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Abstract. This article provides an in-depth study of high-order (HO)
Boolean masking countermeasure against side-channel attacks. We in-
troduce the notion of HO-CPA immunity as a metric to characterize a
leakage function. We show that this notion intervenes to assess both the
resistance against HO-CPA attacks and the amount of leakage. Namely,
the HO-CPA immunity, denoted HCI ∈ N∗, coincides with the lowest
order of a successful HO-CPA and gives the dependence of leakage be-
havior with the noise’s variance σ2 (according to O(1/σ2×HCI) in Landau
notation). Then, we introduce the technique of leakage squeezing. It is
an optimization of the straightforward masking where masks are recoded
relevantly by bijections. Our main contribution is to show that the HO-
CPA immunity of a masking countermeasure can be incremented by one
or even by two at virtually no added cost. Indeed, the bijections (and
inverse bijections) can be incorporated in tables that are often found in
cryptographic algorithms (e.g. substitution boxes).

Keywords: High-Order Masking, High-Order Correlation Power Anal-
ysis (HO-CPA), High-Order CPA Immunity (HCI), Mutual Information
Metric (MIM).

1 Introduction

Masking [10, Chp. 9] is a countermeasure against observation attacks,
also known as side-channel attacks (SCA), that is suitable for both hard-
ware and software cryptographic implementations. Indeed, it consists in
changing the representation of variables into randomized shares [6,18],
and can thus be qualified as a logical countermeasure. Notably, mask-
ing does not rely on specific hardware properties (as opposed to dual-rail
protection [10, Chp. 7], that demands some physical indiscernibility).

http://www.telecom-paristech.fr/en/eng/home.html
http://www.comelec.enst.fr/recherche/sen.en
http://www.Secure-IC.com/
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Nonetheless, masked implementations can always be attacked, since
all the shares [4] or a judicious combination [15] of them do unambigu-
ously leak information about the sensitive variable. However, it is possi-
ble to give a formal definition for a high-order masking scheme: a d-order
masking scheme involves d + 1 shares. The security is reached at order
d provided any combination of d variables conveys no information about
the sensitive variable.

In fact, many purported solutions have been defeated [3,13,16]. One
sound solution has been put forward recently in [17]. This solution can
either be applied on software or hardware, because the unitary operation
evaluation order is indifferent.

In this article, we illustrate the hardware implementation of d-order
masking schemes. By hardware, we mean FPGA or ASIC circuits where
identical resources (indiscernibility) can be instantiated and operated at
the same time (parallelism). Some specificities of hardware simplify the
design of masking countermeasures. We list our hypotheses below:

1. Regarding sequential resources (i.e. registers), the sum of their activ-
ity is leaked, and regarding the combinational logic, operations can
be hidden in memories (executing precomputed masked tables).

2. In integrated devices manufactured with a fine minimal feature size,
it is difficult to insulate the consumption of the various components;
therefore, the attacker cannot distinguish one share from the other.

3. The noise is large, because of the parallelism. The variables unrelated
to the attack act as independent noise sources, that can be modeled
as a binomial law. If we take the example of the DES, a maximum
of 4-bits is used as oracle. Consequently the noise consists in at least
64− 4 random variables, whose independent activity adds up. Hence
a very good approximation of the algorithmic noise is a normal law,
of variance σ2 ≈ 60 ≫ 1.

In software, the computation basically unfolds the same. The difference
with hardware is that variables are evaluated sequentially instead of in
parallel. The attacker can thus choose adequate “combination function”
using several measurements [14].

In the present paper, we will focus on hardware masking implemen-
tations. So, the only combination function available to the attacker is the
arithemitic sum of individual leakages of the shares. This is done physi-
cally because of the parallelism in hardware devices execution.

The rest of the paper is structured as follows. The notion of HO-
CPA immunity is first introduced (even independently of any masking
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scheme) in Sec. 2. The security evaluation of hardware masking is studied
in Sec. 3. An optimization of the HO-CPA immunity, thanks to a “leakage
squeezing” enhancement of plain hardware Boolean masking, is explained
in Sec. 4. Further improvements for specific bijections involved in the
leakage squeezing are disclosed in this Sec. 4, where a summary of the
results obtained in the paper is also given. Finally, section 5 concludes
the paper and opens some further research perspectives.

2 HO-CPA Attacks and HO-CPA Immunity

In the context of a side-channel attack (possibly high-order [12]), we de-
note by L the leakage observations. Furthermore, we assume that the at-
tacker can partition the observations according to a sensitive variable Z
(that can be deduced from either the plaintext or the ciphertext through
few sub-keys hypotheses). In our analysis, it is convenient to see L and Z
as random variables (RVs). Their realization is denoted by small letters
(l and z). In this section, L and Z can be arbitrary. In Sec. 3, we will
explicit some expressions for them.

There are two ways to address the security evaluation of a counter-
measure [20]:

1. Success of attacks (using metrics such as the success rate or the guess-
ing entropy). Basically, there are two kinds of high-order attacks:

(a) CPA [1], for which the optimal attack (at high orders) is defined
in [15];

(b) Information theoretic attacks, like the MIA [5], stochastic [19] or
template [2].

2. Leakage estimation with information theoretic metrics, such as the
mutual information between the leakage (observations) and the model.

