
Pseudorandom Knapsacks and the Sample Complexity of

LWE Search-to-Decision Reductions

Daniele Micciancio Petros Mol

University of California, San Diego
Computer Science and Engineering department

9500 Gilman Dr, Mail code 0404, La Jolla, CA 92093
Email: {daniele, pmol}@cs.ucsd.edu

September 26, 2011

Abstract

We study under what conditions the conjectured one-wayness of the knapsack function (with polyno-
mially bounded inputs) over an arbitrary finite abelian group implies that the output of the function is
pseudorandom, i.e., computationally indistinguishable from a uniformly chosen group element. Previous
work of Impagliazzo and Naor (J. Cryptology 9(4):199-216, 1996) considers only specific families of finite
abelian groups and uniformly chosen random binary inputs. Our work substantially extends previous
results and provides a much more general reduction that applies to arbitrary finite abelian groups and
input distributions with polynomially bounded coefficients. As an application of the new result, we give
sample preserving search-to-decision reductions for the Learning With Errors (LWE) problem, introduced
by Regev (J. ACM 56(6):34, 2009) and widely used in lattice-based cryptography.

Keywords: bounded knapsacks, LWE, Fourier analysis, pseudorandomness, sample complexity

1

Contents

1 Introduction 3
1.1 Bounded Knapsacks over Abelian Groups . 4
1.2 Pseudorandomness of the LWE Function . 5

2 Preliminaries 6
2.1 Probability . 6
2.2 Groups and Knapsack Function Families. 7
2.3 Lattices and Gaussian Distributions . 9
2.4 Fourier Analysis and Learning . 11

3 Pseudorandomness of Knapsack Functions 12
3.1 From One-wayness to Unpredictability . 13
3.2 From Unpredictability to Pseudorandomness . 15

4 Implications and applications 19
4.1 Specific Groups and Input Distributions . 20
4.2 Applications to LWE . 22

5 Open Problems 24

6 Acknowledgments 24

2

1 Introduction

The Learning With Errors (LWE) problem, introduced by Regev in [38], is the problem of recovering a
secret n-dimensional integer vector s ∈ Znq , given a collection of perturbed random equations ais ≈ bi where
ai ∈ Znq is chosen uniformly at random and bi = ais + ei for some small, randomly chosen error term ei. In
recent years, LWE has been used to substantially expand the scope of lattice based cryptography, yielding
solutions to many important cryptographic tasks, including public key encryption secure against passive
[38, 24, 36] and active attacks [37, 35], (hierarchical) identity based encryption [17, 12, 1, 2], digital signatures
[17, 12], oblivious transfer protocols [36], several forms of leakage resilient encryption [5, 6, 13, 20], (fully)
homomorphic encryption [16, 15, 11] and more. The versatility of the LWE problem in the construction of
a plethora of cryptographic applications is due in large part to its pseudorandomness properties: as proved
in [38], if recovering (with high1 probability) the secret s from the samples (ai,ais + ei) is computationally
hard, then it is also hard to distinguish the LWE samples (ai,ais + ei) from randomly chosen ones (ai, bi)
where the bi ∈ Zq are uniformly and independently distributed. In other words, any efficient distinguisher
(between the LWE and the uniform distributions) can be turned into an inverter that recovers the secret s,
with only a polynomial slow-down.

On the theoretical side, cryptography based on LWE is supported by deep worst-case/average-case con-
nections [38, 35], showing that any algorithm that solves LWE (on the average) can be efficiently converted
into a (quantum) algorithm that solves the hardest (worst-case) instances of several famous lattice approxi-
mation problems which are believed to be intractable, like approximating the minimum distance of a lattice
within factors that grow polynomially in the dimension, and various other related problems [27]. It should
be remarked that, while such proofs of security based on worst-case lattice assumptions provide a solid theo-
retical justification for the probability distributions used in LWE cryptography, they are quite loose in their
parameter settings. As a result, these reductions are hardly useful in practice, and in order to get meaning-
ful estimates on the hardness of breaking LWE cryptography, it is generally more useful and appropriate to
conjecture the average-case hardness of solving LWE, and use that as a starting point. (See [29, pp. 446-450]
for a discussion of this and related issues.) In fact, all recent work aimed at determining appropriate key
sizes and security parameters [33, 26, 40] follows this approach, and investigates experimentally the concrete
hardness of solving LWE on the average.

In light of that, LWE is best formulated as the problem of inverting the one-way function family (indexed
by a random matrix A ∈ Zm×nq , where m is the number of samples) that maps the secret s ∈ Znq and error
vector e ∈ Zmq to As + e ∈ Zmq . The search-to-decision reduction of [38] shows that if the LWE function
family is one-way, then it is also a good pseudorandom generator. However, the reduction in [38] somehow
hides an important detail: the value of m for which the function is assumed to be one-way is much higher
than (still polynomially related to) the value of m for which the pseudorandomness of the function’s output
is proven.

While theoretical results based on worst-case lattice problems are fairly insensitive to the value of m, (i.e.,
the number of samples used in the LWE instance,) this number becomes more important and relevant when
considering concrete attacks on the average-case hardness of LWE. For instance, recent algorithmic results
[8] show that, when the errors ei are sufficiently small, the LWE problem can be solved in subexponential (or
even polynomial) time, provided a sufficiently large number of samples is available. Therefore, for certain
ranges of the parameters, the number of available samples can have a significant impact on the computational
hardness of the LWE problem. Likewise, some lattice attacks perform better in practice when given many
(typically ω(n)) samples [33]. However, LWE-based encryption schemes (e.g., see [26]) typically expose only a
small number of samples (say, comparable to the dimension n of the LWE secret s) during key generation and
encryption. Fixing the number of available samples to a small value may significantly reduce the effectiveness
of attacks, and increase our confidence in the concrete security of the schemes.

It should also be noted that when the number of available samples is above a certain threshold, one can
efficiently generate an arbitrary number of additional samples [17, 6, 39], but at the cost of increasing the

1Due to the self-reducibility properties of the LWE problem, here “high” can be equivalently interpreted in a variety of ways,
ranging from “nonnegligible” to “very close to 1”.

3

magnitude of the errors. So, for certain other ranges of the parameters the impact of increasing the number
of samples may not be as critical as in [8]. Still, even in such situations, using a large number of samples
comes at the price of lowering the quality of the samples, which can negatively impact the concrete security
and performance of LWE-based cryptographic functions.

This motivates the following question: how big of a blow-up in the number of samples is required to
prove the pseudorandomness of the LWE output distribution, based on the conjectured hardness of the
LWE search (secret recovery) problem? The main result of this paper is that, perhaps surprisingly, in
most common applications of LWE in cryptography, no such blow-up is necessary at all: there is a sample
preserving reduction from solving the search LWE problem (with nonnegligible success probability) to the
problem of distinguishing the LWE distribution from random (with nonnegligible advantage). At the core
of our result is a general theorem about the pseudorandomness of bounded knapsacks over arbitrary groups
that substantially extends previous work in the area and might be of independent interest.

Roadmap. In the next subsections, we give an informal overview of our results and techniques for bounded
knapsack functions, and their application to the LWE problem. We review the background required in the
rest of the paper in Section 2. Section 3 is devoted to the proof of our main technical result, the search-
to-decision reduction for bounded knapsack families defined over arbitrary abelian groups. In Section 4, we
describe applications of our main theorem to a broad range of bounded knapsack families, and explain how
our result implies sample-preserving search-to-decision reductions for the LWE problem. We conclude in
Section 5 with some interesting open problems.

1.1 Bounded Knapsacks over Abelian Groups

Let (G,+) be a finite abelian group, and g = (g1, . . . , gm) ∈ Gm a sequence of group elements chosen
uniformly at random. The group elements g define a knapsack function fg(x) that maps the integer vector
x ∈ Zm to the group element fg(x) =

∑
i xigi. If the input x is restricted to vectors with small entries, then

for a large variety of groups G, fg is conjectured to be a one-way function family, i.e., a family of functions
that are hard to invert on average when the key g is chosen uniformly at random. For example, when the
input x is restricted to the set {0, 1}m of binary vectors, inverting fg is the famous subset-sum problem,
which is conjectured to be hard to solve on average, and has been extensively studied in cryptography.
In a classic paper [22], Impagliazzo and Naor showed that for some specific, but representative, choices of
the group G, if the subset-sum function is one-way, then it is also a pseudorandom generator, i.e., it is
computationally hard to distinguish (g, fg(x)) from a uniformly random element of Gm+1, when g ∈ Gm
and x ∈ {0, 1}m are chosen uniformly at random. We generalize the results of [22] in two respects:

• We consider functions over arbitrary finite groups G. Only groups of the form ZN were considered in
[22], and for two specific (but representative) choices of N (prime and power of 2).

• We consider input coefficients xi that take values from a set {0, . . . , s} (or, more generally {−s, . . . , s})
for any (polynomially bounded) s. Moreover, we consider arbitrary input distributions. By contrast,
the results in [22] hold for inputs x distributed uniformly with coefficients in {0, 1}.

Both extensions are essential for the sample-preserving search-to-decision LWE reduction presented in Sec-
tion 4.2, which requires the pseudorandomness of the knapsack function over vector groups G = Zkq , and
for inputs x following a nonuniform (Gaussian) distribution over a sufficiently large set {−s, . . . , s}. We
remark that our generalization is nontrivial, as there are choices of the group G and input distribution, for
which the bounded knapsack function is presumably one-way, but not pseudorandom. (See Lemma 4.1 for
an example.) Our main technical result (Theorem 3.1) shows that for any finite abelian group G and input
distribution X , the output of the knapsack function is pseudorandom provided the following two conditions
hold:

1. fg is computationally hard to invert with respect to input distribution X , and

2. certain folded versions of fg (where both the key g and the output fg(x) are projected onto a quotient
group Gd = G/dG for some d ∈ Z,) have pseudorandom output.

4

The second condition above may seem to make the statement in the theorem vacuous, as it asserts the
pseudorandomness of fg assuming the pseudorandomness of (certain other versions of) fg. The power of the
theorem comes from the fact that the quotient groups Gd considered are very small. So small that for many
interesting groups and input distributions the folded knapsack function fg(x) mod dG compresses the input
(rather than stretching it) and produces an output which is statistically close to uniform. Therefore, for all
such groups and input distributions, the one-wayness of the bounded knapsack function directly implies that
knapsacks are good pseudorandom generators. Specific groups and input distributions for which this holds
include:

• Groups whose order contains only large prime factors, larger than the maximum value of the input
coefficients. Cyclic groups with prime order and vector groups Zkp for prime p fall into this category.
This result generalizes those in [22] from uniform binary input to arbitrary input distributions.

• Distributions that, when folded (modulo small divisors of the order of G,) maintain high entropy
relative to the size of the quotient group G/dG. (See Theorem 4.3.) Groups of the form G = Zk2` and
uniform input distribution over Zm2i for some i < ` satisfy this requirement.

This last parameter set is a very attractive choice in practice since both group operations and input sampling
are particularly efficient and easy to implement using arithmetic modulo powers of 2.

1.2 Pseudorandomness of the LWE Function

Our results for LWE are obtained using the duality between LWE and the knapsack function over vector
groups2. Specifically, the LWE problem with secret vector s ∈ Znq and m samples, can be shown to be
essentially equivalent to the knapsack problem over the vector group Zm−nq when the input x ∈ Zmq follows
the same distribution as the LWE error e. This duality is by no means new, and has been noticed and used
in different settings [42, 30]. Here we observe that the duality holds both for the search and decision variants
of both problems, so that search-to-decision reductions for the knapsack functions can be readily translated
into corresponding sample-preserving search-to-decision reductions for LWE. As a corollary to our main
theorem, we get search-to-decision reductions for the following interesting cases (among others):

• Binary modulus q = 2 and any error distribution. This directly proves the pseudorandomness of the
well-known Learning Parity with Noise (LPN) problem, as already established in [10, 7, 23].

