experiment. Let mimA

〈P,V 〉(x,w, z, tag) and staA
∗

〈P,V 〉(x, z, tag) be
random variables that represent the output of V in the man-in-the-middle execution and the stand-
alone execution respectively. Here z ∈ {0, 1}∗ is the auxiliary input of A. Let 〈A∗, V 〉(x, z, tag)
denote the view of V in a random execution of the proof system defined by 〈P, V 〉, where A∗ plays
the role of the prover.

Definition 2 (Non-malleable Interactive Proofs) An interactive proof system 〈P, V 〉 for a
language L is said to be non-malleable if for every ppt Turing machine A (man-in-the-middle),
there exists a ppt Turing machine A∗ (stand alone prover), such that for every x ∈ L, every
w ∈ RL(x), every tag string tag ∈ {0, 1}n, every polynomial q(·), every (advice) string z ∈ {0, 1}∗,
and every sufficiently large n ∈ N,

Pr
[
viewA〈P,V 〉(x,w, z, tag) = 1

]
< Pr [〈A∗, V 〉(x, z, tag) = 1] +

1

q(n)

If, in addition, 〈P, V 〉 is also zero knowledge, then 〈P, V 〉 is said to be a non-malleable zero-knowledge
interactive proof system.

Note that, a non-malleable interactive proof is not necessarily zero knowledge. A somewhat different
formulation is that of simulation-extractability (which implies non-malleable zero-knowledge). This
notion requires a simulator (as in ZK), which simulates the joint view, and also outputs a witness
for the right-hand side statement if V accepts on right.

Definition 3 (Simulation Extractable Interactive Proofs) An interactive proof system 〈P, V 〉
for a language L is said to be simulation extractable if for every ppt Turing machine A (man-in-
the-middle), there exists a probabilistic expected polynomial time Turing machine SE, such that for
every x ∈ L, every w ∈ RL(x), every tag string tag ∈ {0, 1}n, and every (advice) z ∈ {0, 1}∗, the
following properties hold:

1. Joint-view in the real experiment, viewA〈P,V 〉(x,w, z, tag), is computationally indistinguishable

from the first output (i.e., simulated joint-view) of SE, denoted by SE1(x, z, tag).

2. If the right execution in SE1(x, z, tag) is accepting for an instance x̃ ∈ {0, 1}n, then the
second output of SE is a string w̃ such that w̃ ∈ RL(x̃).

We note that we will use the words argument and proofs interchangeably, since our focus here
is to construct interactive arguments only [BCC88], but the definitions are general and apply to
both. We also note that simulation-extractability is motivated by much prior work, in particular
see DeSantis et al. [DDO+01], and witness-extended emulation suggested by Lindell [Lin01].

7

3 Efficient Simulation-Sound Interactive Proofs

This section presents our first main result, by constructing a simulation-sound protocol based
only on black-box use of non-malleable commitment scheme 〈C,R〉. The notion of simulation-
soundness, in the interactive setting in plain model, despite implicit discussions in many works, has
never appeared formally. In the common reference string (CRS) model, it was introduced by Sahai
[Sah99] for non-interactive ZK; and extension for interactive case—still in the CRS model—was
considered by Garay, MacKenzie, and Yang [GMY06]. Building upon these works, we present a
formulation in the plain model.

3.1 The Definition

Intuitively, simulation soundness means that in a ZKproof, a man-in-the-middle adversary A cannot
produce a convincing proof for a false statement, even if it can see simulated proofs for statements
of its own choice, including false statements. Note that since A has to be able to access simulated
proofs, in some sense, this automatically guarantees zero knowledge. This is unlike non-malleable
interactive proofs, which may or may not be zero knowledge. The formal definition requires a single
machine S—the simulator—which guarantees indistinguishability of the view for true statements,
and the soundness for statements on right hand side even in the presence of simulated false proofs
on left hand side.

Definition 4 (Simulation Sound Interactive Proofs) An interactive proof system 〈P, V 〉 for
a language L is said to be simulation sound if for every probabilistic polynomial time Turing machine
A (man-in-the-middle), there exists a probabilistic expected polynomial time machine S such that,

1. For every x ∈ L, every w ∈ RL(x), every tag ∈ {0, 1}n, and every (advice) z ∈ {0, 1}∗, the
following distributions are computationally indistinguishable,

S(x, z, tag) and viewA〈P,V 〉(x,w, z, tag)

2. For every x ∈ {0, 1}n, every tag ∈ {0, 1}n, every (advice) z ∈ {0, 1}∗, every polynomial q(·)
and every sufficiently large n ∈ N,

Pr
[
ν ← S(x, z, tag); x̃ /∈ L ∧ b̃ = 1

]
<

1

q(n)

where, x̃ represents the right hand side statement and b̃ denotes whether the right hand side
verifier accepts, in the simulated joint view ν.

Remarks.

1. The second requirement in our definition is analogous to the requirement in [Sah99, GMY06].
This is essentially the core requirement of the definition. It also makes the definition somewhat
strict in the sense that A can receive simulated proofs for statements that it knows are false.
However, this is unavoidable: while A might know that a particular statement is false, it is
not clear how the simulator S can access this knowledge. As a result, S must be able to
simulate for all false x, irrespective of what A knows about x. This is the fact we exploit in
constructing a counter-example and prove that SimExt ; SimSound. The first requirement
of the definition is for capturing ZK.

8

2. The strict requirement can be relaxed by considering a distribution based definition in which
a sampler samples a statement (either true or false) but A does not know which is the case.
A then receives proofs only for such sampled statements. This yields a weaker definition,
denoted SimSoundD. In this case, it is straightforward to see that SimExt⇒ SimSoundD.
We remark that this is indeed usually the situation in cryptographic settings.

On the counter-example. In the light of our counter-example (see Section 4.2), it might be
tempting to think that this definition is not so natural, since a “good” definition should be implied
by simulation-extractability. The counter-example may then look like a mere artifact of our defini-
tion and leading to the belief that SimSoundD is the “right” definition. We strongly disagree with
this thought, and argue that this is not the right way to think about simulation-soundness. We
believe that SimSound should be seen as an independent notion and the “right” definition based
on one’s intuition should be formulated. In this sense, our formulation is just a natural extension
of [Sah99, GMY06] to the plain model.

Indeed, SimSound has no “obligation” to be consistent with SimExt; if it so happens that an
independent and intuitive formulation, aimed at conceptual understanding of SimSound, turns out
to be consistent (or not, for that matter) with SimExt, then so be it. An interesting parallel can be
drawn with strong witness-indistinguishability (WI) [Gol01]. Strong WI is sufficient for “natural”
cases that arise in practice where the definition, very informally, only considers indistinguishable
distributions over the statements. Whereas, when considering zero knowledge, the right definition
must still deal with individual statements—much like the current formulation of SimSound.

3.2 Tool: Extractable Commitment

Consider the following simple challenge-response based bit commitment scheme 〈Ĉ, R̂〉, which can
be based on top of any standard bit commitment scheme 〈C ′, R′〉 (e.g., [Nao89]). The scheme has
been used in several works, starting from [PRS02, Ros04]. The protocol 〈Ĉ, R̂〉 for committing to
a bit b is described in Figure 1.

Commit Phase:

1. To commit to a bit b, Ĉ chooses n independent random pairs {b0i , b1i }ni=1 of bits such that b0i ⊕ b1i = b;

and commits to them to R̂ using 〈C ′, R′〉. Let c0i ← C ′(b0i) and c1i ← C ′(b1i) for every i ∈ [n].

2. R̂ sends n uniformly random bits r1, . . . , rn.

3. For every i ∈ [n], if ri = 0, Ĉ opens c0i , otherwise it opens c1i to R̂ by sending the decommitment
information (according to 〈C ′, R′〉).

Open Phase: Ĉ opens all the unopened commitments by sending the decommitment information for each of
them.

