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1 Introduction

Recently, a large body of work attempts to analyze the effectiveness of side-channel countermeasures in a
mathematically rigorous way. These works propose a physical model incorporating a (mostly broad) class
of side-channel attacks and design new cryptographic schemes that provably withstand them under certain
assumptions about the physical hardware (see, e.g., [30,16,17,21,10,6,29] and many more). By now we have
seen new constructions for many important cryptographic primitives such as digital signature and public key
encryption schemes that are provably secure against surprisingly broad classes of leakage attacks.

Unfortunately, most of these new constructions are rather complicated non-standard schemes, often rely-
ing on a heavy cryptographic machinery, which makes them less appealing for implementations on computa-
tionally limited devices. In this work, we take a different approach: instead of developing new cryptographic
schemes, we ask the natural question whether standard, widely-used cryptosystems can be implemented effi-
ciently such that they remain secure in the presence of continuous bounded leakage. We answer this question
affirmatively, and show a generic way that “compiles” various common cryptosystems into schemes that
remain secure against a broad class of leakage attacks.

Similar to earlier work, we make certain restrictions on the leakage. We follow the work of Dziembowski
and Pietrzak [16], and allow the leakage to be arbitrary as long as the following two restrictions are satisfied:

1. Bounded leakage: the amount of leakage in each round is bounded to λ bits (but overall can be arbitrary
large).

2. Independent leakage: the computation can be structured into rounds, where each such round leaks
independently (we define the notion of a “round” below).

In addition to these two restrictions, we require that our device has access to a source of correlated random-
ness generated in a leak-free way – e.g., computed by a simple leak free component. We elaborate in the
following on our leakage restrictions.

1.1 Our Leakage Model

ON THE BOUNDED LEAKAGE ASSUMPTION. Most recent work on leakage resilient cryptography requires
that the leakage is bounded per observation to some fraction of the secret key. This models the observation
that in practice many side-channel attacks only exploit a polylogarithmic amount of information, and typi-
cally require thousands of observations until the single key can be recovered. This is, for instance, the case
for DPA-based attacks where the power consumption is modeled by a weighted sum of the computation’s
intermediate values. We would like to mention that all our results also remain true in the entropy loss model,
i.e., we do not necessarily require that the leakage is bounded to λ bits, but rather only need that the min
entropy of the state remains sufficiently high even after given the leakage.

ON INDEPENDENT LEAKAGES. The assumption that different parts of the memory leak independently –
originally put forward by Micali and Reyzin [30] as the physical axiom “only computation leaks informa-
tion” – constitutes a spatial restriction of the leakage and has been used in several works [30,16,33,26,17]
(and more). In this paper, we assume that the memory of the device is divided into three parts L,R and C
where (L,C) and (R,C) leak independently. To use the independent leakage assumption, we structure the
computation into rounds, where each round only accesses either (L,C) or (R,C). One may object now that
leakage is a global phenomenon. Indeed, this is true and many important leakage functions, for instance,
the power consumption of a device modeled by the Hamming weight, are rather a global function of the
computation’s intermediate values. We would like to emphasize, however, that many relevant global leakage
functions can be computed from just local leakages. This is not only true for the prominent Hamming weight
leakage, but more generally, for any affine leakage function. Hence, independent leakages still allow for a
broad class of practically relevant global leakage functions.
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Recently, it has been pointed out that the independent leakage assumption does not capture so-called
“coupling effects” that may occur between gates and add a non-linear term to the leakage function [38]. As
such coupling effects typically occur between gates, it may contradict locality assumptions that are made at
a very low architectural level – e.g., if we assume that each gate of the computation leaks independently. In
our case, coupling effects may be much less dangerous, as we make the assumption of independent leakages
at a much higher architectural level, i.e., we just assume that two parts of the memory leak independently.

ON LEAK-FREE COMPONENTS. We use a biased source of randomness that outputs correlated randomness
sampled in a leak-free way. Such a source can, for instance, be implemented by a probabilistic leak-free
component that outputs the correlated randomness. As in earlier works that made use of leak-free compo-
nents [20,18,25,21], we require that our component leaks from its outputs, but the leakage function cannot
view the internals of the ongoing computation. More concretely, in the simplest case our component O out-
puts two random vectors A,B ← Fn (with F being a finite field and n being a statistical security parameter)
such that their inner product is 0, i.e.,

∑
iAi · Bi = 0. We require that A gets stored on one part of the

memory, while B gets stored on the other, thus, we require that A and B leak independently.
Our component O is simple and small: it can be implemented in size linear in n, as one simply needs

to sample uniformly at random vectors A and (B1, . . . , Bn−1) and computes the last element Bn such that∑
iAi · Bi = 0.3 Second, we use O in a very limited way, namely, we need it only when we refresh the

secret key (cf. Section 1.3 for further discussion on this). Finally, O does not take any inputs, and hence its
computation is completely oblivious of the actual computation (e.g., encryption or signing) that is carried
out by the device. Moreover, this property gives rise to an alternative implementation as pointed out by Faust
et al. [18]: instead of assuming leak-free computation, we can haveO simply read its output one by one from
a pre-computed list. Thus, it suffices to have leak-proof one-time storage instead of leak-proof computation.
This may be an option if the computation is performed only a bounded number of times.

We would also like to emphasize that a leak-free component that does not take any inputs is much harder
to attack by side-channel analysis, as successful attacks usually require some choice (or at least knowledge)
over the inputs that are taken by the device. Also, we would like to stress that such a component can be
tested (regarding its side-channel resistance) independently of the environment in which it is going to be
used eventually.

We will further discuss our model and how it relates to earlier work in the next sections.

1.2 Leakage Resilient Implementation of Standard Cryptographic Schemes

As outlined in the introduction, many recent works in leakage resilient cryptography design new crypto-
graphic schemes that remain secure against certain (often very broad) classes of leakages. While the design
of new cryptographic schemes with built-in leakage resilience is a very important research direction, we
believe that most current results suffer from one of the following weaknesses:

1. For many security related tasks such as authentication or confidentiality of data, certain cryptographic
schemes have become part of widely used international standards. Even if desirable, it is unlikely that
in near future these standards will be adjusted to include recent scientific progress from leakage resilient
cryptography.

2. Even though by now schemes that remain secure in surprisingly powerful leakage models have been
proposed, they are often very complicated, rely on non-standard complexity assumptions and are often
rather inefficient.

In this work, we take a different approach and propose general techniques that allow to implement efficiently
standard cryptographic schemes that remain provably secure in the above described leakage model. Before

3 For simplicity, we assume that Ln is non-zero.
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we given an overview of our contributions in the next section, we discuss some related literature that has
dealt with similar questions before.

LEAKAGE RESILIENT CIRCUIT COMPILERS. One fundamental question in leakage resilient cryptography
is whether any computation can be implemented in a way that resists certain side-channel leakages. This
question has been studied in a series of works and dates back to the work of Ishai et al. [24]. They propose
a circuit compiler that transforms any Boolean circuit into one that is secure against an adversary who reads
off the values from a bounded number of wires. This work has recently been extended by Faust et al. [18] to
consider larger classes of computationally bounded leakages – e.g., the leakage is modeled by an AC0 circuit
that takes as input the entire state of the circuit. While these schemes only achieve security against restricted
function classes (either probing attacks or AC0), the works of Juma and Vahlis [25] and Goldwasser and
Rothblum [21] study the question whether any computation can be implemented in a way that withstands ar-
bitrary polynomial-time computable leakages. As a building block these schemes use a public-key encryption
scheme and essentially encrypt the entire computation of the circuit. More precisely, the approach of Juma
and Vahlis makes use of fully homomorphic encryption, while Goldwasser and Rothblum generate for each
Boolean wire of the circuit a new key pair and encrypt the current value on the wire using the corresponding
key. We would like to emphasize that all circuit compilers (except for the one of Ishai et al.) require leak-free
components. Notice also that the two latter works require the independent leakage assumption: while Juma
and Vahlis use – similar to us – a device whose memory is divided into two parts, Goldwasser and Rothblum
assume that essentially every individual gate (of the original circuit) leaks independently.

LEAKAGE RESILIENT ELGAMAL. While circuit compilers allow to secure any (cryptographic) compu-
tation against leakage, they typically suffer from a large efficiency overhead. A recent work of Kiltz and
Pietrzak [26] takes on this efficiency challenges and shows that certain standard cryptographic schemes can
be implemented efficiently in a leakage resilient way. The authors propose an efficient “bilinear version” of
the ElGamal encryption scheme that is CCA1-secure even if the computation from the decryption process
leaks information. The main weakness of this work is that the security proof is given in the generic group
model. That is, group elements are modeled as uniformly random values and to perform a group operation
or compute a bilinear map one has to query an oracle. Such a proof only implies that there are no "generic"
leakage attacks that would work on any underlying group, i.e., it shows security against any attack that is
independent of the representation of the group elements.

1.3 Our contribution

We continue this line of research and show a generic method to implement various standard cryptographic
schemes that are provably secure in the above described leakage model. More precisely, we propose efficient
and simple implementations of the Okamoto authentication/signature scheme and show that standard secu-
rity properties (such as existentially unforgeability) carry over under continuous leakage attacks. Moreover,
we prove that a simple variant of the ElGamal encryption scheme is CCA2 secure in the random oracle
model even if the decryption process leaks continuously. We also discuss why our techniques are fairly gen-
eral and may find applications for the secure implementation of various other cryptographic schemes. As a
fundamental tool, we introduce an information theoretically secure scheme to refresh an encoded secret in
the presence of continuous leakage. We detail on our results below.

LEAKAGE RESILIENT REFRESHING OF ENCODED SECRETS. Recently, Davi et al. [9] introduced the notion
of leakage resilient storage (LRS). Such a scheme encodes a secret S such that given partial knowledge
about the encoding an adversary does not obtain any knowledge about the encoded secret S. One of their
instantiations relies on the inner product two-source extractor introduced in the seminal work of Chor and
Goldreich [8]. Essentially, in this scheme the secret S is encoded as a pair (L,R) ∈ Fn × Fn, where F is
some finite field, and 〈L,R〉 :=

∑
i Li · Ri = S. Unfortunately, the construction of Davi et al. has one
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important weakness: it can trivially be broken if an adversary continuously leaks from the two parts L and
R. The first contribution of this paper is to avoid such attacks and propose an efficient refreshing scheme for
the inner product based encoding.

To make such a refreshing secure against continuous leakage attacks, we divide the memory of the de-
vice into three parts L,R and C, where initially (L,R) are chosen uniformly subject to the constraint that
〈L,R〉 = S, and C is empty. Our refreshing scheme Refresh takes as input (L,R) and outputs a fresh en-
coding (L′, R′) of S. The computation of Refresh will be structured into several rounds, where in each round
we only touch either (L,C) or (R,C), but never L and R at the same time. We will allow the adversary to
adaptively leak a bounded amount of information from (L,C) and (R,C). In fact, this is the only assumption
we make, i.e., we do not require that the rounds of the computation leak independently. Since in our protocol
the third part C is only used to “communicate” information between L and R, we will usually describe our
schemes in form of a 2-party protocol: one party, PL, is controlling L, while the second party, PR, holds R.
The third part C is used to store messages that are exchanged between the parties. Hence, instead of saying
that we allow the adversary to retrieve information from (L,C) and (R,C), we can say that the leakage
functions take as inputs all variables that are in the view of PL or PR.

Our protocol for the refreshing uses the following basic idea. Suppose initially PL holds L and PR holds
R with 〈L,R〉 = S, then we proceed as follows:

1. PL chooses a vector X that is orthogonal to L, i.e., 〈L,X〉 = 0, and sends it over to PR.
2. PR computes R′ := R+X and chooses a vector Y that is orthogonal to R′ and sends it over to PL.
3. PL computes L′ := L+ Y .

The output of the protocol is (L′, R′). By simple linear algebra it follows that 〈L,R〉 = 〈L′, R′〉 = S.
One could also hope that this scheme remains secure in the presence of continuous leakage attacks. Perhaps
counterintuitive, we show (cf. Appendix D.1) that this simple protocol can be completely broken if the
leakage function can be evaluated on (L,X, Y ) and (R,X, Y ). To prevent this attack, we need a method
for PL to send a random X to PR in an “oblivious” way, i.e., without actually learning anything about X ,
besides of the fact that X is orthogonal to L (and symmetrically a similar protocol for PR sending Y to
PL). We propose an efficient protocol that achieves this property by making use of our source of correlated
randomness (A,B)← O. Notice that even given access to such a distribution, the refreshing of an encoded
secret is a non-trivial task, as, e.g., just computing L′ = L+A and R′ = R+B does not preserve the secret.

The protocol that we eventually construct in Figure 1 solves actually a more general problem: we will
consider schemes for storing vectors S ∈ Fm, and the encoding of a secret S will be a random pair (L,R)
where L is a vector of length n and R is an n×m-matrix (where n� m is some parameter), and S = L ·R.

LEAKAGE RESILIENT AUTHENTICATION AND SIGNATURES. We then use our protocol for refreshing an
encoded secret as a building block to efficiently implement standard authentication and signature schemes
in a way that withstands leakage attacks. More concretely, we show that under the DL assumption a simple
implementation of the widely-used Okamoto authentication scheme is secure against impersonation attacks
even if the prover’s computation leaks continuously. Using the standard Fiat-Shamir heuristic, we can turn
our protocol into a leakage resilient signature scheme.

At a high level, our transformation of the standard Okamoto scheme encodes the original secret keys with
our inner product based encoding scheme. Then, we carry out the computation of the prover in “encoded
form”, and finally after each execution of the prover, we refresh the encoded secrets using our leakage
resilient refreshing scheme. To carry out the computation of the prover in an encoded, and hence, in a leakage
resilient way, we make use of the following two observations about the inner product based encoding:

1. it exhibits an additive homomorphism, i.e., if we encode two secrets S1, S2 as (L,Q) and (L,R), then
(L,Q + R) represents an encoding of S1 + S2. Moreover, if Q and R are stored on the same memory
part, then this computation can be carried out in a leakage resilient way.
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2. for two secrets S1 and S2 and two group generators g1 and g2, it allows to compute gS1
1 · g

S2
2 in a

leakage-resilient way. To illustrate this, suppose that S1 is encoded by (L,Q) and S2 is encoded by
(L,R). A protocol to compute gS1

1 · g
S2
2 proceeds then as follows. PR computes the vector A :=

gQ1 g
R
2 =

(
gQ1
1 gR1

2 , . . . , gQn1 gRn2

)
and sends it over to PL. Next, PL computes the vector B := AL =

(AL1
1 , . . . , ALnn ) and finally it computes gS1

1 gS2
2 =

∏
iBi.

Together with our scheme for refreshing the inner product encoding, these both basic components suffice to
implement the standard Okamoto authentication scheme in a leakage resilient way (cf. Section 4).

LEAKAGE RESILIENT CCA2-SECURE ENCRYPTION. As a third contribution, we show that a simple and
efficient variant of the ElGamal cryptosystem can be proven to be CCA2 secure in the RO model even if the
computation from the decryption process leaks continuously. We would like to emphasize that our imple-
mentation is the first construction of a leakage resilient encryption scheme that allows the leakage to depend
on the target ciphertext, i.e., we allow the adversary to obtain leakage after seeing the target ciphertext. We
solve this obstacle by exploiting the independent leakage assumption, i.e., we encode the secret key as (L,R)
and carry out the computation using the above described protocol for secure exponentiation. This together
with our protocol for refreshing the inner product encoding yields a leakage resilient implementation of an
ElGamal-based encryption scheme under the DDH assumption. We would like to note that even though our
scheme uses a simulation sound (SS) NIZK, our construction is rather efficient, as SS-NIZKs can be imple-
mented efficiently via the Fiat-Shamir heuristic. Moreover, notice that the Fiat-Shamir heuristic is the only
place where the random oracle assumption is used, which in particular means that we do not make any addi-
tional restrictions on the class of leakage functions, as, e.g., leakage functions can query the random oracle
at any point.

A GENERAL PARADIGM FOR LEAKAGE RESILIENT IMPLEMENTATIONS. We observe that our methods for
implementing cryptographic schemes is fairly general. Indeed, the two main properties that we require are

1. the secret key of the cryptosystem is an element in a finite field, and the scheme computes only a linear
function of the secret key in this field, and

2. the secret key is hidden information theoretically even given the transcript that an adversary obtains when
interacting with the cryptosystem.

Various other cryptosystems satisfy these properties. For instance, we can use our techniques to construct a
(rather inefficient) leakage resilient CCA2-secure encryption scheme that is provably secure in the standard
model.