• Prime modulus q and any polynomially bounded error distribution.

• Prime power modulus q = pe for prime p = poly(n) large enough such that the error distribution is
concentrated over {−(p− 1)/2, . . . , (p− 1)/2}.

• Prime power modulus q = pe for arbitrary (possibly small) prime p and uniform error distribution over
Zpi for some i < e such that pi = poly(n).

These results subsume (see below) several previous pseudorandomness results for LWE [38, 6] and LPN [23]
but with an important difference. While the proofs in [38, 6, 23] require that LWE (resp. LPN) is hard to solve
(invert) for a very large number of samples, our reductions are sample preserving : the pseudorandomness
of LWE (resp. LPN) holds, provided the same problem is computationally hard to solve in its search
version with the same number of samples3. We remark that previous results are often phrased as reductions
from solving the LWE search problem with high probability, to solving the LWE decision problem with

2We stretch that search LWE can be directly reduced (i.e. without exploiting the duality with the knapsack function) to
its decision variant. Nevertheless, we still choose to use the aforementioned duality for the following reasons: i) our results
for knapsack functions are much more general. Indeed, the LWE function family can be seen as the dual of the particular
knapsack family where the underlying group is the vector group Zkq . ii) in the general case where Zq has composite order, i.e.
q is composite, proving a direct search-to-decision reduction is no less technical than proving an indirect one (using the duality
with knapsack families). iii) for some parameters, the direct reduction, unlike the indirect one, does not preserve the number
of samples. One such example is when q is superpolynomial but the noise is polynomially bounded.

3For LPN, a sample-preserving reduction was proved in [7].

5

nonnegligible advantage, combining the search-to-decision reduction and success probability amplification
into a single statement. By contrast, our reduction shows how to solve the LWE search problem with
nonnegligible probability. Our results subsume previous work in the sense that the LWE search problem can
be solved with high probability by first invoking our reduction, and then amplifying the success probability
using standard repetition techniques. Of course, any such success probability amplification would naturally
carry the cost of a higher sample complexity. We remark that a close inspection of worst-case to average-case
reductions for LWE [38, 35] shows that these reductions directly support the conjecture that LWE is a strong
one-way function, i.e., a function which is hard to invert even with just nonnegligible probability. As already
discussed, worst-case to average-case reductions do not provide quantitatively interesting results, and are
best used as qualitative arguments to support the conjecture that certain problems are computationally hard
on average. Under the standard conjecture that search LWE is a strong one-way function, the results in this
paper offer a fairly tight, and sample preserving proof that LWE is also a good pseudorandom generator,
which can be efficiently used for the construction of many other lattice based cryptographic primitives. By
contrast, it is not known how to take advantage of the strong one-wayness of LWE within previous search-
to-decision reductions, resulting in a major degradation of the parameters. Of course, if we change the
complexity assumption, and as a starting point we use the worst-case hardness of lattice problems or the
assumption that LWE is only a weak one-way function, then our reduction will also necessarily incur a large
blow up in sample complexity through amplification, and lead to quantitatively uninteresting results.

2 Preliminaries

We use Z,N,C for the sets of integer, natural and complex numbers respectively, and T for the set of
complex numbers of unit magnitude. We use lower case for scalars, upper case for sets, bold lower case
for vectors and bold upper case for matrices. We also use calligraphic letters for probability distributions
and (possibly randomized) algorithms. For any s ∈ N, the set of the first s nonnegative integers is denoted
[s] = {0, 1, . . . , s− 1}.

2.1 Probability

We write x ← X for the operation of selecting x according to a probability distribution X or by running
probabilistic algorithm X . We use set comprehension notation to describe sets and probability distributions
alike. E.g., {(x, x′) | x← X , x′ ← X} denotes the probability distribution obtained by drawing two samples
from X independently at random. For any probability distribution X over set X and any value x ∈ X, let
Pr{x ← X} be the probability associated to x by distribution X . The uniform distribution over a set A is
denoted U(A), and the support of a distribution X is denoted [X] = {x ∈ X | Pr{x← X} > 0}. The collision
probability of X is the probability Col (X) = Pr{x = x′ | x ← X , x′ ← X} =

∑
x∈[X] Pr{x ← X}2 that two

independent identically distributed samples from X take the same value. The mode of X is the probability
of the most likely value, i.e., mode (X) = maxx∈X Pr{x← X}. It is easy to see that Col (X) ≤ mode (X).

Whenever we compare two probability distributions, we implicitly assume that they are defined over the
same set. The statistical distance between distributions X and Y over the set X is the quantity ∆(X ,Y) =
1
2

∑
x∈X |Pr{x← X} − Pr{x← Y}|. The statistical distance is a metric over the set of discrete probability

distributions, i.e., it is a symmetric positive function, and it satisfies the triangle inequality. It also satisfies
∆(f(X), f(Y)) ≤ ∆(X ,Y) for any (possibly probabilistic) function f . Two distributions X ,Y are ε-close
if ∆(X ,Y) < ε. They are (t, ε)-indistinguishable if ∆(D(X),D(Y)) < ε for any probabilistic predicate
D : X → {0, 1} (called the distinguisher) computable in time at most t. Otherwise, we say that X ,Y
are (t, ε)-distinguishable. When Y = U(X) is the uniform distribution, we use ∆U (X) = ∆(X ,U(X)) as
an abbreviation and say that X is ε-random (resp. (t, ε)-pseudorandom) if it is ε-close to (resp. (t, ε)-
indistinguishable from) U(X).

Function families. A function family (F,X) is a collection F = {fi : X → R}i∈I of functions indexed
by i ∈ I with common domain X and range R, together with a probability distribution X over the input

6

set X ⊇ [X]. For simplicity, in this paper we always assume that the set of functions is endowed with the
uniform probability distribution U(F), though the extension to general distributions (while not useful in this
paper) is rather straightforward. Each function family (F,X) naturally defines a probability distribution

F(F,X) = {(f, f(x)) | f ← U(F), x← X} (1)

obtained by selecting a function at random and evaluating it at a random input.
A function family F = (F,X) is called (t, ε)-one-way if for any (probabilistic) algorithm I running in

time at most t, it holds Pr{f(x) = y | (f, y) ← F(F,X), x ← I(f, y)} < ε. F is (t, ε)-invertible if there
exists a (probabilistic) algorithm I running in time at most t such that Pr{f(x) = y | (f, y)← F(F,X), x←
I(f, y)} ≥ ε. We then say that I is a (t, ε)-inverter for F . A (t, ε)-pseudorandom generator family4 is a
function family (F,X) such that the associated distribution F(F,X) defined in (1) is (t, ε)-pseudorandom.

Asymptotics. We use n as a (security) parameter that controls all other parameters. Unless otherwise
stated, any other parameter (say m) will be polynomially related to n, that is 1/nc1 ≤ m ≤ nc2 for some
constants c1, c2. We use standard asymptotic notation O(·),Ω(·), o(·), ω(·), etc. We write negl(n) = n−ω(1)

for the set of negligible functions and poly(n) = nO(1) for the set of polynomially bounded functions. In
the asymptotic computational complexity setting, one often considers probability ensembles, i.e., sequences
X = (Xn)n∈N of probability distributions over possibly different sets Xn ⊇ [Xn]. Two distributions ensembles
X = (Xn)n∈N and Y = (Yn)n∈N are statistically close (denoted X ' Y) if Xn and Yn are ε(n)-close for
some negligible function ε(n) = negl(n). The ensembles X and Y are computationally indistinguishable
(denoted X ≈ Y) if Xn and Yn are (t(n), ε(n))-indistinguishable for any t(n) = poly(n) and some ε(n) =
negl(n) under a sequence (Dn : Xn → {0, 1})n∈N of distinguishers computable in uniform polynomial time.
Definitions for function families are also extended in the obvious way to function family ensembles F =
(Fn)n in the asymptotic setting by taking ε(n) = negl(n) and t(n) = poly(n), and considering uniform
sequences of distinguishing algorithms. In particular, a function family ensemble F = (Fn)n is one-way
if Fn is (t(n), ε(n))-one-way for any t(n) = poly(n) and some ε(n) = negl(n). It is pseudorandom if the
associated distribution ensemble (1) is (t(n), ε(n))-pseudorandom, i.e., it is (t(n), ε(n))-indistinguishable
from the uniform distribution U(Fn ×Rn) for any t(n) = poly(n) and some ε(n) = negl(n).

2.2 Groups and Knapsack Function Families.

In this work, by group we always mean finite abelian group. We use additive notation for groups; 0G is the
neutral element, |G| is the order (size) of G and MG is its exponent, i.e. the smallest positive integer e such
that e · g = 0G for all g ∈ G. We use the dot product notation x · y =

∑
i xi · yi both for the inner product

of two vectors x,y ∈ Rn with elements in a ring R, and also to take integer linear combinations x ∈ Zn of
a vector y ∈ Gn with elements in an additive group. For x = (x1, . . . , xn) ∈ Rn and a ∈ R, we also define
a · x = x · a = (x1 · a, . . . , xn · a).

For any group G and (positive) integer d, we use Gd to denote the quotient group G/dG where dG
is the subgroup {d · g

∣∣ g ∈ G}, in analogy with the usual notation Zd = Z/dZ for the group of integers
modulo d. Likewise, for an element g ∈ G, we use g mod dG (or just g mod d) for the image of g under the
natural homomorphism from G to Gd. For any integer vector w = (w1, . . . , wr) ∈ Zr, we write gcdG(w) =
gcd(w1, . . . , wr,MG) for the greatest common divisor of the elements of w and the group exponent. We
recall that any finite abelian group G is isomorphic to Zk1 × . . .× Zk` where ki|ki+1 for all i, and k` = MG.

4Notice that the functions in a pseudorandom generator family are not pseudorandom functions, as they do not accept any
input beside the (randomly generated) seed x← X . Each function f ∈ F works like a pseudorandom generator that on input a
random seed x ← X , produces an output f(x) which is indistinguishable from a random element of the range R. Throughout
the paper, by pseudorandom family, we will always mean a pseudorandom generator family. We also remark that in this paper
the term “pseudorandom generator” is used in a loose sense, as we do not require f to “stretch” the seed x into a longer string
or generate any pseudo-entropy. The function f may even compress the seed into a shorter string, and produce a distribution
f(x) which is statistically close to uniform over the range of f .

7

If G' Zk1 × . . .× Zk` then Gd ' Zd1 × Zd2 × · · · × Zd` where di = gcd(d, ki) for i = 1, . . . , `. In particular

|Gd| = Π`
i=1di and |dG| = |G|

|Gd|
. (2)

Lemma 2.1. For any group G, integer vector w ∈ Zr, and d = gcdG(w), we have {w · g | g ← U(Gr)} =
U(d ·G). In particular, Pr{w · g = 0G

∣∣ g← U(Gr)} = 1/|d ·G| =
∏
i gcd(d, ki)/ki.

