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Abstract. This paper proposes a compact design of SMS4 S-box using
combinational logic which is suitable for the implementation in area constraint
environments like smart cards. The inversion algorithm of the proposed S-box
is based on composite field GF(2H%) using normal basis at all levels. In our
approach, we examined all possible normal basis combinations having trace
equal to one at each subfield level. There are 16 such possible combinations
with normal basis and we have compared the S-box designs based on each case
in terms of logic gates it uses for implementation. The isomorphism mapping
and inverse mapping bit matrices are fully optimized using greedy algorithm.
We prove that our best case reduces the complexity upon the SMS4 S-box
design with existing inversion algorithm based on polynomial basis by 15%
XOR and 42% AND gates.
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1 Introduction

SMS4 is the mandatory block cipher standard for securing Wireless Local Area
Network (WLAN) devices in China. The Office of State Commercial Cipher
Administration of China (OSCCA) released the cipher description in January, 2006
[8] and the English version of the document is published by Diffie and Ledin [9].
SMS4 is used in WLAN Authentication and Privacy Infrastructure (WAPI) standard
in order to provide data confidentiality. The Chinese WLAN industry widely uses
WAPI, and it is supported by many international corporations like SONY in the
relevant products.

The efficiency of SMS4 hardware implementation in terms of power consumption,
area and throughput mainly depends upon the implementation of its S-box. It is the
most computationally intensive operational structure of SMS4 as it comprises of non-
linear multiplicative inversion. The designers of the SMS4 had chosen its S-box
design similar to Rijndael which employs inversion base mapping [14]. Implementing
a circuit to find the multiplicative inverse in the GF(2*) using Extended Euclidean
algorithm or Fermat theorem is very complex and costly. Several architectures of
GF(2*) inverter have been proposed by researchers over the period of time for area
efficient implementation of S-boxes that comprises of inversion in their algebraic
expressions. An efficient way to implement S-box is to use combinational logic
because it requires small area for implementation. V. Rijmen [3] proposed the first



hardware implementation of AES S-box using composite field representation. The
proposed design suggested the use of Optimal Normal Basis for efficient inversion in
GF(2*). 1. Wolkerstorfer [1] and A.Rudra [5] implemented the AES S-box by
representing GF(2%) as a quadratic extension of the GF(2*) using polynomial basis. In
this approach a byte in GF(2*) is first decomposed into linear polynomial with
coefficients in GF(2*) and different arithmetic operations in GF(2*) are computed
using combinational logic. The inversion in hardware is then implemented with the
simple logic gates by further decomposing GF(2*) into GF(2%) operations. Satoh [6]
and Mentens [7] further optimized the hardware implementation of AES S-box by
applying a composite field with multiple extensions of smaller degrees. The tower
field GF(2%)—GF(((2%)??) is constructed with repeated degree 2 extensions using
polynomial basis. Canright in [2] analyzed all possible combinations of normal and
polynomial basis at subfield levels of GF(((2**?) and proved that use of normal
bases at all levels of composite field decomposition further reduces the area of the
AES S-box implementation. X. Bai [4] proposed a GF(2®) inversion algorithm for
SMS4 S-box based on slight modification of design in [1].

In this paper, a new combinational structure of SMS4 S-box with the inversion
algorithm in tower field representation GF(2*)—GF(((2*)*)?) based on normal basis,
has been proposed. We have analyzed all possible combinations of normal basis at
each level with trace one from the field generated by irreducible primitive polynomial
of SMS4 cipher. The comparison of our resulting best case architecture with the S-
box design based on proposed GF(2%) inverter of [4] is also given.

The organization of the rest of paper is as follows. In subsequent section, structure of
SMS4 block cipher is briefly described with the focus on its S-box. In section 3, the
design of S-box using the composite field representation with normal basis is
explicated. Section 4 gives the comparison of combinatorial S-box designs of SMS4
with different normal basis combinations at subfield level. In section 5, a comparative
analysis is given between our proposed design of S-box with the one based on the
inversion algorithm presented in [4]. Conclusions and work in progress are stated in
section 6.

2 The SMS4

SMS4 block cipher is based on the iterative fiestel structure with input, output, and
key size of 128 bits each. The data input is divided into four 32 bit words. The
algorithm comprises of 32 rounds, and in each round one word is modified by adding
it to other three words with a keyed function. Encryption and decryption processes
have the similar structure and only the key schedule is reversed. For the detailed
description of cipher one may refer to [9]. The official depiction of SMS4 S-box is
given as a lookup table (LUT) with 256 entries. The S-box is commonly implemented
with the ROM lookup table where the pre-computed values are stored. However,
significant hardware resources are required if lookup table is implemented with 16 X
16 entries. SMS4 S-box is bijective and it substitutes byte input for byte output using
arithmetic computations over GF(2*). A method suitable for hardware implementation
of S-box is to first perform affine transformation on GF(2), then carry out inversion in



GF(2%), followed by second affine transformation over GF(2) [13,14]. The S-box
algebraic structure is given as the following expression [13].