Figure 1: Extractable Commitment Scheme 〈Ĉ, R̂〉

Some remarks about 〈Ĉ, R̂〉 are in order.

1. If 〈C ′, R′〉 is statistically binding, so is 〈Ĉ, R̂〉. We adopt the convention that if not all shares
are such that b0i ⊕b1i = b, then the adversary has essentially aborted, setting b = ⊥. It suffices
for our application.

9

2. To commit to a string s = s1, s2, . . . , sn, execute n instances of 〈Ĉ, R̂〉, in parallel—one for
each bit si. This is a string commitment scheme, which we shall denote by 〈Ĉs, R̂s〉. Note
that s = ⊥ if si = ⊥ for any i ∈ [n].

3. Scheme 〈Ĉs, R̂s〉 is a public coin protocol for R̂s.

4. Finally, 〈Ĉs, R̂s〉 admits an extractor algorithm CExt which extracts a string str′ from every
C∗ such that if C∗ commits to a valid string str, then str′ = str. The running time of
CExt is inversely proportion to the probability that C∗ makes a convincing commitment to
R. If we increase the challenge-response rounds to ω(1), then CExt runs in polynomial time.
A formal claim about the extractor is given in appendix B.1.

3.3 The Simulation-Sound Protocol

We are now ready to present our simulation-sound interactive argument system 〈P, V 〉. Our protocol
uses a non-malleable commitment scheme 〈C,R〉, and also the bit commitment scheme 〈Ĉ, R̂〉
described above. These schemes are used in a black-box manner.

At a high level, our protocol is essentially a parallel repetition of Blum’s protocol for Graph
Hamiltonicity [Blu87] with the following modifications: (a) instead of using a standard perfectly
binding commitment scheme, the prover P uses the 3-round commitment scheme 〈Ĉ, R̂〉 described
above. (b) Further, similar to [GK96], we require the verifier to commit to its challenge in advance.
However, unlike [GK96] where a statistically hiding commitment scheme is used, the verifier V in
our protocol uses the non-malleable commitment scheme 〈C,R〉 to commit to its challenge.

Protocol 〈P, V 〉. We now formally describe the protocol. Let P and V denote the prover and
verifier respectively. The common input is a graph G in the form of a n × n adjacency matrix.
Further, the private input to P is a Hamiltonian cycle H in G. The protocol proceeds as follows:

1. V chooses a uniformly random n bit string ch, and commits to it by using the non-malleable
commitment scheme 〈C,R〉, where V acts as C and P acts as R.

2. For every i ∈ [n]:

(a) P chooses a random permutation πi (a string of size 2n) and prepares Gi = πi(G).

(b) P commits to each bit bi,j in matrix Gi and each bit b′i,k in πi to V using the commitment

scheme 〈Ĉ, R̂〉,9 for every j ∈ [n2] and k ∈ [2n].

Note that this step can be seen as running 2n parallel instances of 〈Ĉs, R̂s〉, n of which
commit to n2 size bit strings G1, . . . , Gn and and the remaining n commit to 2n size bit
strings π1, . . . , πn.10 Alternatively, this step is essentially equivalent to committing a string
str of size n3 + 2n2 using the protocol 〈Ĉs, R̂s〉.

3. V sends ch, and decommits by sending the corresponding decommitment information.

9Each matrix Gi has n2 cells, and each cell contains a single bit.
10Every permutation πi for G with n vertices can be encoded using a string of length at most 2n simply by listing

the new “name” of every vertex under the permutation πi, where “name” is just an index in [n] with logn size
representation

10

4. For every i ∈ [n]:

(a) If chi = 0, P reveals πi and Gi, and decommits according to 〈Ĉ, R̂〉.
(b) Otherwise, P reveals the Hamiltonian Cycle in Gi by sending the corresponding decom-

mitment information.

Facts about 〈P, V 〉.

1. If graph G does not contain a Hamiltonian cycle, and the commitments in step 2 define a
unique string (say str), then after this step, there is at most one challenge string ch for which
a cheating prover P ∗ can provide a convincing answer in step 4.11

2. Furthermore, in the above case, if there does exist a challenge ch for which a convincing
answer can be produced after step 2, then given string str, one can reconstruct the challenge
ch in the following manner: for every i ∈ [n], let π′i denote the ith permutation and G′i denote
the ith graph in string str. Then, if π′i(G) = G′i, set chi = 0, else set chi = 1.

3.4 Proof of Security

Theorem 1 Protocol 〈P, V 〉 is a simulation-sound interactive argument system for Graph Hamil-
tonicity, as per definition 4.

To prove Theorem 1, we need to demonstrate an expected polynomial time machine S (simula-
tor), satisfying both properties in definition 4. Our simulator S is almost identical to the Goldreich-
Kahan simulator [GK96], with some obvious modifications. Before we describe our simulator, we
first define a machine A′ that is used later in our description.

Machine A′. We define A′ as a machine that internally incorporates the adversary A and honest
verifier V . A′ will act as a cheating verifier and receive a proof from an honest prover. Internally,
A′ forwards this proof to A as the left interaction of 〈P, V 〉. In addition,A′ also simulates the right
interaction for A, by letting it interact with the internal verifier V . At the end of the execution,
A′ separates the left and the right views to represent the joint-view (of the man-in-the-middle
experiment for interactive proofs). A′ produce such a joint-view simply by replaying the messages
with fixed randomness that it used for V and A internally. The reason, we create this artificial
machine A′ is because we can now run Goldreich-Kahan simulator on it.

Simulator S. The description of our simulator S, for proving SimSound, appears in Figure 2.
Every time S rewinds A′ to a previous point in execution, it provides A′ with fresh randomness for
the rest of the execution.

It is instructive to note that while in the NmCom-experiment, the adversary can obtain ṽ as
soon as it finishes the right session, no such “luxury” is available in NmZK-experiment. Therefore,

11Specifically, consider the simpler case of the 3-round Blum Hamiltonicity (BH) protocol (the argument for our
scheme follows in a similar manner). Recall that in BH, if the challenge bit is 0, then the prover P must open the
commitments (sent in the first step) to a permutation π and a graph G′ such that π(G) = G′. Otherwise, if the
challenge bit is 1, P must reveal a Hamiltonian cycle in the committed graph (without decommitting to the entire
committed graph). Then, if graph G does not contain a Hamiltonian cycle, and a cheating prover manages to succeed
in the last step irrespective of whether the challenge bit is 0 or 1, we can contradict the binding property of the
commitment scheme.

11

Let A′ denote be a machine that internally incorporates adversary A and honest verifier V as described earlier.
The simulator S first fixes a uniformly random tape for A′ and then proceeds according to the following steps:

S1. S simulates the first step of the protocol by playing an honest receiver R in the execution of the non-
malleable commitment scheme 〈C,R〉 with the adversary A′. Since 〈C,R〉 is statistically binding, except
with negligible probability, A′ is committed to a unique challenge string. Let the state of A′ at the end
of this step be stA′ , which S records.

S2. S now plays the next round of the protocol but commits to dummy strings (e.g., all 1s). That is, S commits

by executing 2n parallel instances of 〈Ĉs, R̂s〉: n instances of n2-size strings (representing graphs) and the
rest of size 2n (representing permutations). At the end of this step, if A′ successfully opens a challenge
string ch for step S1 commitment, S records ch and proceeds to the next step. Otherwise, S outputs the
current view of A′ and halts.

S3. S repeats step (S2) with fresh randomness until it records n2 valid openings to ch. If t is the total
number of trials, then let p̄ = n2/t be an estimate of p(G, r). Here p(G, r) is the probability that A′

(when initialized with state stA′) successfully opens ch in step (S2) over the randomness of step (S2).