Proof. Fix w ∈ Zr, and let d = gcdG(w). We want to analyze the probability distribution W = {w ·g | g←
U(Gr)}. The function φ : g 7→ w · g maps Gr to [W] = {w · g | g ∈ Gr} = d ·G. Let G0 = {g | w · g = 0}
be the kernel of this function. Then, φ partitions Gr into equivalence classes of the form g + G0. All the
equivalence classes have the same size |g+G0| = |G0|, and therefore φ maps the uniform distribution over Gr

to the uniform distribution over φ(Gr) = d·G. This proves thatW = U(d ·G). The bound on Pr{w ·g = 0G}
follows from (2).

Knapsack Families. For any group G and input distribution X over Zm, the knapsack family K(G,X)
is the function family with input distribution X and set of functions fg : [X] → G indexed by g ∈ Gm

and defined as fg(x) = g · x ∈ G. Typically, the input distribution X = Sm is given by m independent
identically distributed samples (x1, . . . , xm), chosen from some probability distribution S over a finite (and
polynomially sized) subset of the integers [S] ⊂ Z. We will often use g instead of fg to describe a member
function drawn from K(G,X). When G,X are clear from the context we will simply write K. We often
consider folded knapsack families K(Gd,X) over quotient groups Gd. For brevity, when G and X are clear
from the context, we will write Kd instead of K(Gd,X). The following lemma shows that the distribution
F(Kd) associated to a folded knapsack function family is closely related to the distribution

Fd(K) = {(g, g + h) | (g, g)← F(K), h← U(d ·G)}. (3)

Lemma 2.2. For any knapsack function family K and integer d, ∆U (Fd(K)) = ∆U (F(Kd)). Moreover,
Fd(K) is pseudorandom if and only if F(Kd) is pseudorandom.

Proof. The lemma follows from the existence of two efficiently computable (randomized) transformations
m,m′ that appropriately map distributions over Gm ×G to distributions over Gmd ×Gd and vice versa.

• Let m : Gm × G → Gmd × Gd be the function m(g, g) = (g mod d, g mod d). It is straightforward to
verify that m maps U(Gm ×G) to U(Gmd ×Gd) and Fd(K) to F(Kd).

• In the other direction, let m′ : Gmd × Gd → Gm × G be the randomized transformation that on input
(h, h) produces an output distributed according to {(h + d · g, h+ d · g) | (g, g)← U(Gm+1)}. Again,
it is easy to see that m′ maps U(Gmd ×Gd) to U(Gm ×G) and F(Kd) to Fd(K).

It follows that ∆U (F(Kd)) = ∆(m(Fd(K)),m(U(Gm ×G))) ≤ ∆U (Fd(K)) and similarly ∆U (Fd(K)) =
∆(m′(Fd(K)),m′(U(Gm ×G)) ≤ ∆(F(Kd)). This proves ∆U (Fd(K)) = ∆U (F(Kd)). Since the transforma-
tions m and m′ are efficiently computable, they can also be used to turn any efficient distinguisher for Fd(K)
into an efficient distinguisher for F(Kd), and vice versa.

We will need the following variant of the Leftover Hash Lemma [21], generalized to arbitrary abelian
groups. The original Leftover Hash Lemma [21], applies to any universal (or ε-universal) hash function
family over arbitrary sets. Our version of the lemma is specific to knapsack functions, but relaxes the
universality requirement.

Lemma 2.3 (Leftover Hash Lemma, generalized). For any knapsack function family K = K(H,X) over a
finite abelian group H,

∆U (F(K)) ≤ 1

2

√ ∑
1<d |MH

|Hd| · Col (Xd) (4)

where Xd = X mod d = {x mod d | x← X}, and d ranges over all divisors of the group exponent MH strictly
greater than 1 (MH included).

8

Proof. Let Z be any distribution over a set Z. The following standard computation provides an upper bound
on the statistical distance between Z and U(Z) in terms of the collision probability Col (Z) .

∆U (Z) =
1

2

∑
z∈Z

∣∣∣∣Pr{z ← Z} − 1

|Z|

∣∣∣∣ ≤ 1

2

√
|Z|

√√√√∑
z∈Z

(
Pr{z ← Z} − 1

|Z|

)2

=
1

2

√
|Z|
√∑
z∈Z

Pr{z ← Z}2 − 2

|Z|
+

1

|Z|

≤ 1

2

√
|Z| · Col (Z)− 1. (5)

We bound Col (F(K)) as follows, where all probabilities are computed over the random choice of h,h′ ← K
and x,y← X :

Col (F(K)) = Pr{(h = h′) ∧ (h · x = h′ · y)}
= Pr{(h = h′) ∧ (h · (x− y) = 0)}

=
1

|H|m
· Pr{h · (x− y) = 0}. (6)

It remains to compute Pr{h · (x− y) = 0}. For that, we condition on the value of d = gcdH(x− y) and use
Lemma 2.1. Notice that since gcdH(x− y) divides MH , we can restrict d to the divisors of MH .

Pr{h · (x− y) = 0} =
∑
d|MH

Pr{h · (x− y) = 0
∣∣ gcdH(x− y) = d} · Pr{gcdH(x− y) = d}

≤
∑
d|MH

1

|dH|
· Col (Xd)

=
1

|H|
+

∑
1<d|MH

1

|dH|
· Col (Xd) . (7)

where we used that Pr{gcdH(x − y) = d} ≤ Pr{d | x − y} = Pr{x mod d = y mod d} = Col (Xd) in the
inequality above. Combining (5), (6) and (7), and using |Hd|·|dH| = |H|, yields the bound in the lemma.

2.3 Lattices and Gaussian Distributions

Gaussian-like distributions play a central role in the Learning With Errors (LWE) problem. For each sample
(a, b = a · s + e), the distribution χ from which e is drawn, is usually a Gaussian-like distribution over the
integers. Several (worst-case) lattice approximation problems can be reduced (under quantum or classic
polynomial time reductions [38, 35]) to LWE with Gaussian error distribution. Moreover, Gaussian noise
is “LWE-complete” [39, 17] in the sense that LWE with non-Gaussian error distribution can be reduced to
LWE where the error is distributed according to a wider Gaussian. Below, we focus on the discrete Gaussian
distribution, i.e., the conditional distribution obtained restricting a normal real random variable to take
integer values. We provide bounds on the collision probability of the discrete Gaussian distribution, and use
the bounds to establish search-to-decision reductions for LWE. Similar results hold also for the discretized
Gaussian distribution, i.e., the distribution obtained by rounding the output of a real Gaussian random
variable to the closest integer. Statements and proofs for discretized Gaussians are virtually identical and
hence omitted.

Discrete Gaussian. The Gaussian function ρr,c : Rm → R with center c and width r is defined as

ρr,c(x) = e−
π‖x−c‖2

r2 .

9

The discrete Gaussian with parameters r, c over a countable set S ⊂ Rm is the distribution DS,r,c that
samples each element x ∈ S with probability

Pr{x← DS,r,c} =
ρr,c(x)∑

y∈S ρr,c(y)
.

When the center c is omitted from the notation DS,r it is assumed to be the origin c = 0. We will be
primarily interested in discrete Gaussians over the set of integer vectors S = Zm. For such set, the vectors
x ∈ Zm sampled by DZm,r have each coordinate xi identically and independently distributed according to a
1-dimensional Gaussian, i.e.,

Pr{x← DZm,r} =

m∏
i=1

Pr{xi ← DZ,r} =

m∏
i=1

ρr(xi)

ρr(Z)
. (8)

Lattices. A (full-rank) m-dimensional lattice is the set Λ of integer combinations of m linearly independent
vectors b1, . . . ,bm ∈ Rm, i.e.

Λ =

{
m∑
i=1

xibi
∣∣ xi ∈ Z for i = 1, . . . ,m

}
.

The matrix B = [b1, . . . ,bm] is called a basis for the lattice Λ. The determinant of a lattice Λ (denoted
det(Λ)) is the absolute value of the matrix determinant of any basis B of Λ, i.e. det(Λ) = |det(B)|. The
i-th successive minimum λi(Λ) is the radius r of the smallest m-dimensional (Euclidean) ball that contains
i linearly independent vectors from Λ. The dual of a lattice Λ is the set

Λ∗ = {x ∈ Rm : ∀y ∈ Λ, 〈x,y〉 ∈ Z}.

The integer lattice Zm contains all m-dimensional vectors with integer coefficients. It is easy to check that for
any m, Zm is a self-dual lattice, that is (Zm)∗ = Zm. Also det(Zm) = 1 and λi(Zm) = 1 for all i = 1, . . . ,m.

The Poisson Summation Formula implies that for any lattice Λ and real r > 0,

ρr(Λ) = r · det(Λ∗)ρ1/r(Λ∗). (9)

For any ε ∈ R+, the smoothing parameter ηε(Λ) [32] is the smallest r > 0 such that ρ1/r(Λ
∗ \ {0}) ≤ ε.

We will use the following bounds.

Proposition 2.4 ([32, Lemma 3.3 and Lemma 4.4]). Let Λ be an m-dimensional lattice.

1. For any function f(n) = ω(
√

log n), there exists ε(n) = negl(n) such that ηε(Λ) ≤ f(n) · λm(Λ).

2. For any ε ∈ (0, 1), r ≥ ηε(Λ) and c ∈ Rm, we have that ρr,c(Λ) ∈
(

1−ε
1+ε , 1

)
· ρr(Λ).

For our search-to-decision reduction of LWE with discrete Gaussian error distribution, we also need to
consider the folded (1-dimensional) distribution DZ,r mod d = {x mod d | x ← DZ,r}. The following lemma
gives an upper bound on the collision probability of this distribution.

Lemma 2.5. For any r > 0 and d ∈ Z, we have Col (DZ,r mod d) ≤ 1
r + 1

d . Furthermore, if r = d ·ω(
√

log n),
then Col (DZ,r mod d) ≤ 1

d + negl(n).

Proof. We first bound the mode of DZ,r mod d.

mode (DZ,r mod d) = max
0≤j≤d−1

Pr{DZ,r mod d = j} = max
j

ρr(dZ + j)

ρr(Z)
=
ρr(dZ)

ρr(Z)
.

10

Using Poisson summation formula (9), we get ρr(Z) = r · ρ1/r(Z) ≥ r. For the numerator, we have

ρr(dZ) = ρr/d(Z) = 1 + 2
∑
i≥1

ρr/d(i) ≤ 1 +

∫ ∞
−∞

ρr/d(x) dx = 1 + r/d.

We conclude that Col (DZ,r mod d) ≤ mode (DZ,r mod d) ≤ 1/r + 1/d.
When r = d · ω(

√
log n), a better bound on Col (DZ,r mod d) is given by

Pr{DZ,r mod d = 0} − Pr{DZ,r mod d = j} =
ρr(d · Z)− ρr(d · Z + j)

ρr(Z)

=
ρr/d(Z)− ρr/d,−j/d(Z)

ρr(Z)

≤
ρr/d(Z)

ρr(Z)

(
1− 1− ε

1 + ε

)
≤ negl(n)

where the inequalities follow from Proposition 2.4 and the fact that r/d = ω(
√

log n). This bound shows
that DZ,r mod d is statistically close to the uniform distribution over Zd and therefore Col (DZ,r mod d) ≤
Col (U(Zd)) + negl(n) = 1

d + negl(n).

2.4 Fourier Analysis and Learning

We have already mentioned that Fourier analysis and Gaussian distributions play an important role in
basing the average-case hardness of LWE on worst-case lattice assumptions [38, 35]. In this paper, we also
use Fourier analysis, but in a quite different way, closer to the use made of Fourier analysis in learning theory
and in the complexity study of boolean functions. (E.g., see [25, 9, 34].) In cryptography, two noteworthy
examples that make a similar use of Fourier analysis are the Kushilevitz-Mansour [25] formulation of the
proof of the Goldreich-Levin [18] hard-core predicate for any one-way function, and the proofs of hard-core
predicates for several number-theoretic one-way functions by Akavia, Goldwasser and Safra [4].