S(x) = Ay(A.x+C) 1+ C,. (1)

The row vectors are C; = 0xCB = (11001011), and C, = 0xD3 = (11010011),. The
cyclic matrices A; and A, in the algebraic expression are as below:

1 010011 17 1 10 010 1 17
01001111 10010111
10011110 00101111
_joo111101 /01011110
A= 01111010 Az 10111100 (2)
11110100 011110001
11101001 11110010
11101001 1 11110010 1!
The irreducible primitive polynomial in GF (28) is
F) =GP +x"+x°+x5+x*+x2+1). (3)

3 SMS4 S-box Design in Composite Field

In this section we describe the proposed SMS4 combinatorial structure based on
composite field GF(((2*)*)?) in normal basis with the logical equations for inversion,
multiplications, squaring and addition. SMS4 S-box design in composite field
arithmetic is more efficient than using ROM/RAM for lookup tables (LUT) in area
constrained environments [4]. All finite fields of same cardinality are isomorphic but
their arithmetic efficiency depends significantly on the choice of basis that is used for
the field element representation. For the hardware implementation, normal basis has
significant advantage over polynomial basis as mathematical operations in normal
basis representation generally comprises of rotation, shifting and XORing [11, 12].

3.1 GF(2% Inversion Algorithm using Normal Basis

For input byte x to SMS4 S-box, inverse is computed for the expression (A;.x + Cy).
The complexity of basis conversion is dependent on the selected irreducible
polynomial and if the polynomial is adequately chosen, the basis conversion is simple
[7]. Following are the irreducible polynomials and their corresponding normal basis
representation.

GF(2%) cz2+z+1 - (z+2)(z+2Z?)  Normal basis (Z°, Z)
GF(2)) :y*+Ty+N - (y+Y)(y+Y* Normalbasis (Y, Y) 4)
GF(2H))) :x2+ m+n - (x+X)(x + X'®) Normal basis (X'®, X)



Where T = Y*+ Y is the trace and N = Y*.Y is the norm in GF(2*)/GF(2%), t = X'+
X is the trace and n = X'® X is the norm in GF(2%/GF(2*). To minimize the
operations and simplify inversion circuit in composite field we consider only those
basis combinations which have t = T = 1. The nested structure of GF(2°%) inverter
comprises of different subfield operations. In the following sections logical structures
for inversion, multiplication and scaling in composite field are given.

Inversion in GF(28), GF(24) and GF(22). Let the pair (ay, a;) € GFl (24) represents a
€ GF(2" in terms of Normal basis (X', X). If b € GF(2*) is inverse of a, then
product of aand b is 1.

a=a X%+ aqX
b = th16 + le (5)
axXb=(anX"®+aX)(byX*®+bX)=1.

Substituting X + X"%=1, (X"?*=X"+nand (X)*=X +nand solving for by, and b.

bh = [(ah® al)®((ah® al)2® n)]_1® a . (6)
b, = [(a,® a)®((a,® a)*®n)] '@ ay, .

Where ® is multiplication and @ is addition in GF(2*). If Q = [(a, ® a) @ ((a ® 2))’®
n)]"", then inversion in GF(2%) is expressed by following relation.

b=a1=(Q®a)X*+(Q®ay)X. (7

The logical structure of GF(2%) inverter is shown in figure 1. Similarly, if ¢ € GF(2*)
and it has an inverse d € GF(24) using normal basis (Y4, Y), then ¢ = Y+ oY, ¢, ¢
€ GF(2%) and d = d,Y* + d|Y dy, d; € GF(2%). If ® is multiplication and @ is bitwise
addition in GF(2%) and @ = [(c; ® ¢)) ® ((cy ® ¢)’® N)]', then equation for GF(2%
inversion is given as below:

d=c1=(@Qc)Y*+ (®®c,)Y. (8)
The GF(2%) inverter is depicted in figure 2. The inversion in GF(2%) is same as
squaring and implemented without gates by swapping of bits. If ¢ € GF(2%) is
represented in normal basis (Zz, Z) as e = enZ? + eZ, e, € € GF(2) and f is the
inverse of e in GF(2%) then inversion in GF(27) is:

f=etl=(e)Z%+ (enZ. 9

Multiplication in GF(2*) and GF(2%). The structures of multipliers in GF(2*)
and GF(2%) in normal basis are derived as below.

(Chy4 + ClY)(th4 + dlY) = Chdh(Y4)2 + ChdlY4Y + Clth4Y + Cldlyz (10)

Substituting Y + Y*=1, (Y**=Y* + N and (Y)* =Y + N.
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(Chy4 + ClY)(th4 + dlY) = (Chdh® G)Y4 + (Cldl® G)Y . (11)

Where @ is bit wise addition, ® is multiplication in GFl (2 and € = (¢, ® ¢) @ (d, ®
d)) ® N. Similarly GF(2?) multiplier in normal basis is represented as:

(enZ? + e Z) (2% + fiZ) = (enfr® A)Z* + (eif® A)Z . (12)

@ represents the bit addition, ® is AND operation and A = (e, @ ¢)) ® (f, @ f}). The
above mentioned structures are illustrated in figure 3 and figure 4 respectively.