S4. S now reinitializes A′ with the same state stA′ , and plays step (S4) as follows. Recall that ch is the
string opened in step (S2) by A. For every i ∈ [n], S does the following: if chi = 0, S chooses a random
permutation πi and commits to πi and Gi = πi(G); otherwise, S commits to a random permutation and
a random n-cycle graph Hi (i.e., an n×n adjacency matrix where the cells corresponding to the cycle are
set to 1 while the other cells are set to random bits). If A′ replies by correctly revealing the string ch, S
proceeds to complete the simulation by correctly revealing the openings to the commitments. Otherwise,

the entire step (S4) is repeated for at most poly(n)
p̄ times, until A′ correctly reveals ch. If all the attempts

fail, S outputs a special symbol indicating time-out.

Figure 2: Simulator S for 〈P, V 〉.

A—who works in the NmZK-experiment—never asks for any such values. Note that, step (S1)
represents a partial “main thread” of execution of S, which it completes in step (S4) if A′ opens
the challenge successfully.

Proving simulation-soundness. To prove that 〈P, V 〉 satisfies definition 4, we show that it
satisfies its two requirements. The first requirement is akin to proving that 〈P, V 〉 is a ZK interactive
argument system. The proof for this is identical to [GK96], barring some trivial changes, and is
therefore omitted. In particular, it follows almost immediately if we show that time-out is output
with negligible probability (see [GK96] or the proof of Claim 2 in section 4.1 where a similar claim
is argued).

We now focus on the second requirement in definition 4, which requires that A cannot prove
a false statement in the view output by S, even if the input to S is a false statement: i.e., an
arbitrary graph G ∈ {0, 1}n2

, which may not be Hamiltonian.12

Assume that the second requirement does not hold. Then, there exists a (non-uniform) ppt
man-in-the-middle adversary A, a polynomial q(·), an advice string z ∈ {0, 1}∗, and infinitely many
n ∈ N such that for every n there exists a graph G ∈ {0, 1}n2

, and a tag string tag ∈ {0, 1}n such

12For simplicity, we are dealing with a n2 size statement here, but this is only a syntactic change, and can be
removed by scaling the number of vertices in G down to

√
n.

12

that over the randomness of S:

δ(n)
def
= Pr

[
ν ← S(G, z, tag); G̃ /∈ L ∧ b̃ = 1

]
>

1

q(n)

where, G̃ represents the right hand side instance and b̃ denotes whether the right hand side verifier
accepts, in the simulated joint-view ν. Fix one such n, along with statement Gn ∈ {0, 1}n

2
, and

tag string tagn ∈ {0, 1}n, and let

δn = Pr
[
ν ← S(Gn, z, tagn); G̃ /∈ L ∧ b̃ = 1

]
which is larger than 1/q(n). Now, recall that the man-in-the-middle A controls the scheduling of
messages in the left and right executions. Figure 3 describes three representative schedules that
A can choose from. Since the overall success probability of A is δn, A must succeed in one of the
schedules with probability at least δn

3 . For each schedule, we will show how to break some security
property of scheme 〈C,R〉.

We start by describing the three schedules, as shown in Figure 3.

NMCOM

NMCOM

ExtCOM

ExtCOM

NMCOMNMCOM

ExtCOMExtCOM

NMCOM

NMCOM

ExtCOM

ExtCOM

(iii) Scheduling 3(ii) Scheduling 2(i) Scheduling 1

Figure 3: Three schedules for A. nmcom := 〈C,R〉 and ExtCOM := 〈Ĉs, R̂s〉

Scheduling 1. A starts the right execution of extractable-commitment part ExtCOM := 〈Ĉs, R̂s〉
before its left execution. In particular, this means that A sends out the first message of 〈Ĉs, R̂s〉 in
the right execution without seeing the corresponding message in the left execution.

Scheduling 2. A schedules the left and right executions in a synchronous manner.13

Scheduling 3. A forces the ExtCOM protocol 〈Ĉs, R̂s〉 in the left execution to be started before
the NmCom protocol 〈C,R〉 is completed in the right execution.

In scheduling 1, we will break the hiding property of 〈C,R〉, while in schedules 2 and 3, we will
break the non-malleability property of 〈C,R〉. We now give more details.

Proof for scheduling 1. The main observation is that in this scheduling A has already fixed the
message for which he can succeed, without any help from the simulator. Therefore, we can extract
this value from the ExtCOM-phase. Very briefly, the fact that simulator rewinds on left is not a
problem because the extractor for ExtCOM is public-coin and S never rewinds to a point higher
than ExtCOM on left. Details follow.

13This means that for every i ∈ [r], where r is the number of rounds in 〈P, V 〉, the ith message of the protocol in
left and right executions is sent only after the (i− 1)th message of the protocol has been sent in both left and right
executions.

13

We will construct a cheating receiver R∗ such that if A succeeds with probability p, then R∗

breaks the hiding property of 〈C,R〉 with probability at least poly(p). We first consider the following
(simulator) machine S′ that will later be used in the description of R∗.

Simulator S′. Let v0, v1 be two distinct n-bit strings, and let z′ = (v0, v1, z). Simulator S′

internally incorporates the man-in-the-middle A (which expects executions of 〈P, V 〉 on both sides),
graph Gn, string z′, and tag string tagn. It now proceeds exactly as our simulator S, except for
the following differences:

1. Instead of internally emulating the actions of V internally up to the second phase (i.e., the
ExtCOM-phase), machine S′ expects them to be coming from an external party.

2. S′ halts as soon as the second-stage completes in the right session (i.e., A completes its
ExtCOM-stage on the right).

We are now ready to describe the cheating receiver R∗. Let p = 1/poly(n) be success probability
of A in scheduling 1.

Receiver R∗. The cheating receiver R∗ interacts with an honest committer C who commits to vb
(for a randomly chosen bit b), and outputs b as its guess of b. Machine R∗ internally incorporates
the program of machine S′ as described above. It starts an internal execution of S′, and when
S′ asks for the commitments corresponding to the non-malleable commitment phase on right, R∗

interacts with an external committer for the NmCom-scheme 〈C,R〉 and replays its messages to
A′. As soon as the last message by this external committer has been sent, R′ disconnects with the
external committer, and continues the execution up to the point where S′ sends the first message
of ExtCOM-scheme. At this point, it does the following:

1. R∗ records the state of S′ at this point. Call this machine C∗. Note that machine C∗

represents a (cheating) committer algorithm for the ExtCOM-scheme, who has already sent
its first message.

2. R∗ chooses a random strings r0 and feeds it to C∗, and then continues the execution of C∗

from here onwards. If C∗ needs randomness, R∗ provides it to him. If C∗ expects more
strings of the form r0 (since internal rewindings on left may go past this challenge), R∗ feeds
C∗ with fresh challenges. At some point, C∗ produces a response. If no response is received
even after 4T/p steps, R∗ outputs a random bit and halts. Here T is the expected running
time of S′.

3. R∗ repeats the above step with a fresh challenge r1.

4. Note that if (valid) answers for both challenges are received, R∗ can compute the value of vb
(simple ⊕, see section 3.2).

Observe that due to scheduling 1, and construction of S, up to this point, no rewindings has been
performed on left (internally). And therefore external committer is never rewound by R∗. From
here on, the analysis for success probability of R∗ is quite standard. First observe that execution
of R∗ up to the point where it constructs C∗ is identical to that of S′ (and hence S). Therefore,
it holds—by a standard averaging argument—with at least p/2 probability, C∗ commits to a value
which it will successfully open with probability at least p/2 over the rest of the randomness of

14

the execution. In addition, since the overall expected running time is T , for any p/2-fraction
large set of transcripts, not all transcripts in this set can have running time more than 2T/p. In
particular, for each such set, no more than half of the transcripts in the set can have running
time 2 · 2T/p. It follows that C∗ responds in time less than 4T/p with probability at least half
conditioned on the aforementioned prefix of executions. Therefore, valid responses for both r0 and
r1 are obtained within time 4T/p w.p. (p/2× 1/2)2 = p2/16. Since such a suitable prefix occurs
with probability p/2, R∗ predicts b with following probability or more: q + (1 − q)/2 = 1/2 + q/2
where q = p/2 · p2/16 = p3/32.