CPA attacks are studied in Sec. 2.1. Information theoretic attacks and
leakage metrics are jointly covered in Sec. 2.3.

2.1 HO-CPA Attacks

In a high-order CPA context, the attacker can compute ρ((C(L), f(Z)) for
every function C : L 7→ (L−E(L))i for a given order i, where ρ( · , · ) is the
Pearson correlation coefficient and f is the prediction function according
to some assumptions on the device leakage model. Prouff et al. [15] have
shown that the function f that maximizes the advantage of the attacker is
fopt(z) = E((L−E(L))i | Z = z) in an HO-CPA of order i. In this formula,
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the symbol E represents the expectation. Incidentally, this quantity is also
known in statistics as the central moment of order i of probability density
function (pdf) L | Z = z, that we denote by µi(L | Z = z).

Remark 1. In hardware implementation, we mean by an attack of order
i any attack that aims at exploiting the leakage central moment of order
i. The difference with software is that the attacker cannot combine the
shares; the sum of their activity L is leaked due to the parallelism in
hardware devices execution.

We recall some notation which will be useful in the sequel. We denote
by µz and σ2

z the mean and the variance of L | Z = z. We call µtot =∑
z P[Z = z]µz the mean of L. The total variance σ2

tot of L decomposes
into the sum of inter- and intra-class variance, denoted by σ2

inter and σ2
intra.

Those quantities are defined as: σ2
inter

.
=
∑

z P[Z = z](µz − µtot)
2 and

σ2
intra

.
=
∑

z P[Z = z]σ2
z . We also introduce the cumulants ki(X) of the

random variable X that are defined as: ln(E(exp(t ·X))) =
∑+∞

i=0 ki(X) t
i

i! ,
for t ∈ R.

In the presence of countermeasures, the central moment µi(L | Z = z)
of order i can be independent of z. In practice, the attacker will typically
try to compute the moments starting from low orders, because their es-
timation is less affected by the measurement noise.

2.2 HO-CPA Immunity

In this section, we define the notion of HO-CPA immunity (denoted by
HCI) to quantify the difficulty of an attack.

Definition 1. The HO-CPA immunity of the random variable L | Z is
equal to the minimal value i ∈ N∗ such that ∀j ∈ J0, i − 1K, the (central)
moment of order j of the distribution L | Z = z is constant with respect
to z.

This notion is always defined, because the moments of order 0 of any
distribution X are equal to 1 (the integral of a pdf). Thus, the minimal
value of the HO-CPA immunity is 1 when the distributions do not have
the same mean. Said differently, HCI = 1 if µ1(L | Z = z) depends on z.
This is the case of unprotected circuits, for which a first-order CPA [1]
works.

The HO-CPA immunity is larger than or equal to 2 when the dis-
tributions are balanced (i.e. ∀z, µz = µtot). In this case, the inter-class
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variance is null and the total variance σ2
tot is equal to the intra-class vari-

ance σ2
intra =

∑
z P[Z = z] × µ2(L | Z = z). If the µ2(L | Z = z) are not

all equal, then HCI = 2 and a second-order CPA using fopt of order 2 (or
a variance-based attack [9]) is possible.

The motivation of the HO-CPA immunity definition is thus straight-
forward. As noted in Sec. 2.1, all HO-CPA using fopt of order i < HCI

will fail, because the optimal function fopt(z) is independent of z. Thus
the HO-CPA immunity is equal to the smallest order of fopt for which an
HO-CPA attack can be successful.

2.3 Link Between I(L + N ;Z) and the HO-CPA Immunity

The HO-CPA reveals linear dependencies between L and Z. Unless the
random variables L | Z = z are identically distributed for every z, the
mutual information I(L;Z) will be non-zero.

This means that there is no such notion of “order” for MIA or leak-
age metrics. Nonetheless, it is interesting to compare the value of I(L;Z)
for different leakage functions L. To do so, we notice that in real mea-
surements, the observations L are noisy. We assume that in the presence
of noise, the observations are added an Additive White Gaussian Noise
(AWGN) N ∼ N (0, σ2). The Gaussian model assumption is both very
usual in the side channel literature and fairly realistic in practice (see
for instance [10, §IV]). The interpretation of the link between HO-CPA
immunity and the HO-CPA success given in Sec. 2.2 is not affected by N
if it is independent of L and Z, because in this case:

Lemma 1. ∀i ∈ J0,HCIJ, ρ((L − E(L))i, Z) = 0 ⇒ ∀i ∈ J0,HCIJ, ρ((L +
N − E(L+N))i, Z) = 0.

Proof. The proof is given in Appendix A.1. ⊓⊔

In the case of the mutual information, the impact of the noise N is
quantified by Theorem 1.

Theorem 1. Under the Gaussian assumption, I(L+N ;Z) = O
(
σ−2×HCI

)

asymptotically when σ → +∞.