Scaling and Squaring in GF(2*) and GF(2?). In GF(2% and GF(2*) inverters
there are constant multiplication operations (n x a®) and (N x ¢?) and in GF(2%
multiplier there is constant multiplication term (N x c¢). The combination of squaring
and scaling operation results in further optimization [2]. The computation of these
terms depends on the values of n in GF (2*) and N in GF(2?) for the chosen normal
basis. N € GF (2%) and N is not equal to zero or one, therefore N and N+1 are the
roots of z* + z + 1. So depending on the choice of basis, scalars for N and N? implies
to scalars for z or z*. The two bit factor (N x ¢) is given in two ways.

Z X (ehZZ + elZ) = (eh(‘D el)Zz + ehZ . (13)

7% x (ehZZ + elZ) = elZZ + (ehC‘B el)Z.
Similarly the square scaling two bit factor (N x ¢?) is represented in following two
ways depending upon choice of conjugate basis pair.
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Fig. 3. GF(2") Multiplier Fig. 4. GF(2%) Multiplier

Z X (ehZz + elZ)Z = (eh(‘D el)ZZ + elZ . (14)
Z2 X (ehZZ + elZ)Z = ehZZ + (ehC‘B el)Z.

The scaling operation (n x a’) is a four bit factor in GF(2®) inverter and its
computation in GF(2%) depends on the normal basis types and the relation between
norm n and N as in [2]. For computations in GF(2%), tables in appendix ‘B’ are used.

3.2 Generating Isomorphic and Inverse Mapping Functions

The standard SMS4 form is defined by 8 bit vector as coefficients of powers of x
which is root of irreducible primitive polynomial in (3). Multiplicative inversion in
composite field is computed after a byte in GF(2®) is mapped to its composite field
representation using isomorphism function & [6]. After the multiplicative inverse is
computed in the composite field, the 8 bit result is mapped back to standard
equivalent representation in GF(2%) using inverse isomorphic function &'. The
isomorphic and it inverse mapping is one to one and onto mapping and is represented
as 8x8 matrix [10]. If byte s is in standard polynomial basis then it can be represented
as a quadratic extension as s = aX'® + aX, a, a; € GF(24), where each 4 bit
coefficient is represented as ¢ = chY4 +¢Y, ¢, ¢ € GF(22), each of which is then
further represented as pair of bits e = e,Z° + ¢,Z in GF(2°)/GF(2). If the new byte is
given as tytgtstststotity then we have the following expression [2].

5787 + 565 4 555° + 5, 5% + 5353 + 5,52 4 5,51 + 5,5°
= {(t,Z% + tcZ)Y* + (tsZ% + t,2)Y}X10
+{(t3Z2% + t,2)Y* + (£, 22 + t, Z2)Y3}X . (15)
=t,Z2Y* X0 + t ZY X O+ t  Z2Y X6 + t,ZY X6 + t3 224X + t,ZY X +
6t Z2YX + tyZYX .



The values of X, Y and Z are substituted from the conjugate basis chosen and these 8
hexadecimal values with coefficient t; represents the columns of 8 x 8 reverse base
transformation matrix 8. The inverse matrix & is used for changing standard basis to
corresponding composite field representation [2]. The inverse mapping matrix &' is
combined with affine transformation matrix A, for further optimization as in [6]. The
block diagram of SMS4 S-box is given in the figure below.

Inversion
GF({(Z)*) I
: ¢/, [ isomorptiem 7 :
—Ef Auxt 0y L SO > GFIEP) .
GF(2%) 7
Affine Tran
GF(2)

Fig. 5. SMS4 S-box Block Diagram

4 Results

For the possible choices of norms in GF(2*) and GF(2%) along with the normal basis
at each subfield level satisfying t = T = 1, we have 16 possible cases as shown in
appendix ‘A’. SMS4 S-box design based on each case is fully tested and simulated.
The most compact case is the one which gives the least number of XOR gates for
implementation. It can be observed from the results in table 1 that choosing different
normal basis combination results in small difference in number of XOR gates. These
small differences exist due to different mapping matrices and slight differences in the
inverter architectures. The matrices operations for mapping, inverse mapping and
affine transformation are fully optimized using greedy algorithm [10]. The greedy
algorithm operates iteratively on the mentioned matrices determining the occurrences
of all possible repeating pairs in the output. The repeating pairs are pre-computed to
reduce the number of XOR gates. Our best case S-box design (case 5, table 1) saves
35 XOR gates by application of greedy algorithm.