Below we review some basic facts from Fourier analysis focusing on the discrete Fourier transform over
finite abelian groups. We restrict the presentation to what is needed and refer the interested reader to [3, 41]
for more details.

Fourier Basics. Let H be a finite abelian group and h1, h2 : H → C be functions from H to the complex
numbers. The inner product of h1 and h2 is defined as

〈h1, h2〉 = E
x←U(H)

[
h1(x)h2(x)

]
=

1

|H|
∑
x∈H

h1(x)h2(x)

where z̄ is the complex conjugate of z ∈ C. The `2-norm5 and `∞-norm of h are defined as

‖h‖2 =
√
〈h, h〉 and ‖h‖∞ = max

x∈H
|h(x)|.

The set of characters of H (denoted char(H)) is the set of all the homomorphisms from H to the complex
numbers of unit magnitude T,

char(H) = {χ : H → T
∣∣ ∀x, y ∈ H, χ(x+ y) = χ(x) · χ(y)}.

The set char(H) with point-wise addition forms a group which is isomorphic to H. If H = Zk1 × . . . × Zk`
and α = (α1, ..., α`) ∈ H, then the character χα : H → T associated to α is defined as

χα(x) = ωα1x1

k1
. . . ωα`x`k`

5Notice that the definition of ‖h‖2 differs from the standard definition of the euclidean norm of a vector by a
√
|H|

normalization factor.

11

where ωki = e
i 2πki is the ki-th primitive root of unity. We will be particularly interested in functions defined

over vector groups H = Z`k, in which case χα(x) = (ωk)
∑`
i=1 αixi = ωx·α

k .

Fourier Transform. The Fourier transform of a function h : H → C is the function ĥ : H → C defined as
ĥ(α) = 〈h, χα〉. The Fourier transform measures the correlation of h with the characters of H. The energy

of a Fourier coefficient α is defined as its squared norm |ĥ(α)|2, while the total energy of h is defined as∑
α∈H |ĥ(α)|2. Parseval’s identity asserts that

∑
α∈H |ĥ(α)|2 = ‖h‖22.

Learning Heavy Fourier Coefficients Let τ ∈ R, α ∈ H and h : H → C where H is a finite abelian
group. Following the notation and terminology from [3], we say that α is a τ -significant (or τ -heavy)

Fourier coefficient of h if |ĥ(α)|2 ≥ τ. The set of τ -significant Fourier coefficients of h is Heavyτ (h) = {α ∈
H
∣∣ |ĥ(α)|2 ≥ τ}

Theorem 2.6. (Significant Fourier Transform,[3, Theorem 3.3]) There exists a probabilistic algorithm
(SFT) that on input a threshold τ and given query access to a function h : H → C, returns all τ -heavy
Fourier coefficients of h in time poly(log |H|, 1/τ, ‖h‖∞) with probability6 at least 2/3.

For functions with range T as considered in this work, it is immediate to verify that ‖h‖2 = ‖h‖∞ = 1

and therefore (by Parseval’s identity)
∑

α∈H |ĥ(α)|2 = 1. Among these functions, of particular interest are
those whose Fourier spectrum contains coefficients with energy which is a noticeable fraction of the total
energy of the function, i.e., there exists a character β ∈ H such that |ĥ(β)|2 ≥ 1

poly(log |H|) . In this context,

Theorem 2.6 says that SFT , given query access to a function h : H → T, can find all its 1
poly(log |H|) -heavy

Fourier coefficients in time polynomial in log |H|.

3 Pseudorandomness of Knapsack Functions

In this section we establish the connection between the search and decision problems associated to families
of bounded knapsack functions. The following theorem summarizes our main result.

Theorem 3.1 (Main). Let X be a distribution over [s]m ⊂ Zm for some s = poly(n), m = poly(n), and
G be a finite abelian group. If K = K(G,X) is one-way and Kd = K(Gd,X) is pseudorandom for all d < s,
then K is pseudorandom.

Remark 3.2. Theorem 3.1 as well as all its implications (see Section 4) hold true even if X is defined over
{a, . . . , b}m for a, b ∈ Z (or more generally over {a1, . . . , b1}×· · ·×{am, . . . , bm}) as long as the (maximum)
size s = maxi{bi−ai+1} of the intervals is polynomially bounded. Indeed, knapsack instances (g, fg(x)) with
input xi ∈ {ai, ai+1, . . . , bi} can be immediately reduced to instances (g, fg(y)) = (g, fg(x)−fg(a1, . . . , am))
where yi = xi − ai ∈ {0, . . . , bi − ai}.

Also, all statements remain essentially unchanged for distributions X such that an input x← X belongs to
[s]m except with negligible probability even if X ’s support is possibly larger than [s]m. For ease of exposition,
we will omit dealing with these two technicalities in the rest of the paper.

We remark that for knapsack families K = K(G,X) that stretch their input, Theorem 3.1 is an if and
only if statement. Indeed, if K is pseudorandom, then so is Kd for any d, because there is an efficiently
computable regular transformation (g, g) 7→ (g mod d, g mod d) that maps F(K) to F(Kd). Moreover, if
K(G,X) stretches the input (or, more specifically, if the range [F(K)] is sparse in Gm×G,) then any inverter
with noticeable success probability can be used as a distinguisher for F(K) in a straightforward way.

Proving the direction as stated in Theorem 3.1 is much more involved, and makes use of the intermediate
notion of (un)predictability defined below. Informally, for any ` ∈ N, an `-predictor for a function family

6The success probability is taken over the internal randomness of the SFT algorithm only, and can be amplified using
standard repetition techniques. However, this is not needed in our context, so for simplicity we fix the success probability to
2/3.

12

(F,X) with integer inputs [X] ⊂ Zm is a weak form of inverter algorithm that on input a function f ∈ F ,
a target value f(x) and a query vector r ∈ Zm` , attempts to recover the value of x · r (mod `), rather than
producing the entire input x. Here ` is an auxiliary value, unrelated to the parameters of the knapsack
function family, that describes the amount of information recovered by the weak inverter. Below we define
two notions to measure the quality of a prediction: accuracy and bias. The first is probably the most natural
notion, and directly measures the predictor’s success probability. The second is more technical, and it is
needed to use Fourier analytic techniques. For the special case of prime ` the two notions are closely related,
as shown in Lemma 3.5.

Definition 3.3. For any ` ∈ N and function family (F,X) with domain [X] ⊆ Zm, an `-predictor for (F,X)
is a probabilistic algorithm P that on input (f, y, r) ∈ F × R × Zm` outputs a value P(f, y, r) ∈ Z` which is
intended to be a guess for x · r (mod `). The error distribution of a predictor P is defined as

E`(P) = {x · r− P(f, f(x), r) mod ` | f ← U(F),x← X , r← U(Zm`)}.

An `-predictor P is (t, ε)-accurate if it runs in time t and Pr{0← E`(P)} ≥ 1
` + ε, i.e., P outputs the correct

inner product x · r (mod `) with a probability which is better (by ε) than a random guess. The bias of an
`-predictor P is the quantity

∣∣E [ω−k` | k ← E`(P)
]∣∣. If P runs in time t and has bias at least ε, we say that

P is (t, ε)-biased. A function family (F,X) that admits a (t, ε)-biased `-predictor is called (t, ε, `)-biased.

The proof of Theorem 3.1 proceeds in two steps. In the first step (Lemma 3.4) we show that any predictor
for K can be efficiently transformed into an inverter for K. This step uses Fourier analysis and holds true for
any (not necessarily knapsack) function family with domain [X] ⊆ Zm. In the second step (Proposition 3.9),
we prove that if there exists a distinguisher for K, but no distinguisher for Kd for small d, then there exists a
predictor for K. This step is specific to knapsack families and depends on both the underlying group G and
the distribution X . The two steps combined yield Theorem 3.1. Sections 3.1 and 3.2 are devoted to each
step of the reduction.

3.1 From One-wayness to Unpredictability

Proving that predictability implies invertibility is not specific to knapsack families. Rather, it holds for any
function family (F,X) with [X] ⊆ Zm. The proof uses the SFT algorithm from Theorem 2.6 to learn the
heavy Fourier coefficients of a function. We remark that the learning takes place over the group H = Zm` ,
which is unrelated to the group G of our knapsack function family. Lemma 3.4 provides sufficient conditions
under which predictability implies invertibility.

Lemma 3.4. Let (F,X) be a function family with [X] ⊆ [s]m ⊂ Zm. If (F,X) is (t, ε, `)-biased for some
` ≥ s, then (F,X) is (poly(n, log `, 1/ε) · t, ε3)-invertible.

Proof. Let P be a (t, ε)-biased `-predictor for F . We use P to define an inverter I that on input (f, f(x))
tries to recover x using the SFT algorithm from Theorem 2.6. In order to run SFT , the inverter I needs
to provide answers to the queries r ∈ Zm` made by SFT . The queries are answered invoking P on an
appropriate input (to be defined). The goal is to present SFT with an oracle/function h : Zm` → C which is
highly correlated with the character χx, so that SFT will include x in the list of heavy Fourier coefficients.
Details follow.

The inverter I takes as input a function f ← U(F) and a value y = f(x); it then picks a random string

coins and runs algorithm SFT (from Theorem 2.6) with τ = ε2

4 . For every query r ∈ Zm` issued by SFT , I
runs P on input (f, f(x), r; coins) and returns ω

P(f,f(x),r;coins)
` ∈ T to SFT , where ω` = e2πi/`. Notice that

the same random string coins is used for all queries, so that the queries of SFT are answered according to
a deterministic function

hf,f(x),coins(r) = ω
P(f,f(x),r;coins)
`

from Zm` to C parametrized by f, f(x) and coins. Let L = {x1, . . . ,x|L|} ⊆ Zm` be the (candidate) ε2

4 -heavy
Fourier coefficients returned by SFT . If f(xi) = y for some xi ∈ L, then I outputs xi. (If more than one
xi ∈ L satisfies f(xi) = y, then I selects one of them arbitrarily.) Otherwise, it fails.

13

We now analyze the success probability of I. Clearly Pr{f(I(f, f(x))) = f(x)} ≥ Pr{x ∈ L}. In order
to bound Pr{x ∈ L}, we consider the Fourier transform of the function h used to answer the queries of SFT ,
and compute the Fourier coefficient corresponding to x:

ĥf,f(x),coins(x) = E
r←U(Zm`)

[
ω
P(f,f(x),r;coins)
` χx(r)

]
= E

r←U(Zm`)

[
ω
[P(f,f(x),r;coins)−x·r]
`

]
.

Averaging over f ← U(F), f(x) and coins we get

E
f,f(x),coins

[
ĥf,f(x),coins(x)

]
= E
f,f(x),coins,r

[
ω
[P(f,f(x),r;coins)−x·r]
`

]
= E

[
ω−k` | k ← E`(P)

]
.

Notice that this is the (complex) bias of the predictor. So, by Jensen’s inequality (|E [Z] | ≤ E [|Z|]),

E
f,f(x),coins

[∣∣ĥf,f(x),coins(x)
∣∣] ≥ ∣∣∣∣ E

f,f(x),coins

[
ĥf,f(x),coins(x)

] ∣∣∣∣ =
∣∣E [ω−k` | k ← E`(P)

]∣∣ = ε.