Proof (of Theorem 1 for HCI ∈ {1, 2}). If HCI ≤ 2, we can use the
Gaussian assumption, since the distributions have either different means
(HCI = 1) or variances (HCI = 2). Adding N to either L | Z = z does
not change their mean. The impact on their variance is merely to add σ2

(because those variables are independent).
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Now the mutual information I(L+N ;Z) can be expressed in terms of
Kullback-Leibler divergence [22]: I(L+N ;Z) = EZDKL(L+N ‖ L+N |
Z). Under the Gaussian assumption, L + N ∼ N (µtot, σ

2
tot + σ2) and

L+N | Z = z ∼ N (µz, σ
2
z + σ2). The Kullback-Leibler divergence of two

normal laws has an analytical expression, from which it can be derived
the following result:

I(L+N ;Z) = −
1

2
×

σ2
inter

σ2
tot + σ2

+
1

2 ln 2

∑

z

P[Z = z] ln
1 + σ2

z/σ
2

1 + σ2
tot/σ

2
. (1)

If HCI = 1, then σ2
inter 6= 0. The first order Taylor expansion ln(1+ǫ) =

ǫ+O(ǫ) on ǫ = 1/σ2 yields: I(L+N ;Z) = −
(

1
2σ2

tot
+2σ2

+ 1
2σ2 ln 2

)
σ2
inter+

O( 1
σ2 ), which is about equivalent to O( 1

σ2 ) when σ2 increases (σ2 ≫ σ2
tot).

If HCI = 2, then σ2
inter = 0, but σ2

tot = σ2
intra 6= 0. Thus, by de-

veloping the logarithm at order 2 in ǫ = 1/σ2, we get I(L + N ;Z) =∑
z

1
2σ4

∑
z P[Z = z]

(
σ4
tot − σ4

z

)
+ O( 1

σ4 ). Now, it remains to prove that∑
z P[Z = z]

(
σ4
tot − σ4

z

)
6= 0. This is actually true, by the application of

the Cauchy-Schwarz theorem on xz =
√
P[Z = z] and yz =

√
P[Z = z]σ2

z .
Indeed, we have: (

∑
z xz · yz)

2 ≤
(∑

z x
2
z

)
·
(∑

z y
2
z

)
, with equality if and

only if xz and yz, seen as vectors, are colinear. As at least one σz is dif-
ferent from the others, the inequality is strict. Thus:

(∑
z P[Z = z]σ2

z

)2
<

∑
z

√
P[Z = z]

2
·
∑

z

(√
P[Z = z]σ2

z

)2
=
∑

z P[Z = z]σ4
z . ⊓⊔

Before proving Theorem 1 for HCI > 2, let us introduce the following
useful lemma.

Lemma 2. If L has HCI immunity, then ∀i ∈ J0,HCIJ, ∀z, ki(L | Z =
z) = ki(L).

Proof. The proof is given in Appendix A.2. ⊓⊔

We continue hereafter the proof of Theorem 1.

Proof (of Theorem 1 for HCI > 2). If HCI > 2, then all the σ2
z are equal,

and σ2
tot is equal to them too. The Gaussian assumption leads to the

conclusion that I(L+N ;Z) = 0 (refer to Eqn. 1). Therefore, we refine the
density probabilities expressions thanks to an Edgeworth expansion. We
reuse the result shown in Lemma 2 of [8] (extended to laws of common
variance σ2

tot + σ2 6= 1):

I(L+N ;Z) =
+∞∑

i=3

1

2 · i!

∑

z

P[Z = z]
(ki(L | Z = z)− ki(L))

2

(
σ2
tot + σ2

)i . (2)
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In this equation, we use the fact that the cumulants of order i of two
independent RVs are the sums of their individual cumulants. Now, the
moments of N are all null but for k2(N) = σ2. This is why ∀i ≥ 3, ki(L+
N | Z = z) = ki(L | Z = z) and ki(L + N) = ki(L). Then, according to
Lemma 2, the first non-zero term in this summation is at index i = HCI,
which achieves to prove Theorem 1. ⊓⊔

Our main interest in Theorem 1 is that it gives the dependence of
leakage behavior with the noise’s variance σ2. The higher HCI (i.e. the
more statistical moments of L | Z = z are constant with respect to z),
the less information is leaked by the device.

3 High-Order Hardware Boolean Masking

3.1 Definitions

In a masking scheme with d masks, in addition to the sensitive vari-
able Z, we denote by Mi∈J1,dK the masks. The d + 1 shares are a0 =

Z ⊕
⊕d

i=1Mi, a1 = M1, · · · , ad = Md. In hardware, all the shares can be
manipulated concomitantly. Let us for instance consider the computation
of a combinational function S : x ∈ {0, 1}n 7→ S(x) ∈ {0, 1}n, where n
denotes the bitwidth of the sensitive word under analysis. Typically, d
arbitrary bijective functions Si∈J1,dK are used to update the masks for the

next clock period, and a function S0 : (a0, a1, · · · , ad) ∈ {0, 1}n×(d+1) 7→
S(
⊕d

i=0 ai)⊕
⊕d

i=1 Si(ai) achieves the functionally. This scheme is illus-
trated in Fig. 1(i). It is a generalization from the scheme of first-order
(d = 1) protection discussed in [21].

y0 y1 yd...

a0 a1 ad...

... B−1
d

B0

B−1
0

S0

B−1
1

B1

S1

B−1
1

Bd

Sd

B−1
d

...

...

y0 y1 yd...

a0 a1 ad...

S0 S1 Sd
...

...

(i) (ii)

Fig. 1. Hardware d-th order masking of function S, plain (i) and with leakage squeezing
(ii).
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How the Si functions are computed is out of the scope of this article.
Typically, we warn that the most critical function, namely S0, must be
glitch-free. Indeed, this function receives in input all the shares, and [11]
has shown that such configuration can leak even at the first-order. A
straightforward implementation in logic cell would certainly make the
variable

⊕d
i=0 ai appear, which is catastrophic since it is exactly the sen-

sitive variable z. Therefore, the general recommendation is to fit S0 in a
RAM, since memories are designed not to glitch [7, §IV.1].