The GF (2% inverter in normal basis comprises of one GF (2°%) inverter, three GF(2*)
multipliers, one square scaling and two additions in GF(2*) as shown in figure 1. One
GF(2"% inversion is computed using three multipliers, one inversion, one square
scaling and two additions in GF(2%) as depicted in figure 2, where one GF 2%
multiplier comprises of three multipliers, four additions and a scaling operation in
GF(2%) as in figure 3. Thus total number of logic gates computed in hierarchical
structure of inverter for our best case S-box is 91 XOR and 36 AND. The structures of
multipliers in figure 3 and figure 4 depicts that it requires summation of high and low
halves of each input factor. If the same factor is shared by two different multipliers
then share factor can save one subfield addition [2]. Thus, a four bit common factor in
one GF(2*) multiplier can save five XOR gates and a two bit common factor in
GF(2%) multiplier can save one XOR gate. In GF(2%) inverter in figure 1, all three
GF(2*) multipliers have share factors i.e. €, ah, a are all shared between respective
two GF(2') multipliers thus saving 15 XOR gates. Similarly in GF(2*) normal
inverter we have @, ¢y, ¢; shared between respective two GF(2*) multipliers thus



saving 3 XOR gates. In total 15+3 = 18 XOR gates can be saved by the share factors

in GF(2% and GF(2*) normal inverters in hardware implementation. Thus total
number of gates required for case 5 SMS4 S-box are 73 XOR and 36 AND gates.

Table. 1. All Cases of SMS4 S-box design using Normal basis in GF(((2)%)*)

No Conjugate Ordered Pair Basis Logic Gates S-box
X', X) (YY) (Z’, 7) XOR AND
1 (0x98, 0x99) (0x51, 0x50) (0x5C, 0x5D) 137 36
2 (0x98, 0x99) (0x0C, 0x0D) | (0x5C, 0x5D) 135 36
3 (0xBF, 0xBE) | (0x51, 0x50) (0x5C, 0x5D) 135 36
4 (0xBF, 0xBE) | (0x0C, 0x0D) | (0x5C, 0x5D) 139 36
5 (0x94, 0x95) (0x51, 0x50) (0x5C, 0x5D) 134 36
6 (0x94, 0x95) (0x0C, 0x0D) | (0x5C, 0x5D) 136 36
7 (OxEF, OxEE) | (0x51, 0x50) (0x5C, 0x5D) 138 36
8 (0xEF, OxEE) | (0x0C, 0x0D) | (0x5C, 0x5D) 136 36
9 (0xC5, 0xC4) | (0x51, 0x50) (0x5C, 0x5D) 136 36
10 | (0xC5, 0xC4) | (0x0C, 0x0D) | (0x5C, 0x5D) 136 36
11 (0xE3, 0xE2) | (0x51, 0x50) (0x5C, 0x5D) 139 36
12 | (0xE3, 0xE2) | (0x0C, 0x0D) | (0x5C, 0x5D) 136 36
13 | (0xC9, 0xC8) | (0x51, 0x50) (0x5C, 0x5D) 138 36
14 | (0xC9, 0xC8) | (0x0C, 0x0D) | (0x5C, 0x5D) 139 36
15 | (0xB3, 0xB2) | (0x51, 0x50) (0x5C, 0x5D) 137 36
16 | (0xB3, 0xB2) | (0x0C, 0x0D) | (0x5C, 0x5D) 137 36

5 Comparative Analysis

Our most compact SMS4 S-box comprises of 134 XOR and 36 AND gates with
conjugate pair basis (0x94, 0x95), (0x51, 0x50) and (0x5C, 0x5D) respectively. We
provide comparison of our most compact case 5 S-box design with the one based on
GF(2%) inversion algorithm proposed in [4] that uses polynomial basis. The operations
in the subfield and the number of XOR and AND logic gates required to design SMS4
S-box based on [4] is given in table 3. The matrices computations are optimized using
greedy algorithm as in [1].

Table. 2. Logic gates for our Best case SMS4 S-box

Mathematical Operation XOR AND
Affine Trans 1 (A;. x + Cy) 29 -
Map GF(2*) — GF((2°)’) 15 -
Map inv + Affine Trans 2 17 -
GF(2%) Inversion 73 36
Total 134 36




Table. 3. Logic Gates for SMS4 S-box based on Polynomial Basis Inverter of [4]

Mathematical Operation | Instances | XOR | AND
Affine Trans 1 (x.A;+ C)) 1 29 -
Map GF(2*) —» GF(2")’ 1 12 -
Map inv GF(2*) >GF(2%) 1 10 -
Map GF(2*) —» GF(2°)’ 1 3 -
Map inv GF(2?)’ — GF(2%) 1 2 -
Affine Trans 2 (y.A; + Cy). 1 29 -
GF(2*) Multiplier 3 45 48
GF(2%) Squaring 1 2 -
GF(2%) Scaling 1 1 -
GF(2% Addition 2 8 -
GF(2%) Multiplier 3 9 15
GF(2%) Squaring 1 1 -
GF(2%) Scaling 1 1 -
GF(2%) Addition 2 4 -
GF(2%) Inverter 1 1 -
Total | 157 | 63

6 Conclusion and Future Work

In this paper we have proposed an improved design for SMS4 S-box based on the
combinational logic with a low gate count. The proposed algorithm for computing
SMS4 S-box function is based on composite field GF(((2%)%)?) and we have simulated
all the possible cases of subfield combination depending upon the choice of normal
basis, from which we have determined the best case. All the transformation matrices
are optimized using greedy algorithm. We have proved that our best case S-box
design results in much lower gate count and reduces the complexity by 15% XOR
gates and 42% AND gates over the S-box based on the inversion algorithm of [4].
Our compact architecture of SMS4 S-box can save a significant amount of chip area
in the hardware implementation of SMS4 in ASICs and it can be used for area
constrained and demanding throughput SMS4 integrated circuits for applications
ranging from smart cards to high speed processing units. The future work will
concentrate on the ASIC implementation of the S-box, where our design can be
further improved using the logic gate optimizations depending on specific CMOS
standard library.
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Appendix A: GF(2%) Representation for SMS4 S-Box