ON THE EFFICIENCY OF OUR SCHEMES. For a statistical security parameter n, we increase the secret key
size and computation complexity by a factor of n compared to the underlying schemes. That is, instead of
using two group elements as secret key, our implementations need to store 3n group elements. Moreover, if
the underlying scheme needs to carry out 2 exponentiations our leakage resilient implementations requires
3n exponentiations. The public key size of both the underlying cryptosystem and our implementation is
identical. As already discussed above, an alternative for implementing standard cryptosystems is via leakage
resilient circuit compilers. These are, however, considerably less efficient due to the following three reasons:

1. Circuit compilers typically consider the question of how to implement Boolean circuits in a leakage
resilient way. Hence, to implement, e.g., the Okamoto authentication, one first needs to “compile” the
scheme into a Boolean circuit and only then implements it using the techniques from the leakage resilient
circuit compilers. Our techniques are more direct and do not require such a detour via Boolean circuits.

2. Non-linear operations (e.g., AND that is heavily needed for exponentiations and multiplications) are
significantly more expensive than the implementation of linear operations. More concretely, for any non-
linear operation the efficiency loss is quadratic in the security parameter.
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3. The current circuit compilers that protect against arbitrary polynomial-time computable leakage [25,21]
either carry out the complete computation using a fully homomorphic encryption scheme, or they encrypt
every bit on a wire with a new secret/public key pair. In contrast, we do not use any additional public key
cryptography.

Of course, circuit compilers have an important advantage over our work. While we focus on certain cryp-
tographic schemes, leakage resilient circuit compilers allow to implement any computation in a leakage
resilient way. Hence, they may be used to implement, e.g., the AES in a leakage resilient way.

We would like to point out that the scheme of Kiltz and Pietrzak [26] is considerably more efficient than
our scheme and results only into a constant loss in efficiency (compared to standard ElGamal). However, this
comes at the price that the security proof is done in the generic group model. Moreover, we would like to
mention that in this work we settle a question raised in [26]. We propose the first encryption scheme that is
CCA2 secure in the presence of leakage attacks.

ON THE LEAK-FREE COMPONENT. In our work, we require access to correlated randomness that is sampled
in a leak-free way. It is interesting to see how our requirement relates to earlier work that made use of
similar assumptions [20,18,25,21]. We focus in the following on the results of Juma and Vahlis [25] and
Goldwasser and Rothblum [21], which both work in a similar leakage model as we do. In the work of
Juma and Vahlis, the leak-free component has to sample a public/secret key pair for a fully homomorphic
encryption scheme together with two ciphertexts C and C ′ that are encryptions of 0. On the other hand, in
the work of Goldwasser and Rothblum the leak free component takes as input a public key and a mode of
operation, and either outputs a fresh encryption of 0 or an encryption of a random bit b. It is easy to see that
the computation that is carried out by our leak-free componentO is considerably simpler as it just involves a
small number of simple operations. Moreover, we would like to emphasize that our component is only needed
to refresh the secret key (and not for signing or decryption), while in Goldwasser and Rothblum the leak-
free component is required O(k) times for every NAND gate in the original circuit (here k is the security
parameter). On the positive side, we would like to note, that the entire output of the leak-free component
in [21] can leak jointly, while in our case the two parts A and B have to leak independently. The same is true
for the component of Juma and Vahlis where the secret key cannot leak jointly with the ciphertexts.

COMPARISON TO OTHER RELATED WORK. We would like to mention that in a series of important recent
works [10,6,29,28,5] new schemes for leakage resilient signing and encryption (CPA-secure) have been pro-
posed. While these works have an obvious advantage over our work by considering a more powerful leakage
model, we would like to point out that these schemes are non-standard and rather inefficient. Furthermore,
they rely on non-standard assumptions (e.g., subgroup decisional assumption), or only allow a small con-
stant fraction (or even logarithmic fraction) of key leakage during the update process. Moreover, we would
like to emphasize that the goal of our work is different: we are interested in the question whether standard
cryptosystems can be efficiently implemented in a leakage resilient way. For instance, our method for storing
and refreshing a secret key works generically and independently of the proposed scheme. We would like to
note that Dodis et al. [12] recently introduced a method for storing and refreshing a secret. Their construc-
tion does not require leak-free components, but is rather inefficient and relies on computational assumptions.
Moreover, it is not clear if it can be used for other purposes such as implementing standard cryptosystems.
It is an interesting research question whether our results can be combined with the storage and refreshing
scheme of [12].

2 Preliminaries

For a natural number n the set {1, . . . , n} will be denoted [n]. If X is a random variable then we write
x ← X for the value that the random variable takes when sampled according to the distribution of X . In
this paper, we will slightly abuse notation and also denote by X the probability distribution on the range of
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the variable. A vector V is a row vector, and we denote by V T its transposition. We let F be a finite field
and for m,n ∈ N, let Fm×n denote the set of m × n-matrices over F. Typically, we use Mi to denote the
column vectors of the matrix M . For a matrix M ∈ Fm×n and an m bit vector V ∈ Fm we denote by V ·M
the n-element vector that results from matrix multiplication of V and M . For a natural number n by (0n)
we will denote the vector (0, . . . , 0) of length n. We will often use the set of non-singular m ×m matrices
denoted by NonSingm×m(F) ⊂ Fm×m.

Let in the rest of this work n be the statistical and k be the computational security parameter. Let G be a
group of prime order p such that log2(p) ≥ k. We denote by (p,G)← G a group sampling algorithm. Let g be
a generator of G, then for a (column/row) vector A ∈ Znp we denote by gA the vector C = (gA1 , . . . , gAn).
Furthermore, let CB be the vector (gA1B1 , . . . , gAnBn). In the following, we will often omit to explicitly
specify the security parameter k, and assume that the information theoretic security parameter n is a function
of k.

2.1 Basic Definitions from Information Theory

We denote with Un the random variable with distribution uniform over {0, 1}n. Let X0, X1 be random
variables distributed over X and let Y be a random variable over a set Y , then we define the statistical
distance between X0 and X1 as ∆(X0;X1) =

∑
x∈X 1/2|Pr[X0 = x] − Pr[X1 = x]|. Moreover, let

∆(X0;X1|Y )
def
= ∆((Y,X0); (Y,X1)) be the statistical distance conditioned on Y . For random variables

X over X and Y over Y let d(X) := ∆(X;U) and d(X|Y ) := ∆(X;U |Y ) (where U is uniform and
independent from Y ). It is easy to verify that for any event E we have

d(X|Y ) =
1

2

∑
x∈X ,y∈Y

|Pr [X = x ∧ Y = y | E ]− Pr [Y = y | E ] /|X ||. (1)

For random variables X,Y we define the min-entropy of X as H∞(X) = − logmaxx∈X Pr[X = x] and
the average min-entropy X given Y as [13]

H̃∞(X|Y ) := − log
(
Ey←Y

[
2−H∞(X|Y=y)

])
.

We prove some basic information theoretic lemmata that will be used throughout the paper in Appendix A.

2.2 Leakage Model

As described in the introduction, in this work we will assume that the memory of a physical device is split
into two parts, which leak independently. We model this in form of a leakage game, where the adversary can
adaptively learn information from each part of the memory. More formally, let L,R ∈ {0, 1}s be the two
parts of the memory, then for a parameter λ ∈ N, we define a λ-leakage game played between an adaptive
adversary A – called a λ-limited adversary – and a leakage oracle Ω(L,R) as follows. For some t ∈ N,
the adversary A can adaptively issue a sequence {(fi, xi)}ti=1 of requests to the oracle Ω(L,R), where
xi ∈ {L,R} and fi : {0, 1}s → {0, 1}λi . For the ith query the oracle replies with fi(xi) and we say that in
this case the adversary A retrieved the value fi(xi). The only restriction is that in total the adversary does
not retrieve more than λ bits from each L andR. In the following, let Out(A, Ω(L,R)) be the output ofA at
the end of this game. Without loss of generality, we assume that Out(A, Ω(L,R)) := (f1(x1), . . . , ft(xt)).

LEAKAGE FROM COMPUTATION. So far, we discussed how to model leakage from the memory of a device,
where the memory is split into two parts (L,R). If the physical device carries out “some computation” using
its memory (L,R), and this computation leaks information to the adversary, then we need a way to describe
the leakage from such computation. As discussed in the introduction, we do this in form of a two-party
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protocol Π = (PL, PR), which is executed between the two parties PL and PR and an adversary is allowed
to obtain partial information (the leakage) from the internal state of the players.

Initially, the party PL holds L, while PR holdsR. The execution ofΠ with initial inputs L andR, denoted
by Π(L,R), proceeds in rounds. In each round one player is active and sends messages to the other one.
These messages can depend on his input (i.e., his initial state), his local randomness, and the messages that
he received in earlier rounds. Additionally, the user of the protocol (or the adversary – in case the user is
malicious) may interact with the protocol, i.e., he may receive messages from the players and sends messages
to them. For simplicity, we assume that messages that are sent by the user to the protocol are delivered to
both parties PL and PR. At the end of the protocol’s execution, the players PL and PR (resp.) may output a
value L′ and R′ (resp.). These outputs may be viewed as the new internal state of the protocol and of course
are not given to the adversary.

One natural way to describe the leakage of the computation (and memory) of such a protocol is to allow
the adversary to adaptively pick at the beginning of each round a leakage function f and give f(state) to
the adversary. Here, state contains the initial state of the active party, its local randomness and the messages
sent and received during this round by her. Indeed, in our setting, we allow the adversary to learn such
leakages. However, to simplify exposition, we consider actually a stronger model, and use the concept of a
leakage game introduced earlier in this section. More precisely, for player Px ∈ {PL, PR}, we denote the
local randomness that is used by Px during the execution of Π(L,R) as ρx, and all the messages that are
received or sent (including the messages from the user of the protocol) by Mx. At any point in time, we
allow the adversary A to play a λ-leakage game against the leakage oracle Ω((L, ρL,ML); (R, ρR,MR)). A
technical problem may arise if A asks for leakages before sending regular messages to the players. In such a
case parts of Mx may be undefined, and for simplicity, we will set them to constant 0. For some initial state
(L,R), we denote the output of A after this process with A� (Π(L,R)→ (L′, R′)).

As we are interested in the continuous leakage setting, we will mostly consider an adversary that runs in
many executions of A � (Π(L,R)→ (L′, R′)). For the ith execution of the protocol Π(Li−1, Ri−1), we
will write A �

(
Π(Li−1, Ri−1)→ (Li, Ri)

)
, where the current initial state of this round is (Li−1, Ri−1)

and the new state of PL and PR will be (Li, Ri). After A �
(
Π(Li−1, Ri−1)→ (Li, Ri)

)
, we assume

that the players PL and PR erase their current state except for their new state Li and Ri, respectively. More
precisely, for the ith execution of A �

(
Π(Li−1, Ri−1)→ (Li, Ri)

)
, we let the adversary interact with

the leakage oracle Ω((Li−1, ρiL,M
i
L); (R

i−1, ρiR,M
i
R)), where (ρiL, ρ

i
R) denotes the randomness used during

this execution, and (M i
L,M

i
R) denotes the messages that the players send and receive. If A is a λ-limited

adversary, then we allow him to learn up to λ bits from the oracle in each such execution.

2.3 Leakage-resilient Storage

Davi et al. [9] recently introduced the notion of leakage-resilient storage (LRS) Φ = (Encode,Decode).
An LRS allows to store a secret in an “encoded form” such that even given leakage from the encoding no
adversary learns information about the encoded values. One of the constructions that the authors propose
uses two source extractors and can be shown to be secure in the independent leakage model. More precisely,
an LRS for the independent leakage model is defined for message spaceM and encoding space L × R as
follows:

– Encode :M→ L×R is a probabilistic, efficiently computable function and
– Decode : L × R → M is a deterministic, efficiently computable function such that for every S ∈ M

we have Decode(Encode(S)) = S.

An LRS Φ is said to be (λ, ε)-secure, if for any S, S′ ∈M and any λ-limited adversary A, we have

∆(Out(A, Ω(L,R));Out(A, Ω(L′, R′))) ≤ ε,
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where (L,R) := Encode(S) and (L′, R′) := Encode(S′).
In this paper, we consider a leakage-resilient storage scheme that allows to efficiently store elements

S ∈ Fm for some m ∈ N. Namely, we propose Φn,mF = (Encoden,mF ,Decoden,mF ) defined as follows:

– Encoden,mF (S) first selectsL← Fn\{(0n)} at random, and then samplesR← Fn×m such thatL·R = S.
It outputs (L,R).

– Decoden,mF (L,R) outputs L ·R.

The following lemma shows that Φn,mF is a secure LRS. The proof uses the fact that an inner product over a
finite field is a two-source extractor [8,35] and appears in Appendix C.

Lemma 1. Let m,n ∈ N with m < n and let F such that |F| = Ω(n). For any 1/2 > δ > 0, γ > 0 the LRS
Φn,mF as defined above is (λ, ε)-secure, with λ = (1/2− δ)n log |F| − log γ−1 and ε = 2m(|F|m+1/2−nδ +
|Fm| γ).

The following is an instantiation of Lemma 1 for concrete parameters.

Corollary 1. Suppose |F| = Ω(n) andm < n/20. Then, LRS Φn,mF is (0.3 · |Fn| , negl(n))-secure, for some
negligible function negl.

Proof (of Corollary 1). In Lemma 1 set δ = 0.10 and γ := |F|−n/10. It is easy to see that for such a choice of
parameters ε (as defined in Lemma 1) is negligible. We also have that λ is equal to 0.4n log |F|−n log |F| /10,
which is equal to 0.3 · |Fn|. ut

3 Leakage-Resilient Refreshing of LRS

An obvious drawback of an LRS is the fact that the total leakage from the memory is bounded by some small
constant λ. Indeed, if an adversary can continuously learn information from the encoded secret (L,R) ←
Encode(S), then after a few observations L and R are completely known, and the adversary can trivially
break the LRS. To solve this problem, we need a method of “pumping” new randomness into the encoding. To
this end, we show how to securely refresh an LRS encoding. More precisely, we will develop a probabilistic
protocol (L′, R′)← Refresh(L,R) that securely refreshes (L,R), even when the adversary can continuously
observe the computation from the refreshing process. The only additional assumption that we make is that
the protocol has access to a simple leak-free source O of correlated randomness.

For a secret S and a leakage-resilient storage Φ = (Encode,Decode) with message spaceM, the refresh-
ing of an encoded secret (L,R) ← Encode(S) is done by a two-party protocol (L′, R′) ← Refresh(L,R).
Initially, PL holds L and PR holds R. At any point during the execution of the protocol, the adversary can
interact with a leakage oracle and learn information about the internal state of PL and PR. At the end the
players output the “refreshed” encoding (L′, R′), i.e., the new state of the protocol. Notice that there is no
interaction between the refreshing protocol and the user of the protocol. In other words: the only way in
which the adversary can “interact” with the protocol is via the leakage oracle.

For correctness, we require that Decode(L,R) = Decode(L′, R′), i.e., the refreshed encoding decodes to
the stored secret S. Informally, for security, we require that no λ-limited adversary can learn any significant
information about S (for some parameter λ ∈ N). We will define the security of the refreshing protocol
using an indistinguishability notion. Intuitively, the definition says that for any two secrets S, S′ ∈ M the
view (i.e., the leakage) resulting from the execution of the refreshing of secret S is statistically close to the
view from the refreshing of secret S′. Before we formally define security of our refreshing, we consider the
following experiment, which runs the refreshing protocol for ` rounds and lets the adversary play a leakage
game in each round. For a protocol Π , an LRS Φ, an λ-bounded adversary A, ` ∈ N and S ∈ M, we have
Exp(Π,Φ)(A, S, `):
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1. For a secret S, we generate the initial encoding as (L0, R0)← Encode(S).
2. For i = 1 to ` runA against the ith round of the refreshing protocol:A�

(
Π(Li−1, Ri−1)→ (Li, Ri)

)
.

3. Return whatever A outputs.

The experiment outputs whatever A outputs after interacting with Π for ` iterations (without loss of genera-
tion we can assume thatA outputs just a single bit b ∈ {0, 1}). To simplify notation, we will sometimes omit
to specify Φ in Exp(Π,Φ)(A, S, `) explicitly. We are now ready to define security of a refreshing protocol.

Definition 1 (A (`, λ, ε)-refreshing protocol). For a LRS Φ = (Encode,Decode) with message spaceM,
a refreshing protocol (Refresh, Φ) is (`, λ, ε)-secure, if for every λ-limited adversary A and any two secrets
S, S′ ∈M, we have that ∆(Exp(Refresh,Φ)(A, S, `);Exp(Refresh,Φ)(A, S′, `)) ≤ ε.