In the sequel, we focus on the security analysis of the registers (of sym-
bol ). According to our hypotheses about hardware (stated in Sec. 1),
the registers are equivalent. Therefore, the leakage is invariant by a per-
mutation on the bits. Additionally, we suppose that the attacker cannot
specifically distinguish one register from the others. Hence, the leakage
function simplifies in a Hamming weight or distance. In Hamming weight:

L(Z,M1, · · · ,Md) = HW(Z ⊕
⊕d

i=1Mi) +
∑d

i=1HW(Mi) . (3)

In Hamming distance, we can still stick to the same leakage function,
since if we denote by prime letters the future state and by ∆Z the bitwise
difference Z ⊕ Z ′, then the leakage function of Eqn. (3) rewrites:

L(Z,M1, · · · ,Md, Z
′,M ′

1, · · · ,M
′
d) =

HW(Z ⊕
⊕d

i=1Mi ⊕ Z ′ ⊕
⊕d

i=0M
′
i) +

∑d
i=1HW(Mi ⊕M ′

i) =

HW(∆Z ⊕
⊕d

i=1∆Mi) +
∑d

i=1HW(∆Mi) = L(∆Z,∆M1, · · · , ∆Md) ,(4)

which is the same as Eqn. (3) where every variable is replaced by the
difference of variables.

3.2 Resistance of HO Hardware Boolean Masking Against
HO-CPA

In this section, we prove that the Hardware Boolean countermeasure with
d masks has HO-CPA immunity HCI = d + 1, and thus protects against
(d+1)th-order CPA.This is illustrated for n = 4 in Tab. 1 first five groups,
that correspond to d ∈ J0, 4K. In this table, the number of lines in gray is
equal to HCI− 1 (Definition 1).

We start the demonstration by Lemma 3.

Lemma 3. Let αi be d + 1 natural integers, for i ∈ J0, dK. If one αi is
equal to zero, then the expression:

∑
m1,··· ,md

HWα0(z ⊕
⊕d

i=1mi) ·
∏d

i=1HW
αi(mi) (5)
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Table 1. Statistics about some leakage models on words of n = 4 bitwidth, without
noise (i.e. σ = 0).

R.V. L L |Z = 0 L |Z = 1 L |Z = 2 L |Z = 3 L |Z = 4

Plain hardware implementation (Eqn. (3)) with d = 0 mask (unprotected reference).

H
C
I
=

1

µ1 = E( · ) 2.000 0.000 1.000 2.000 3.000 4.000

µ2 = E(( · − µ1)
2) 1.000 0.000 0.000 0.000 0.000 0.000

µ3 = E(( · − µ1)
3) 0.000 0.000 0.000 0.000 0.000 0.000

µ4 = E(( · − µ1)
4) 2.500 0.000 0.000 0.000 0.000 0.000

Entropy [bit] 2.031 0.000 0.000 0.000 0.000 0.000

Plain hardware implementation (Eqn. (3)) with d = 1 mask.

H
C
I
=

2

µ1 = E( · ) 4.000 4.000 4.000 4.000 4.000 4.000

µ2 = E(( · − µ1)
2) 2.000 4.000 3.000 2.000 1.000 0.000

µ3 = E(( · − µ1)
3) 0.000 0.000 0.000 0.000 0.000 0.000

µ4 = E(( · − µ1)
4) 11.000 40.000 21.000 8.000 1.000 0.000

Entropy [bit] 2.544 2.031 1.811 1.500 1.000 0.000

Plain hardware implementation (Eqn. (3)) with d = 2 masks.

H
C
I
=

3

µ1 = E( · ) 6.000 6.000 6.000 6.000 6.000 6.000

µ2 = E(( · − µ1)
2) 3.000 3.000 3.000 3.000 3.000 3.000

µ3 = E(( · − µ1)
3) 0.000 -3.000 -1.500 0.000 1.500 3.000

µ4 = E(( · − µ1)
4) 25.500 25.500 25.500 25.500 25.500 25.500

Entropy [bit] 2.839 1.762 1.822 1.836 1.822 1.762

Plain hardware implementation (Eqn. (3)) with d = 3 masks.

H
C
I
=

4

µ1 = E( · ) 8.000 8.000 8.000 8.000 8.000 8.000

µ2 = E(( · − µ1)
2) 4.000 4.000 4.000 4.000 4.000 4.000

µ3 = E(( · − µ1)
3) 0.000 0.000 0.000 0.000 0.000 0.000

µ4 = E(( · − µ1)
4) 46.000 52.000 49.000 46.000 43.000 40.000

Entropy [bit] 3.047 2.044 2.047 2.046 2.043 2.031

Plain hardware implementation (Eqn. (3)) with d = 4 masks.

H
C
I
=

5

µ1 = E( · ) 10.000 10.000 10.000 10.000 10.000 10.000

µ2 = E(( · − µ1)
2) 5.000 5.000 5.000 5.000 5.000 5.000

µ3 = E(( · − µ1)
3) 0.000 0.000 0.000 0.000 0.000 0.000

µ4 = E(( · − µ1)
4) 72.500 72.500 72.500 72.500 72.500 72.500

Entropy [bit] 3.208 2.207 2.208 2.208 2.208 2.207

Leakage squeezing hardware implementation with d = 1 mask and B = I4 (Eqn. (13)).