Al The table below gives the decimal, hexadecimal and binary values of the
GF(2® generated modulo irreducible  primitive polynomial f(x) =
xS +x*x+1. Let A be the root of f(x) then the field generated with
respective names of elements is as below:

Dec | Hex | Binary 0' Name | Dec | Hex | Binary 0' Name
0 00 | 00000000 | - 0 39 [ 27 |oo100111 | 0™ | g*

1 01 | 00000001 | 6° |1 40 |28 | 00101000 | 0'° | A®
2 02 | 00000010 | 6 | A 41 |29 | ooto1001 | 0 | G®
3 03 | 00000011 | 67* | G™* |42 [2A | 00101010 | 6™ [ 4®
4 04 | 00000100 | 0> | A? 43 | 2B [ oo0101011 | 0™ | B°
5 05 | 00000101 | 6" | G 44 | 2C | oo101100 | 07 | F®
6 06 | 00000110 | 8 | H™® |45 | 2D | oo101101 | 6% | g*
7 07 | ooooor11 | 6" | J* 46 | 2E | 00101110 | ' | b?
8 08 | 00001000 | 6° | B 47 | 2F | ootor111 | % | 4
9 09 | 00001001 | 6% | a'® 48 |30 | 00110000 | 078 | K'®
10 | 0A | 00001010 | 6™ | D? 49 |31 [ 00110001 | 6 | n
11 | 0B | 00001011 | 0'* | o' 50 |32 | 00110010 | 6" | m?
12 | 0C | 00001100 | 6% | o® 51 |33 | 00110011 | 6™ | C*2
13 | oD | 00001101 | 6> | o? 52 |34 |oo110100 | 6 | E?
14 | OE | 00001110 | 877 | b™ 53 |35 |oo110101 | 6% | P™®
15 | oF | oo0o001111 | 6™ | d* 54 |36 | 00110110 | 6 | a2
16 | 10 | 00010000 | 6* | A* 55 |37 |oo110111 | 6° | B*
17 |11 | 00010001 | *° | G 56 |38 | 00111000 | 7 | k'
18 |12 [ 00010010 | 6*'" | K* 57 139 |oo111001 | 67 |
19 [ 13 [ooo010011 | 6*° [ j* 58 | 3A | 00111010 | 6 | N?
20 | 14 | 00010100 | 6" | H 59 [ 3B | 00111011 | 6% | ¢
21 |15 | ooo1o101 | 0™ | J® 60 |3C | 00111100 | 8™ | Q™
22 |16 | 00010110 | 6" | n'® 61 | 3D |oot11101 | 0° | M2
23 |17 | ooo1o111 | 6™ | K& 62 | 3E |oo111110 | 0™ | C2
24 |18 | 00011000 | 677 | 7' 63 | 3F |[oo111111 | 6’7 | m®
25 |19 | 00011001 | 6*® | H™ 64 | 40 | 01000000 | 6° | B2
26 | 1A | 00011010 | 6 | M2 |65 |41 | 01000001 | 0 | a*2
27 | 1B | ooo11011 | 6% | QB 66 | 42 | 01000010 | 8™ | E™®
28 | 1C | ooo11100 | 67 | 4™ 67 | 43 | 01000011 | 67 | P*
29 | 1D | ooo11101 | 6% | b™ 68 | 44 | 01000100 | 6 | D*
30 | 1E | ooo11110 | 6™ | P* 69 |45 | 01000101 | 67 | g?
31 [ 1F |ooor111l [ & | E 70 | 46 | 01000110 | 0" | 1'°
32 [ 20 [ 00100000 |6 |C 71 | 47 | otooo111 | 8™* | L®
33 [ 21 | 00100001 [ 6™ [ m'® [72 |48 ] 01001000 | 0°" | g
34 |22 00100010 | 6 | N 73 | 49 | 01001001 | 6™ | D*
35 [ 23 | 00100011 | 6™ [ ™ 74 | 4A | 01001010 | ©°° |
36 | 24 | 00100100 | °2 | b 75 | 4B | 01001011 | 6% | ¢2
37 |25 | oo1o00101 | 67 | d* 76 | 4C | 01001100 | 62 | &2
38 |26 | oo100110 | 6% | 4* 77 | 4D ] 01001101 | ° | N2