Proof for schedule 2. In this case, we will demonstrate a ppt man-in-the-middle adversary A′

for 〈C,R〉 and an expected ppt distinguisher D′ violating the non-malleability property of 〈C,R〉.
The key-idea for this schedule is that the value that A commits in NmCom, will be given as input
along with the joint-view. And therefore, we do not rewind A at all, since we already know the
trapdoor for simulation. We proceed by first constructing in A′ for the commitment, and then a
distinguisher, who simply “restarts” from the point where A′ stopped and continues the simulation
until the ExtCOM on right concludes. Details follow.

Man-in-the-middle A′. Let v0, v1 be two distinct n-bit strings, and let z′ = (v0, v1, z). Adversary
A′ internally incorporates machine A (which expects executions of 〈P, V 〉 on both sides), graph Gn,
string z′, and tag string tagn. It now proceeds exactly as our simulator S, except for the following
differences:

1. In step (S1), instead of internally emulating the actions of committer C (on behalf of right-
hand-side V), A′ receives this commitment from an external committer who is committing
to vb, for a randomly chosen bit b (outside the view of A′). Likewise, instead of internally
emulating R (on behalf of left-hand-side P), it forwards the interaction to an external receiver
R.14

2. A′ halts as soon as A finishes its first step commitment on left.

Note that the state of A′ after this execution, denoted stA′(Gn, z
′, tagn), along with the view of R,

contains a joint-view mimA
〈C,R〉(vb, z

′, tagn). Let ṽ be the value committed to on right by A in this

joint view. We now describe the distinguisher D′, who gets (ṽ,mimA
〈C,R〉(vb, z

′, tagn)) as input, and

predicts bit b with probability 1/2 + δn/4.

Distinguisher D′. The distinguisher D′ internally incorporates A′ (or A, since A′ and A are
essentially identical; see above), graph Gn, string z′, and tag-string tagn. D′ gets as input a tuple
(ṽ,mimA

〈C,R〉(vb, z
′, tagn)).15

D′ first prepares a committer C∗ for the commitment scheme 〈Ĉs, R̂s〉 as follows. The machine
C∗ is essentially identical to our simulator S, except for the following differences:

1. C∗ does not execute step (S1). Instead, it initializes A with the adversary’s view in the
input joint view mimA

〈C,R〉(vb, z
′, tagn)). Specifically, C∗ first fixes A with the same (ad-

versary) random tape as in the view mimA
〈C,R〉(vb, z

′, tagn)). Then, C∗ (without using any

14When using black-box version of Goyal’s scheme, only the part corresponding to a “small” tag will be received
from the outside committer. Details are given in appendix A.

15Note that if 〈C,R〉 only satisfies the weaker notion of non-malleability w.r.t. replacement [Goy11], then the distin-
guisher D′ gets a tuple (r̃v,mimA

〈C,R〉(vb, z
′, tagn)) from a distribution “compatible” with (ṽ,mimA

〈C,R〉(vb, z
′, tagn)).

See appendix A for more details.

15

fresh randomness) replays all the honest committer and receiver messages in the joint-view
mimA

〈C,R〉(vb, z
′, tagn)) to A. The view corresponding to honest receiver is the view S would

have internally simulated in (S1) on behalf of the prover, and the view corresponding to the
honest committer is the view S would have internally simulated on right, in step (S1). A’s
view is identically distributed as per the adversary’s view in mimA

〈C,R〉(vb, z
′, tagn)). At the

end of this initialization, C∗ is exactly like the simulator at the end of step (S1).

2. C∗ does not execute steps (S2) and (S3) (since it already has string ṽ as input). Note that
unlike S, C∗ does not rewind A.

3. Further, C∗ executes step (S4) with the challenge string ch = ṽ (with current state of A)16.
If A responds by correctly revealing the string ṽ, C∗ proceeds in the same manner as S;
otherwise it stops the execution. However, unlike S, C∗ executes this step (S4) only once,
and never repeats it.

4. Finally, consider the execution of the commitment protocol 〈Ĉs, R̂s〉 in Stage 2 in the right
session. Instead of internally simulating an honest receiver (like S does), C∗ expects this to
be an external party R̂s. Thus, all the messages from A for this stage are forwarded externally
to R̂s, and vice-versa. C∗ halts as soon as this phase ends. The view is replaced by ⊥ if R̂s
does not accept the last committer message from C∗.

If C∗ does not output ⊥, then D′ applies the extractor CExt for the commitment scheme 〈Ĉs, R̂s〉
on machine C∗ with the view obtained by R̂s, and extracts a string str.17 Then, from string
str, D′ constructs a challenge string c̃h in the same manner as described earlier in the fact 2 for
〈P, V 〉.18 If c̃h = v0, D

′ outputs 0. On the other hand, if c̃h = v1, D
′ outputs 1. In any other case,

D′ outputs a random bit as its guess. This completes the description of the distinguisher D′.

Analysis of D′. We first analyze the running time of D′. Note that every step in D′ is strict
polynomial-time, except the step where the extractor CExt is run. Now, let us consider the
execution of the commitment protocol 〈Ĉs, R̂s〉 in Stage 2 in the right session. Fixing the first
committer message of the commitment protocol, let p be the probability that C∗ (that internally
incorporates A) produces a convincing last message for the receiver R̂s. Here, the probability
is taken over the random coins of the receiver and the random tape used by C∗ (for interacting
internally with A). Then, it follows from Claim 3 that the running time of CExt is bounded by
poly(n)

p . Now since D′ runs the extractor CExt with probability p, the total expected number of

steps taken by D′ are at most poly(n) + p · poly(n)p = poly(n).

We now analyze the probability that D′ correctly outputs bit b. Note that if the view sampled
by C∗ is one for which A is going to succeed in the right execution, then (at least) each bit in the
extracted string str that A is required to open in the last step is well-defined. Specifically, let
str = str1, . . . , strn. Then, if the ith bit of string vb is 0, then stri must be equal to G̃i, π̃i such
that πi(G̃i) = G̃, where G̃ is the instance graph in the right execution. On the other hand, if the

16Hence it does not need state stA
17Recall that C∗ does not rewind A at any point in the left session and performs straight-line simulation. Then, if

the left session gets rewound because of any possible rewindings performed by CExt, C∗ simply re-uses the value ṽ
during any possible re-execution of the left session.

18Recall that in the simulation-soundness experiment, we are only interested in the case where A manages to
successfully prove a false theorem in the right execution. Therefore, the facts for 〈P, V 〉 stated earlier are applicable
here.

16

ith bit of vb is 1, then stri must contain a permutation and an n-cycle (where the bits that do not
correspond to the cycle may not be well-defined). Therefore, if A is going to succeed in the right
execution, then the reconstructed challenge c̃h must be equal to either v0 or v1.

Now recall that A is successful (in violating simulation soundness) with probability δn. This
means, that if CExt successfully extracts str, then ch is indeed equal to vb, and hence D′ outputs
a correct guess for b. Since extraction succeeds with 1−negl(n) probability, we have that whenever
A would have succeeded, the guess is correct with probability ≥ δn − negl(n). For the case when
the commitment from C∗ is corresponding to a view where A would not have succeeded, the guess
is still correct with probability 1

2(1 − δn + negl(n)). These two events are mutually exclusive,
and hence by adding them we get that D′ outputs a correct guess for b with probability at least
1
2(1 + δn − negl(n)) ≥ 1/2 + 1/4q(n). Hence the contradiction.

Proof for schedule 3. The proof for this schedule is identical to that for schedule 3. We first
observe the following: in scheduling, A ends up completing his NmCom-phase before it has received
the NmCom from V . The key-observation now is that since A’s commitment finishes first, it can
be given the value it has committed so far during the execution. Therefore, we consider a man-in-
the-middle A′ for NmCom, just as before; as soon as it receives the committed value (which is the
trapdoor for simulation), it internally incorporates the distinguisher D′ described above and runs
it with this value. The proof therefore is essentially the same as for the case of schedule 2.