H
C
I
=

4

µ1 = E( · ) 4.000 4.000 4.000 4.000 4.000 4.000

µ2 = E(( · − µ1)
2) 2.000 2.000 2.000 2.000 2.000 2.000

µ3 = E(( · − µ1)
3) 0.000 0.000 0.000 0.000 0.000 0.000

µ4 = E(( · − µ1)
4) 11.000 32.000 11.000 8.000 11.000 8.000

Entropy [bit] 2.544 0.669 1.544 1.500 1.544 1.500
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does not depend on z. In Eqn. (5), HWα(m) is the αth power of HW(m),
with the convention that ∀m,HW0(m) = 1.

Proof. If α0 = 0, then, by definition, Eqn. (5) does not depend on z. Let
us assume αi = 0 with i > 0. If we replace the summation variable mi

with mi ⊕ z, then we come back to the previous case. ⊓⊔

As a corollary to Lemma 3, for the leakage function defined in Eqn. (3),
the HO-CPA immunity HCI is strictly greater than d. Indeed, the devel-
opment of Lj will imply terms like Eqn. (5) such that

∑d
i=0 αi ≤ j. Thus,

to have all αi non-zero, j must be strictly greater than d. In application
of the interpretation of HCI in Sec. 2.2, the first HO-CPA able to extract
the correct key uses fopt of order HCI = d+ 1.

Theorem 2. The optimal prediction function for d + 1-order CPA on
the hardware countermeasure with d masks is the Hamming weight of the
sensitive variable.

Proof. When j = d + 1, all the terms in the decomposition of Lj are
independent of z but the one corresponding to the case for which all the
αi are equal to 1. In this case, the exact expression for Eqn. (5) is:

E
(
HW(Z ⊕

⊕d
i=1Mi) ·

∏d
i=1HW(Mi) | Z = z

)
=
(
−1

2

)d (
HW(z) + n

2

(
(−n)d − 1

))
.

(6)
This equality relies on this relationship: E(HW(Z ⊕M) × HW(M) |

Z = z) = n2+n
4 − 1

2HW(z), proved in Eqn. (19) of [15]. If at all orders 1 ≤

i ≤ d−1, Eqn. (5) writes n2+n
4 ui+viHW(z), then this is also true at order

d. Moreover ud = n
2ud−1 + u1vd−1 and vd = vd−1v1. As such expressions

exist for d = 1 (u1 = 1 and v1 = −1/2), the induction shows it is true at
all order d ≥ 1. Basic arithmetic shows that vd = (−1/2)d and that ud =∑d−1

i=0 (n/2)
i(−1/2)d−1−i = (−1/2)d−1

∑d−1
i=0 (−n)i = (−1/2)d−1 1−(−n)d

1+n
.

Now, the correlation with a linear combination of z 7→ HW(z) is the
same as with merely HW(z), which achieves to prove that the Hamming
weight of the sensitive variable is the best model in HO-CPA against the
hardware masking countermeasure. ⊓⊔

3.3 Leakage Estimation of Hardware Boolean Masking

The most accurate leakage estimation requires no model, as opposed to
HO-CPA. Instead, all the 2n values of sensitive variable Z are kept for the
partitioning to be the most relevant. Nevertheless, due to the invariance
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of the assumed leakage model in the bits order, the partitions degener-
ate in classes indexed by HW(Z) or HW(∆Z), belonging to J0, nK. This
means that I(L +N ;Z) = I(L +N ; HW(Z)). Thus, the leakage function
in hardware implementation (Eqn. (3)) has also HCI = d+ 1.

The mutual information at low σ (e.g. σ = 0) is of little interest for
hardware. Indeed, as already argued, hardware implementations being
parallel, they have a high algorithmic noise level. Furthermore, regard-
ing applications programmed in FPGA, the FPGA itself is very noisy.
Eventually, it is not costly to add noise generators (such as a free running
LFSRs) in FPGAs since it always remains a few LUTs (Look-Up Tables)
that can be filled this way. So the tendency when σ → +∞ is interest-
ing, and thus, the result of Theorem 1 applies: with d masks, the ratio
log(I(L+N ; HW(Z))/ log(σ2) is asymptotically equal to −HCI = −d− 1.
This is confirmed by numerical computations, shown in Fig. 2.