Dec | Hex | Binary o' Name | Dec | Hex | Binary o' Name
78 | 4E | 01001110 | 0" | j* 123 | 7B | o1111011 | ** | B
79 | 4F | otoo1111 | 6°7 | k* 124 | 7C | o1111100 | 6™ | F
80 |50 | 01010000 | 0" | « 125 | 7D | o1111101 | 6*° | ¢
81 |51 | 01010001 | 0% | o 126 | 7E | o1111110 | 6% | A%
82 |52 01010010 | ' | a® 127 | 7F | o1rt1111 | 6*® | G'°
83 |53 |o1o1o0011 | 6% | B | 128 | 80 | 10000000 | 6’ | D
84 | 54 | 01010100 | ™ | b* 129 | 81 | 10000001 | 6% | g
85 |55 | o1o10101 | 6%F | d° 130 | 82 | 10000010 166 1 8
86 |56 | 01010110 | 6™ | H® 131 | 83 | 10000011 s
87 |57 |ototo111 | o™ | 1% 132 | 84 | 10000100 | 6™ | M™
88 |58 | 01011000 | 677 | N 133 | 85 | 10000101 | 6% | Q*
89 |59 [o1011001 | 6% | e 134 | 86 | 10000110 | 6" | P2
90 | 5A | o1011010 | 6%* | D* 135 | 87 | 10000111 | 62 | E*®
91 | 5B |o1011011 [ 06%* | g 136 | 88 | 10001000 | 6% | f*
92 | 5C | 01011100 | 6'° | A2 137 | 89 | 10001001 | 6°® | ¢
93 | 5D | 01011101 | 6% | 138 | 8A | 10001010 | 6 | j**
94 | 5E |o1011110 | 6'° | ™* 139 | 8B | 10001011 | 6% | k**
95 | 5F |otor111l | 6 | N8 140 | 8C | 10001100 | 6'2 | D'
96 | 60 | 01100000 [ 6™° [ L™ [ 141 [ 8D [ 10001101 | 0" | g™
97 |61 | 01100001 | 6% |1 142 | 8E | 10001110 | 6™ | &*
98 |62 |o1100010 | 65" | * 143 | 8F | 10001111 | 0" | N*
99 |63 |o1100011 | 62 | F? 144 |90 | 10010000 | 6** | ¢8
100 | 64 | 01100100 | 6** | j 145 | 91 | 10010001 | 6%% | f
101 | 65 | ot1100101 | 6% | k 146 | 92 | 10010010 | 6™* | F*
102 | 66 | 01100110 | 6™ | G* 147 193 | 10010011 | 0™ | ¢
103 | 67 | 01100111 | % | A% 148 | 94 | 10010100 | 6% | n*
104 | 68 | 01101000 | 8°7 | P 149 | 95 | 10010101 | 6'” | n*
105 | 69 | o1101001 | 6°° | E* 150 | 96 | 10010110 | 0™ | ¢*
106 | 6A | 01101010 | 6% | b* 151 [ 97 | 10010111 |07 | £
107 | 6B | o1101011 | 6*° | d 152 | 98 | 10011000 | 6*°° | n'®
108 | 6C | ot101100 | 0°1 | ¢* 153 | 99 | 10011001 | 6% | n
109 | 6D | o1101101 | ' | f* 154 | 9A | 10011010 | 6™ | Mm*
110 | 6E | 01101110 | 6”7 | F* 155 | 9B | 10011011 | 6% | Q
111 | 6F [ o1101111 | ™" [ ¢* 156 | 9C | 10011100 | 0™ | 1%
112 | 70 [ o1110000 | 6% | C™ 157 | 9D | 10011101 | 6%° | L*?
113 | 71 | ot110001 | 6*® | m 158 | 9E | 10011110 | 6% | m*
114 | 72 [ ot110010 | 6% | B™ 159 [ 9F | 10011111 [ 6% | C*
115 | 73 | ot110011 [ 6% |a 160 | AO | 10100000 | 6" | E?
116 | 74 | o1110100 | 6% | € 161 | A1 | 10100001 | 6*T | P®
117 | 75 [ottto101 [ 0™ [ N [ 162 | A2 | 10100010 | 0¥ | K*
118 | 76 | 01110110 | 62 | B2 163 | A3 | 10100011 | ' | n'™*®
119 | 77 | o1110111 [ 0" | 42 164 | A4 | 10100100 | 6™ | b™*
120 | 78 [ o1111000 | 6™ [ 2™ [ 165 | A5 | 10100101 | 0™° | d*
121 | 79 [ot111001 | 0 | B 166 | A6 | 10100110 | 67° | C™®
122 [ 7a [ot111010 [ 6 |y 167 | A7 | 10100111 [ 0™ | m®




Dec | Hex | Binary o' Name | Dec | Hex | Binary o' Name
168 | A8 | 10101000 | 6™ | * 212 | D4 | 11010100 | 6% | K*
169 | A9 | 10101001 | 6™ | N®* [ 213 [ D5 | 11010101 | 6° | n®
170 | AA | 10101010 | 6% | C? 214 | D6 | 11010110 | 622 | 2
171 | AB | 10101011 | 6™ | m™ [ 215 [ D7 | 11010111 | 0% | K
172 | AC | 10101100 | " | j'* | 216 | D8 | 11011000 | 6 | L*
173 | AD | 10101101 | 02 [ k™ | 217 [ D9 | 11011001 | 0™ | ®
174 | AE [ 10101110 [ 0™7 | L [ 218 | DA | 11011010 | 6™ | P¥
175 | AF | 10101111 [ 6% [ 1™* [ 219 [ DB | 11011011 | 07> | E®
176 | Bo | 10110000 | 6" | Q™ 220 | DC | 11011100 | 6% | J*2
177 | B1 | 10110001 | 6 | M* | 221 | DD | 11011101 | 6% | H*
178 | B2 | 10110010 | 6*' | p® 222 | DE | 11011110 | ™ [ B
179 | B3 | 10110011 | 0™ | p'™ | 223 | DF | 11011111 | 6™ | a*
180 | B4 | 10110100 | 6°% | H* 224 | E0O | 11100000 | 637 | K™