In the rest of this section, we construct a secure refreshing protocol for the LRS scheme Φn,mF =
(Encoden,mF ,Decoden,mF ) from Section 2.3. Our protocol can refresh an encoding (L,R)← Encoden,mF (S)
any polynomial number of times, and guarantees security for λ being a constant fraction of the length of L
and R (cf. Theorem 1 and Corollary 2 for the concrete parameters). For ease of notation, we will often omit
to specify the Φn,mF when talking about the refreshing protocol (Refreshn,mF , Φn,mF ) and just write Refreshn,mF
or Refresh when clear otherwise.

As already mentioned in the introduction, we will assume that the players have access to a non-uniform
source of randomness. More precisely, they will access an oracle O, that samples pairs (A,B) ∈ Fn ×
NonSingn×m(F) such that A 6= (0n) and A · B = (0m). In each iteration the players will sample the oracle
twice: once for refreshing the share of PR (denote the sampled pair by (A,B)), and once for refreshing
the share of PL (denote the sampled pair by (Ã, B̃)). The protocol is depicted on Fig. 1. To understand the
main idea behind the protocol, the reader may initially disregard the checks (in Steps 1 and 4) that L and
R′ have full rank (these checks were introduced only to facilitate the proof and only occur with very small
probability: cf. Lemma 3). The reader may also initially assume that m = 1 (the case of m > 1 is a simple
generalization of the m = 1 case). The main idea of our protocol is that first the players generate the value
X ∈ Fn×m such that L · X = (0m), and then in Steps 3 the player PR sets R′ := R + X (note that, by
simple linear algebra L · R′ = L · (R + X) = L · R + L · X = L · R). Symmetrically, later, the players
generate Y ∈ Fn such that Y ·R′ = (0m) and set (in Step 6) L′ = L+ Y . By a similar reasoning as before
we have L′ ·R′ = L ·R′(= L ·R).

The generation of X and Y is done in an “oblivious” way: the player PR will learn X and the player
PL will learn Y , but X will be secret for PR and Y will be secret for PR. In Appendix D.1, we show that a
simpler, and more natural protocol, in whichX and Y are generated by PL and PR (resp.) and communicated
to each other is actually insecure. We now first show correctness of our protocol from Figure 1.

Lemma 2 (Correctness of the refreshing). Assuming that the players PL and PR did not abort, we have
for any S ∈ Fm: Decoden,mF (Refreshn,mF (S)) = S.

Proof. As we assume that A and B have a full rank, and we check (in Steps 1 and Step 4) that L and R′

have full rank, by Lemma 15 in Appendix B we can sample a random solution M and M̃ for the equations
in Steps 2 and 5 (resp.). The rest of the proof follows by simple linear algebra:

L′ ·R′ =
(
L+ Ã · M̃

)
·R′ (2)

= L ·R′ + Ã · M̃ ·R′ (3)

= L ·R′ + Ã · B̃ (4)

= L ·R′, (5)

where (2) follows from the construction of the protocol (Step 6), Eq. (3) follows from the linearity of the inner
product, Eq. (4) comes from the fact that M̃ ·R′ = B̃ (cf. Step 5), and (5) follows from Ã · B̃ = (0, . . . , 0).
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Similarly (5) is equal to L · (R +M ·B) = L ·R + L ·M ·B. By a similar reasoning as above we get
that L ·M · B = A · B = (0, . . . , 0). Hence, (5) is equal to L · R, which decodes to S. This finishes the
proof. ut

Protocol (L′, R′)← Refreshn,mF (L,R):

Input (L,R): L ∈ Fn is given to PL and R ∈ Fn×m is given to PR.

Refreshing the share of PR:

1. If L does not have a full rank then the players abort. Let (A,B)← O and give A to PL and B to PR.
2. Player PL generates a random non-singular matrix M ∈ Fn×n such that L ·M = A and sends it to PR.
3. Player PR sets X :=M ·B and R′ := R+X .

Refreshing the share of PL:
4. If R′ does not have a full rank then the players abort. Let (Ã, B̃)← O and give Ã to PL and B̃ to PR.
5. Player PR generates a random non-singular matrix M̃ ∈ Fn×n such that M̃ ·R′ = B̃ and sends it to PL.
6. Player PL sets Y := Ã · M̃ and L′ := L+ Y .

Output: The players output (L′, R′).

The adversary plays a λ-leakage game against: Ω
(
(L,A,M, Ã, M̃) ; (R,B,M, B̃, M̃)

)

Fig. 1. Protocol Refreshn,mF . The oracleO samples randomly pairs (A,B) ∈ Fn×NonSingn×m(F) such that
A 6= (0n) andA ·B = (0m). The text in the frame describes the leakage game played by the adversary, when
the protocol is executed. Note that by Lemma 15 in Appendix B, sampling the random matrices in Steps 2
and 5 can be done efficiently.

What remains is to show that protocol Refreshn,mF from Figure 1 satisfies Definition 1. This is done in
the following theorem.

Theorem 1 (Security of Refreshn,mF ). Let m/3 ≤ n, n ≥ 16 and ` ∈ N. Let n,m and F be such that Φn,mF
is (λ, ε)-secure (for some λ and ε). The protocol Refreshn,mF is a (`, λ/2 − 1, ε′)-refreshing protocol for an
LRS Φn,mF with ε′ := 2` |F|m (3 |F|m ε+m |F|−n−1).

To prove this theorem, we will need to show that any adversary A that interacts for ` iterations with the
refreshing experiment ExpRefresh (as given in Definition 1), will only gain a negligible (in n) amount of
information about the encoded secret S. Notice that this in particular means that A’s interaction with the
leakage oracle given in the frame of Figure 1 will not provide the adversary with information on the encoded
secret. More formally, we will show that for every (λ/2− 1)-limited A and every S, S′ we have:

∆(ExpRefresh(A, S, `);ExpRefresh(A, S′, `)) ≤ 2` |F|m (3 |F|m ε+m |F|−n−1). (6)

This will be proven using the standard technique called the “hybrid argument” by creating a sequence
of “hybrid distributions” – denoted by Hybi(A, S, S′, `) and H̃ybi(A, S, S′, `). We will show that the
first distribution in this sequence is statistically very close to ExpRefresh(A, S, `), and the last one is very
close to ExpRefresh(A, S′, `). Moreover, each two consecutive distributions in the sequence will be very
close. Hence, by applying the triangle inequality multiple times, we will obtain that ExpRefresh(A, S, `) and
ExpRefresh(A, S′, `) are close.

Following the notation of ExpRefresh, we denote in the hybrid experiments Hybi and H̃ybi the in-
put to the jth execution of Refreshn,mF by (Lj−1, Rj−1), and its output by (Lj , Rj). We can now define
the hybrid distributions as follows. For each i ∈ [n] let Hybi(A, S, S′, `) be defined in the same way as
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ExpRefresh(A, S, `) (i.e., run ` iterations of the protocol from Fig. 1) except that in the ith iteration in Step 2
for the refreshing of PR’s share, instead of using the oracle O we use an oracle O′ that samples (A,B) from
the set

{(A,B) ∈ Fn × NonSingn×m(F) : A 6= (0, . . . , 0) and A ·B = S′ − S}.

Observe that this means that for j ≤ i−1 we have Lj ·Rj = S since we proceed as in ExpRefresh(A, S, `) for
the first j executions of Refreshn,mF . As in the ith iteration for refreshing the share of PR we use the oracle
O′ by simple calculation we get that

Li−1 ·Ri = Li−1 · (Ri−1 +X) = Li−1 · (Ri−1 +M ·B) = S + Li−1 ·M ·B = S +A ·B = S′.

Since from then on we continue with using the oracle O, we get for j ≥ i that Lj · Rj = S′. Similarly,
let H̃ybi(A, S, S′, `) be defined in the same way as ExpRefresh(A, S, `) except that in the ith iteration of
Refreshn,mF for refreshing the share of PR we sample (Ã, B̃) from the oracle O′.

Before we show in Lemma 4 that these hybrid distributions are indeed close, let us prove a simple
lemma about the event Q that the players abort in the protocol. Recall that in Figure 1 PL or PR may abort
the execution of the protocol, in case that L (cf. Step 1) or R′ (cf. Step 4) do not have full rank. To preserve
correctness of the protocol, we reconstruct the secret in case of abortion. Obviously, in such a case the
distance between the distributions will not be small anymore. Hence, we need to bound the probability that
such an event occurs.

Lemma 3 (Probability of abort). For any S, we have Pr [Q] ≤ 2`m · |F|m−n in ExpRefresh(A, S, `).

Proof. For each j we define the event E(j) that the players abort in the jth iteration. This means that either
Lj−1 or Rj does not have full rank. Note that (L0, R0) are chosen uniformly at random subject to the
constraint that they encode the value S. By the construction of our protocol, it is easy to verify that this
carries over to each Lj and Rj . In other words for each E(j) we can view Lj−1 as being chosen uniformly at
random and each of them columns ofRj as being chosen from an n−1 dimensional subspace of Fn. Hence,
from Lemma 16 the probability that (Rj)T does not have a full rank is at most m · |F|m−n. This carries over
to Rj by Lemma 18 from the appendix. Clearly, Lj does not have a full rank only if it is equal to (0, . . . , 0),
which happens with probability |F|−n ≤ m · |F|m−n. Therefore, we get from the union-bound that for each j
we have Pr[E(j)] ≤ 2m·|F|m−n and by applying again the union-bound, we get that Pr [Q] ≤ 2`·m·|F|m−n.

ut

It is easy to see that the above Lemma 3 works also in case of the hybrid experiments, and hence for both
Hybi(A, S, S′, `) and H̃ybi(A, S, S′, `), we have

Pr [Q] ≤ 2`m · |F|m−n .

We now have the main technical lemma of this section.

Lemma 4. For the parameters `, n,m, λ, ε,F as in Theorem 1, for every (λ/2 − 1)-limited A and every
S, S′ we have the following:

1. ∆
(
ExpRefresh(A, S, `) ; Hyb1(A, S, S′, `) |Q

)
≤ 2 |F|2m ε,

2. for every i = 1, . . . , ` it holds that ∆
(
Hybi(A, S, S′, `) ; H̃ybi(A, S, S′, `) | Q

)
≤ 2 |F|2m ε,

3. for every i = 1, . . . , `− 1 it holds that ∆
(
H̃ybi(A, S, S′, `) ; Hybi+1(A, S, S′, `) | Q

)
≤ 2 |F|2m ε,

4. ∆
(
H̃yb`(A, S, S′, `) ; ExpRefresh(A, S′, `) | Q

)
≤ 2 |F|2m ε.
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Proof. We show only the proof of Point 3. The proof of the remaining points is analogous. The table below
represents the inner products of Lj and Rj in the hybrids H̃ybi(A, S, S′, `) and Hybi+1(A, S, S′, `).

j = 1 2 · · · i i+ 1 i+ 2 · · · `
Lj L0 L0 L1 L1 · · · Li−1 Li−1 Li Li Li+1 Li+1 · · · L`
Rj R0 R1 R1 R2 · · · Ri−1 Ri Ri Ri+1 Ri+1 Ri+2 · · · R`

(∗) in Hybi+1(A, S, S′, `) S S S S · · · S S S S′ S′ S′ · · · S′

(∗∗) in H̃ybi(A, S, S′, `) S S S S · · · S S S′ S′ S′ S′ · · · S′

(7)

It is easy to see that the only difference between H̃ybi(A, S, S′, `) and Hybi+1(A, S, S′, `) is that in the
former Li ·Ri = S′ and in the latter Li ·Ri = S. We will show that for any (λ/2− 1)-limited adversary A

∆
(
H̃ybi(A, S, S′, `) ; Hybi+1(A, S, S′, `)|Q

)
≤ 2 |F|2m ε. (8)

We prove this by contradiction. Suppose there exists an adversaryA for which Eq. (8) does not hold, then we
construct a λ-limited adversary S, that we call the simulator, which will be able to break the (λ, ε)-security
of Φn,mF . S runs A as a sub-routine and simulates its environment according to either H̃ybi(A, S, S′, `)
or Hybi+1(A, S, S′, `) by just having access to its target oracle Ω(L,R). We will show that in case that
(L,R) ← Encoden,mF (S′) the simulation of A is as H̃ybi(A, S, S′, `) (cf. (**) in Table 7), while in case
of (L,R) ← Encoden,mF (S) the simulation is as in Hybi+1(A, S, S′, `) (cf. (*) in Table 7). To this end,
S “plugs” the encoding (L,R) from its target oracle into (Li, Ri), and uses access to its target oracle to
simulate the leakage from ExpRefresh that depends on (Li, Ri). One main difficulty is that ExpRefresh may
run for many iterations, hence, allowing the adversary to learn a large amount of information, while on the
other hand S only can retrieve up to λ bits from its target oracle. To solve this problem S will simulate most
leakages “off-line”, i.e., without using access to its target oracle. For the ith and (i+1)th execution, however,
S will use access to its target oracle to make the leakages from these rounds consistent with the “off-line”
leakages. Eventually, the simulator will output whatever A outputs, or abort, in which case it outputs ⊥. We
give the details below.

The adversary S will simulate A in the following way.

Pre-processing I: generating the Lj and Rj variables except for (Li, Ri): He sets (L0, R0)← Encoden,mF (S).
He performs (i−1) iterations of the refreshing procedure, which results into (L0, R0), . . . , (Li−1, Ri−1)
and all the messages that are generated during the execution of the protocol from Figure 1. He then sets
(Li+1, Ri+1)← Encoden,mF (S′) and performs the remaining executions of the refreshing procedure. He
stores all the variables used in these executions. Note, that the only thing that the simulator misses for
the simulation of A are the variables used in the ith and (i+ 1)th iteration.

Pre-processing II: simulating the first i− 1 iterations: The simulator S starts A and simulates him on
the variables that he generated previously for the first (i − 1) iterations of the refreshing protocol. This
can be done easily, as all the variables for the simulation are known.

Leakage of (Li, Ri)← Refreshn,mF (Li−1, Ri−1) in the ith iteration: Now, the simulator simulates the leak-
age from phase i. Note that he does not know (Li, Ri) – since it is equal to (L,R) he has access to it
only via the leakage oracle. We first describe how he can do it if he knows (Li, Ri) completely and later
argue that it can be done also just by leaking limited amount of data from Li and Ri.
First, S simulates the refreshing of PR’s share. He sets

X := Ri −Ri−1. (9)
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He checks if Li−1 · X = (0, . . . , 0) (or, equivalently: if Li−1 · Ri = S). If not, then he aborts (let Q1

denote this event). Otherwise he chooses M ∈ NonSingn×n(F) uniformly at random and computes

B :=M−1 ·X (10)

He also computes
A := Li−1 ·M (11)

Note that A ·B := Li−1 ·M ·M−1 ·X = Li−1 ·X = (0, . . . , 0).
Now, to simulate the refreshing of the share of PL, he chooses a random M̃ ← NonSingn×n(F). He
computes

Y := Li − Li−1. (12)

He sets:
Ã := Y · M̃−1. (13)

He also computes
B̃ := M̃ ·Ri. (14)

Note that we have

Ã · B̃ = Ỹ ·
(
M̃
)−1
· M̃ ·Ri = Ỹ ·Ri = (Li − Li−1) ·Ri =

{
(0, . . . , 0) if Li ·Ri = S
S′ − S if Li ·Ri = S′.

(15)

The simulator also checks if the values A,B, Ã and B̃ have a full rank (so that they look like generated
by the oracle O). If not, then he aborts. Call this event Q2.
Now, the simulator has all the variables needed to simulate the game between A and

Ω
(
(Li−1, A,M, Ã, M̃) ; (Ri−1, B,M, B̃, M̃)

)
.

The only problem, that we did not address so far, is that in reality the simulator has access to Li and Ri

only via the leakage oracle Ω(L;R). The main observation is now that the above simulation is done in
such a way that the leakage function can compute (a) (Li−1, A,M, Ã, M̃) just from Li := L and (b)
(Ri−1, B,M, B̃, M̃) just from Ri := R.
First, observe that Li−1 and Ri−1 are chosen by S in advance in the pre-processing I phase. Moreover, S
can also choose M and M̃ beforehand, as they are just chosen randomly from NonSingn×n(F). Hence,
(Li−1, Ri−1,M, M̃) can be treated as constants and “hard-wired” into the leakage function thatA issues
to its leakage oracle in the ith iteration.
Now, to see (a) observe that A is a function of Li−1 and M (cf. (11)), which are “hard-wired” into the
leakage function, and Ã is a function of Li, Li−1 and M̃ (cf. (12) and (13)), where Li−1 and M̃ are
“hard-wired” and Li := L comes from the target oracle).
To see (b) observe that B is a function of M,Ri and Ri−1 (cf. (9) and (10)), where M and Ri−1 are
“hard-wired”, and B̃ is a function of M̃ (a “hard-wired” value), and Ri (cf. 14).
Hence, the (λ/2 − 1)-leakage game run by A at the ith iteration can be simulated by S using a (λ/2)-
leakage game against Ω(L;R) (the “+1” overhead comes from the fact that we need a little bit of extra
space in order to communicate the fact that the simulation aborted).