This proves that the expected magnitude of the Fourier coefficient ĥf,f(x),coins(x) is at least ε. By Markov’s

inequality, Prf,f(x),coins{|ĥf,f(x),coins(x)| ≥ ε
2} ≥

ε
2 . So, with probability at least ε/2 (over f ← U(F),x← X

and coins) x is a ε2

4 -heavy Fourier coefficient of hf,f(x),coins, and it will be included in L with probability at
least Pr{f(I(f, f(x))) = f(x)} ≥ (ε/2) · (2/3) = ε/3. Finally, the running time of the inverter is bounded by

the running time of SFT times the running time of the predictor. Since ‖ĥf,f(x),coins‖∞ = 1, the running
time of SFT is bounded by poly(n, log `, 1/ε) (see Theorem 2.6) and hence the overall time of the inverter
is poly(n, log `, 1/ε) · t.

The previous lemma uses the technical notion of bias to quantify the quality of a prediction algorithm.
The following lemma shows that for the special case of a prime `, it is enough to bound the success probability
of the predictor.

Lemma 3.5. Let (F,X) be a function family with [X] ⊂ Zm. For any prime p, if (F,X) admits a (t, ε)-
accurate p-predictor, then it also admits a (t, ε)-biased p-predictor.

Proof. Let P ′ be the predictor that takes as input f, f(x) and r ∈ Zmp and tries to predict x · r (mod p) as
follows: pick y ← U(Z∗p), run z ← P(f, f(x), yr), and return z/y. For any k, we have

Pr{k ← Ep(P ′)} = Pr{P ′(f, f(x), r) = x · r− k (mod p)}
= Pr{y−1P(f, f(x), yr) = x · r− k (mod p)}
= Pr{P(f, f(x), t) = x · t− yk (mod p)}

where t = yr has the same distribution as r. Using the accuracy bound, for k = 0 we immediately get

Pr{0← Ep(P ′)} = Pr{P(f, f(x), t) = x · t (mod p)} =
1

p
+ ε.

For k 6= 0, since y is distributed uniformly at random over Z∗p = Zp \ {0}, we have

Pr{k ← Ep(P ′)} = Pr{y = (x · t− P(f, f(x), t))/k (mod p)}

=
1

p− 1
· (1− Pr{P(f, f(x), t) = x · t})

=
1

p
− ε

p− 1
.

Using these expressions and the identity
∑p−1
k=0 ω

−k
p = 0, the bias of P ′ is easily computed as

∣∣E [ω−kp | k ← Ep(P ′)
]∣∣ =

∣∣∣∣∣
p−1∑
k=0

Pr{k ← Ep(P ′)} · ω−kp

∣∣∣∣∣ =

∣∣∣∣ εp

p− 1

∣∣∣∣ ≥ ε.
Finally P ′ runs in essentially the same time as P.

14

Combining the previous two lemmas, we recover as a special case the results of [18, 19] for learning linear
functions over a field given query access to a noisy version of the function.

Corollary 3.6. Let (F,X) be a function family with [X] ⊆ [s]m ⊂ Zm, and p a prime such that p ≥ s. If
there exists a (t, ε)-accurate p-predictor for (F,X), then (F,X) is (poly(n, log p, 1/ε) · t, ε3)-invertible.

Proof. Easily follows from Lemma 3.4 and Lemma 3.5.

3.2 From Unpredictability to Pseudorandomness

In this section we prove that, for knapsack function families, unpredictability implies pseudorandomness. In
other words, we show that, under certain conditions, a distinguisher D for K = K(G,X) with noticeable
distinguishing advantage can be turned into a predictor for K with noticeable bias. At a high level, the
predictor works as follows: on input a modulus `, function g ∈ Gm, y = g · x ∈ G and r ∈ Zm` , it first
makes a guess for the inner product x · r mod `; it then uses that guess to modify the knapsack instance
(g, y), and finally invokes the distinguisher D on the modified instance (g′, y′). The output of D is used
to determine whether the initial guess was correct or not. The same technique was used by Impagliazzo
and Naor in [22]. However, in the restricted subset-sum setting considered in [22], the reduction is rather
straightforward: if the guess for x · r is correct, then the modified knapsack instance (g′, y′) is distributed
according to F(K), whereas if the guess is wrong, the distribution of (g′, y′) is (statistically close to) uniform.
But these are exactly the two distributions that D can tell apart and therefore a noticeable distinguishing
advantage translates directly into an accurate/biased predictor.

When considering general abelian groups and distributions X with [X] 6⊆ {0, 1}m, several technical
difficulties arise. Unlike [22], if the guess for x ·r is wrong, then the distribution of (g′, y′) can be statistically
far from uniform. In fact, (g′, y′) can be distributed according to Fd(K) for any divisor d of the group
exponent MG. Notice that for d = 1 and d = MG we get the two “extreme” distributions F1(K) =
U(Gm ×G) and FMG

(K) = F(K). However, other Fd(K) (with 1 < d < MG) can also arise. Depending
on the order and structure of the underlying group, and the output distribution of the distinguisher D on
the various auxiliary distributions Fd(K), the technical details of the reduction differ significantly. As a
warm-up, we first present a weak form of our main Theorem.

Proposition 3.7. Let K = K(G,X) be a knapsack family with [X] ⊆ [s]m and s = poly(n). If K is (t, δ)-
distinguishable from uniform for some noticeable δ, but Kd = K(Gd,X) is pseudorandom for all d < 2ms2,
then for any prime p with s ≤ p < 2s = poly(n), K is (O(t+m), ε, p)-biased for some noticeable7 ε.

Proof. LetD be a (t, δ)-distinguisher, and define βd = Pr{D(Fd(K)) = 1}. Notice that βMG
= Pr{D(F(K)) =

1} and β1 = Pr{D(U(Gm ×G)) = 1}. By assumption, βMG
− β1 = δ (because D is a (t, δ)-distinguisher for

F(K)), while βd − β1 = negl(n) for all d < 2ms2 (because Kd is pseudorandom for all d < 2ms2).
Let p be any prime between s and 2s. The predictor P is shown as Algorithm 1. Intuitively, the predictor

tries to guess the inner product x · r over the integers. If the guess c is correct, the predictor invokes the
distinguisher on input FMG

(K) = F(K), otherwise it invokes D on Fd(K) for some d < m(s− 1)p < 2ms2.
But for all such d, F(Kd) and therefore Fd(K) (by Lemma 2.2) is pseudorandom, so D will behave as if it
had been invoked on the uniform distribution F1(K). So, the distinguisher D will determine (with advantage
δ − negl(n)) if the guess c was correct, and if not, the predictor P will output a guess other than c.

We show that P is an ε-accurate p-predictor for some nonnegligible ε. The Proposition then follows
directly from Lemma 3.5. Let c′ = x · r = A · p+ v (0 ≤ v < p) be the inner product x · r over the integers.
P is trying to predict v = c′ (mod p). The input to the distinguisher D (line 4, Algorithm 1) is (ḡ, R) where

R = y − cg = g · x− cg = g · x− c′g + c′g − cg = g · x− (r · x)g + (c′ − c)g = ḡ · x + (c′ − c)g

By Lemma 2.1, the input to D is (ḡ, ḡ · x + d · g) = Fd(K) for d = gcdG(c′ − c). So, the probability that D
outputs 1 is by definition βgcdG(c′−c).

7Here we do not seek to optimize ε as a function of δ, but we mention that the predictor in the proof has bias at least
ε ≥ δ/(2ms2).

15

input : (g, y, r) // y = g · x, r← U(Zmp)
output: guess ∈ Zp
Pick c← U(Zm(s−1)p);1

Pick g ← U(G) ;2

ḡ← g − r · g // r · g = (r1 · g, . . . , rm · g) ;3

Run D on input (ḡ, y − c · g) ;4

if D outputs 1 then5

guess← c mod p ;6

else7

guess← U(Zp \ (c mod p)) ;8

end9

return guess10

Algorithm 1: Predictor for weak reduction (Proposition 3.7)

For any d, let Cd be the event “gcdG(c′ − c) = d”. Clearly,
∑
d|MG

Pr{Cd} = 1. Notice that since

c, c′ ∈ [m(s − 1)p], we only need to consider either d = MG (in which case c′ = c), or small values d <
m(s−1)p < 2ms2. (For all other values of d, we have Pr{Cd} = 0.) The probability that P guesses correctly
the inner product x · r (mod p) is given by

Pr{guess = v} =
∑
d|MG

Pr{guess = v | Cd}Pr{Cd}. (10)

Conditioning on the output of D, we get that for every d,

Pr{guess = v | Cd} = ad · βd +
1− ad
p− 1

(1− βd) (11)

where ad = Pr{c = c′ (mod p) | Cd}. It immediately follows from the definition that
∑
d|MG

ad Pr{Cd} =

Pr{c = c′ (mod p)} = 1
p . Notice that for d = MG we have aMG

= 1, Pr{CMG
} = 1/(m(s − 1)p) and

βMG
= β1 + δ. For all other d (with Pr{Cd} 6= 0,) we have βd = β1 + negl(n). Plugging (11) in (10) and

simplifying, we obtain

Pr{guess = v} =
∑
d|MG

Pr{Cd}
(
adβd +

1− ad
p− 1

(1− βd)
)

= Pr{CMG
}
(
aMG

βMG
+

1− aMG

p− 1
(1− βMG

)

)
+

∑
d|MG,d<MG

Pr{Cd}
(
ad(β1 + negl(n)) +

1− ad
p− 1

(1− β1 − negl(n))

)

≥ 1

p
+

δ

m(s− 1)p
− negl(n).

This proves that the p-predictor is ε-accurate for ε ≥ δ/(m(s−1)p)−negl(n) ≥ δ/(2ms2). Since p is a prime,
by Lemma 3.5, there is also an ε-biased predictor with essentially the same running time O(m+ t) as P.

Proposition 3.7 already gives search-to-decision reductions for some interesting families K, but it requires
(as an assumption) the pseudorandomness of Kd = K(Gd,X) for a larger range of values of d than as specified
in Theorem 3.1. The following lemma plays a crucial role in the proof of Proposition 3.9, which extends
Proposition 3.7 to hold under the assumptions in the theorem.

Lemma 3.8. For any d ∈ N,
∑
r|d r

2 ≤ (π2/6) · d2.

16

Proof. Let d = r1 > r2 > . . . > rk = 1 be all the divisors of d. Clearly it must be ri ≤ d
i . It follows that

k∑
i=1

r2i ≤
k∑
i=1

(
d

i

)2

≤ d2
∞∑
i=1

1

i2
= d2 · π

2

6
.

Proposition 3.9. Let K = K(G,X) be a knapsack function family with [X] ⊆ [s]m and s = poly(n). If K is
(t, δ)-distinguishable from uniform for some noticeable δ, but Fd(K) is pseudorandom for all d < s, then K
is (O(t+m), ε, d∗)-biased for some noticeable ε and polynomially bounded d∗ ≥ s.

Proof. In order to relax the condition for pseudorandomness of Kd from any d ≤ 2ms2 to any d < s, we need
to overcome two major technical difficulties. First, guessing the inner product x · r over the integers, as done
in [22] and Proposition 3.7, is unlikely to work for the following reason: A correct guess for x · r produces
indeed the distribution F(K) = FMG

(K) as input to the distinguisher as desired; however, a wrong guess
produces Fd(K) for some d smaller than 2ms2 but possibly larger than s. In that case, we have no guarantee
that the distinguishing advantage between FMG

(K) and Fd(K) (and therefore the predicting advantage of
P) is noticeable. We overcome this difficulty by having P guess x · r (mod d) (instead of over the integers)
for some divisor8 d of MG (with s ≤ d < 2ms2).