181 | B5 | 10110101 [ 6™ |1J 225 | E1 | 11100001 | 6 | n*
182 | B6 | 10110110 | 6*° | n* 226 | E2 | 11100010 | *¥ | p°

183 | B7 | 10110111 | 6* | K? 227 | E3 | 11100011 | 8™ | p*
184 | B8 | 10111000 | 0" | g* 228 | E4 | 11100100 | 6% [ I'®

185 | B9 | 10111001 | 6" | D'® [ 229 | B5 | 11100101 | 6 | H?
186 | BA | 10111010 | 6% | Q? 230 | E6 | 11100110 | 0* | L?
187 | BB | 10111011 | 6°® | M® 231 | E7 | 11100111 | 0% | 1*

188 | BC | 10111100 | 0™® | 1% 232 | E8 | 11101000 | 6°° | D®
189 [ BD | 10111101 [0 [¢* 233 | E9 [ 11101001 | 0™ | o™
190 | BE | 10111110 | 6*7 | n? 234 | EA | 11101010 | 0™ | £'°
191 | BF | 10111111 | 07 | n* 235 | EB | 11101011 | ' | %8
192 | co | 11000000 | 6™ | M™* | 236 | EC | 11101100 | 6% | I*
193 | Cc1 | 11000001 | 6™ | Q* 237 | ED | 11101101 | ' | L™

194 | c2 | 11000010 | 67 | ¢® 238 | EE | 11101110 | 6" | n®
195 | ¢3 | 11000011 | 6™ | F* 239 | EF | 11101111 | "% [ n'®
196 | C4 | 11000100 | 6 | p 240 | FO | 11110000 | 6" | j®
197 | C5 | 11000101 | *7 | p'® 241 [ F1 [ 11110001 | ' | K
198 | c6 | 11000110 | 6% | L 242 | F2 | 11110010 | 6% | M
199 | ¢7 | 11000111 | 6% | 1P 243 | F3 [ 11110011 | *2 | Q%

200 | c8 | 11001000 [ 6°** | p* 244 | F4 [ 11110100 | 6* | G
201 | C9 | 11001001 | 6% | p* 245 | F5 [ 11110101 | 0% | A®
202 | CA | 11001010 [ 6** | n? 246 | F6 | 11110110 | % [ ¢'°
203 | CB | 11001011 | 6*' | K 247 | F7 | 11110111 | 6% | F®
204 | cC | 11001100 | 6'2 | K*2 248 | F8 | 11111000 | 6 | B?
205 | CD | 11001101 | 6'° | n® 249 | F9 | 11111001 | 67° | a%
206 | CE | 11001110 [ e%® | c* 250 | FA | 11111010 | 6 [ g
207 | CF | 11001111 | 67 | m* 251 | FB | 11111011 | '3 | F'%8
208 | DO | 11010000 | 6% | J? 252 | FC | 11111100 | 6% | E*
209 | D1 | 11010001 | 6™ | H* 253 | FD | 11111101 | ™ | p'%®
210 | D2 | 11010010 | 6% | G* 254 | FE | 11111110 | 6 | £

211 | D3 | 11010011 | 0™ | A™® | 255 | FF | 11111111 | 6'° | '®

A2 The minimal polynomials over GF(2) and their respective conjugate roots in
terms of 0" are presented in the following table.