Leakage of (Li+1, Ri+1)← Refreshn,mF (Li, Ri) in the (i+ 1)th iteration: Simulating the leakage form phase
i+1 is done in a very similar way. First the simulator chooses random non-singular matrices M and M̃ .
He sets: X := Ri+1 −Ri, and B :=M−1 ·X . Then he calculates A := Li ·M .
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He then computes Y := Li+1 − Li and Ã := Y · M̃−1, and finally B̃ := M̃ · Ri. He aborts in case
Li · Ri+1 6= S (denote this event by Q′1), or in case one of A,B, Ã and B̃ does not have a full rank
(denote this event by Q′2). Similarly to (15) it is easy to calculate that

A ·B =

{
(0, . . . , 0) if Li ·Ri = S′

S′ − S if Li ·Ri = S.
(16)

Moreover, it is easy to check that, exactly as before, the (λ/2− 1)-leakage game performed by A in the
(i+ 1)th iteration can be simulated by S using a (λ/2)-leakage game against Ω(L;R).

Post-processing: simulating the remaining iterations: The simulator S simulates A on the variables that
he generated previously for the i + 1th,. . . , nth iteration. Exactly as in “pre-precessing II” he can do it
since he generated the corresponding variables himself. At the end he outputs the output of A.

We now prove that for any b ∈ {0, 1} we have the following:

Pr[Out(S, Ω(L,R)) = b | Q1 ∨Q2 ∨Q′1 ∨Q′2] =

{
Pr[H̃ybi(A, S, S′, `) = b | Q] if L ·R = S

Pr[Hybi+1(A, S, S′, `) = b | Q] if L ·R = S′

(17)
To show it, we assume that the players and the simulation did not abort (i.e., we haveQ andQ1 ∨Q2 ∨Q′1 ∨Q′2).
It is easy to see that the distributions of the variables created by the simulator and H̃ybi(A, S, S′, `) and
Hybi+1(A, S, S′, `) are equal for the first i − 1 iterations, and for the iterations i + 2, . . . , n. The only
non-trivial things happen in the ith and (i + 1)th iteration. The main difference between H̃ybi(A, S, S′, `)
and Hybi+1(A, S, S′, `) can be summarized as follows:

H̃ybi(A, S, S′, `) Hybi+1(A, S, S′, `)
Ã · B̃ in ith iteration S′ − S (0, . . . , 0)

A ·B in (i+ 1)th iteration (0, . . . , 0) S′ − S

The variables created by our simulator indeed satisfy these relations, as shown on (15) and (16). It remains
to show that the distribution of the variables generated by S when interacting with Ω(Encoden,mF (S)) or
Ω(Encoden,mF (S′)) (resp.) is identical to Hybi+1(A, S, S′, `) or H̃ybi(A, S, S′, `) (resp.). To this end,
consider the execution of the ith iteration of Refreshn,mF in H̃ybi(A, S, S′, `) experiment and compare it
to the simulation of the ith iteration assuming that Li · Ri = S′ (the remaining cases can be analyzed in a
similar way).

ith iteration in H̃ybi(A, S, S′, `):

(A,B)← O
M is a random non-singular matrix s. t. Li−1M =
A
X :=M ·B
Ri := Ri−1 +X

(Ã, B̃)← O′
M̃ is a random non-singular matrix s. t. M̃ ·Ri = B̃
Y := Ã · M̃
Li := Li−1 + Y

ith iteration of simulation, with L · R = Li · Ri =
S′:

X := Ri −Ri−1
check if Li−1 ·X = (0, . . . , 0)
M is a random non-singular matrix
A := Li−1 ·M
B :=M−1 ·X

Y := Li − Li−1
M̃ is a random non-singular matrix
Ã := Y · M̃−1
B̃ := M̃ ·Ri.

Let us now discuss why these methods of sampling the variables are identical if the abort events do not occur.
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1. Li−1, Ri−1, A andM : In both settings (Li−1, Ri−1) are sampled in the same way. Together with Lemma 17
from the Appendix B we get that in both cases Li−1, Ri−1, A and M are distributed identically.

2. B,X and Ri:
– Left hand side: B comes from the oracle O and is a random matrix from NonSingn×m(F) subject to

the constraint that A ·B = (0, . . . , 0). Then, we compute X :=M ·B and Ri := Ri−1 +X .
– Right hand side: Here, Ri and Ri−1 are fixed and we compute X := Ri − Ri−1 and then B :=
M−1 ·X .

It is easy to see that in the first case, X is a random n × m matrix subject to the constraint that its
column vectors are orthogonal to Li−1. In the second case X is computed from the matrices Ri and
Ri−1, where (Li−1, Ri−1) ← Encoden,mF (S) and (Li, Ri) ← Encoden,mF (S′) are sampled randomly
and independently. Hence, X := Ri − Ri−1 is a random matrix. As on the right hand side we further
assumed that Li−1 ·X = (0, ...0) (i.e., the check does not fail), we have that also on the right hand side
X is a random n ×m matrix with column vectors that are orthogonal to Li−1, which implies that both
distributions are identical.

3. (Ã, B̃), M̃ and Li: We can argue this similar to above.

It remains to bound the probability that the abort does not occur during the simulation.

Claim. In the above simulation we have:

Pr
[
Q1 ∧Q2 ∧Q′1 ∧Q′2

]
≥ |F|−2m /2. (18)

Proof. The event Q1 occurs if Li−1 · Ri 6= S. Since clearly Li−1 · Ri has a uniform distribution over |F|m
and the same holds for Q′1, we have

Pr[Q1] = Pr[Q′1] = |F|
−m . (19)

We next define the events QA,QB,QÃ and QB̃ as the events that the corresponding variables A,B, Ã and
B̃ do not have a full rank. Similarly, we define the events Q′A,Q′B,Q′Ã and Q′

B̃
. As M is a full rank matrix

and Li−1 is a random vector in Fn, we get that A is chosen uniformly at random in Fn, which gives us:

Pr[QA|Q1 ∧Q
′
1] ≤ |F|

−n . (20)

Let us next consider the eventQB . It is easy to see that the rows ofXT are chosen uniformly at random from
the subspace of vectors that are orthogonal to Li−1. Hence, by Lemma 16, it follows thatXT has rankmwith
probability at least 1−m · |F|m−n. By Lemma 18, this implies that rank(X) = m with probability at least
1−m · |F|m−n, and by the same lemma, we get that rank(B) = m with probability at least 1−m · |F|m−n.
As a similar argument works for QB̃ , we get:

Pr[QB|Q1 ∧Q
′
1] ≤ m · |F|

m−n , (21)

Pr[QB̃|Q1 ∧Q
′
1] ≤ m · |F|

m−n . (22)

Next, we consider QÃ. As M̃ has full rank and conditioned on Q1 the vector Y is a random vector from an
n−m dimensional subspace, we get

Pr[QÃ|Q1 ∧Q
′
1] ≤ |F|

m−n . (23)
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The same arguments work for bounding Q′A,Q′B,Q′Ã and Q′
B̃

. We now get:

Pr
[
Q1 ∧Q2 ∧Q′1 ∧Q′2

]
= Pr[Q2 ∧Q

′
2|Q1 ∧Q

′
1] · Pr[Q1] · Pr[Q

′
1] (24)

= Pr[Q2 ∧Q
′
2|Q1 ∧Q

′
1] · |F|

−2m (25)

= (1− Pr[Q2 ∨Q′2|Q1 ∧Q
′
1]) · |F|

−2m (26)

≥ (1− Pr[QA|Q1 ∧Q
′
1]− . . .− Pr[Q′

B̃
|Q1 ∧Q

′
1]) · |F|

−2m (27)

≥ (1− 8m · |F|m−n) · |F|−2m (28)

≥ |F|−2m /2. (29)

Eq. (24) follows from the fact that Q1 and Q′1 are independent and (25) from Eq. (20). Eq.(26) is a stan-
dard transformation and Eq.(27) follows from the union bound. Eq.(28) follows from Eq.(20)-(23) and
m · |F|m−n ≥ |F|−n. Finally, Eq. 29 uses that (1 − 8m · |F|m−n) ≥ 1/2 when m ≤ n/2 and n ≥ 16.
This concludes the proof. ut

We are now ready to obtain a contradiction:

∆
(
Out(S, Ω(Encoden,mF (S))) ; Out(S, Ω(Encoden,mF (S′)))

)
≥ ∆

(
Out(S, Ω(Encoden,mF (S))) ; Out(S, Ω(Encoden,mF (S′)))|Q1 ∧Q

′
1 ∧Q2 ∧Q

′
2

)
· Pr[Q1 ∧Q

′
1 ∧Q2 ∧Q

′
2]

≥ ∆
(
Out(S, Ω(Encoden,mF (S))) ; Out(S, Ω(Encoden,mF (S′)))|Q1 ∧Q

′
1 ∧Q2 ∧Q

′
2

)
· |F|−2m /2

≥ ∆
(
H̃ybi(A, S, S′, `) ; Hybi+1(A, S, S′, `)|Q

)
· |F|−2m /2

≥ 2 |F|2m ε · |F|−2m /2 = ε.

As further S retrieves in total λ bits from each party (λ/2 in phase i and λ/2 in phase i + 1) we get a
contradiction to the (λ, ε)-security of Φn,mF , which concludes the proof of the lemma. ut

Proof (of Theorem 1). As shown in Lemma 4 conditioned on Q the distance between each consecutive
distributions ExpRefresh(A, S, `), Hyb1(A, S, S′, `), H̃yb1(A, S, S′, `), . . ., ExpRefresh(A, S′, `) is at most
2 |F|2m ε. Since the sequence of distributions has length 2`+2, we get by the triangle inequality (applied 2`+
1 times) that the distance between the first ExpRefresh(A, S, `) and the last distribution ExpRefresh(A, S′, `)
conditioned on Q is at most (2`+ 1)2 |F|2m ε ≤ 6` |F|2m ε. With Lemma 3, we then get:

∆(ExpRefresh(A, S, `);ExpRefresh(A, S′, `)) ≤ (6` |F|2m ε) Pr[Q] + Pr[Q]
≤ 6` |F|2m ε+ Pr[Q] ≤ 6` |F|2m ε+ 2`m · |F|m−n−1

≤ 2` |F|m (3 |F|m ε+m |F|−n−1).

This proves (6), and hence shows the statement of the theorem. ut

Combining this theorem with Corollary 1 we get the following.

Corollary 2. Let n ∈ N be the security parameter. Suppose |F| = Ω(n) and letm = o(n). Then Refreshn,mF
is a (`, 0.15 · n log(|F|) − 1, negl(n))-refreshing protocol for the LRS Φn,mF , where ` is a polynomial in n
and negl(n) is some negligible function.
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3.1 Security of Refreshing with Additional Auxiliary Information

Consider a secret S ∈ Mm and suppose we use our protocol in a setting where the secret is sampled
from an affine subspace Z ⊆ Mm of dimension m′ < m that is known to the adversary beforehand.4 In
such a case our security definition says that an adversary that observes leakage from the refreshing cannot
learn any additional information about S. In this section, we extend our security notion and show that the
above statement holds even when the adversary obtains some auxiliary information on the encodings. More
precisely, for an affine subspace Z of dimension m′, let W be a m × (m − m′)-matrix of full rank and
Q ∈ Mm−m′ be a vector such that the solution space of S ·W = Q defines the affine subspace Z. Then,
we show that for any S ∈ Z and (L0, R0) ← Encode(S), given auxi−1 = Ri−1 ·W from the execution of
(Li, Ri) ← Refresh(Li−1, Ri−1) does not provide the adversary with information other than the fact that S
belongs to the subspace Z. To define this more formally, we extend the experiment ExpRefresh(A, S, `) from
above in the following way:

– initially we give aux0 = R0 ·W to the adversary A
– for each iteration in Step 2, we run A(W,Q) �

(
Refresh(Li−1, Ri−1)→ (Li, Ri)

)
and additionally

give auxi = Ri ·W to A.

We denote this experiment with ExpauxRefresh(A, S, `,W,Q), and consider the following extension of Defini-
tion 1.

Definition 2. [(`, λ, ε)-refreshing protocol with auxiliary information] Let Z ⊆ Mm be an m′ < m
dimensional affine subspace defined by W and Q as given above. For a LRS Φ = (Encode,Decode) with
message spaceM, a refreshing protocol Refresh is a (`, λ, ε)-refreshing protocol with auxiliary information
defined by (W,Q), if for every λ-limited adversary A and every pair of messages S, S′ ∈ Z we have that
∆(ExpauxRefresh(A, S, `,W,Q);ExpauxRefresh(A, S′, `,W,Q)) ≤ ε.

The reader may ask why such an extended security definition is useful at all. Indeed, it turns out that such
an extension is helpful when we want to apply our refreshing protocol to construct leakage-resilient crypto-
graphic schemes. We will detail on this in the next sections.

Before we show that our refreshing protocol also satisfies this stronger notion of security, notice that
since the adversary can choose the leakage function after learning auxi, he can essentially leak from PL the
value of Li · auxi = Li · Ri ·W = S ·W (if m −m′ is small), i.e., he can learn some linear function of
the secret. The good news is that he knows S ·W already because it is equal to Q! As it turns out, this is the
only information that he will learn. Formally, we can show the following generalization of Theorem 1.

Theorem 2 (Generalization of Theorem 1). Let m/4 ≤ n, n ≥ 16 and ` ∈ N. Let (W,Q) be as above
defining an m′ < m dimensional affine subspace Z. Let n,m′ and F be such that Φn,m

′

F is (λ, ε)-secure (for
some λ and ε). The protocol Refreshn,mF is a (`, λ/2 − 1, ε′)-refreshing protocol with auxiliary information
defined by (W,Q) for Φn,mF . Here, we have: ε′ ≤ 2` |F|m (3 |F|2m ε+m |F|−n−1).

Proof (sketch). The proof is very similar to the proof of Theorem 1 and we only repeat the relevant details
here. In the reduction of Theorem 1, we need to build a λ-limited simulator S that can simulate the view of
a (λ/2 − 1)-limited adversary in ExpauxRefresh(A, S, `,W,Q). To this end, let us first consider the case when
the m × (m −m′)-matrix W has a special form (call it W ′): namely, its 1 on its diagonal and otherwise 0.
Note that knowledge of W ′ and Q with S ·W ′ means that the first m−m′ coordinates of S are given to the
adversary.

4 In such cases, a natural idea to make the encoding more efficient is to fix some bijection f :Mm′
→ Z and encode x ∈ Mm′

instead of encoding f(x). This is of course possible only if f is efficiently computable. As it turns out, in some cases such f
cannot be efficiently computed. This happens e.g., if we use the encoded secrets in computationally-secure protocols (e.g., the
Okamoto identification scheme — cf. Sect. 4).
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Let S, S′ ∈ Z be two vectors which are equal on their first m − m′ coordinates, and we denote by
S̃ and S̃′ the last m′ coordinates of S and S′, respectively. As in Theorem 1 consider H̃ybi(A, S, S′, `)
and Hybi+1(A, S, S′, `) which differ only in the ith and (i + 1)th round. This means for the first i − 1
executions of Refresh the simulator will refresh an encoding of S and for the last (i+ 2) rounds, it refreshes
and encoding of S′. Notice that for j ∈ {0, . . . , i − 1, i + 2, . . . , `} the simulator S can trivially generate
auxj = Rj ·W ′, as Rj is known completely to S .

For the simulation of the ith and (i + 1)th execution S uses access to its target oracle Ω(L,R), where
(L,R) ← Encoden,m

′

F (S̃) or (L,R) ← Encoden,m
′

F (S̃′). In the simulation S sets L := Li and the last m′

columns ofRi toR. To sample the first (m−m′) columns ofRi it proceeds as follows. It samples uniformly
at random vectors R1, . . . , Rm−m′ and checks with access to Ω(L,R), whether L · (R1, . . . , Rm−m′) =
(S1, . . . , Sm−m′). If it does not hold, then S aborts. LetQ be the event that S does not abort. In the simulation
S sets:

Ri := (R1, . . . , Rm−m′ , R) ,

and then proceeds as described in the proof of Theorem 1 to sample the remaining variables. Since (R1, . . . , Rm−m′)
are known and W ′ has the special form as described above, S can easily compute auxi = Ri ·W .