4 Relationship Between Various Notions of Non-Malleable ZK

In this section, we study the definitional equivalence between the three notions of non-malleability
in the context of zero knowledge, namely, NmZK, SimSound, and SimExt. We obtain two results.
First, in Section 4.1, we show that NmZK with the argument of knowledge (AOK) property implies
SimExt. Then, in Section 4.2, we demonstrate that SimExt does not imply SimSound. Putting
these results together, we obtain the following picture regarding the equivalence of the three notions:

NmZK-AoK⇔ SimExt ; SimSound

4.1 NmZK versus SimExt

Simulation-extractability was formulated in [PR05b], and it was shown that it implies non-malleable
zero-knowledge. Perhaps somewhat surprisingly, we show that if the non-malleable zero-knowledge
protocol is also an argument-of-knowledge, then it is actually simulation extractable.

Theorem 2 If 〈P, V 〉 is a non-malleable zero knowledge argument of knowledge for a language
L ∈ NP, it is in fact a simulation extractable interactive argument for L.

This result is very generic, and applies to all types of protocols, be they computational or statistical
ZK, black-box or non-black-box ZK, etc. This essentially shows that as far as the “moral” sense
of non-malleability is concerned, the two definitions are equivalent. We note, however, that the
theorem holds only for the static case where A must announce the theorem x̃ on input the theorem
x, before the protocol execution begins. That is, x̃ depends only on x and not on the execution of
the protocol. We do not consider the adaptive case (where A chooses x̃ based on the execution on
left so far) in this paper, and leave it for future work.

17

Proof of Theorem 2. Let 〈P, V 〉 be a non-malleable zero knowledge argument of knowledge for
a language L with respect to tags of length n. This means that we have the following: (a) Since
〈P, V 〉 is non-malleable, we have that ∀ ppt man-in-the-middle adversaries A, ∃ a stand-alone ppt
adversary A∗ such that it satisfies definition 2. Now, we can define probabilities pa and pa∗ as
follows: pa is the probability that A convinces the verifier in the right session in the real execution,
and pa∗ is the probability that A∗ convinces an honest verifier. Note that by definition 2, we have
that pa∗ ≥ pa−negl(n). (b) Since 〈P, V 〉 is zero knowledge, for every cheating verifier strategy, ∃ a
simulator S satisfying the zero knowledge property. (c) Since 〈P, V 〉 is an argument of knowledge,
for every cheating prover P ∗, ∃ an extractor E satisfying the argument of knowledge property.

Now, in order to prove Theorem 2, we need to construct a simulator-extractor SE satisfying
Definition 3. Let V ∗ be a machine that internally incorporates the adversary A and verifier V
and their interaction in the real execution.19 Now, before proceed to formally describe our
simulator-extractor, let us discuss a natural approach in order to highlight the main technical
challenge.

Main Issue. Consider the following natural algorithm for a simulator-extractor SE: (a) Let V ∗ be
a machine that internally incorporates the adversary A and verifier V and their interaction in the
real execution. Then, first run the simulator S with V ∗ to output the joint view of A. (b) Now,
since we are in the static case, the instance x̃ in the right execution does not depend on the left
view. Then, if the joint view output by S contains an accepting right execution, run the extractor
E on the stand-alone adversary A∗ to extract a witness for x̃.

Now note that the running time of the second step in the above procedure is proportional to ps
pa∗

,
where ps is the probability that the joint view output by S contains an accepting right execution.
Unfortunately, ps

pa∗
is not necessarily bounded by a polynomial, hence the running time of the above

procedure is not expected ppt. We note that this is reminiscent of a technical problem overcome
by Goldreich and Kahan in the construction of constant round zero knowledge [GK96]. Indeed, we
overcome this problem by using ideas from [GK96].

The simulator-extractor. We now give a detailed description of our simulator-extractor SE.
The simulator-extractor SE receives statement x, advice string z, and tag-string tag as input. SE
also receives access to either the code of A or black-box access to A depending upon the properties
of A∗ and S. SE runs the following steps:

S1. Run S with V ∗ on input x, z, and tag to generate a view viewV ∗ .
20 If the right execution in

viewV ∗ is not accepting (i.e., A does not convince V), then output (viewV ∗ ,⊥) and stop.

S2. Otherwise, let ps denote the probability that simulator S in step (S1) outputs a view that
contains an accepting right execution. Run S with V ∗ (on input x, z, and tag) repeatedly

19Note that given the view of V ∗ in the real execution, we can construct the joint view of A (as defined in Section
B) from the random tape of V ∗ and the messages that A and V exchange internally, as well as those exchanged
between P and V ∗. Likewise, if S is used with V ∗, the joint view can still be constructed even if S is a non black-box
simulator. This is done by first producing viewV ∗ , and then replaying the entire executions on left and right with
the same V that was used to construct V ∗. This yields messages corresponding to both left and right sessions of A,
defining the complete joint view.

20SE simply runs the man-in-the-middle adversary A such that it interacts with S and V in the “left” and “right”
executions respectively. In case S is a non black-box machine, SE is non black-box as well, since it will need the
code of A to construct V ∗.

18

until n2 views with accepting right execution are obtained. Let ps = n2

t be the estimate of
ps, where t is the total number of trials.

S3. Run the following two procedures in parallel21 and halt as soon as one of them finishes.

(i) Run the brute force (exponential-time) search procedure to compute a witness w̃ for x̃.
Output the tuple (viewV ∗ , w̃) and stop.

(ii) Run the following two steps: (a) First, run the (stand-alone) adversary A∗ with an
honest verifier V on inputs x, x̃ (where x̃ is the theorem proven by A in step S1), z, and

tag repeatedly at most poly(n)
ps

times until an accepting view viewA∗ is generated. If no
accepting view is generated after all the trials, then output a special symbol indicating
time-out and stop. (b) Next, run the argument of knowledge extractor E on A∗ with
input viewA∗ to extract a witness w̃ for x̃ from A∗. Output the tuple (viewV ∗ , w̃) and
stop.

This completes the description of our simulator extractor SE. We will now prove that it satisfies
Definition 3. Here, the difficult part is to prove that the running time of SE is polynomial in
expectation, as claimed below.

Claim 1 The simulator-extractor SE runs in expected polynomial time.

We further need to show that SE outputs a joint view indistinguishable from that in the real
execution along with a valid witness for the instance in the right session. Towards that end,
note that the correctness of the witness string output by SE follows directly from the correctness
of the extractor machine E. Then, we only need to show that the joint view output by SE is
indistinguishable from that in the real execution. To this end, we note that the proof for the same
essentially follows from the zero-knowledge property guaranteed by S provided we can argue that
SE outputs the time-out symbol with only negligible probability. In the claim below, we bound
this probability. We remark that this is a standard claim, and similar claims have earlier appeared
in several works before, e.g., [GK96, Lin01, Lin10].

Claim 2 The simulator-extractor SE outputs the time-out symbol with only negligible probability.

We now give proofs for Claim 1 and Claim 2 to complete the proof of Theorem 2.

Proof of Claim 1. Let T be a random variable that denotes the total running time of the
algorithm. Further, let Ti be a random variable that denotes the running time of step (Si) in the
above algorithm. Then, by definition, we have T = T1+T2+T3. We now proceed to compute E[T].
Below, we will use the following fact for conditional expectation: given random variables X,Y ,

E[X] =
∑
i

E[X|Y = i].Pr[Y = i] (1)

First note that E[T1] = poly(n) since S is an expected polynomial time algorithm. Let S1accept
denote the event that the view output by S in step (S1) contains an accepting right execution.

21The effect of parallel execution can be obtained by running one step of the first procedure followed by one step
of the second procedure, and so on.