For such a divisor d, our predictor runs the distinguisher with input Fd(K) whenever the guess for x · r
(mod d) is correct or with Fd′(K) for some d′ | d (d′ < d) when the guess for x · r (mod d) is wrong. The
second challenge is to actually prove the existence of an appropriate d for which the distinguishing gap of
D between Fd(K) and Fd′(K) is sufficiently large ∀d′ | d. Notice here that d might be composite and hence a
predictor that guesses x · r (mod d) with probability larger than 1/d+ 1/poly(n) does not necessarily imply
an inverter with noticeable success probability (recall that the results of [19] hold over fields). Here is where
the power of Lemma 3.4 and Fourier analysis come into the play. What we actually show, is that there exists
a (possibly composite) d∗ and an associated d∗-predictor that has bias ε for some noticeable ε. Details follow.

We adopt the notation from proof of Proposition 3.7. Namely for a (t, δ)-distinguisher D we define
βd = Pr{D(Fd(K)) = 1}. In addition, for brevity, we often write a ≡c b instead of a ≡ b (mod c) and define
δij = 1 if i = j and 0 otherwise.

By assumption, βMG
− β1 = δ while βd − β1 = negl(n) for all d < s. We can further assume that there

exists d̃ with s ≤ d̃ ≤ 2ms2 = poly(n) such that βd̃−β1 = δ̃ for some noticeable δ̃ (otherwise the proof follows

directly from Proposition 3.7). Let d∗ be the smallest divisor of d̃ such that9 |βd∗ − β1| ≥ d∗3δ̃
d̃3

. Notice that

d∗ has the following two useful properties: (a) d∗ ≥ s. This is true because |βd∗ − β1| ≥ d∗3δ̃
d̃3

= 1/poly(n)

whereas by assumption |βd − β1| = negl(n) for all d < s. (b) |βd′ − β1| < d′3δ̃
d̃3

for all d′ | d∗ by definition of
d∗. We will use these properties to construct a d∗-predictor P for K. P is shown as Algorithm 2. In the
remaining of the proof we analyze the error distribution Ed∗(P) of P and prove that P has noticeable bias.

Let c′ = r · x = A · d∗ + v (0 ≤ v < d∗) be the inner product of x · r over the integers. The input to the
distinguisher D (line 4, Algorithm 2) is (ḡ, R) where

R = y − cg1 + d∗g2 = g · x− cg1 + d∗g2

= g · x− c′g1 + (c′ − c)g1 + d∗g2 = g · x− (r · x)g1 + (c′ − c)g1 + d∗g2 =

= ḡ · x + (Ad∗ + v − c)g1 + d∗g2

Notice that c is the initial attempt (line 1) of P to guess x · r (mod d∗) while v is the actual value of x · r
(mod d∗). If c = v then, by Lemma 2.1, D is invoked on (ḡ, ḡ · x + d∗g) = Fd∗(K).
If c 6= v then D gets (ḡ, ḡ · x + gcd(Ad∗ + v − c, d∗) · U(G)) = (ḡ, ḡ · x + d′ · U(G)) = Fd′(K) for some d′ | d∗
with d′ < d∗ (notice that if c 6= v, then d∗ - Ad∗ + v − c). More specifically, d′ = gcd(v − c, d∗).

8If no divisor d ∈ [s, 2ms2] exists, we can apply Proposition 3.7 directly.
9Such a d∗ always exists. Indeed d̃ itself satisfies this condition and is a divisor of itself.

17

input : (g, y, r) // y = g · x, r← U(Zmd∗)
output: guess ∈ Zd∗

Pick c← U(Zd∗);1

Pick g1 ← U(G), g2 ← U(G);2

ḡ← g − r · g1 // r · g1 = (r1 · g1, . . . , rm · g1) ;3

Run D on input (ḡ, y − c · g1 + d∗ · g2) ;4

if D returns 1 then5

guess← c ;6

else7

guess← U(Zd∗ \ c) ;8

end9

return guess10

Algorithm 2: Predictor for strong reduction (Proposition 3.9)

For all j ∈ [d∗] let Cj be the event c ≡d∗ v − j, i.e. the initial guess c differs from actual v by
j (mod d∗). Notice that Pr{Cj} = 1/d∗ for all j ∈ [d∗]. The error distribution of P is given by the
probabilities Pr{guess ≡d∗ v − k}, k ∈ [d∗]. Conditioning on the events Cj , we get

Pr{k ← Ed∗(P)} = Pr{guess ≡d∗ v − k}

=

d∗−1∑
j=0

Pr{guess ≡d∗ v − k
∣∣ Cj}Pr{Cj} (12)

=
1

d∗

d∗−1∑
j=0

Pr{guess ≡d∗ v − k
∣∣ Cj}

If we further condition on whether D outputs 1 or 0, it is not hard to see that (recall δkj = 1 iff k = j)

Pr{guess ≡d∗ v − k
∣∣ Cj} = δkj · βgcd(j,d∗) +

1− δkj
d∗ − 1

(1− βgcd(j,d∗))

Replacing in (12) gives

Pr{k ← Ed∗(P)} =
1

d∗
+

1

d∗
βgcd(k,d∗) −

1

d∗(d∗ − 1)

∑
j 6=k

βgcd(j,d∗).

Notice that

Pr{k ← Ed∗(P)} − Pr{1← Ed∗(P)} =
1

d∗ − 1
(βgcd(k,d∗) − β1).

Using this and the fact that
∑d∗−1
k=0 ω−kd∗ = 0 we get that∣∣∣∣∣

d∗−1∑
k=0

Pr{k ← Ed∗(P)} · ω−kd∗

∣∣∣∣∣ =
1

d∗ − 1

∣∣∣∣∣
d∗−1∑
k=0

(βgcd(k,d∗) − β1)ω−kd∗

∣∣∣∣∣
≥ 1

d∗ − 1

[
|βd∗ − β1| −

d∗−1∑
k=1

∣∣βgcd(k,d∗) − β1∣∣
]

(13)

Next we bound
∑d∗−1
k=1

∣∣βgcd(k,d∗) − β1∣∣ from above. Define Φ(d∗, r) = {1 ≤ i < d∗ : gcd(i, d∗) = r} and let10

10This is a generalization of Euler’s totient function.

18

φ(d∗, r) = |Φ(d∗, r)|. Clearly for any divisor d′ of d∗, we have φ(d∗, d′) ≤ d∗

d′ . So

d∗−1∑
k=1

∣∣βgcd(k,d∗) − β1∣∣ ≤ ∑
d′ | d∗
d′<d∗

φ(d∗, d′) |βd′ − β1| ≤
∑
d′ | d∗
d′<d∗

d∗d
′3δ̃

d′d̃3
=
d∗δ̃

d̃3

∑
d′ | d∗
d′<d∗

d
′2

where in the last inequality we used the fact that for all proper divisors d′ of d∗, |βd′ −β1| < d
′3δ̃
d̃3
. Replacing

back in (13) we finally get∣∣∣∣∣
d∗−1∑
k=0

Pr{k ← Ed∗(P)} · ω−kd∗

∣∣∣∣∣ ≥ 1

d∗ − 1

[
d∗3δ̃

d̃3
− d∗δ̃

d̃3

∑
d′ | d∗
d′<d∗

d′2
]

=
d∗δ̃

d̃3(d∗ − 1)

[
d∗2 −

∑
d′ | d∗
d′<d∗

d
′2

]

≥ d∗3δ̃

d̃3(d∗ − 1)

(
2− π2

6

)
≥ 1

poly(n)

where in the penultimate inequality we used Lemma 3.8.

4 Implications and applications

Theorem 3.1 provides explicit criteria for checking if the output of a knapsack function family is pseudoran-
dom. Given a group G and some input distribution X , one needs only to check that the folded knapsack
families Kd = K(Gd,X) are pseudorandom. As it turns out, for many choices of (G,X), the folded knapsack
functions Kd compress their input and map the input distribution X to a distribution which is statistically
close to uniform over Gd. More specifically, ∆U (F(Kd)) = negl(n), and Kd is pseudorandom in a strong sta-
tistical sense. Below, we provide some representative examples, focusing on those that are most interesting in
applications. But before we do that, it is instructive to digress a little and explore a case where one-wayness
does not imply pseudorandomness11. Intuitively, in any such counterexample there should exists a divisor
d of |G| such that F(Kd) can be easily distinguished from the uniform distribution. Lemma 4.1 formalizes
this intuition.

Lemma 4.1. If there exists a group G such that K(G,X) is one-way, then there exist group G′ and distri-
bution X ′ such that K(G′,X ′) is one-way, but not pseudorandom.

Proof. Let p be a small prime such that gcd(p,MG) = gcd(p, |G|) = 1. Notice that MG ≤ |G| has less
than log2 |G| distinct prime factors. So, we can always choose p among the first log2 |G| primes, and
p = O(log |G| log log |G|). (If |G| or MG is known, such p can be computed by generating the sequence of
all primes, and checking each one of them for coprimality. When only an upper bound MG ≤ B is known,
and coprimality cannot be efficiently checked, one can find p probabilistically by picking a prime uniformly
at random among the first O(logB) primes.)

Let G′ 'G × Zp, and X ′ = pX = {px | x ← X}. First notice that K(G′,X ′) is not pseudorandom. In
fact, on input a function g′ = (g′1, . . . , g

′
m) and element (r′1, r

′
2) ∈ G′, a distinguisher simply outputs 1 if and

only if r′2 = 0. It is easy to check that distinguisher has advantage 1− 1/p ≥ 1/2.

11Strictly speaking, what we prove is: there exist group G and distribution X for which K(G,X) is widely believed to be
one-way whereas it is provably not pseudorandom.

19

Assume now that there exists a (t′, ε)-inverter I ′ for K(G′,X ′). Consider the following inverter I against
K(G,X). On input g ← U(Gm) and target y = g · x ∈ G, I simply picks b = (b1, . . . , bm) ← U(Zmp) and
invokes I ′ on input g′ = (g′1, . . . , g

′
m) and y′ where g′i = (gi, bi) and y′ = (py, 0). Notice that (g′, y′) is

distributed according to F(K(G′,X ′)), exactly as required by I ′. So, the inverter I ′ will output a preimage
x′ = (x′1, . . . , x

′
m) of y′ with probability ε. Notice also that if (x′1, . . . , x

′
m) is in the support of the input

distribution [X ′], then p divides (x′1, . . . , x
′
m). If this is the case, I outputs x = (x1, . . . , xm), where xi = x′i/p

for i = 1, . . . ,m. Since gcd(p,MG) = 1, multiplication by p is an invertible function from G to G. In
particular, if the inverter I ′ is successful, then g′I ′(g′, y′) = y′ implies gI(g, y) = y, and the I is successful
too. This proves that I is a (t, ε)-inverter for t ≈ t′.

4.1 Specific Groups and Input Distributions

We start with groups G whose order does not contain any factors that are within the maximum value the
input can take. In this case one-wayness implies pseudorandomness for any input distribution.

Lemma 4.2. Let p be the smallest prime factor of |G| and X be such that [X] ⊆ [s]m where s = poly(n)
such that s ≤ p. If K(G,X) is one-way, then it is also pseudorandom.

Proof. Consider Kd for any d < p. Since gcd(d, |G|) = 1 for all d < p, we have dG = G. It follows that the
range of Kd is Gd = G/dG = {0} and Kd is trivially pseudorandom for every d < p. The lemma then follows
directly from Theorem 3.1.