It remains to analyze why the simulation as described above has the right distribution. It suffices to argue
why (Li, Ri) has the required distribution, as the remaining variables are sampled as in Theorem 1. This is
easy to see as conditioned on Q the first (m −m′) column vectors of Ri are sampled uniformly at random
(and independently of R) subject to the constraint that L · (R1, . . . , Rm−m′) = (S1, . . . , Sm−m′). Since
Pr[Q] ≥ F−m+m′ , we get together with the analysis from Theorem 1 that

ε′ := ∆(ExpauxRefresh(A, S, `,W,Q) ; ExpauxRefresh(A, S′, `,W,Q)) ≤ 2` |F|m (3 |F|2m ε+m |F|−n−1).

The general case, i.e., when W is an arbitrary matrix, follows from the fact that every W ∈ Fm×(m−m′) can
be transformed to this special form W ′ by multiplying it (from the left side) by some non-singular matrix
N ∈ Fm×m (let W ′ = N ·W ). Hence, we can adjust the computation that is carried out by the simulator by
multiplying the appropriate variables by N . ut

4 Identification and Signature Schemes

In an identification scheme ID a prover attempts to prove its identity to a verifier. For a security parameter k,
ID consists out of three PPT algorithms ID = (KeyGen,P,V):

– (pk , sk)← KeyGen(1k): It outputs the public parameters of the scheme and a valid key pair. The public
key is known to both the prover P and the verifier V .

– (P(pk , sk),V(pk)): An interactive protocol in which P tries to convince V of its identity by using his
secret key sk . The verifier V outputs either accept or reject .

We require that ID is complete. This means that an honest prover will always be accepted by the verifier. To
define (black-box) security of an identification scheme ID, we consider a polynomial-time adversary A that
gets the public key pk and interacts with the prover P(pk , sk) playing the role of a verifier. At the end of
this interaction the adversary tries to impersonate P(pk , sk) by engaging in an interaction with V(sk). The
adversary successfully impersonates the prover, if V(sk) outputs accept . We say that the scheme is secure if
every polynomial-time adversary A impersonates the prover with only negligible probability.

We will now extend this standard security notion to capture leakage attacks on the prover, where the
adversary obtains leakage from the prover’s computation. To this end, we let the adversary take the role of
V in the execution of the protocol (P(pk , sk),V(pk)) and allow him, besides exchanging messages with
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the prover, to obtain leakage from the prover’s execution. We denote a single execution of this process by
A �

(
P(sk)→ sk ′

)
, where sk ′ may be the updated key. In the definition below, we formalize security

against such an adversary.

Definition 3 (Security against Leakage and Impersonation Attacks (ID-Leak security)). Let k ∈ N be
the security parameter. An identification scheme ID = (KeyGen,P,V) is λ(k)-ID-Leak secure if for any PPT
λ(k)-limited adversary A it holds that the experiment below outputs 1 with probability at most negl(k):

1. The challenger samples (pk , sk0)← KeyGen(1k) and gives pk to A.
2. Repeat for i = 0 . . . poly(k) times:A�

(
P(sk i)→ sk i+1

)
, where in each execution the adversary can

interact with the honest prover and retrieves up to λ(k) bits about the current secret state sk i and the
randomness that is used.

3. A impersonates the prover and interacts with V(pk). If V(pk) accepts, then output 1; otherwise output
0.

Notice that the adversary is allowed to obtain λ bits of information for each execution of the identification
protocol. Hence, in total the adversary may learn poly(k) · λ(k) bits of information.

4.1 A Construction of a Leakage-Resilient Identification Protocol

Our construction is based on the standard Okamoto identification scheme [31], which works as follows.
Let g1 and g2 be two generators of G such that α = logg1(g2) is unknown. The secret key sk is equal to
(x1, x2)← Z2

p and the public key pk is gx11 · g
x2
2 .

1. The prover chooses (w1, w2)← Z2
p, computes a := gw1

1 gw2
2 , and sends a to the verifier.

2. The verifier chooses c← Zp and sends it to the prover.
3. The prover computes z1 := w1 + cx1 and z2 := w2 + cx2 and sends (z1, z2) to the verifier.
4. The verifier accepts if and only if gz11 g

z2
2

?
= a · pk c.

It has been shown that the Okamoto scheme is secure against impersonation attacks under the discrete
logarithms assumption. We now describe how to implement the Okamoto scheme such that it remains
secure even if the computation of the prover is carried out on a leaky device. Verification is as in the
standard Okamoto scheme, while the key generation and the computation of the prover is adjusted to
protect against leakage attacks. More precisely, instead of using (x1, x2) ∈ Z2

p as secret key, we store
(L, (R1, R2)) ← Encoden,2F (x1, x2) and implement the computation of the prover as a two-party proto-
col run between PL(L) and PR(R1, R2). To this end, we will use the fact that the Okamoto identification
protocol only requires to compute a linear function of the encoded secret key. As outlined in the introduction
such functions can be implemented in a “leakage-resilient way”. The protocol is given in Figure 2.

Finally, we will combine our identification protocol with our refreshing protocol from Section 3 to con-
struct an identification scheme Oka = (KeyGen,P,V,Refreshn,2Zp ) that is ID-Leak secure, i.e., secure even
against a polynomial number of observations. More precisely, in the ith execution of (P(pk , (L,R)),V(pk))
after Step 5 in Figure 2, we execute (Li+1, Ri+1) ← Refreshn,2Zp (L

i, Ri) and set the prover’s secret key for
the next round to sk i+1 := (Li+1, Ri+1). Notice that in such a case, we include into the leakage oracle from
the figure the variables that are used by the refreshing and let the adversary interact in each round with the
following leakage oracle:

Ω
(
(Li, U, Z,A,M, Ã, M̃) ; (Ri,W,A,M, Ã, M̃)

)
.

It is easy to see that the above protocol satisfies the completeness property. This is due to the soundness
of the refreshing protocol, and the fact that messages that are exchanged by the parties P and V in Figure 2
are as in the original Okamoto protocol. To prove leakage-resilience of Oka = (KeyGen,P,V,Refreshn,2Zp ),
we will proceed in three steps:
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Key generation KeyGen(1k):
Sample (p,G) ← G(1k), generators g1, g2 ← G, S = (x1, x2) ← Z2

p and (L,R) ← Encoden,2Zp
(S). We output

sk = (L,R) and pk = (p, g1, g2, h), where h := gx11 gx22 .
The identification protocol (P(pk , (L,R)),V(pk))

Input for prover (L,R): L is given to PL and R is given to PR.

Computation of Prover P(pk , (L,R)): Computation of Verifier V(pk):

1. PR samples (W1,W2) ← Z2n
p , computes U := gW1

1 � gW2
2 and sets

W := (WT
1 ,W

T
2 ). The vector U is sent to PL (� is component-wise

multiplication of vectors).
2. PL computes V = UL and a =

∏
i Vi. The value a is sent to V .

3. Pick c ∈ Zp and send it to P .

4. PR computes the n× 2 matrix Z :=W + cR and sends it to PL.
5. PL computes (z1, z2) = L · Z. The values (z1, z2) are given to V .

At any time, the adversary can play a λ-leakage game against:
Ω ((L,U, Z) ; (R,W )). We set Z = 0 for leakage queries that are
asked before c is fixed.

6. Accept iff gz11 gz22 = ahc.

Fig. 2. The key generation algorithm and the protocol (P(pk , (L,R)),V(pk)) for identification.
(P(pk , (L,R)),V(pk)) is an interactive protocol between a prover P and a verifier V .

1. We first consider a single execution of the protocol (P(pk , (L,R)),V(pk)) from Figure 2 and prove a
simple property in the information theoretic setting. Namely, we show show that the there exists an (un-
bounded) simulator S(pk , aux) with access to a leakage oracle Ω(L∗, R∗) that, given “some” auxiliary
information aux, can simulate A(pk)’s view in A� (P(L,R))→ (L′, R′)) (cf. Lemma 5). In this step
the analysis neglects the leakage from the refreshing process.

2. We next consider the setting where unboundedA runs in many iterations ofA�
(
P(Li, Ri))→ (Li+1, Ri+1)

)
,

where we also take into account that the refreshing of (Li, Ri) leaks information. We will combine our
results from the last section with the simulator from Lemma 5 to show that any unbounded adversary
will only learn a negligible amount of information about the secret key (cf. Lemma 6).

3. Finally, we will argue why this proves the ID-Leak security of our scheme. To this end, we rely on a
recent result of Dodis et al. [3], which shows security of the original Okamoto scheme for keys sampled
from a high average min-entropy source.

We now follow the three steps given above and start by proving a simple property of a single execution
of the protocol (P(pk , sk),V(pk)) from Figure 2. Informally speaking, we show in the lemma below that
for every unbounded adversary A, there exists an unbounded simulator S that satisfies one of the following
two properties:

1. S perfectly simulates the view of A in A� (P(pk , sk)→ (L,R)) with sk ← Encoden,2Zp (x1, x2), or
2. S aborts the simulation, and outputs ⊥. We denote the event that S aborts by Q.

Lemma 5. Let (pk , (L,R))← KeyGen(1k) where (x1, x2) = Decoden,2Zp (L,R). Then for any (unbounded)
λ-limited adversary A, there exists a (λ + 3 log p)-limited simulator S with access to Ω(L∗, R∗) (here
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(L∗, R∗)← Encoden,1F (x1)) and an event Q with Pr
[
Q
]
≥ 1/p such that for any b ∈ {0, 1}

Pr[Out(S(pk , aux), Ω(L∗, R∗)) = b|Q] = Pr[
(
A(pk) �

(
P(pk , (L,R))→ (L′, R′)

))
= b]. (30)

Here, we have that aux = (1, α) ·R with α = logg1(g2).

Notice that the simulator S only has leakage access to an encoding of a single value, namely to (L∗, R∗)←
Encoden,1F (x1), while he has to simulate the leakage of the refreshing of (L,R) ← Encoden,2F (x1, x2).
Notice, however, that S additionally knows aux = (1, α) · R. From aux and R∗ the simulator can easily
compute a consistent encoding of x2, as we will see in the proof below.

Proof. For an unbounded adversary A, the information that is learnt by her contains (1) the messages that
she receives from P , i.e., the data that she learns via black-box access to the prover, and (2) the leakage from
the execution of (P(pk , (L,R)),V(pk)). More formally, we can describe this information by:

1. Messages sent by P to the adversary:

N︷ ︸︸ ︷
1 α 0 0
0 0 1 α
c 0 1 0
0 c 0 1

 ·

x1
x2
w1

w2

 =


logg1(pk)

logg1(a)

z1
z2


Recall that A is unbounded, hence she can compute discrete logarithms in G.

2. Access to the leakage oracle viaΩ ((L,U, Z) ; (R,W )). Again, asA is unbounded, she can compute the
discrete logarithm of U to the basis g1 which is the vector W1 + αW2. Hence, information theoretically
it suffices to consider Ω ((L,W1 + αW2, Z) ; (R,W )).

We need to show that S(pk , aux) can do a perfect simulation of this view with just access to the leakage
oracle.

1. Simulation of the leakage oracle as specified in 2: To this end, we need to simulate the variables from
the leakage oracle:

Ω ((L,W1 + αW2, Z) ; (R,W )) , (31)

which is done with access to Ω(L∗, R∗) as follows:
– The encoding of the secret (L,R): S can simulate these variables by setting L := L∗ and the first

column of R to R1 := R∗. The second column is computed by R2 := (aux−R∗)/α.
– The vectors W1 + αW2 and the matrix Z: As W1 and W2 are sampled uniformly at random, S can

draw Z ← Z2n
p uniformly at random. As the vector aux and the column vector of Z span a vector

space of dimension 3 and W1 + αW2 lies in this vector space, we can compute a consistent vector
W1 + αW2 as a linear combination of aux and Z.

– The matrix W : Consider the following equation system:

N ·
(
RT

WT

)
=


aux = R1 + αR2

W1 + αW2

Z1

Z2

 . (32)

Here, the right side of the system is fixed and known to the simulator. Further, R is fixed as above,
i.e., by the target oracle and aux. Hence, in this equation system it remains to compute the matrix W .
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Since by our choice of W1 +αW2 and Z the equation system is consistent and the last three rows of
N are linearly independent, there exists a unique solution for (W1,W2) (recall that R is fixed which
reduces the space of solutions to dimension 1). Since Z was sampled uniformly at random, it is easy
to verify that also (W1,W2) is uniformly distributed conditioned on satisfying the above equation
system. Hence, the distribution of the simulated W is as in the real experiment.

2. Simulation of the messages sent by the prover as specified in 1: As from the previous step the simulator
knows (W1 + αW2, Z), he can query its leakage oracle to obtain logg1(a), z1 and z2. Notice that this
requires S to learn 3 log p additional bits from its leakage oracle.

Finally, observe that since A may access its leakage oracle at any time (in particular before choosing c),
but for the simulation from above we need to know the matrix N – in particular the value c, we let S
simply guess c at the beginning of the simulation. If the guess was correct, then we perfectly simulated
A(pk) � (P(pk , (L,R))→ (L′, R′)); otherwise the event Q occurs. As this happens with probability at
least 1/p, we get the claim of the lemma. ut

LEAKAGE FROM `-EXECUTIONS. In the lemma above, we showed that the leakage from a single execution
of the protocol can be perfectly simulated. We will now use this observation and prove that the leakage
from several rounds will also not help in learning much about the encoded secret (cf. Step 2 in the above
outline). This will require to refresh the encoded secret key periodically, as otherwise an adversary that
continuously learns information from the device can trivially break the security. To this end, we consider
Oka = (KeyGen,P,V,Refreshn,2Zp ) and assume that after each execution of the protocol from Figure 2, the

prover executes (L′, R′)← Refreshn,2Zp (L,R) and sets the new secret key (for the next execution) to (L′, R′).
We denote such a prover by P ′ and denote the ith execution of the identification protocol (with refreshing)
by (P ′(pk , (Li−1, Ri−1)),V(pk)).

Lemma 6. Let (pk , sk) ← KeyGen(1k), ` ∈ N, α = logg1(g2) and W the column vector (1, α). Suppose
n, λ and ε are such that Φn,1Zp is (λ, ε)-secure. Then, for every S = (x1, x2) and S′ = (x′2, x

′
2) that correspond

to the same public key pk (cf. “key generation” on Fig. 2), and any (λ/2− 1− 3 log p)-limited adversary A
we have that

∆
(
ExpauxP ′(pk)(A, S, `,W, pk);Exp

aux
P ′(pk)(A, S

′, `,W, pk)
)
≤ 2`p7(3ε+ 2p−n−5).

Proof. Notice that (W, pk) defines a 1-dimensional subspace Z ⊂ (Zp)
2 that contains all the pairs (x1, x2)

that correspond to the public key pk . For any S, S′ ∈ Z and any (λ/2− 1)-limited adversary A we have by
Theorem 2 for the refreshing of Φn,2Zp that

∆
(
ExpauxRefresh(A, S, `,W, pk);ExpauxRefresh(A, S′, `,W, pk)

)
≤ 2`p2(3p4ε+ 2p−n−1) = 2`p6(3ε+ 2p−n−5).

(33)
The above experiment considers only the leakage from the refreshing of (Li, Ri). To combine this with
leakage from the identification protocol, i.e., leakage from the prover P(pk) we use the simulation from
Lemma 5. We can apply this lemma since (1) Eq. (33) is shown by reduction to the (λ, ε)-security of Φn,1Zp
and (2) auxi = Ri ·W is know to the simulator5. As the simulation from Lemma 5 is perfect, but fails with
probability 1 − 1/p, the error from Eq. (33) increases by at most a factor of p. Furthermore, notice that the
simulation additionally needs to learn 3 log p bits from its target oracle (for Φn,1Zp ), which gives us the claimed
statement. ut

The following corollary can be obtained from Lemma 6 in a similar way as Corollary 1 from Theorem 1
5 Notice that this was the whole purpose of the extension presented in Theorem 2.
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Corollary 3. Let n ∈ N be the statistical security parameter. Furthermore, let (pk , sk) ← KeyGen(1k),
` = poly(n), α = logg1(g2) and W be the column vector (1, α). For every S = (x1, x2) and S′ = (x′2, x

′
2)

that correspond to the same public key pk (cf. “key generation” on Fig. 2), and any ((0.15 ·n−3) log p−1)-
limited adversary A we have that

∆
(
ExpauxP ′(pk)(A, S, `,W, pk);Exp

aux
P ′(pk)(A, S

′, `,W, pk)
)
≤ negl(n).