19

Now note that if step (S2) is performed (which happens only if event S1accept occurs), the

number of trials in (S2) are n2

ps
on the average. Then, we have E[T2|S1accept] = poly(n)

ps
. Note that

E[T2|¬S1accept] = 0. Then, using equation 1, we have:

E[T2] = E[T2|S1accept].Pr[S1accept]

=
poly(n)

ps
· ps = poly(n)

Next, first note that E[T3−a|¬S1accept] = 0. Then, using equation 1, we have:

E[T3−a] = E[T3−a|S1accept].Pr[S1accept]

= 2n · ps

Now, recall that in step (S3-b-i), the adversary A∗ is run at most poly(n)
ps

times. Since A∗

is an (expected) polynomial time algorithm, we have, E[T3−b−i|S1accept] = poly(n)
ps

. Note that

E[T3−b−i|¬S1accept] = 0. Then, using equation 1, we have:

E[T3−b−i] = E[T3−b−i|S1accept].Pr[S1accept]

=
poly(n)

ps
· ps

Now, let S3accept denote the event that an accepting view is obtained in step (S3-b-i). Recall that
A∗ produces an accepting view with probability pa∗ . From union bound, we have, Pr[S3accept] =

ps · (poly(n)ps
· pa∗). Further, recall that the expected running time of the argument of knowledge

extractor E is bounded by poly(n)
pa∗

conditioned on the event that the input view is accepting. That

is, E[T3−b−ii|S3accept] = poly(n)
pa∗

. Note that E[T3−b−ii|¬S3accept] = 0. Then, using equation 1, we

have,

E[T3−b−ii] = E[T3−b−ii|S3accept].Pr[S3accept]

=
poly(n)

pa∗
·
(
ps · (

poly(n)

ps
· pa∗)

)
=

poly(n)

ps
· ps

From linearity of expectation, we have that E[T3−b] = E[T3−b−i] +E[T3−b−ii] = poly(n)
ps
· ps. Now,

let S2const denote the event that the probability ps estimated in step (S2) is within a constant factor
of ps. Then, we can consider the following two cases:

I. If event S2const occurs, then E[T3−b] = poly(n). In this case, step (S3-b) finishes earlier than
step (S3-a). Thus, the total time contributed by step (S3) is poly(n).

II. If event ¬S2const occurs, then step (S3-a) may finish earlier. In this case, the total time
contributed by step (S3) is at most 2 · (ps · 2n).

Now note that event S2const occurs with (overwhelmingly high) probability 1 − 2−n
2
. Therefore,

using equation 1, we have:

E[T3] = E[T3|S2const].Pr[S2const] + E[T3|¬S2const].Pr[¬S2const]
= poly(n) · (1− 2−n

2

) + ps · 2n+1 · 2−n
2

= poly(n)

Finally, by linearity of expectation, we have E[T] = E[T1] + E[T2] + E[T3] = poly(n). This
completes the proof of Claim 1.

20

Proof of Claim 2. Let ∆(x, r) denote the probability that the simulator-extractor SE, on input
theorem x and random tape r, outputs the time-out symbol. Then,

∆(x, r) = ps ·
∑
i≥1

Pr(b1/psc = i) · (1− pa∗)i·poly(n)

< ps ·
(

Pr (ps/ps = Θ(1)) · (1− pa∗)poly(n)/ps + Pr (ps/ps 6= Θ(1))
)

< ps · (1− pa∗)poly(n)/ps

We will now show that ∆(x, r) is negligible in n. Let us first assume to the contrary that
that there exists a polynomial P (·), an infinite sequence of theorems {xn} (with |xn| = n), and an
infinite sequence of random tapes {rn}, such that ∆(xn, rn) > 1/P (n). It is easy to see that for
each such n, ps > 1/P (n). We now consider two cases:

Case 1: For infinitely many n’s, pa∗ > ps/2. In such a case, we have the following:

∆(xn, rn) ≤ (1− pa∗)poly(n)/ps

≤ (1− ps/2)poly(n)/ps

< 2−poly(n)/2

which is a contradiction.

Case 2: For infinitely many n’s, pa∗ < ps/2. Further, for all these n’s, it also holds that pa∗ ≥
pa − negl(n) (for some negligible function negl(n)). We consider the following two subcases:

1. pa∗ ≥ pa: In this case, we have that pa ≤ ps/2. It follows that ps − pa ≥ ps/2, which is
non-negligible since ps is non-negligible in n. This contradicts the fact that ps and pa must
be negligibly close.

2. pa∗ < pa: In this case, there must exist a negligible function negl(n) such that pa∗ = pa −
negl(n). Then, once again we obtain pa ≤ ps/2, and hence ps − pa ≥ ps/2. As in the case
above, we have a contradiction.

Hence, contradiction follows in both cases. This completes the proof of Claim 2.

4.2 SimSound versus SimExt

We show that, perhaps somewhat surprisingly, a simulation extractable protocol is not necessarily
simulation sound. Intuitively, this is because the behavior of the simulator-extractor SE is not
defined for false statements. We exploit this fact to construct a protocol which is simulation
extractable, but not simulation sound.

At a high level, we consider languages L ∈ NP∩co-NP, since such languages admit polynomial-
size witness for both types of assertions: “x ∈ L”and “x /∈ L”. We then take any SimExt protocol
and modify it so that first the man-in-the-middle A proves to P that “x /∈ L” using a tag-string
tag; if it succeeds, P proves that “x ∈ L” using a modified tag-string tag′, which A can copy on
right. If x is false, it is not hard to see that A succeeds if the left interaction succeeds in proving a
false statement. We now give more details.

21

Protocol 〈P̂ , V̂ 〉. Let 〈P, V 〉 be a tag based simulation extractable interactive proof system for a
language L ∈ NP ∩ co-NP. An interesting example of such a language L is quadratic-residuosity
modulo a product of two primes. Thus, every statement x has a polynomial size witness w for
either x ∈ L or x /∈ L (i.e., x ∈ L̄). Given 〈P, V 〉, we construct a new system 〈P̂ , V̂ 〉 (for L), such
that 〈P̂ , V̂ 〉 is simulation-extractable, but not simulation-sound. Protocol 〈P̂ , V̂ 〉 is given in Figure
4.

Common Input: An instance x supposedly in L.

Private Input to P̂ : A witness w ∈ RL(x).
Parameters: Security parameter 1n.

Tag String: tag of length n chosen by P̂ .

Stage 1:
V̂ ⇔ P̂ : V̂ and P̂ engage in an execution of 〈P, V 〉 using the tag tag, where V̂ proves to P̂ that
x /∈ L. Note that the honest verifier always fails.

Stage 2:
P̂ ⇔ V̂ : P̂ proves to V̂ that x ∈ L by engaging in an execution of 〈P, V 〉 using the tag string tag′

where,

(a) tag′ = tag if V̂ succeeds in stage 1,

(b) Otherwise, tag′ is the same as tag with its first bit flipped.

Figure 4: Protocol 〈P̂ , V̂ 〉

We now briefly sketch the argument that 〈P̂ , V̂ 〉 is simulation extractable, but not simulation-
sound.

〈P̂ , V̂ 〉 is simulation extractable. Completeness and soundness of the protocol are easy to
verify. In addition, consider the real experiment where A receives proof to a “true” statement
x ∈ L with tag string tag, and tries to prove statement x̃ ∈ L on the right. Since right verifier
always aborts, it follows from the soundness of 〈P, V 〉 that A fails as well in stage 1 of the left proof.
This observation shows that it is easy to modify the simulator-extractor guaranteed for 〈P, V 〉 so
that it works for 〈P̂ , V̂ 〉 as well.

〈P̂ , V̂ 〉 is not simulation-sound. Recall that in the man-in-the-middle experiment for simulation-
soundness, the adversary A may chose a “false” statement x and obtain a simulated proof for x ∈ L
from the simulator in the left execution. The simulation-soundness property requires that even in
such a scenario, A cannot prove (except with negligible probability) a false statement in the right
execution as long as ˜tag 6= tag. Let A be an adversary who has an x /∈ L along with a witness w
for this fact, “hardwired” into it.22 Let tag′ be the tag string tag with the first bit flipped. We
will show that A can successfully prove that x ∈ L (which is false) using tag-string ˜tag = tag′

which is different from tag, violating the simulation-soundness.