Lemma 4.2 is already very powerful. For instance, in the standard subset sum problem we have [X] =
{0, 1}m ⊆ [p]m for any prime p. In this setting, Lemma 4.2 significantly extends the results from [22] and
[14]. More specifically, it asserts that any knapsack family K(G,X) with [X] ⊆ {0, 1}m is pseudorandom
provided it is one-way, for any abelian group G and binary (not necessarily uniform) input distribution X .
Other settings Lemma 4.2 is directly applicable to include groups with prime order, vector groups of the
form Zkp for prime p and more generally groups of the form Zkpe where p is a prime such that p ≥ s = poly(n)
where [X] ⊆ [s]m.

For groups with small prime factors (smaller than s, where [X] ⊆ [s]m), the connection between one-
wayness and pseudorandomness is more subtle. In that case, Lemma 4.1 tells us that in order to prove
search-to-decision reductions, the group and input distribution need to be restricted somehow. Still, our main
theorem can be used to prove search-to-decision reductions for a wide range of groups and input distributions.
In the rest of this section we give a few representative examples, focusing on vector groups G = Zkq both
for simplifying the exposition and because these groups are most interesting from a cryptographic viewpoint
(see Section 4.2).

For a vector group G = Zkq consider the folded knapsack function Kd = K(Gd,X). First notice that

MG = q and dG = dZkq = gcd(d, q)·Zkq ' Zq/ gcd(d,q). By Theorem 3.1, proving pseudorandomness of K(G,X)
reduces to proving that the folded families Kd are pseudorandom for all d < s with d | q. In fact, below we
prove that in many interesting settings the function families Kd are statistically random. Lemma 4.3 provides
sufficient conditions for pseudorandomness expressed in terms of the statistical properties of X and the
factorization of q: for every “small” divisor d of q, the d-folded distribution Xd = {x mod d | x← X} should
have collision probability much smaller than the inverse of the order of the quotient group |Gd| = |Zkd| = dk.

Lemma 4.3. If K = K(Zkq ,X) is one-way, [X] ⊆ [s]m for some s = poly(n) and Col (Xd) = negl(n)/dk for
all d | q with d < s, then K is also pseudorandom.

Proof. For any d such that d | q, Gd = Zkq/dZkq = Zkd. Given Theorem 3.1, it suffices to prove that

∆U (F(K(Zkd,X)) = negl(n) for all divisors d | q with d < s. For that, we can directly apply Lemma 2.3
with H = Gd = Zkd, and Hd̃ = Zk

d̃
to get

∆U (F(K(H,X))) ≤ 1

2

√ ∑
1<d̃ | d

d̃k · Col
(
Xd̃
)

= negl(n)

20

where we used the hypothesis that Col
(
Xd̃
)

= negl(n)/d̃k for all d̃ | q with 1 < d̃ < s and the fact that d has

at most d < s = poly(n) divisors d̃.

Below we give 2 natural families of distributions which have small collision probability when folded, and
thereby result in pseudorandom knapsack families.

Uniformly Folded Distributions. For a given group G we say that a distribution X with [X] ⊆ [s]m is
uniformly folded with respect to G, if Xd ' U(Zmd) is (statistically close to) the uniform distribution for all
d < s such that d |MG.

Lemma 4.4. If K = K(Zkq ,X) is one-way, k ≤ m− ω(log n), and X is uniformly folded with respect to Zkq ,
(with [X] ⊆ [s]m for some s = poly(n)), then K is also pseudorandom.

Proof. Directly follows from Lemma 4.3 and from the fact that if Xd = U(Zmd), then Col (Xd) = 1/dm.

Two examples of uniformly folded distributions are X = U(Zmq) (with respect to group G = Zkq for any q

and k) and X = U(Zmpi) (with respect to group G = Zkpe for prime p and i ≤ e). As an immediate corollary
to Lemma 4.4, we obtain the following.

Corollary 4.5. Assume K = K(Zkpe ,U(Zmpi)) is a one-way function family for some prime p, and integer

parameters i ≤ e, and m such that pi = poly(n). Then K is pseudorandom.

Gaussian. Gaussian-like distributions are typically used for sampling the error in LWE-based crypto-
graphic constructions. The following lemma establishes the search-to-decision reduction for knapsack fami-
lies defined over Zkq with Gaussian-like input distribution. We state the result for discrete Gaussians (defined
in Section 2.3). Qualitatively similar results hold for discretized (rounded) Gaussians as well.

Lemma 4.6. Let k ≤ m − ω(log n) and r be the Gaussian width satisfying12 ω(log n) ≤ r ≤ poly(n). If
K(Zkq ,DZm,r) is one-way then it is also pseudorandom provided that any of the following two conditions
holds:

(a) q is prime, or

(b) q has no divisors within the interval
[

r
β(n) , r · β(n)

]
for some function β(n) = ω(

√
log n).

Proof. (a) When q is a prime, the proof follows directly from Lemma 4.2.
(b) By a standard tail inequality,

Pr
x←DZm,r

{∃i such that |xi| > br · β(n)/2c − 1} = negl(n).

This means that effectively x← DZm,r takes values in Sm where S = {−br ·β(n)/2c+1, . . . , br ·β(n)/2c−1}
is an interval of size s < r · β(n) = poly(n). Consider now any divisor d of q such that d < s < r · β(n). By

hypothesis, all divisors of q lie outside the interval
[

r
β(n) , r · β(n)

]
, which implies that d < r/β(n). Consider

now the d-folded distribution DZm,r mod d. For all i ∈ [m], xi ← DZ,r mod d where r > d · β(n). Lemma 2.5
then asserts that Col (DZ,r mod d) ≤ 1/d + negl(n) or equivalently Col (DZm,r mod d) ≤ poly(n)/dm ≤
negl(n)/dk, where we used the fact that k ≤ m − ω(log n). We can then apply Lemma 4.3 (see also
Remark 3.2) to conclude the proof.

12In typical instantiations, r = Ω(nθ) for some constant θ > 0.

21

4.2 Applications to LWE

In this section, we show how our results for knapsack functions imply similar search-to-decision reductions for
the Learning With Errors (LWE) problem with the interesting feature of being sample-preserving. Following
common notational conventions from the existing LWE literature, we use n for the length of the secret vector
s, m for the number of samples, q for the modulus and χ for the error distribution. Let n,m, q be positive
integers and χ a distribution over Zq. For any q, n ∈ Z, s ∈ Znq , and χ, define the distribution

As,χ = {(a,a · s + e) | a← U(Znq), e← χ}.

We recall that the LWE problem with parameters n,m, q and χ is the problem of recovering s given m
samples from distribution As,χ. In the decisional version of LWE (DLWE), one is given m samples drawn
independently at random either from As,χ (for some secret s) or from U(Znq × Zq). The goal is to tell the
two distributions apart with noticeable probability.

We are interested in reductions from LWE to DLWE that preserve all the parameters n,m, q, χ, including
the number of samples m. Sample-preserving reductions are more naturally described using matrix notation
for the LWE problem. Given a collection of m LWE samples (ai, bi) ← As,χ, we can combine them in a
matrix A having the vectors ai as rows, and a column vector b with entries equal to bi. That is, b = As + e
where e ← χm. With this notation, we want to prove that any algorithm that distinguishes (A,As + e)
from U(Zm×nq × Zmq) can be used to recover the secret s. Notice that once the secret s has been recovered,
one can also recover the error vector e = b −As. So, we can equivalently define LWE as the problem of
recovering both s and e from A and As + e. This is exactly the problem of inverting the following function
family.

Definition 4.7. Let n,m, q be positive integers and χ a probability distribution over Zq. Let LWE(n,m, q, χ)
be the function family (F,X) where X = {(s, e) | s ← U(Znq), e ← χm}, and F is the set of functions fA
indexed by A ∈ Zm×nq and defined as fA(s, e) = As + e.

Similarly, the decision version of LWE is precisely the problem of distinguishing F(LWE(n,m, q, χ))
from the uniform distribution U(Zm×nq × Zmq). However, LWE(n,m, q, χ) is not a knapsack function family.
In order to apply the results from Section 3, we exploit the duality between the LWE problem and an
associated knapsack function family described in the following lemmas. Since duality between LWE and
knapsack functions has been noticed before in the literature [42, 30, 26], here we only sketch the proofs of
the lemmas.

Lemma 4.8. For any13 n,m ≥ n+ω(log n), q and χ, there is a polynomial time reduction from the problem
of inverting LWE(n,m, q, χ) with probability ε, to the problem of inverting K(Zm−nq , χm) with probability
ε′ = ε+ negl(n).

Proof Sketch. The transformation from the LWE problem into an equivalent knapsack problem requires
that the matrix A be nonsingular, i.e., the rows of A generate Znq . When A← U(Zm×nq), this is true except
with probability at most 1/pm−n−1, where p is the smallest prime factor of q. So, for m ≥ n + ω(log n),
Pr{A is singular} = negl(n). We can therefore assume A has been chosen at random, but conditioned on
being nonsingular.

Consider now the set of all vectors g ∈ Zmq such that gA = 0 (mod q). Under the assumption that

A is nonsingular, this set is generated by the rows of a matrix G ∈ Z(m−n)×m
q that can be efficiently

computed from A using linear algebra. We can further randomize G by left-multiplying it by a random

unimodular matrix U ∈ Z(m−n)×(m−n)
q . Finally, if A is chosen at random among all nonsingular matrices,

then this randomized G is also distributed uniformly at random among all matrices whose columns generate

Zm−nq . As before, the distribution of G is within negligible statistical distance from U(Z(m−n)×m
q), so

we can treat the columns of G as random elements from the vector group G = Zm−nq . Finally, we set
c = Gb = GAs + Ge = Ge, so the distribution (G, c) is statistically close to a random instance of the
knapsack problem with group G = Zm−nq and input distributed according to the error distribution χm.

13The requirement m ≥ n+ ω(logn) is a standard assumption in the context of LWE, where typically m ≥ n+ Ω(n).

22

Lemma 4.9. For any n,m ≥ n + ω(log n), q and χ, there is a polynomial time reduction from the prob-
lem of distinguishing F(K(Zm−nq , χm)) from uniform with advantage ε to the problem of distinguishing
F(LWE(n,m, q, χ)) from uniform with advantage ε′ = ε+ negl(n).

Proof Sketch. The distinguisher for the knapsack function is obtained similarly, transforming the knapsack
instance into a corresponding LWE one. This transformation essentially reverses the steps taken to transform
LWE into knapsack. We start from a pair (G, c). As before, we can assume without loss of generality (up
to negligible statistical error) that the columns of G generate Zm−nq . Next, by linear algebra, we compute a
matrix A ∈ Zm×nq whose columns generate the set of vectors a ∈ Zmq such that Ga = 0 (mod q). As before,
we can randomize A by right-multiplying it by a random unimodular matrix U ∈ Zn×nq to obtain A′. We
also map c to A′s′ + r where s′ ← U(Znq) and r is an arbitrary solution to the equation Gr = c. It can
be checked that this transformation maps the knapsack distribution (G, c = Ge) to the LWE distribution
(A′,A′s + e) (with uniformly random s), when G and A′ are chosen at random subject to the constraint
that they are nonsingular. The transformation also maps the uniform distribution to a (statistically close
to) uniform distribution. So, by feeding (A′,A′s + e) into an LWE distinguisher, we get a distinguisher
for the knapsack function with essentially the same (up to negligible terms, due to nonsingular matrices)
distinguishing advantage of the LWE distinguisher.