We can now show that our scheme Oka satisfies the security notion of Definition 3.

Theorem 3. Oka = (KeyGen,P,V,Refreshn,2Zp ) is ((0.15 · n − 3) log p − 1)-ID-Leak secure, if the DL
assumption holds.

Proof. It has been proven in Theorem 4.1 in [3] that the Okamoto scheme is secure against impersonation
attacks under the DL assumption, even if the secret keys are sampled from some source with high average min
entropy. From Corollary 3, we know that for any two uniformly sampled keys S := (x1, x2), S

′ := (x′1, x
′
2)

that correspond to the same public key pk and any ((0.15 · n− 3) log p− 1)-limited adversary A

∆
(
ExpauxP ′(pk)(A, S, `,W, pk);Exp

aux
P ′(pk)(A, S

′, `,W, pk)
)
≤ negl(n).

Hence, information theoretically an adversary does not learn much about the secret key S or S′, respectively,
by running in the experiment ExpauxP ′(pk). More formally, by Lemma 9 in the appendix, this implies that the
secret key has high average min-entropy even given the leakage and the public messages from the execution
of the identification protocol (i.e., pk and a, z1, z2). This gives us with Theorem 4.1 in [3] that our scheme is
((0.15 · n− 3) log p− 1) ID− Leak-secure under the DL assumption. ut

LEAKAGE RESILIENT SIGNATURES It is well known fact that the Okamoto identification protocol can be
turned into a signature scheme using the Fiat-Shamir heuristic. Similarly, we can turn the scheme from
Figure 2 into a leakage resilient signature scheme which can be proven secure against continuous leakage
attacks in the random oracle model under the DL assumption.

5 Leakage Resilient Encryption

In this section, we construct an efficient encryption schemes that is secure against continuous leakage attacks.
Our construction is based on a variant of the ElGamal cryptosystem and is proven secure against adaptive
chosen message and leakage attacks (CCLA2) in the Random Oracle model.

5.1 Definitions

For security parameter k a public-key encryption scheme PKE = (KeyGen,Encr,Decr) consists of three
PPT algorithms.

– (pk , sk)← KeyGen(1k): It outputs a valid public/secret key pair.
– c ← Encr(pk ,m): That is, a probabilistic algorithm that on input some message m and the public key
pk outputs a ciphertext c = Encr(pk ,m).

– m = Decr(sk , c): The decryption algorithm takes as input the secret key sk and a ciphertext c such that
for any plaintext m we have m = Decr(sk ,Encr(pk ,m)).

The standard security notion for an encryption scheme is security against chosen plaintext attacks (IND-
CPA). In a CPA attack against a public-key encryption scheme the adversary obtains pk , then picks two
messages m0,m1 and has to guess the bit b on input c∗ = Encr(pk ,mb). We can strengthen this notion by
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additionally allowing the adversary to ask for the decryption of chosen ciphertexts. A scheme that remains
secure even if the adversary can ask for decryptions of chosen ciphertexts prior to seeing c∗ is said to be
secure against non-adaptive chosen ciphertext attacks (IND-CCA1 secure). If the adversary can addition-
ally make decryption queries after seeing c∗, then the scheme is said to be secure against adaptive chosen
ciphertext attacks (IND-CCA2 secure).

In the setting where computation leaks information, security against chosen plaintext and leakage attacks
is not very interesting, as the adversary is not allowed to ask for decryption queries. On the other hand, the
notion of CCA1/2-security can naturally be extended to the continuous leakage setting. Here, we allow the
adversary to query the decryption oracle on some chosen ciphertext c, and additionally allow him to obtain a
bounded amount of leakage from the decryption process. This may be repeated many times, hence, eventually
the adversary may learn a large amount of information. Formally, we define security against adaptive chosen
ciphertext and leakage attacks (IND-CCLA2 security) as follows.

Definition 4 (Security against Chosen Ciphertext Leakage Attacks (CCLA2)). Let k ∈ N be the security
parameter. A public-key encryption scheme PKE = (KeyGen,Encr,Decr) is λ(k)-IND-CCLA2 secure if for
any PPT λ(k)-limited adversary A the probability that the experiment below outputs 1 is at most 1/2 +
negl(k).

1. The challenger samples b ∈ {0, 1} and (pk , sk)← KeyGen(1k). It gives pk to A.
2. Repeat untilA(1k) outputs (m0,m1):A�

(
Decr(sk , c)→ sk ′

)
, where for each decryption query c the

adversary additionally retrieves up to λ(k) bits about the current secret state sk . Set the key for the next
round to sk := sk ′.

3. The challenger computes c∗ ← Encr(pk ,mb) and gives it to A.
4. Repeat until A(1k) outputs b′: A �

(
Decr(sk , c)→ sk ′

)
, where for each decryption query c 6= c∗ the

adversary additionally retrieves up to λ(k) bits about the current secret state sk . Set the key for the next
round to sk := sk ′.

5. If b = b′ then output 1; otherwise output 0.

The weaker notion of CCLA1-security can be obtained by omitting Step 4 in the experiment above. Notice
that the adversary is allowed to obtain λ bits of information for each decryption query. Hence, in total the
adversary may learn poly(k) · λ(k) bits of information.

5.2 An Efficient IND-CCLA2-secure Encryption Scheme in the Random Oracle Model

An important tool of our encryption scheme is a simulation-sound (SS) NIZK. Informally, a NIZK proof
system is said to be simulation sound, if any adversary has negligible advantage in breaking soundness
(i.e., forging an accepting proof for an invalid statement), even after seeing a bounded number of proofs
for (in)valid statements. We refer the reader to [4,36] for the formal definition of NIZKs and simulation
soundness. SS-NIZKs can be instantiated in the common random string model using the Groth-Sahai proof
system [23] and the techniques of [22]. Unfortunately, as pointed out by Dodis et al. [11], this results into an
impractical scheme. In contrast, in the random oracle model using the Fiat-Shamir heuristic [19] simulation
soundness can be achieved efficiently. In particular, it has been proven in [1] that the standard Chaum-
Pedersen protocol [7] for proving equivalence of discrete logarithms can be turned into a SS-NIZK using
the Fiat-Shamir heuristic. Let in the following (Prov,Ver) denote such a non-interactive proof system for
proving the equivalence of discrete logarithms.

Our scheme can be viewed as a leakage-resilient implementation of the following simple variant of the
ElGamal encryption scheme using the above simulation sound NIZK obtained via the Fiat-Shamir heuristic.
Let g1, g2 be two generators of a prime order p group G. Let sk = (x1, x2) ∈ Z2

p be the secret key and pk =
(g1, g2, h = gx11 · g

x2
2 ) the public key. To encrypt a message m ∈ G, pick uniformly r ← Zp and compute
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c = (u := gr1, v := gr2, w := hrm,π), where π := Prov(u, v, r) is a NIZK proof of logg1(u) = logg2(v). To
decrypt c = (u, v, w, π), verify the NIZK, and if it accepts, output w · (u−x1 · v−x2).

It can easily be shown that this scheme achieves standard CCA2 security in the RO model. In this section,
we will show how to implement this scheme such that it remains secure even if the decryption continuously
leaks information. Similar to our transformation of the Okamoto scheme, we store the secret key (x1, x2)
as (L,R) ← Encoden,2F (x1, x2) and implement the computation of the decryption process as a two-party
protocol run between PL(L) and PR(R). The protocol for key generation and decryption is given in Fig-
ure 3 and uses similar ideas as in our implementation of the Okamoto scheme. Finally, we will combine
the protocol from Figure 3 with our refreshing protocol from Section 3 to construct an encryption scheme
PKE = (KeyGen,Encr,Decr,Refreshn,2Zp ) that is CCLA2 secure, i.e., secure even against a polynomial num-
ber of observations of the decryption process.

Key generation KeyGen(1k):
Let (p,G) ← G(1k), g1, g2 ← G, S = (x1, x2) ← Z2

p and (L,R) ← Encoden,2Zp
(S). Let sk = (L,R) and pk =

(p, g1, g2, h := gx11 gx22 ).

Encryption Encr(pk ,m) :

Sample r ← Zp uniformly at random and compute c = (u := gr1 , v := gr2 , w := hrm). Run the NIZK prover Prov(u, v, r)
to obtain a proof π for logg1(u) = logg2(v). Return (c, π).

The protocol for decryption Decr(sk , c) :

Input for decryption sk := (L,R): L is given to PL and R is given to PR.

Both parties obtain c and parse it as (u, v, w, π). PL runs the NIZK verifier Ver(u, v, π) to check that π is an accepting proof.
If the verification fails, then output ⊥ and stop; otherwise proceed as follows:

1. PR computes the vector U := uR1 � vR2 . U is sent to PL (� denotes component-wise multiplication of vectors).
2. PL computes V = U−L and outputs w

∏
i Vi.

Notice that we can omit the leakage from the verification of the NIZK as it only includes publicly known values. At
any time, the adversary can play a λ-leakage game against: Ω ((L,U) ; R).

Fig. 3. The key generation KeyGen and the decryption process Decr of our public-key encryption scheme
PKE.

SECURITY ANALYSIS OF PKE = (KeyGen,Encr,Decr,Refreshn,2Zp ). The formal security proof proceeds
similar as the proof of security in the last section. We first show in Lemma 7 that the leakage from a single
decryption query can be simulated in a perfect way with just access to a retrieving oracle Ω(L∗, R∗). For
this simulation to go through, we require that an adversary can only observe leakage from operations that
involve the secret key, if the decryption oracle is queried on a valid ciphertexts. We call a ciphertext valid,
if logg1(u) = logg2(v) holds. Notice that this is also the reason why we need NIZKs and cannot use the
standard techniques to get CCA1/2 security based on hash proof systems. In the next step, we show that
even when the adversary can continuously obtain leakage from the decryption, he will not be able to learn
information about the encoded secret key. To this end, we will combine the scheme from Figure 3 with our
refreshing protocol Refreshn,2Zp to refresh the encoded secret key (L,R). Finally, we show in Theorem 4 that
such a construction is IND-CCLA2 secure.

Lemma 7. Let (pk , (L,R)) ← KeyGen(1k) with (x1, x2) = Decoden,2Zp (L,R). Then for any (unbounded)
λ-limited adversary A, there exists a λ-limited simulator S with access to Ω(L∗, R∗) (here (L∗, R∗) ←
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Encoden,1Zp (x1)) such that for any b ∈ {0, 1}

Pr[Out(S(pk , aux), Ω(L∗, R∗)) = b] = Pr[
(
A(pk) �

(
Decr((L,R), c)→ (L′, R′)

))
= b], (34)

where aux = (1, α) · R with α = logg1(g2). Furthermore, we assume that c = (u, v, w, π) is a valid
ciphertext (i.e., logg1(u) = logg2(v)).

Proof. The proof is very similar to the proof of Lemma 5. For the simulation to go through, it will be
crucial that the adversary can only ask for decryptions of valid ciphertexts, i.e., in the following we consider
logg1(u) = logg2(v) = r. For an unbounded adversary A, the information that is learnt from decryptions of
ciphertexts c = (u, v, w, π) can be described as follows:

1. The decrypted plaintext m that corresponds to the ciphertext c.
2. Leakage from the decryption: This involves the leakage from the verification of the NIZK π and the

decryption of (u, v, w). As the verification of the NIZK only uses publicly known values, the simulation
is trivial and will be omitted in the following. Hence, we can describe the leakage from the decryption
by access to the following leakage oracle

Ω ((L, r(R1 + αR2)) ; R) .

We need to show that S(pk , aux) can do a perfect simulation of the above described view with just access to
its leakage oracle Ω(L∗, R∗). In fact, given the auxiliary information aux this simulation is trivial:

1. Simulation of the leakage oracle as specified in Step 2: We consider first how to simulate the leakage
oracle. In the simulation, S identifies R1 with R∗ and can compute R2 from R∗ and aux. As S is
unbounded, given the ciphertext c, he can compute r = logg1(u). Together with aux the simulator can
compute r(R1 + αR2), which suffices to simulate the leakage queries.

2. Simulation of the plaintext m = Decr(sk , c): Again, as S knows r it can decrypt valid ciphertexts by
w · h−r.

It is easy to see that for valid ciphertexts we get a perfect simulation. Further, since S does not need to learn
extra information from its leakage oracle, we get the claimed result. ut

In the lemma above, we showed that the leakage from a single execution of the decryption process can be
perfectly simulated. We will now use this observation and prove that the leakage from several rounds will
also not help in learning much about the encoded secret. This will require to refresh the encoded secret key
periodically, as otherwise an adversary that continuously learns information from the device can trivially
break the security. To this end, we consider PKE = (KeyGen,Encr,Decr,Refreshn,2Zp ) that executes after

each run of the decryption process from Figure 3, the refreshing protocol (L′, R′)← Refreshn,2Zp (L,R). The
new secret key (i.e., for the next execution) is set to (L′, R′). We denote such a decryption process by Decr′.
We can now prove the following:

Lemma 8. Let (pk , sk) ← KeyGen(1k), ` ∈ N, α = logg1(g2) and W the column vector (1, α). Suppose
n, λ and ε are such that Φn,1Zp is (λ, ε)-secure and that in the experiments below the decryption process
Decr′(·) is only run on valid ciphertext. Then, for every S = (x1, x2) and S′ = (x′2, x

′
2) that corresponds

to the same public key pk (cf. “key generation” on Fig. 3), and any (λ/2− 1)-limited adversary A we have
that

∆
(
ExpauxDecr′(·)(A, S, `,W, pk);Exp

aux
Decr′(·)(A, S

′, `,W, pk)
)
≤ 2`p6(3ε+ 2p−n−5).

Proof (sketch). The proof is along the lines of Lemma 6. The only difference is that there is no need for the
simulator to abort (recall that in the proof of the security of the Okamoto scheme the simulator needed to
guess the value of c, that was later chosen by the simulated A, and abort if he did not guess it correctly).
Hence, we save a factor of p.
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Similar to the last section, we can now obtain the following corollary that plugs-in concrete numbers.

Corollary 4. Let n ∈ N be the statistical security parameter and suppose that in the experiments below
the decryption process Decr′(·) is only run on valid ciphertext. Furthermore, let (pk , sk) ← KeyGen(1k),
` = poly(n), α = logg1(g2) and W be the column vector (1, α). For every S = (x1, x2) and S′ = (x′2, x

′
2)

that correspond to the same public key pk (cf. “key generation” on Fig. 3), and any (0.15·n log p−1)-limited
adversary A we have that

∆
(
ExpauxDecr′(·)(A, S, `,W, pk);Exp

aux
Decr′(·)(A, S

′, `,W, pk)
)
≤ negl(n).

The above corollary says that an adversary that continuously observes the computation from the de-
cryption process will not be able to learn any useful information about the encoded secret key. In the next
theorem, we will show that such a property suffices to prove the IND-CCLA2 security of our scheme.

Theorem 4. PKE is (0.15 · n log p − 1)-IND-CCLA2 secure in the random oracle model, if the DDH as-
sumption holds.

Proof. We prove this by a series of games. The games are all variants of the security experiment given in
Definition 4. We will show that in the last game any adversary can guess the target bit b with probability
at most 1/2. As we will also show that the distances between the games are negl(k) this will prove the
statement of the theorem.

Game 0: This is as the original experiment as given in Definition 4. That is, a bit b ← {0, 1} is sampled
and the initial key (pk , sk) ← KeyGen(1k) is generated and used to answer the decryption and leakage
queries from Decr′(sk , c) (recall again that Decr′ denotes the decryption process from Figure 3 followed
by the key-refreshing with Refreshn,2Zp ). The target ciphertext c∗ is generated by computing honestly
c∗ = (u∗, v∗, w∗) ← Encr(pk ,mb) and running the NIZK prover Prov(u∗, v∗, r∗) to obtain a proof π∗

for logg1(u
∗) = logg2(v

∗).
Game 1: This is as Game 1, but we generate the target ciphertext using the secret key. More precisely, we

compute c∗ = (u∗, v∗, w∗, π∗) as follows: pick randomly r ← Zp and compute u∗ = gr1, v∗ = gr2 and
w∗ = (u∗)x1 · (v∗)x2 . Furthermore, compute π∗ as above. Trivially, the distance between Game 0 and
Game 1 is 0.