4 Proposed Masking Method for “Leakage Squeezing”

4.1 Principle

The goal of the leakage squeezing is to transform the intermediate vari-
ables so as to break the too strong link between the shares. For this
purpose, GF (2)n → GF (2)n functions Bi are applied to the d+1 shares,
as illustrated in Fig. 1(ii). It is important that the Bi are bijections, oth-
erwise the entropy of the masks is reduced. Also, the transformation Bi

must be inverted to recover the functional values. The leakage function
LLS for this countermeasure can be expressed for hardware approach by:

LLS(Z,M1, · · · ,Md) = HW(B0(Z
d⊕

i=1

Mi)) +
d∑

i=1

HW(Bi(Mi)) (7)

4.2 Security Evaluation of the Countermeasure for One Mask

To simplify the study, we focus on d = 1 mask, and we also adopt B0 =
In (the identity function) and search for a good bijection B1, denoted
simply by B. This section starts with a security analysis of the leakage
squeezing countermeasure in order to determinate the efficiency of various
distinguishers in exploiting the leakage of (Eqn. (7)). So, the leakage is:

LLS(Z,M) = HW(Z ⊕M) + HW(B(M)) , (8)
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thus, the optimal function for attacks of order i with leakage squeezing
is:

fopt(z) = EM

(
[HW(z ⊕M) + HW(B(M))− EM (HW(z ⊕M) + HW(B(M)))]i

)

= EM

(
(HW(z ⊕M) + HW(B(M))− n)i

)

=
i∑

k=0

k∑

l=0

(
i

k

)(
k

l

)
(−n)i−kEM

(
HW(z ⊕M)lHW(B(M))k−l

)
. (9)

Remarkable conclusions of the computation of fopt are:

1. If the bijection B is randomly generated over GF (2)n – i.e. it is a RV
– then the optimal function is constant for the different combining
functions. Hence, the correlation attacks will not succeed since ρopt
will be null. This method nevertheless requires additional resources
(e.g. more memories in a FPGA to generate the random bijections
using Random Number Generators).

2. If we use one sole bijection B (a constant hardwired transformation),
then it should satisfy:

foptB,p,q(z)
.
= EM (HW(z ⊕M)p ·HW(B(M)))q = constant , (10)

for some p, q ∈ N. This solution is the case of study for the rest of this
paper.

4.3 Constructive Search of B: Boolean Theory

Eqn. (5) for all αi = 1 also writes as a convolution:
⊗d

i=0HW(z). If we
restrict to d = 2, we similarly notice that foptB,p,q in Eqn. (10) rewrites
HWp ⊗ (HW ◦B)q.

Case where p = 1 and q = 1 We found that some linear functions
satisfy Eqn. (10). There are two strong incentives to research for linear
bijections B:

1. There is a theory, which helps guide the search (as will be shown
below).

2. The leakage squeezing obtained this way still applies both to Ham-
ming weight (Eqn. (3)) and distance (Eqn. (4) remains equivalent to
Eqn. (3), since ∆B(M) = B(∆M)).

More precisely, these functions are detailed in Theorem 3.
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Theorem 3. The linear functions B : GF (2)n → GF (2)n, represented
by m 7→ B(m) = mAT, with A an invertible n × n matrix over GF (2),
such that all lines have strictly more than one 1, are verifying Eqn. (10)
for p = q = 1.

Proof. The demonstration uses the Walsh-Hadamard transform: it maps
a bijection f into f̂ , defined as f̂(u)

.
=
∑

x∈GF (2)n f(x)(−1)x·u. An ap-
pealing property of the Walsh-Hadamard transform is that it turns a
convolution into a product:

foptB,1,1(z) = cst ⇔ Ÿ�foptB,1,1(a) ∝ δ(a) [where ∝ means “is proportional to”]

⇔ ‘HW(a)× ÿ�HW ◦B(a) =
(
n× 2n−1

)2
× δ(a)

⇔ ∀a 6= 0,‘HW(a) = 0 or ÿ�HW ◦B(a) = 0 . (11)

Now, if we denote by ei the lines of the identity matrix In of size n× n,

‘HW(a) =
∑

z∈GF (2)n

1

2

n∑

i=1

(1− (−1)zi) (−1)a·z

= n · 2n−1δ(a)− 1
2

∑
z∈GF (2)n

∑n
i=1(−1)(a⊕ei)·z

=





n · 2n−1 if a = 0,
−2n−1 if ∃i ∈ J1, nK, such that a = ei,
0 otherwise.

(12)

Thus, the problem comes down to finding a functionB such that: ÿ�HW ◦B(a) =
0 for a = ei. This is the case of B nonzero linear, as long as m 7→ Bi(m) =
αi ·m satisfies ∄j such that αi = ej . ⊓⊔

Such matrices exist if n is even and greater or equal to 4. For instance,
In (the complement of the identity In) satisfies Theorem 3. Indeed, the
matrix In (abridged I in this §) has trivially more than one 1 per line. In
addition, it is invertible (in the case n ∈ 2N∗\{2}), because it is orthogo-
nal. We recall that the product of two binary matrices Ai,j and Bi,j , where
i, j ∈ J0, nJ is defined as (A ·B)i,j =

⊕
k Ai,k · Bk,j . Now we note that I

is symmetric, because I
T
= I. Also, the elements of I are I i,j = δ(i 6= j),
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where δ is the Kronecker symbol. Thus:

(
I
T
· I
)
i,j

=
n−1⊕

k=0

δ(i 6= k) · δ(k 6= j)

=





⊕n−1
k=0 δ(i 6= k) =

⊕
k 6=i 1︸ ︷︷ ︸

Odd number of 1s

⊕ 0 = 1 if i = j,

⊕
k 6=i and k 6=j 1︸ ︷︷ ︸

Even number of 1s

⊕
⊕

k=i or k=j 0 = 0⊕ 0 = 0 if i 6= j;

= δ(i = j) = (I)i,j . (13)

Note: The application of I on x is not equivalent to computing x. For ex-
ample, if n = 4, the linear function defined by the application of I4 maps
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f} to {0, e, d, 3, b, 5, 6, 8, 7, 9, a, 4, c, 2, 1, f}.