22Note that since L ∈ NP ∩ co-NP, there exists a short witness for x /∈ L.

22

A sends x to the simulator, receives string tag, and sends ˜tag = tag′ along with x̃ = x to
the right-hand-side verifier. On right-hand-side honest V fails.23 However, A uses its hardwired
witness to succeed in stage 1 on left. As a result, S now must convince A that x ∈ L using the
tag string tag′ in stage 2. Now A simply “copies” the left proof entirely to stage 2 of the right
execution. (Note that since the honest verifier must have failed to prove that x /∈ L in Stage 1,
A is expected to prove that x ∈ L using tag-string tag′ in Stage 2 of the right execution.) That
is, A simply acts as a wire and forwards each message from the simulator in the left execution to
the honest verifier in the right execution; each response from the verifier is forwarded back to the
simulator. Since the simulator succeeds in convincing A in the left execution, A succeeds as well in
the right execution.

References

[Bar02] Boaz Barak. Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In FOCS, 2002.

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs of
knowledge. Journal of Computer and System Sciences, 37(2):156–189, October 1988.

[BCFW09] Alexandra Boldyreva, David Cash, Marc Fischlin, and Bogdan Warinschi. Foundations
of non-malleable hash and one-way functions. In ASIACRYPT, pages 524–541, 2009.

[BDPR98] Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among
notions of security for public-key encryption schemes. In CRYPTO, pages 26–45, 1998.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and
its applications (extended abstract). In STOC, pages 103–112, 1988.

[BFO08] Alexandra Boldyreva, Serge Fehr, and Adam O’Neill. On notions of security for deter-
ministic encryption, and efficient constructions without random oracles. In Advances
in Cryptology – CRYPTO ’08, pages 335–359, 2008.

[BFOR08] Mihir Bellare, Marc Fischlin, Adam O’Neill, and Thomas Ristenpart. Deterministic
encryption: Definitional equivalences and constructions without random oracles. In
Advances in Cryptology – CRYPTO ’08, pages 360–378, 2008.

[Blu87] Manuel Blum. How to prove a theorem so no one else can claim it. In Proceedings of
the International Congress of Mathematicians, pages 1444–1451, 1987.

[BNP08] Assaf Ben-David, Noam Nisan, and Benny Pinkas. Fairplaymp: a system for secure
multi-party computation. In ACM Conference on Computer and Communications Se-
curity, pages 257–266, 2008.

[BSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano. Noninteractive
zero-knowledge. SIAM J. Comput., 20(6):1084–1118, 1991.

23If simulator-extractor somehow convinces A on right in stage-1, A will change its strategy on left and fail. This
works as well.

23

[CKOS01] Giovanni Di Crescenzo, Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Efficient
and non-interactive non-malleable commitment. In EUROCRYPT, pages 40–59, 2001.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally compos-
able two-party computation. In Proc. 34th STOC, pages 494–503, 2002.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC, pages
151–158, 1971.

[DDN91] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended
abstract). In STOC, pages 542–552, 1991.

[DDN00] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437 (electronic), 2000. Preliminary version in STOC
1991.

[DDO+01] Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Persiano, and
Amit Sahai. Robust non-interactive zero knowledge. In CRYPTO ’ 2001, pages 566–
598, 2001.

[DPW10] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In
ICS, pages 434–452, 2010.

[DW09] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryp-
tography from weak secrets. In STOC, pages 601–610, 2009.

[FS89] U. Feige and A. Shamir. Zero knowledge proofs of knowledge in two rounds. In
CRYPTO, pages 526–545, 1989.

[FS90] U. Feige and A. Shamir. Witness indistinguishable and witness hiding protocols. In
Proc. 22nd STOC, pages 416–426, 1990.

[GK96] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge
proof systems for NP. Journal of Cryptology, 9(3):167–189, Summer 1996.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems. In Proc. 17th STOC, pages 291–304, 1985.

[GMY06] Juan A. Garay, Philip D. MacKenzie, and Ke Yang. Strengthening zero-knowledge
protocols using signatures. J. Cryptology, 19(2):169–209, 2006.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, 2001. Earlier version available on http://www.wisdom.weizmann.ac.il/~oded/

frag.html .

[Goy11] Vipul Goyal. Constant round non-malleable protocols using one way functions.
In STOC, pages 695–704, 2011. See full version available on http://research.

microsoft.com/en-us/people/vipul/nmcom.pdf.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Com-
puter Computations, pages 85–103, 1972.

24

http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://www.wisdom.weizmann.ac.il/~oded/frag.html
http://research.microsoft.com/en-us/people/vipul/nmcom.pdf
http://research.microsoft.com/en-us/people/vipul/nmcom.pdf

[KY00] Jonathan Katz and Moti Yung. Complete characterization of security notions for prob-
abilistic private-key encryption. In STOC, pages 245–254, 2000.

[Lev84] Leonid A. Levin. Problems, complete in “average” instance. In STOC, page 465, 1984.

[Lin01] Yehuda Lindell. Parallel coin-tossing and constant-round secure two-party computation.
In Crypto ’01, pages 171–189, 2001.

[Lin10] Yehuda Lindell. Constant round zero knowledge proofs of knowledge. 2010. http:

//eprint.iacr.org/2010/487.pdf.

[Lin11] Yehuda Lindell. Highly-efficient universally-composable commitments based on the ddh
assumption. In EUROCRYPT, pages 446–466, 2011.

[LP09] Huijia Lin and Rafael Pass. Non-malleability amplification. In STOC, pages 189–198,
2009.

[LP11] Huijia Lin and Rafael Pass. Constant-round non-malleable commitments from any
one-way function. In STOC, 2011.

[LPV08] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. Concurrent
non-malleable commitments from any one-way function. In TCC, pages 571–588, 2008.

[LPV09] Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A unified
framework for concurrent security: universal composability from stand-alone non-
malleability. In STOC, pages 179–188, 2009.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - secure two-party
computation system. In USENIX Security Symposium, pages 287–302, 2004.

[Nao89] Moni Naor. Bit commitment using pseudo-randomness (extended abstract). In
CRYPTO, pages 128–136, 1989.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In STOC, pages 427–437, 1990.

[OPV10] Rafail Ostrovsky, Omkant Pandey, and Ivan Visconti. Efficiency preserving transfor-
mations for concurrent non-malleable zero knowledge. In TCC, pages 535–552, 2010.

[Pas04] Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest
majority. In Proc. 36th STOC, pages 232–241, 2004.

[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive one-way functions
and applications. In CRYPTO, pages 57–74, 2008.

[PR05a] Rafael Pass and Alon Rosen. Concurrent non-malleable commitments. In FOCS, 2005.

[PR05b] Rafael Pass and Alon Rosen. New and improved constructions of non-malleable cryp-
tographic protocols. In STOC, 2005.

[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge with
logarithmic round-complexity. In FOCS, 2002.

25

http://eprint.iacr.org/2010/487.pdf
http://eprint.iacr.org/2010/487.pdf

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from
one-way functions. In TCC, pages 403–418, 2009.

[PW10] Rafael Pass and Hoeteck Wee. Constant-round non-malleable commitments from sub-
exponential one-way functions. In EUROCRYPT, pages 638–655, 2010.

[Ros04] Alon Rosen. A note on constant-round zero-knowledge proofs for NP. In TCC, pages
191–202, 2004.

[Sah99] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In Proc. 40th FOCS, pages 543–553, 1999.

[Wee10] Hoeteck Wee. Black-box, round-efficient secure computation via non-malleability am-
plification. In FOCS, 2010.