Game 2: This is as Game 1 (i.e., we simulate the answers to decryption and leakage queries honestly), but
instead of running the NIZK prover that requires as input (u∗, v∗, r∗) (where r∗ is the common discrete
logarithm of u∗ and v∗) to obtain the proof π∗, we run the NIZK simulator that only uses (u∗, v∗). By the
zero-knowledge property of the NIZK the distance between the generated views in Game 1 and Game 2
is negligible.

Game 3: This is as Game 2, but we sample (u∗, v∗) randomly such that logg1(u
∗) 6= logg2(v

∗). More
precisely, as in Game 2, we sample the initial key (pk , sk)← KeyGen(1k). This allows us to answer the
decryption queries and the corresponding leakage queries of the adversary. If A asks for a ciphertext of
the messages (m0,m1), we reply with c∗ = (u∗, v∗, (u∗)x1 · (v∗)x2 mb, π

∗). By the DDH assumption
the distance between the views generated in Game 2 and Game 3 is negligible.

Game 4: This is as Game 3, but we reject to answer decryption queries for ciphertexts (u, v, w, π) with
logg1(u) 6= logg2(v). The views that are generated in Game 3 and Game 4 are close by the simulation
soundness of the NIZK. Recall that simulation soundness guarantees that the adversary cannot generate
accepting proofs of wrong statements, even if he has obtained accepting proofs of wrong statements
earlier (this is the case as the target ciphertext c∗ that the adversary sees in Step 3 below includes a proof
of a wrong statement). To sum it up, Game 4 proceeds as follows:
1. Sample b← {0, 1} and a random (x1, x2) and compute sk ← Encoden,2F (x1, x2). Compute pk from

(x1, x2).

28



2. Answer valid decryption and leakage queries with sk until the adversary asks for (m0,m1).
3. Generate the target ciphertext c∗ = (u∗, v∗, w∗, π∗) by sampling (u∗, v∗) such that logg1(u

∗) 6=
logg2(v

∗), and computing w∗ = (u∗)x1 · (v∗)x2 ·mb. Give (u∗, v∗, w∗, π∗) to the adversary.
4. Answer valid decryption and leakage queries with sk .

Game 5: This is as Game 4 with the following changes:
1. Sample a random (x1, x2) and compute pk from (x1, x2). Sample (x′1, x

′
2) ← {(y, z)|g

y
1 · gz2 =

gx11 g
x2
2 } uniformly at random and set sk ′ ← Encoden,2F (x′1, x

′
2).

2. Answer the decryption and leakage queries with sk ′ until the adversary asks for (m0,m1).
3. Generate the target ciphertext c∗ as in Game 3 by using (x1, x2).
4. Answer the decryption and leakage queries with sk ′.

The distance between Game 4 and 5 is negligible by Lemma 8 (or the corresponding Corollary 4). More
precisely, we have the following claim:

Claim. The distance between Game 4 and Game 5 is negligible in n.

Proof. We show this by reduction to Lemma 8 or the corresponding Corollary 4. Suppose we have
given a distinguisher D for Game 4 and 5, and we will use it to construct an adversary A that breaks
Corollary 4.A needs to simulate the view of the distinguisherD either in Game 4 or Game 5. To this end,
it samples (x1, x2) at random, and samples (x′1, x

′
2) ← {(y, z)|g

y
1 · gz2 = gx11 g

x2
2 } uniformly at random.

Furthermore, it samples the corresponding public key pk . To answer the decryption and leakage queries,
A asks its challenge oracle that either replies with the decryption and the corresponding leakage either by
using Decr′(Encoden,2Zp (x1, x2), ·) or by using Decr′(Encoden,2Zp (x

′
1, x
′
2), ·). Notice that here it is crucial

that in Game 4 and 5 the adversary only asks for decryptions of valid cihpertexts, as the challenge oracle
only replies to such queries. Next, A generates the target ciphertext c∗ as described in Game 4 (which is
identical to Game 5) and then it continues to answer decryption and leakage queries using its challenge
oracle. It is easy to see that depending on whether A’s target oracle uses Decr′(Encoden,2Zp (x1, x2), ·) or

Decr′(Encoden,2Zp (x
′
1, x
′
2), ·) the view of D is either as in Game 4 or Game 5. ut

It remains to show that in Game 5 the adversary’s view is independent of the bit b. Hence, the guessing
probability in Game 5 is at most 1/2.

Claim. The adversary’s view in Game 5 is independent of the target bit b.

Proof. Consider the target ciphertext c∗ := (u∗, v∗, w∗, π∗), where w∗ = z∗ ·mb with z∗ = gr1x11 · gr2x22

and r1 6= r2. We will show that z∗ acts as an information theoretically one-time pad. An (unbounded)
adversary in Game 5 can compute from the public key pk the value logg1(h) = x1 + α · x2. By the fact
that in Game 5 the adversary only asks for valid cihpertexts (i.e., for a decryption query c = (u, v, w, π)
we have logg1(u) = logg2(v)) he does not learn more than this. Furthermore, since we used in Game 5
sk ′ ← Encoden,2Zp (x

′
1, x
′
2) to answer the leakage queries and (x′1, x

′
2) is chosen independent of (x1, x2), the

adversary in Game 5 learns indeed no more than x1 + α · x2. To sum it up, together with the information
from the target ciphertext, the adversary learns:(

logg1(h)

logg1(z
∗)

)
=

(
1 α
r1 r2α

)
·
(
x1
x2

)
.

Since α 6= 0 and r1 6= r2 the 2 × 2 matrix is non-singular, and hence logg1(h) and logg1(z
∗) are linearly

independent. ut

As the distance between all games is negligible, we get the claimed result. ut
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6 A General Paradigm for Leakage-Resilient Cryptographic Schemes

In the last sections, we proposed leakage-resilient implementations of standard cryptographic schemes.
Namely, we showed how to implement the standard Okamoto identification scheme and a variant of the
ElGamal encryption scheme such that they satisfy strong security guarantees even under continuous leakage
attacks. The security proof of both schemes relied on very similar observations, namely:

1. The underlying cryptographic scheme (e.g., the Okamoto scheme or the ElGamal variant) computes
only a linear function of the secret key. Notice that in the examples of the last section the linear function
was essentially computed in the exponent of a group generator g. This is not a problem as long as the
computation can be carried out efficiently. This was indeed the case for the schemes of the last sections.

2. The secret key is hidden information theoretically even given the protocol transcript that an adversary
obtains when interacting with the underlying cryptographic scheme. In the protocols from the last section,
this meant, for instance, that the secret key (x1, x2) was information theoretically hidden even given the
corresponding public key. Furthermore, for the Okamoto scheme this holds even given (a, z1, z2), which
were sent by the prover to the verifier during the execution of the identification protocol.

Various other cryptographic schemes satisfy the above properties, and hence can be made secure against
continuous leakage attacks. For instance, the Pedersen commitment scheme [32], which is information-
theoretically hiding and at the same time only requires to compute a linear function of its secrets.6 Another
example of the above paradigm is a variant of the linear Cramer-Shoup cryptosystem as presented in [37].
Notice that as in the encryption scheme from Section 5, this requires to use as a check for the validity
of the ciphertexts a NIZK proof system. One can instantiate such a NIZK in the standard model using the
Groth-Sahai proof system [23]. This gives us an efficient CCLA1-secure public-key encryption scheme in the
standard model, and a rather inefficient CCLA2-secure scheme using the extensions of [22]. We suggest that
many other standard cryptographic schemes can be proven secure following the ideas that were presented in
this paper.

Acknowledgments. The authors are grateful to Francesco Davi, Yevgeniy Dodis, Krzysztof Pietrzak, Leonid
Reyzin and Daniele Venturi for helpful discussions on the problem of leakage-resilient refreshing.
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A Information Theoretic Definitions and Lemmata

An important primitive in our work are randomness two-source extractors, which are formally defined as
follows.

Definition 5 (Two-source Extractor [8]). Let L,R and M be three sets. A function ext : L × R →
M is a (k0, k1, ε)-two source extractor if for random variables L over L and R over R with H∞(L) ≥
k0 and H∞(R) ≥ k1 we have that d(ext(L,R)) ≤ ε. It is a strong (k0, k1, ε)-two-source extractor if
d(ext(L,R)|L) ≤ ε and d(ext(L,R)|R) ≤ ε.

We need some simple facts from information theory that are proven below.

Lemma 9. Let ε > 0 and let X,Y, Z be random variables such that I(X;Z) = 0, i.e. X and Z are
independent, and ∆((X,Y ); (X,Z)) ≤ ε, then

H̃∞(X|Y,U) ≥ min(H∞(X)− 1, log ε−1 − 1)

Proof. We prove this by contradiction. Suppose H̃∞(X|Y ) < min(H∞(X) − 1, log ε−1 − 1), then we
consider two cases: (a) H∞(X) ≤ log ε−1 and (b) H∞(X) > log ε−1. Suppose (a) holds, then H̃∞(X|Y ) <
H∞(X)− 1, which means that there exists an algorithm A that given Y predicts X with probability at least
2−H∞(X)+1, i.e.,

Pr[A(Y ) = X] > 2−H∞(X)+1. (35)

(36)

Given such a A we can build a distinguisher D that contradicts ∆((X,Y ); (X,Z)) ≤ ε. D takes as input
(X,U), where U is either Y or Z. It runs A(U) and if its output is equal to X it guesses 1; otherwise it
returns 0. By Eq. 35, we get Pr[D(X,Y ) = 1] > 2−H∞(X)+1, while by independence of X and Z it follows
that Pr[D(X,Z) = 1] = 2−H∞(X). Putting this together with H∞(X) ≤ log ε−1, we get:

∆((X,Y ); (X,Z)) > 2−H∞(X)+1 − 2−H∞(X) ≥ ε,

which gives a contradiction.
Now suppose that (b) holds. In this case, we have H̃∞(X|Y ) < log ε−1 − 1, which gives us a predictor

A with Pr[A(Y ) = X] > 2ε. With the same distinguisher as above, we get

∆((X,Y ); (X,Z)) > 2ε− 2−H∞(X) ≥ 2ε− ε = ε,

where the last inequality follows by (b). ut

Lemma 10. Let A,B be two random variables, then H̃∞(A|B) ≥ H∞(A,B)− log |B|.

Proof.

H̃∞(A|B) = − log
(
Eb←Bmax

a
Pr[A = a|b = b]

)
= − log

(∑
b

max
a

Pr[A = a|B = b] Pr[B = b]

)

= − log

(∑
b

max
a

Pr[A = a,B = b]

Pr[B = b]
Pr[B = b]

)

≥ − log

(
|B| ·max

a,b
Pr[A = a,B = b]

)
= − log |B| − log

(
max
a,b

Pr[A = a,B = b]

)
= H∞(A,B)− log |B| .
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ut

Lemma 11. Let A,B be two random variables, then H∞(A,B) ≤ H∞(A) + log |B|.

Proof.

H∞(A,B) = − log

(
max
a,b

Pr[A = a,B = b]

)
= − log

(
max
a,b

Pr[A = a] Pr[B = b|A = a]

)
≤ − log

(
max
a

Pr[A = a] |B|−1
)

= H∞(A) + log |B| .

ut

We now recall some standard lemmata about the statistical distance (cf. e.g. [14]).

Lemma 12. For any variables X1, . . . , Xn we have d(X1, . . . , Xn) ≤
∑

i d(Xi|X1, . . . , Xi−1).

Lemma 13 (Triangle inequality for the statistical distance). For any X,Y, Z we have that ∆(X;Z) ≤
∆(X;Y ) +∆(Y ;Z).

Lemma 14. For every X and Y and any function f we have d(X|Y ) ≥ d(X|f(Y )).

B Basic Linear Algebra

Suppose m < n. Let T ∈ Fm×n and C ∈ Fm×n. It is a well-known fact that if T and C have full rank then
there always exists a solution M ∈ NonSingn×n(F) of the equation

T ·M = C. (37)

Furthermore, we now show a method to sample such a solution uniformly at random.

Lemma 15. Let T and C have full rank. There exists an efficient procedure that samples a solutions of the
equation T ·M = C uniformly at random.

Proof. The procedure is given on Fig. 4. First, it is easy to see that this procedure indeed finds all the solutions

1. Let T ′ be an arbitrary non-singular n× n-matrix such that the first m rows of T ′ are equal to T (since T has a full rank, such
a matrix T ′ always exists).

2. SampleC′ from a set of non-singular n×n-matrices whose firstm rows are equal toC and the other rows are chosen uniformly
at random (since C has a full rank, such a matrix C′ always exists)

3. Output M ′ := (T ′)
−1
C′. Since M ′ is a product of two non-singular matrices hence M ′ is non-singular.

Fig. 4. A procedure for sampling a solution M of an equation T ·M = C. We assume that T and C have
full rank.

of the T ·M = C equation. This is because if M ′ is a solution of this equation, then for any T ′ (chosen is
Step 1) we have thatC ′ = T ′ ·M ′ is a non-singular matrix (since it is a product of two non-singular matrices)
such that its first m rows are equal to the first m rows of C (so C ′ belongs exactly to the set considered in
Step 2 . Therefore, since in Step 3 we set M ′ = (T ′)−1C ′, hence this solution will always be found, and
each solution has the same probability. ut
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Lemma 16. Let `,m, n ∈ N be such that m < n − `. Consider the following way to sample a matrix
M ∈ Fm×n: each row of M is sampled independently from an n − ` dimensional subspace of Fn. The
probability that a matrix M sampled in this way has full rank is at least 1−m · |F|−n+m+`−1.

Proof. For every i ∈ [1,m], let Ei denote the event that the ith row of M does not belong to the linear
sub-space spanned by the first i−1 rows of M . We clearly have p = Pr [E1] · · · · ·Pr [Em] (as all these events
are independent). It is also easy to see that for each i we have Pr [Ei] ≥ 1 − |F|−n+`+m−1. This is because
for i ≤ m the space spanned by the first i − 1 rows of M has a dimension at most m − 1, and hence the
probability that a random vector sampled from a n− ` dimensional subspace lies in the m− 1 dimensional
subspace is at least |F|−n+`+m−1. Hence p ≥ (1 − |F|−n+`+m−1)m which by Bernoulli’s inequality is at
least 1−m |F|−n+`+m−1. ut

Notice that in the above Lemma if ` = 0, then this means that M ← Fm×n is sampled uniformly at random.

Lemma 17. Consider the following experiments:

Exp0: sample at random T0 ∈ Fm×n and C0 ∈ Fm×n of full rank, and then a random solution M0 of
C0 = T0 ·M0,

Exp1: sample at random T1 ∈ Fm×n and M1 ∈ Fn×n both of full rank, and then calculate C1 = T1 ·M1.

Then the distributions of (T0,M0, C0) and (T1,M1, C1) are identical.

Proof. Since C0 is a function of T0 and M0, and C1 is the same function of T1 and M1, it is enough to
show that (T0,M0) and (T1,M1) have the same distribution. Variables (T1,M1) and T0 have a uniform
distribution, and therefore the only thing that remains to show is that the conditional distribution of M0

given that T0 is fixed is uniform. This easily follows from Lemma 15. Take any non-singular k × k-matrix
T ′0 such that the first m rows of T ′0 are equal to T0. Let C ′0 be a random non-singular n × n-matrix whose
first m rows are equal to C0 and the other rows are chosen uniformly at random. Since C0 is random, also
C ′0 is random. Therefore, since M ′0 is a product of (T ′0)

−1 and a random C ′0, hence M ′0 is also random.

We will also need the following well known facts from linear algebra.

Lemma 18. Let A be a (k ×m)-matrix with rank m and B a (m× n)-matrix then we have

rank(A ·B) = rank(B) (38)

rank(A) = rank(AT) (39)

C Leakage-resilient storage

In this section we present the proof of Lemma 1. We start with the following auxiliary lemmata (that use
lemmata and terms introduced in Appendix A)

C.1 Auxiliary lemmata

Lemma 19. For any λ ∈ N and any λ-limited adversary A, if L and R are independent, then L and R are
independent conditioned on Out(A, Ω(L,R)), i.e.,

I(L;R|Out(A, Ω(L,R))) = 0.

Proof. This directly follows from Lemma 4 in [15]. ut
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Lemma 20. For δ > 0, λ ∈ N and any λ-limited adversary A, we have

Pr
v←Out(A,Ω(L,R))

[H∞(L|Out(A, Ω(L,R)) = v) ≤ H∞(L)− λ− log(1/δ)] ≤ δ,

Pr
v←Out(A,Ω(L,R))

[H∞(R|Out(A, Ω(L,R)) = v) ≤ H∞(R)− λ− log(1/δ)] ≤ δ.