For n = 8, we can also use the circulant matrix involved in the AES:

A8 =




1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1




. (14)

For n odd, some circulant matrices can also be used. For instance,
when n = 5, there is the couple:

A5 =




1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1
1 1 0 0 1


 and A5−1 =




0 1 1 0 1
1 0 1 1 0
0 1 0 1 1
1 0 1 0 1
1 1 0 1 0


 .

Case where p is arbitrary and q = 1 The same functions derived in
the previous case also work, because Eqn. (12) remains null on the same
values of a:

’HWp(a) =
∑

z∈GF (2)n

1

2p

(
n∑

i=1

1−
n∑

i=1

(−1)zi

)p

(−1)a·z

=
∑

z∈GF (2)n

1

2p




p∑

j=0

(
p

j

)
np−j

(
−

n∑

i=1

(−1)zi

)j

 (−1)a·z .(15)
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In general, it is difficult to say more. But if we consider p = 2, then
(
∑n

i=1(−1)zi)j either:

– is a constant (when j = 0), which contributes a non-zero value only if
a = 0, or

– is identical as in previous Eqn. (12) (when j = 1), which contributes
a non-zero value only if ∃i, a = ei, or

– implies terms (−1)zi⊕zj (when j = 2), which contributes a non-zero
value only if ∃(i, j) such that a = ei ⊕ ej .

Therefore, the constraints on ÿ�HW ◦B(a) are more stringent. This
quantity must be equal to zero on all those n2 values for a:

– the n vectors ei,i∈J0,nJ, as previously when p = q = 1, but also

– the n(n−1)
2 vectors ei ⊕ ej , for i 6= j, in which exactly two bits are set.

However, in special cases, such as the matrix A8 involved in Eqn. (14),
the lines have 5 ones. Thus, the n2 = 82 conditions are met.

Actually, because of the special shape of the matrix defined in Eqn. (14),
the functions foptB:z 7→zA8T,p,q=1 are constant for p ∈ {0, 1, 2, 3, 4}. Start-
ing from p = 5, some combinations of basis vectors ei will match one line
of the matrix, therefore breaking the non-intersection of the set where
‘HW(a) is null and the set where ÿ�HW ◦B(a) is null (outside a = 0).

Now, the other way around, for the special matrix of Eqn. (14), we
also have the condition that foptB:z 7→zA8T,p=1,q=2 is constant, because:

– none of the rows are equal to one ei (indeed, the Hamming weight of
the rows is 5, whereas ei is of Hamming weight 1),

– none of the XOR between two arbitrary rows is equal to ei.

This property is interesting in terms of security, because it shows that
using the matrix defined in Eqn. (14), the squeezing leakage resists also
3rd-order CPA attacks.

General Case Theorem 3 can be extended to any (p, q). Eqn. (10) is
satisfied if and only if the vectorial space spanned by any p lines of In
intersects the vectorial space spanned by any q lines of B only in 0. As an
example, this extension shows that I4 actually satisfies Eqn. (10) for any
p + q < 3, thus reaching HCI = 4. This is illustrated for n = 4 in Tab. 1
the last group.
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Number of masks (d) No LS LS

d = 1 HCI = 2 HCI ≥ 3†

d = 2 HCI = 3 HCI ≥ 4

d > 2 d+ 1 ≥ d+ 2
†: The value HCI = 4 is obtained for matrix Ī4, as illustrated in Eqn. (13).

Table 2. Values of HCI obtained for plain leakage squeezing (LS) countermeasure, i.e.
that satisfy Theorem 3.

4.4 Security Analysis

Using the linear bijection defined in the previous study, we summarize in
Tab. 2 the security improvement brought by the leakage squeezing.

The results in the table show that the leakage squeezing allows to
improve the HO-CPA immunity by at least one unit whatever the mask-
ing order. In order to confront the theoretical analysis conducted in the
previous sections, we performed several attack experiments. Namely, we
applied HO-CPA attacks to test the scheme resistance.

The leakage measurements have been simulated as samples of the
random variables LLS defined according to Eqn. (8) with B = Ī4. We
assume that the leakage is affected by a gaussian noiseN(0, σ2). For all the
attacks, the sensitive variable Z was chosen to be a DES S-box output of
the form S(X⊕k) whereX represents a varying plaintext and k represents
the key to recover. We applied the fourth first order CPA attacks such as
described in section. 2.1. Theorem 2 leads us to select the Hamming weight
function as a prediction function. Each attack simulation was performed
100 times for several noise standard deviation values. As expected, the
CPA attacks of order {1, 2, 3} were unsuccessful. The success rates stay
under 10% even when using up to 107 measurements. This confirms the
theoretical predictions of table Tab. 2 where the HCI = 4. On the other
hand, the 4th-order CPA attack performs well. Tab. 3 summarizes the
number of leakage measurements required to observe a success rate of
90% in retrieving k for the different attacks.