Name Minimal Polynomial Conjugate Roots (0
1 x+1 6°
A 2+x+1 p%, 9170
o X4 +x+1 917, 934, 668 , 6136
B X4 + X3 +1 6238 , 9221 , 9187, 9119
y X4+X3+X2+X+1 651,9102,6204,9153
A X8+X7+X6+X5+X4+X2+1 61,92,64,98,616,632,664,6128
B X8+ X7+ X5+ X4+ X3+ X2+ 1 63, 96, 612, 924, 948, 696’ 6192, 612‘)
C X8+ X4+ X3+ x+1 65, 910, 920, 640, 680, 6160, 665, 6130
D X8+ X6+ X5+ X4+ 1 67, 9]4, 928, 656, 6“2, 6224, 9193’ 9131
E X8+ X5+ X4 4 X3+ X2+ x+1 e‘), 9]8, 936, 672, 6144, 633, 666, 9132
F X8+ X6+ X3+ X2+ 1 ell, 622, 644, 9887 61767 697, 61947 6133
G X8+ X7+ X3+ X2+ 1 613, 626, 652, 9104, 6208, 9161, 667, 9134
H XS + XS + X4+ X3 +1 615, 630, 660, 9120, 6240, 9225, 61957 6135
] X8+ X5+ X3+ X2+ 1 619, 638, 676, 9152, 649, 6987 61967 6137
K X8+ X7+ X6+ X4+ X3+ X2+ 1 621, 642, 684, 9168, 6817 6162, 969, 6138
L X8+ X7+ X2+ x+1 623, 646, 692, 9184, 6113, 9226, 61977 6139
M SE+xt+ 0+ 3+ 1 025, %0, 9100 9200 gl4s 35 70 140
N X8+ X7+ X3+ x+1 627, 654, 6108, 62]6, 9177’ 999’ 9198’ 9141
P X8+ X5+ X3+ x+1 637, 674, 6148, 64], 682, 9164’ 673, 9146
Q X8+ X7+ X6+ X5+ X2+ x+1 643, 686, 6172, 689, 6178, 6101’ 9202’ 9149
a S+ x4+ x4 x+ 1 05, 9%, gI%0_ 105 210 gl6s 75 giso
b S+ x4+ +x+ 1 0212, 9169, 983, 10 977 g!54 %3 100
c X8+ X7+ X5+ X3+ 1 9218, 9181’ 9107, 6214, 9173’ 991’ 9182’ 9109
d X8+ X7+ X5+ x+ 1 9228, 9201’ 9147, 639, 978, 9156’ 657, 9114
e X8+ X7+ X6+ X5+ X4+ x+ 1 9230, 9205’ 9155, 655, 9110, 6220, 9185’ 9115
f X8+ X7+ X6+ x+ 1 9232, 9209’ 9163, 671, 9142, 629, 658, 9116
g X8+ X6+ X5+ X4+ XZ +x+1 9234, 9213’ 9171, 687, 9174, 693, 6186, 9117
h X8+ X6+ X5+ X3+ 1 9236, 9217’ 9179, 6103, 9206’ 9157’ 659, 9118
j X8+ X6+ X5+ x+1 6242, 9229’ 6203, 6151, 947’ 694, 6188, 9]2]
k X8+ X6+ X5+ X2+ 1 6244, 9233’ 62”, 6167, 979’ 6158, 961’ 9]22
1 X8+X7+X6+XS+X4+X3+ 1 6246, 9237’ 62]9,6183,9”],9222, 6189,9]23
m X8+ X4+ X3Jr XZJr 1 6248, 9241’ 6227, 6199, 9]43’ 931’ 962’ 9]24
n St +x0+x0+1 0250 9245 9235 9215 Q175 95 @10 g12s

S+ x+ 1

6252, 9249, 6243, 6231, 9207, 9]59, 663, 6126

Q0 |o

St X2+ x+ 1

6254, 9253’ 6251, 6247, 9239’ 9223’ 6191, 9127




Appendix B: Tables for GF(2*) Computations

B.1 The table below gives the decimal, hexadecimal and binary values of the
GF(2*) generated modulo irreducible primitive polynomial g(x) = x*+ x + 1. Let o be
the root of g(x) then the field generated with respective names of elements is as
below:

Dec Hex ANF Q' Bin Q' o Name
0 00 0 0000 - 0
1 01 X 0001 Q° 1
2 02 X 0010 Q! o
3 03 x+1 0011 o o
4 04 x> 0100 o’ o
5 05 X+ 1 0101 Qb o
6 06 X*+ X 0110 o’ A
7 07 X +x+1 0111 Qe 22
8 08 x° 1000 o’ y
9 09 X+ 1 1001 o B
10 0A X +x 1010 o’ %
11 0B XHx+1 1011 Q' B
12 0C X +x° 1100 Q° v’
13 0D X +x+1 1101 Qb p’
14 0E X+ x2+x 1110 Q' p*
15 OF X+ x+x+1 1111 Qb v

B.2 The table below gives the minimal polynomials over GF(2) and their
respective conjugate roots in terms of Q' are presented using irreducible primitive
polynomial g(x) =x*+x + 1.

Name Poi\; ::;ig;z: Conjugate Roots ()
1 X1 Q°

A X +x+1 QL Q"

a x+x+1 Q,0% 0 o8

B K+ 41 Ql4’le’Qn’Q7

y X+ Hx+1 Q0% 0%,




The addition table in GF(16) using the naming convention in table A.l is

given below:

B3

o
B4

BZ

0.8

2
8

A
Y

o
Y

B4

A A2
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Y

A

0
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B
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Y
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Y
22

The multiplication table in GF(16) is given as below:

B4

alo|al—| 3% =8| <" o R
alo|m] e —| 35| HTs|< =S P
o o] 2 —| 35| Tz ) s R[]
oM | —| 3|5 > B R
RO R[] 2| —| 3| < B[
o] O R ] T | 2 —| B 3| <"
TS| R T ] & — 75| =]
| O[] | = T T | | | =
o] © o 2] B R ] T 37| >"s| <
R S| R[] [ R T —| 3|%s| 7=
Kl EIEIRIRS IR B @l —| 3|7s| >
o 7| 2[R Q| —| 3|
B2 Ts| 8| <] % Vel @ —| B
s 3 73| | || —
=l —| 3|73| 73| | R o>
(] (e =}l i)l leii=] OO
=]~ 35| === BHE R