Proof. This directly follows from Lemma 2.2 in [13]. ut

Consider any strong two-source extractor ext : L×R →M, then we can define a extm : L×Rm →Mm

as
extm(L, (R1, . . . , Rm)) = (ext(L,R1), . . . , ext(L,Rm)).

Lemma 21. Let ext : L×R →M be a strong (kL, kR, ε)-two source extractor (cf. Appendix A). Form ∈ N
and any γ > 0 the function extm as defined above is a (kL, (m−1) log |R|+kR+log(1/γ),m(ε+γ))-two
source extractor.

Proof. We need to show that for sources L and (R1, . . . , Rm) with H∞(L) ≥ kL and H∞(R1, . . . , Rm) ≥
(m− 1) log |R|+ kR + log(1/γ), we have

d(ext(L,R1), . . . , ext(L,Rm)) ≤ m(ε+ γ). (40)

From Eq. (40), we get

d(ext(L,R1), . . . , ext(L,Rm)) ≤
∑
i∈[m]

d(ext(L,Ri)|ext(L,R1), . . . , ext(L,Ri−1))

≤
∑
i∈[m]

d(ext(L,Ri)|L,R1, . . . , Ri−1). (41)

The first inequality follows by Lemma 12 and the second by Lemma 14 in Appendix B. We now need to
upper-bound d(ext(L,Ri)|L,R1, . . . , Ri−1). To this end, from Lemma 11 in Appendix B, we have that for
each i ∈ [m]:

H∞(R1, . . . Ri) ≥ H∞(R1, . . . , Rm)− (m− i) log |R|
≥ (m− 1) log |R|+ kR + log(1/γ)− (m− i) log |R| = (i− 1) log |R|+ kR + log(1/γ).

For i ∈ [m] we use Lemma 10 in Appendix B, which gives us

H̃∞(Ri|R1, . . . , Ri−1) ≥ H∞(R1, . . . Ri)− (i− 1) log |R|
≥ kR + log(1/γ).

Therefore, from Lemma 2.2 in [13] the probability that

H∞(Ri|R1, . . . , Ri−1) = (r1, . . . , ri−1) ≥ kR (42)

is at least 1− γ. For each i ∈ [m] let E(i) be an event that (42) holds, then as ext is a strong (kL, kR, ε)-two
extractor, for each i ∈ [m] we get that d(ext(L,Ri)|L,R1, . . . , Ri−1, E(i)) ≤ ε. From Lemma 2 in [9], we
have

d(ext(L,Ri)|L,R1, . . . , Ri−1) ≤ d(ext(L,Ri)|L,R1, . . . , Ri−1, E(i)) + Pr[E(i)] ≤ ε+ γ.

With Eq. (41) this concludes the proof. ut
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Lemma 22. Let γ, λ > 0 and let ext : L×R →M is an (log |L|−λ−log(1/γ)), log |R|−λ−log(1/γ)), ε)-
two source extractor satisfying the following property:

If L← L and R← R are sampled uniformly at random, then ext(L,R) is distributed uniformly overM.
(43)

Define an LRS Φext = (Encodeext ,Decodeext) as follows:

– Encodeext : M → L × R: On input S ∈ M sample uniformly at random elements (L,R) such that
S = ext(L,R).

– Decodeext : L ×R →M: Decodeext(L,R) = ext(L,R) = S.

Then Φext is a (λ, 2 |M| ε− 2γ)-secure LRS.

Proof. Suppose that (L,R) is sampled uniformly and independently from L ×R. Let EL be an event that

H∞(L|Out(A, Ω(L,R))) ≤ log |L| − λ− log(1/γ)

and let ER be an event that

H∞(R|Out(A, Ω(L,R))) ≤ log |R| − λ− log(1/γ).

From Lemma 20, we know that the probability of both of these events is at most γ, and hence, by the
union-bound: Pr [EL ∪ ER] ≤ 2γ. Now, suppose E := EL ∪ ER occurred. For any S, S′ ∈M we have:

ε ≥ d(ext(L,R)|Out(A, Ω(L,R)), E) (44)

=
1

2

∑
S∈M,w∈{0,1}λ

|Pr[ext(L,R) = S ∧Out(A, Ω(L,R)) = w | E ]− (45)

Pr[Out(A, Ω(L,R)) = w | E ]/ |M| |

≥ 1

2

∑
w∈{0,1}λ

∑
s∈{S,S′}

|Pr[ext(L,R) = m ∧Out(A, Ω(L,R)) = w | E ]−

Pr[Out(A, Ω(L,R)) = w | E ]/ |M| |

≥ 1

2

∑
w∈{0,1}λ

|Pr [ext(L,R) = S ∧Out(A, Ω(L,R)) = w | E ]− (46)

Pr
[
ext(L,R) = S′ ∧Out(A, Ω(L,R)) = w | E

]
|

=
1

2 |M|
∑

w∈{0,1}λ
|Pr

[
Out(A, Ω(L,R)) = w | ext(L,R) = S′ ∧ E

]
− (47)

Pr
[
Out(A, Ω(L,R)) = w | ext(L,R) = S′ ∧ E

]
|

=
∆(Out(A, Ω(Encode(S)));Out(A, Ω(Encode(S′))))|E)

2 |M|
(48)

≥
∆(Out(A, Ω(Encode(S)));Out(A, Ω(Encode(S′))))− Pr

[
E
]

2 |M|
(49)

≥ ∆(Out(A, Ω(Encode(S)));Out(A, Ω(Encode(S′))))− 2γ

2 |M|
. (50)

Here, (44) follows from the definition of a two-source extractor, and the fact that L and R are independent
given Out(A, Ω(L,R)) (this, in turn, follows from Lemma 19 and the fact that L and R were chosen
independently at random, and hence I(L,R) = 0). Eq. (45) comes form the definition of the statistical
distance (cf. (1) in Section 2.1), Eq. (46) comes from the triangle inequality, and (47) from the definition of
the conditional probability and the fact that we assumed that ext satisfies Property (43). Again, (48) follows
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from the definition of the statistical distance, and (49) comes from the fact that the statistical distance is at
most equal to 1. Clearly (50) implies that

∆(Out(A, Ω(Encode(S)));Out(A, Ω(Encode(S′)))) ≤ 2 |M| ε− 2γ.

This finishes the proof. ut

C.2 Proof of Lemma 1

In order to show Lemma 1 we use a technique that is an extension of the technique from [9]. In our proof
we will use the fact that an inner product over a finite filed is a strong two-source extractor. This fact was
first stated in the seminal work of Chor and Goldreich [8], where it was shown for a field GF (2). Rao [35]
extended this result and proved that the inner product over arbitrary finite fields F is a strong two-source
extractor. More precisely, it was shown that for any finite field F, any δ > 0 and n ∈ N the function
extnF : Fn × Fn → F (cf. [35], Theorem 3.1) defined as extnF(L,R) = 〈L,R〉 =

∑
i LiRi is a (kext , εext)-

two source extractor, for εext = |F|(n+1)/2 2−kext and kext = (1/2 + δ)n log |F|, and |F| = Ω(n). Here we
generalize this fact in the following way.

Lemma 23. For n,m ∈ N and a finite field F such that |F| = Ω(n) define extn,mF : Fn × Fn×m → Fm as
extn,mF (L,R) = L ·R. For any δ > 0 and γ > 0 we have that extn,mF is a ((1/2 + δ)n log |F| , (m− 1/2 +

δ)n log |F|+ log(γ−1),m(|F|(n+1)/2 2−(1/2+δ)n log|F| + γ))-extractor.

Proof. Apply Lemma 21 to the extractor extnF. This can be done because we can view the function extn,mF :
Fn × Fn×m → Fm defined as extn,mF (L,R) = L · R as ˜ext

n,m
F : Fn × (Fn)m → Fm defined as

˜ext
n,m
F (L, (R1, . . . , Rm)) = (〈L,R1〉, . . . , 〈L,Rm〉) = (extnF(L,R1), . . . , ext

n
F(L,Rm)). ut

We now have the following.

Proof (of Lemma 1). We will combine Lemma 23 with Lemma 22. Recall that Lemma 22 states that every
extractor can be converted into an LRS scheme, as long as it satisfies property (43). The extractor extn,mF
constructed in Lemma 23 does not satisfy (43) if it is consider over the domain Fn × Fn,m. This is because
for L = (0n) the value of extn,mF (L,R) is equal to (0m) for any R. It is easy to see, however, that if extn,mF
is considered over a restricted domain (Fn \{(0n)}×Fn,m then the property (43) is satisfied7. Therefore the
LRS Φextn,mF

(cf. Lemma 22) is (λ, ε)-secure (if considered over the restricted domain), with

λ = (1/2− δ)n log |F| − log γ−1

ε = 2m(|F|m+1/2−nδ + |Fm| γ).

This finishes the proof since Φextn,mF
is exactly the same as Φn,mF . ut

D Flawed constructions of a refreshing scheme

In this section we present insecure protocols for refreshing and attacks against them. We do it for two reasons:
first, the insecure protocol FlawedRefresh is easier to understand and already outlines the basic idea of the
more complicated (secure) refreshing scheme Refresh. Second, on first sight FlawedRefresh looks like a
secure method for refreshing the LRS. Somewhat surprisingly, as we will show in this section, the protocol
FlawedRefresh can be completely broken (i.e., the adversary can recover the encoded secret S) with a simple,
non-adaptive leakage attack (essentially, the only thing that we require is that the adversary can probe some
parts of the memory when the computation takes place).

7 This is because if L 6= (0n) then for everyX ∈ Fm the set of solutions of L ·R = X is an affine subspace of Fn×m of dimension
m(n− 1), and hence has a cardinality |F|m(n−1).
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D.1 A First Attempt for Refreshing the LRS Φn,m
F

To simplify exposition, we focus in this section on the case whenm = 1. The protocol FlawedRefreshn,1F (L,R)
is given in Figure 5. The inner box inside of the protocol description is not part of the protocol, but only
needed to illustrate the leakage game that the adversary can play when running the protocol FlawedRefreshn,1F (L,R).

Protocol (L′, R′)← FlawedRefreshn,1F (L,R) :

Input (L,R): L is given to PL and R is given to PR.

Refreshing the share of PR:

1. PL samples X such that 〈X,L〉 = 0 and sends X to PR.
2. PR sets R′ := R+X .

Refreshing the share of PL:

3. PR samples Y such that 〈Y,R′〉 = 0 and sends Y to PR.
4. PL sets L′ := L+ Y .

Output: The players output (L′, R′).

The adversary plays a λ-leakage game against the leakage oracle:

Ω ((L,X, Y ) ; (R,X, Y ))

Fig. 5. The flawed protocol for refreshing FlawedRefreshn,1F . The text in frames describes the leakage game
played by the adversary.

It is easy to see that the protocol satisfies the correctness property as

〈L′, R′〉 = 〈L+ Y,R〉 = 〈L,R′〉+ 〈Y,R′〉 = 〈L,R′〉,

where the first equality comes from the construction of the protocol, the second one from the linearity of the
inner product, and the last one from the fact that 〈Y,R′〉 = 0. By a symmetric reasoning we get 〈L,R′〉 =
〈L,R〉. Hence, the protocol is correct. Notice that the refreshing protocol from Figure 5 does not depend
on any message sent by the adversary, thus, we may assume that the adversary plays the leakage game just
before the end of the protocol. This game is depicted in the text in the frame on Fig. 5. Furthermore, notice
that as L′ and R′ are functions of (L,X, Y ) and (R,X, Y ) respectively, we do not explicitly need to include
them into the inputs of the oracle Ω.

At first glance, the protocol shown in Figure 5 looks like a promising candidate for a secure refreshing
protocol, as the secrets L and R held by the players get completely “refreshed” by adding to them a high-
entropy vectors Y andX (resp.). In the attack below, we will show that unfortunately such a simple refreshing
protocol is not secure.

AN ATTACK AGAINST THE PROTOCOL FlawedRefresh FROM FIG. 5. In the following, if V = (V1, . . . , Vn)
is a vector then V [a, . . . , b] (for 1 ≤ a ≤ b ≤ n) will denote the vector (Va, . . . , Vb). We show a (2 |F|)-
limited adversary A that attacks FlawedRefreshn,1F and recovers the encoded message S after ` = n rounds
of the refreshing protocol. Let Lj−1 and Rj−1 denote the shares held by the players PL and PR at the
beginning of the jth round. Let further Xj , Y j denote the randomness sampled for the refreshing in the jth
round of the protocol. This means that in the jth round the adversary can interact with the leakage oracle
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Ω(Lj−1, Xj , Y j ;Rj−1, Xj , Y j). We will show how a (2 |F|)-limited adversary A can by interaction with
Ω(Lj−1, Xj , Y j ;Rj−1, Xj , Y j) learn W j := 〈Lj [1, . . . , j], Rj [1, . . . , j]〉. Clearly, after showing this we
are done, as for j := n the adversary can recover S =Wn.

The attack works by induction. Trivially for j = 1 we can compute W 1 by retrieving from the leakage
oracle L1[1] andR1[1]. For j ≥ 2 assume that at the end of the (j−1)th iteration the adversary knowsW j−1,
and we will show how the adversary can learnW j at the end of the jth iteration. At the end of the jth iteration
the adversary A retrieves the following from PL: the value of CjL = 〈Lj−1[1, . . . , j − 1], Xj [1, . . . , j − 1]〉
and Dj

L = Lj [j], and from PR he retrieves CjR := 〈Y j [1, . . . , j − 1], Rj [1, . . . , j − 1]〉, and Dj
R = Rj [j].

We now have:

W j = 〈Lj [1, . . . , j], Rj [1, . . . , j]〉 (51)

= 〈Lj [1, . . . , j − 1], Rj [1, . . . , j − 1]〉+ Lj [j] ·Rj [j]
= 〈Lj [1, . . . , j − 1], Rj [1, . . . , j − 1]〉+Dj

LD
j
R

= 〈Lj−1[1, . . . , j − 1], Rj [1, . . . , j − 1]〉+ 〈Y j [1, . . . , j − 1], Rj [1, . . . , j − 1]〉+Dj
LD

j
R (52)

= 〈Lj−1[1, . . . , j − 1], Rj [1, . . . , j − 1]〉+ CjR +Dj
LD

j
R

= 〈Lj−1[1, . . . , j − 1], Rj−1[1, . . . , j − 1]〉+ 〈Lj−1[1, . . . , j − 1], Xj [1, . . . , j − 1]〉+ CjR +Dj
LD

j
R

=W j−1 + CjL + CjR +Dj
LD

j
R, (53)

where (52) and (53) come from the linearity of the inner product, and the rest are simple algebraic transfor-
mations. By assumption, the adversary knows W j−1 in (53). Therefore he can also calculate W j .

A FIRST ATTEMPT TO FIXING THE PROBLEM. The main problem with the protocol from Fig. 5 is that the
players PL and PR know the values of X and Y (resp.), and therefore they can calculate joint functions on
(L,X, Y ) and (R,X, Y ) (resp.). Our method for overcoming this problem is to design a scheme, where
X and Y are sent in an “oblivious” way: e.g. the player PR will be able to learn a random X such that
〈L,X〉 = 0, while PL will not learn any additional information on X . One natural idea to implement this,
is the following. In Step 1, instead of choosing X randomly, PL chooses a random matrix M in such a way
that each column of M is orthogonal to L, which can be expressed algebraically as:

L ·M = (0, . . . , 0). (54)

(for simplicity assume that M is a n × n-matrix of rank n − 1). Then PL sends M to PR. In Step 2 player
PR calculates X :=M ·B, where B is a random column vector of length n (in other words: X is a random
linear combination of the columns of M ), and sets R′ := R + XT. By simple linear algebra we have
〈L,X〉 = 〈L,M · B〉 = L ·M · B = (0, . . . , 0) · B. Symmetrically, in Step 3 player PR chooses a random
n×n-matrix M̃ (of rank n−1) such that M̃ ·R′ = (0, . . . , 0). Then, PR sends M̃ to PR. In Step 4 player PL

calculates Y := Ã ·M̃ , where Ã is a random column vector of length n, and then he sets L′ := L+Y . Again,
it can be easily verified that 〈R′, X〉 = 0. This protocol may look secure since obviously PL does not learn
X , as (from his point of view) it is a random element sampled from a linear space of vectors orthogonal to L.
Unfortunately, now the problem appears on the other side, since PR, after receiving M , can solve (54) and
compute L (and similarly PL can compute R from M̃ ). Hence, this protocol is not better than an (obviously
not secure) solution where the players simply send their shares L and R to each other. We also note that
attempts to repair this problem by decreasing the rank or the dimension of M and M̃ does not seem to lead
to any solution.
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