As it can be observed in Tab. 3, the 4th-order CPA recovers the key
with a success rate equal to 90% when the noise is low. When the noise
is high (namely the case of hardware implementation σ ≥ 4), the attack
needs more than 106 measurements to succeed. For comparison purpose,
we perform the 2O-CPA against the first order masking without leakage
squeezing. The results are shown in Tab. 3. Based on these results, we
see that when the leakage squeezing is applied, not only the order of the
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Masking Attack σ

0 0.25 0.5 1 2 4 8

first-order masking with LS 4O-CPA 3 300 8 000 14 000 30 000 500 000 > 106 > 107

first-order masking without LS 2O-CPA 130 220 1 200 5 000 12 000 25 000 200 000

Table 3. Number of leakage measurements for a 90% success rate.

attack raises, but also the attack requires more measurements to succeed.
We can conclude that this technique can be a good alternative to classical
Boolean masking schemes.

4.5 Information-Theoretic Evaluation of the Countermeasure

In this section, our purpose is to quantify the amount of information that
the countermeasure reveals about the sensitive variable Z. To achieve
this goal, we follow the information-theoretic approach introduced in [20].
Namely, we compute the mutual information between the sensitive vari-
able Z and the leakage function LLS +N , where N is an AWGN of stan-
dard deviation σ. In our simulation, we use the bijection I4 (called ni4).
For comparison purpose, we proceed the same for high-order Boolean
masking. The mutual information of the leakage squeezing hardware im-
plementation is represented in Fig. 2.

The following observations can be emphasized:

– With or without the leakage squeezing, without noise, the leakage is
the same (when using only one mask).

– Without leakage squeezing, the more masks, the more centered mo-
ments are balanced. More precisely, with d > 0 masks, all the µi∈J1,dK

are identical.

– With the leakage squeezing and the bijection I4, the property holds up
to HCI+2. Put differently, with one mask, µ1, µ2 and µ3 are balanced.

This first analysis allows us to observe that the gain is high when the
leakage squeezing is applied, because the mutual information leaked is less
than without the countermeasure whatever the SNR. Our simulations
confirm theoretical predictions of Theorem 1. As a corollary, MIM =
O(1/σ8) for first order masking with leakage squeezing (HCI = 4), whereas
MIM = O(1/σ4) for first order masking without (HCI = 2).

Taking advantage of the leakage squeezing principle, the quantity of
information leaked with one sole mask is almost the same of the third
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Fig. 2. Leakage metrics for the 4-bit leakage model without and with leakage squeezing
(shortened in LS) enhancement, for various number of masks.

order masking without the need of adding extra masks. We conclude that
this countermeasure allows to decrease the quantity of the information
leaked.

5 Conclusions and Perspectives

In this paper, we have investigated high-order masking countermeasure
against side-channel attacks. We have defined the HO-CPA immunity in-
dicator allowing us to assess the resistance against high-order CPA attacks
and the amount of leakage. The HO-CPA immunity is equal to the small-
est order of a successful optimal HO-CPA attack. Then, we presented
a method called leakage squeezing which aims at raising the HO-CPA
immunity indicator on hardware masked implementations. This method
consists in using bijective encodings which can be implemented in ROMs
or LUT networks. Our evaluation analysis shows that this technique pro-
vides a great security robustness against HO-CPA. The robustness is cor-
roborated by an information theoretic analysis of the leakage. Indeed, at
a given cost and performance level, we show that the leakage squeezing
with linear bijections is as efficient as adding one or two other masks. As



Classification and Improvements of High-Order Boolean Masking Schemes 19

a perspective, we intend to extend the formal study of leakage squeezing
to non-linear bijections.
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A Appendix: Some Proofs

A.1 Proof of lemma 1

Proof. ∀i ∈ N we have:

cov((L+N − E(L+N))i, Z) =

cov(
i∑

j=0

(
i

j

)
(L− E(L))j(N − E(N))i−j , Z) =

i∑

j=0

(
i

j

)
cov((L− E(L))j(N − E(N))i−j , Z) .

Now, let X, Y and Z three RV, such that Y is independent of X and Z.
We have for all a, b ∈ N:

cov(XaY b, Z) =

E(XaY bZ)− E(XaY b)E(Z) =

E(XaZ)E(Y b)− E(Xa)E(Y b)E(Z) =

E(Y b)cov(Xa, Z) .
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We now apply this result with X = L−E(L) and Y = N −E(N). For all
i ∈ J0,HCIJ,

cov((L+N − E(L+N))i, Z) =
i∑

j=0

(
i

j

)
E(N − E(N))i−jcov((L− E(L))j , Z) =

i∑

j=0

(
i

j

)
E(N − E(N))i−j × 0 = 0 ,

because, according to our hypothesis, cov((L − E(L))j , Z) = 0 for all
j < HCI. ⊓⊔

A.2 Proof of Lemma 2

Proof. First of all, we notice that ∀i ∈ J0,HCIJ, the cumulants ki(L | Z =
z) are equal. The reason is that for any law X, kj(X) can be expressed as
a function of µi(X) for 0 ≤ i ≤ j (and reciprocally). For instance k3(X) =
µ3(X), k4(X) = µ4(X)− 3µ2

2(X), k5(X) = µ5(X)− 10µ3(X)µ2(X), etc.
Now, according to definition 1, if L has HO-CPA immunity HCI, then
all µj(L | Z = z) for 0 ≤ i < HCI are independent of z. Consequently,
the same holds for the cumulants of orders i ∈ J0,HCIJ. Eventually, as
∀i < HCI, ∀z, µi(L | Z = z) = µi(L), we also have ki(L | Z = z) = ki(L).

⊓⊔
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