Appendix

A A Note on using Goyal’s Scheme

To obtain constant round result, the non-malleable commitment scheme 〈C,R〉 in our construction
should be replaced by a simple variant of Goyal’s scheme, denoted by 〈Cg, Rg〉. Let us explain:
denote by NmComg the black-box version of Goyal’s scheme (see appendix B, page 20, of [Goy11]).
This scheme does not satisfy definition 1, which is “non-malleability w.r.t. commitment”. It
satisfies the following weaker notion.

Non-malleability w.r.t. Replacement. Recall that the non-malleability definition provides
A with value ṽ during the construction of view mimA

〈C,R〉(v0, z, tag). The replacement definition

considers a replacer (not necessary ppt) which does the following: when A is supposed to get the
value ṽ, the replacer instead gives him a different value r̃v satisfying the following. If ṽ 6= ⊥, then
except with probability at most p (over the entire experiment), the two values are set equal: r̃v = ṽ.
However, if ṽ = ⊥, replacer might set r̃v to any arbitrary string. Let rmimA

〈C,R〉(vb, z, tag) denote

A’s view in such an experiment for b ∈ {0, 1}. The scheme is said to be “non-malleable w.r.t.
replacement”, if rmimA

〈C,R〉(v0, z, tag) = rmimA
〈C,R〉(v1, z, tag) for all v0, v1 and p = 1/poly(n).

It is also shown, that if the length of the tags is log n+1, then NmComg is also “one-many non-
malleability w.r.t. replacement for tags of length log n+ 1”. Recall that in one-many experiment,
A interacts with many receivers R1, . . . , Rm (and not just one), while still interacting with only
one committer C on left. When A finishes all his commitments on right, the values committed by
him—say ṽ1, . . . , ṽm—are given to A. In case of replacement, A instead receives r̃v1, . . . , r̃vm. Other
than this change, everything else remains the same and we require indistinguishability between the
two views.

Scheme 〈Cg, Rg〉. Given a tag tag ∈ {0, 1}n, apply the “DDN-LOGN Trick” to obtain n small
tags tag1, . . . , tagn, each of length log n+ 1: tagi := i ◦ tag[i]. To commit to a string v ∈ {0, 1}n,
the scheme 〈Cg, Rg〉 simply runs n parallel execution of NmComg one for each small tag tagi (which
commits to the bit v[i].

26

Any change in the proof? We only need to make a very minor change, so that instead of
reducing the proof to “non-malleability w.r.t. commitment”, it will be reduced to “one-many non-
malleability w.r.t. replacement for tags of length log n + 1”. And to do this, recall that in the
proof, V ’s commitment is obtained from an external committer C. When using 〈Cg, Rg〉, instead
of receiving the whole commitment from outside, we will continue to simulate Cg inside except that
the commitment for small tag tagj will be received from outside (on some bit v[j]). The index j
will be the one for which ˜tagj 6= tagi for every i ∈ [n] (and such a j always exists, with ties broken
arbitrarily). The proof remains identical otherwise.

B Other Standard Definitions

B.1 Extractor for 〈Ĉs, R̂s〉

For an arbitrary probabilistic polynomial time committing algorithm C∗, define trans〈C∗,R̂s〉 to be

the following random variable: fix uniformly random coins for C∗ and R̂s, and output the transcript
of interaction—i.e., all messages exchanged—between C∗ and R̂s. Let Value(trans〈C∗,R̂s〉) denote

the string committed to by C∗ in this interaction.

Claim 3 For every probabilistic polynomial time Turing machine C∗, there exists a probabilistic
Turing machine CExt such that for every polynomial q(·) and every sufficiently large n ∈ N the
following conditions hold:

1. For ν sampled according to trans〈C∗,R̂s〉,

Pr
ν

[
Value(ν) 6= ⊥ ∧ str← CExtC

∗
(ν) ∧ str 6= Value(ν)

]
<

1

q(n)

2. The expected running time of CExt is bounded by,

poly(n)

Pr
[
Rs accepts trans〈C∗,R̂s〉

]
The proof for the above claim follows from [Ros04] and is therefore omitted.

B.2 Zero Knowledge, Interactive Proofs, Proofs of Knowledge

Here we recall the standard definitions of interactive proofs, zero knowledge [GMR85], and proofs
of knowledge [GMR85, FS89]. For convenience, we will follow the notation and presentation of
[PR05b]. Let P (called the prover) and V (called the verifier) denote a pair of probabilistic
interactive Turing machines that are running a protocol with each other on common input x.
Throughout our text, we will always assume V to be a polynomial-time machine. Let 〈P, V 〉(x) be
the random variable representing the output of V at the end of the protocol. If the machine P is
polynomial-time, it is assumed that it has a private input w.

Definition 5 (Interactive proof system) A pair of probabilistic interactive Turing machines
〈P, V 〉 is called an interactive proof system for a language L and a witness relation RL if the
following two conditions hold:

27

1. Completeness: For every x ∈ L,

Pr[〈P, V 〉(x) = 1] ≥ 1− negl(|x|)

2. Soundness: For every x /∈ L, and every interactive Turing machine P ∗,

Pr[〈P ∗, V 〉(x) = 1] ≤ negl(|x|)

Here, probability is taken over the coins of all the interactive Turing machines.

Zero Knowledge. An interactive proof 〈P, V 〉 is said to be zero-knowledge if, informally speak-
ing, the verifier V learns nothing beyond the validity of the statement being proved. This intuition
is formalized by requiring that the view of every probabilistic polynomial-time (ppt) verifier V ∗,
represented by viewV ∗(x, z), generated as a result of its interaction with P can be “simulated” by
a ppt machine S (referred to as the simulator). Here, the verifier’s view consists of the common
input x, its random tape, and the sequence of prover messages that it receives during the protocol
execution. The auxiliary input of V ∗ and S is denoted by z ∈ {0, 1}∗.

Definition 6 (Zero knowledge) An interactive proof system 〈P, V 〉 is said to be zero knowledge
if for every ppt machine V ∗, there exists a ppt algorithm S such that for every x ∈ L, every
z ∈ {0, 1}∗, viewV ∗(x, z) and S(x, z) are computationally indistinguishable.

One can consider stronger variants of zero knowledge where the output of S is statistically close
(or identical) to the verifier’s view. In this paper, we will focus on the computational variant only.

Proofs of Knowledge. An interactive proof system is a proof of knowledge if, informally speak-
ing, not only does the prover convince the verifier of the validity of the statement, but it also
possesses a witness for the statement. This intuition is formalized by showing the existence of a
machine E, called the knowledge extractor, that is able to extract a witness from a prover that
succeeds in convincing an honest verifier. We use the following variant of the definition of proof of
knowledge, presented in [PR05b].

Definition 7 (Proof of knowledge) Let 〈P, V 〉 be an interactive proof system for the language
L with witness relation RL. We say that (P, V) is a proof of knowledge if there exists a polynomial
q(·) and a probabilistic oracle machine E, such that for every computationally unbounded machine
P ∗, for every x ∈ L, and every y, r ∈ {0, 1}∗, the following properties hold:

1. The expected number of steps taken by E is bounded by

q(|x|)
Prr′ [〈P ∗x,w,r, V (x; r′)〉 = 1]

2. The machine E with oracle access to P ∗x,w,r outputs a solution w∗ ∈ RL(x) with probability
at least 1− negl(|x|).

Here P ∗x,w,r denotes the deterministic machine P ∗ with common input fixed to x, auxiliary input
fixed to w, and random tape fixed to r. The machine E is called a knowledge extractor.

28

	Introduction
	Overview of Main Ideas

	Basic Definitions
	Efficient Simulation-Sound Interactive Proofs
	The Definition
	Tool: Extractable Commitment
	The Simulation-Sound Protocol
	Proof of Security

	Relationship Between Various Notions of Non-Malleable ZK
	NmZK versus SimExt
	SimSound versus SimExt

	A Note on using Goyal's Scheme
	Other Standard Definitions
	Extractor for "426830A C"0362Cs,R"0362Rs"526930B
	Zero Knowledge, Interactive Proofs, Proofs of Knowledge