We remark that reductions exist also in the directions opposite to those described in Lemma 4.8 and
Lemma 4.9, but this is all we need here.

Sample-preserving reductions for LWE, i.e., reductions from the problem of inverting LWE(n,m, q, χ) to
the problem of distinguishing F(LWE(n,m, q, χ)) from uniform, are immediately obtained combining the
reductions from Lemma 4.8 and Lemma 4.9 with the results from Section 3 on K(Zm−nq , χm). Similarly to
the knapsack case, the reductions do not hold unconditionally ; rather they hold for specific, yet very broad,
moduli q and error distributions χ. Below we provide some examples of such moduli q and distributions χ.
Throughout, it is assumed that m ≥ n+ ω(log n).

Proposition 4.10. Assume there exists an efficient algorithm D that distinguishes between F(LWE(n,m, q, χ))
and U(Zm×nq × Zmq) with noticeable advantage. Then there exists an efficient algorithm I that inverts
LWE(n,m, q, χ) with noticeable success probability in any of the following cases:

(i) Binary modulus q = 2 and any error distribution χ over {0, 1}.

(ii) Prime modulus q = poly(n) and any error distribution χ over Zq.

(iii) Prime power modulus q = pe for prime p = poly(n), and χ such that [χ] ⊆ {−(p− 1)/2, . . . , (p− 1)/2}.

(iv) Prime power modulus q = pe where χ is the uniform distribution over Zpi for some i < e such that
pi = poly(n).

Proof. The proof for all cases follows easily by combining Lemmas 4.8 and 4.9 with the results for bounded
knapsack families from Section 4.1. In particular cases (i), (ii) and (iii) are direct applications of Lemma 4.2
whereas case (iv) is immediate from Corollary 4.5.

Remark 4.11. Case (i) from Proposition 4.10 provides a sample-preserving search-to-decision reduction for
the Learning Parity with Noise (LPN) problem. Such a reduction was already given in [7]. In contrast, other
reductions appearing in the literature [10, 23] do not preserve the number of samples. Using q = poly(n) as
in case (ii) and Gaussian error distribution χ over Zq is typical in LWE-based cryptographic applications. In
fact, these parameters were used in the first LWE-based semantically secure scheme by Regev [38] who also
presented a (non sample-preserving) search-to-decision reduction. Case (iii) provides a sample-preserving
version of the search-to-decision reduction proved in [6]. Finally, the search-to-decision reduction for LWE
with modulus and noise distribution as in case (iv) appears to be new; no such (even non-sample-preserving)
reduction has previously appeared in the literature. Setting q = 2` and χ to be the uniform distribution over
Z2`′ for some `′ = O(log n) seems very appealing since arithmetic modulo 2 and sampling over uniform
distributions can be implemented very efficiently in practice.

23

5 Open Problems

Our work leaves many interesting open questions. To start with, sample-preserving search-to-decision reduc-
tions for LWE with bounded noise as considered in this work, don’t seem to extend to the unbounded noise
regime, i.e. when each coefficient ei of the error vector e of LWE is drawn from a set with superpolynomial
size. We note that such search-to-decision reductions are known [35] but are not sample-preserving. These
reductions rely heavily on a Chinese Reminder Theorem (CRT) approach: using a perfect14 distinguisher,
they first learn the secret modulo pi with overwhelming success probability for each polynomially bounded
prime factor pi of the modulus q; they then use the CRT to recover the entire secret. In sample-preserving
reductions, where only an imperfect distinguisher is available, learning the secret modulo pi can be performed
in a much looser, list-decoding sense: the projection of the secret modulo pi is included in the corresponding
lists Li but among possibly many other elements. And the only way to check which of the list elements
corresponds to the actual projection of the secret modulo pi seems to be first forming the entire secret
using CRT and then verifying that the result is the LWE secret. Thus, one has to solve a superpolynomial
number of CRT instances before recovering the correct value of the secret. It would be nice to extend the
list-decoding approach to work even in that case.

As an additional motivation, we mention that extending our sample-preserving reductions to the un-
bounded error setting would pave the road to similar results for the Ring LWE (R-LWE) problem [28].
R-LWE is an algebraic variant of LWE that leads to much more efficient constructions than standard LWE
while still enjoying strong security guarantees. Much like LWE with unbounded noise, existing search-to-
decision reductions [28] decompose the secret (which is an element from a ring R) modulo qi where the qis
are prime ideal factors.

Our work also highlights the importance of understanding the hardness of LWE under various noise
distributions. Current hardness proofs for search LWE [38] based on worst-case lattice problems rely on the
noise following a Gaussian distribution. Can lattice-based hardness results for search LWE be extended to
noise distributions other than Gaussian? Can we show similar lattice-based hardness results if the noise is
distributed uniformly at random modulo 2i? The latter case is very attractive from a practical viewpoint
since arithmetic modulo powers of 2 and sampling from uniform distributions can be implemented very
efficiently.

6 Acknowledgments

A preliminary version of this work appears in the Proceedings of CRYPTO 2011 [31]. This is the full version
of the paper. This research was supported in part by NSF under grants CNS-0831536 and CNS-0716790.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

References

[1] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient Lattice (H)IBE in the Standard Model. In
EUROCRYPT, pages 553–572, 2010.

[2] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice Basis Delegation in Fixed Dimension and
Shorter-Ciphertext Hierarchical IBE. In CRYPTO, pages 98–115, 2010.

[3] Adi Akavia. Learning Noisy Characters, Multiplication Codes and Hardcore Predicates. PhD thesis,
MIT, February 2008.

[4] Adi Akavia, Shafi Goldwasser, and Shmuel Safra. Proving Hard-Core Predicates Using List Decoding.
In FOCS, pages 146–157, 2003.

14By perfect here we mean a distinguisher with advantage almost 1. Getting a perfect distinguisher out of an imperfect one
(one with only a nonnegligible advantage) is the main reason for the blowup in the number of samples the reduction consumes.

24

[5] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous Hardcore Bits and Cryptog-
raphy against Memory Attacks. In TCC, pages 474–495, 2009.

[6] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. Fast Cryptographic Primitives and
Circular-Secure Encryption Based on Hard Learning Problems. In CRYPTO, pages 595–618, 2009.

[7] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with Constant Input Locality. J.
Cryptology, 22(4):429–469, 2009.

[8] Sanjeev Arora and Rong Ge. New algorithms for learning in presence of errors. In ICALP, 2011.
Available at http://www.eccc.uni-trier.de/report/2010/066/.

[9] Avrim Blum, Merrick L. Furst, Jeffrey C. Jackson, Michael J. Kearns, Yishay Mansour, and Steven
Rudich. Weakly Learning DNF and Characterizing Statistical Query Learning using Fourier Analysis.
In STOC, pages 253–262, 1994.

[10] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic Primitives
Based on Hard Learning Problems. In CRYPTO, pages 278–291, 1993.

[11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient Fully Homomorphic Encryption from (Standard)
LWE. In FOCS, page to appear, 2011.

[12] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai Trees, or How to Delegate a Lattice
Basis. In EUROCRYPT, pages 523–552, 2010.

[13] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan.
Public-Key Encryption Schemes with Auxiliary Inputs. In TCC, pages 361–381, 2010.

[14] Jean-Bernard Fischer and Jacques Stern. An efficient pseudo-random generator provably as secure as
syndrome decoding. In EUROCRYPT, pages 245–255, 1996.

[15] Craig Gentry and Shai Halevi. Fully Homomorphic Encryption without Squashing Using Depth-3
Arithmetic Circuits. In FOCS, page to appear, 2011.

[16] Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. A Simple BGN-Type Cryptosystem from LWE.
In EUROCRYPT, pages 506–522, 2010.

[17] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for Hard Lattices and New Cryp-
tographic Constructions. In STOC, pages 197–206, New York, NY, USA, 2008. ACM.

[18] Oded Goldreich and Leonid A. Levin. A Hard-Core Predicate for All One-Way Functions. In STOC,
pages 25–32, 1989.

[19] Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan. Learning Polynomials with Queries: The Highly
Noisy Case. In Foundations of Computer Science (FOCS), pages 294–303, 1995.

[20] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Robustness of the
Learning with Errors Assumption. In ICS, 2010.

[21] R. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. In FOCS, pages 248–253, Washington,
DC, USA, 1989. IEEE Computer Society.

[22] Russell Impagliazzo and Moni Naor. Efficient Cryptographic Schemes Provably as Secure as Subset
Sum. J. Cryptology, 9(4):199–216, 1996.

[23] Jonathan Katz, Ji Sun Shin, and Adam Smith. Parallel and Concurrent Security of the HB and HB+

Protocols. J. Cryptology, 23(3):402–421, 2010.

25

[24] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Multi-bit Cryptosystems Based on Lattice
Problems. In Public Key Cryptography, pages 315–329, 2007.

[25] Eyal Kushilevitz and Yishay Mansour. Learning Decision Trees Using the Fourier Sprectrum. In STOC,
pages 455–464, 1991.

[26] Richard Lindner and Chris Peikert. Better Key Sizes (and Attacks) for LWE-Based Encryption. In
CT-RSA, pages 319–339, 2011.

[27] Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique shortest vectors,
and the minimum distance problem. In CRYPTO, pages 577–594, 2009.

[28] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning with Errors over
Rings. In EUROCRYPT, pages 1–23, 2010.

[29] Daniele Micciancio. The LLL Algorithm: Survey and Applications, chapter Cryptographic Functions
from Worst-Case Complexity Assumptions, pages 427–452. Information Security and Cryptography.
Springer, December 2009.

[30] Daniele Micciancio. Duality in Lattice Based Cryptography. In Public Key Cryptography, 2010. Invited
Talk.

[31] Daniele Micciancio and Petros Mol. Pseudorandom Knapsacks and the Sample Complexity of LWE
Search-to-Decision Reductions. In CRYPTO, pages 465–484, 2011.

[32] Daniele Micciancio and Oded Regev. Worst-Case to Average-Case Reductions Based on Gaussian
Measures. SIAM J. Comput., 37(1):267–302, 2007.

[33] Daniele Micciancio and Oded Regev. Lattice-Based Cryptography. In Post Quantum Cryptography,
pages 147–191. Springer Publishing Company, 2009.

[34] Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. Learning Juntas. In STOC, pages 206–212,
2003.

[35] Chris Peikert. Public-Key Cryptosystems from the Worst-Case Shortest Vector Problem. In STOC,
pages 333–342, New York, NY, USA, 2009. ACM.

[36] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A Framework for Efficient and Composable
Oblivious Transfer. In CRYPTO, pages 554–571, Berlin, Heidelberg, 2008. Springer-Verlag.

[37] Chris Peikert and Brent Waters. Lossy Trapdoor Functions and Their Applications. In STOC, pages
187–196, New York, NY, USA, 2008. ACM.

[38] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of ACM,
56(6):34, September 2009. Preliminary version in STOC 2005.

[39] Oded Regev. The Learning with Errors Problem (Invited Survey). In IEEE Conference on Computa-
tional Complexity, pages 191–204, 2010.

[40] Markus Rückert and Michael Schneider. Estimating the Security of Lattice-based Cryptosystems. Tech-
nical Report 2010/137, IACR ePrint archive, 2010.

[41] Daniel Stefankovic. Fourier Transform in Computer Science. Master’s thesis, University of Chicago,
October 2000.

[42] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient Public Key Encryption
Based on Ideal Lattices. In ASIACRYPT, pages 617–635, 2009.

26

