
A Compact S-Box Design for SMS4 Block Cipher

Imran Abbasi and Mehreen Afzal
College of Telecommunication(MCS)

National University of Sciences and Technology,

Islamabad, Pakistan

imranabbasi@ mcs.edu.pk.com, mehreenafzal@mcs.edu.pk

Abstract. This paper proposes a compact design of SMS4 S-box using

combinational logic which is suitable for the implementation in area constraint

environments like smart cards. The inversion algorithm of the proposed S-box

is based on composite field GF(((22)2)2) using normal basis at all levels. In our

approach, we examined all possible normal basis combinations having trace

equal to one at each subfield level. There are 16 such possible combinations

with normal basis and we have compared the S-box designs based on each case

in terms of logic gates it uses for implementation. The isomorphism mapping

and inverse mapping bit matrices are fully optimized using greedy algorithm.

We prove that our best case reduces the complexity upon the SMS4 S-box

design with existing inversion algorithm based on polynomial basis by 15%

XOR and 42% AND gates.

Keywords: Composite field arithmetic, SMS4, Normal Basis, S-box

1 Introduction

SMS4 is the mandatory block cipher standard for securing Wireless Local Area

Network (WLAN) devices in China. The Office of State Commercial Cipher

Administration of China (OSCCA) released the cipher description in January, 2006

[8] and the English version of the document is published by Diffie and Ledin [9].

SMS4 is used in WLAN Authentication and Privacy Infrastructure (WAPI) standard

in order to provide data confidentiality. The Chinese WLAN industry widely uses

WAPI, and it is supported by many international corporations like SONY in the

relevant products.

The efficiency of SMS4 hardware implementation in terms of power consumption,

area and throughput mainly depends upon the implementation of its S-box. It is the

most computationally intensive operational structure of SMS4 as it comprises of non-

linear multiplicative inversion. The designers of the SMS4 had chosen its S-box

design similar to Rijndael which employs inversion base mapping [14]. Implementing

a circuit to find the multiplicative inverse in the GF(2
8
) using Extended Euclidean

algorithm or Fermat theorem is very complex and costly. Several architectures of

GF(2
8
) inverter have been proposed by researchers over the period of time for area

efficient implementation of S-boxes that comprises of inversion in their algebraic

expressions. An efficient way to implement S-box is to use combinational logic

because it requires small area for implementation. V. Rijmen [3] proposed the first

hardware implementation of AES S-box using composite field representation. The

proposed design suggested the use of Optimal Normal Basis for efficient inversion in

GF(2
8
). J. Wolkerstorfer [1] and A.Rudra [5] implemented the AES S-box by

representing GF(2
8
) as a quadratic extension of the GF(2

4
) using polynomial basis. In

this approach a byte in GF(2
8
) is first decomposed into linear polynomial with

coefficients in GF(2
4
) and different arithmetic operations in GF(2

4
) are computed

using combinational logic. The inversion in hardware is then implemented with the

simple logic gates by further decomposing GF(2
4
) into GF(2

2
) operations. Satoh [6]

and Mentens [7] further optimized the hardware implementation of AES S-box by

applying a composite field with multiple extensions of smaller degrees. The tower

field GF(2
8
)→GF(((2

2
)

2
)

2
) is constructed with repeated degree 2 extensions using

polynomial basis. Canright in [2] analyzed all possible combinations of normal and

polynomial basis at subfield levels of GF(((2
2
)

2
)

2
) and proved that use of normal

bases at all levels of composite field decomposition further reduces the area of the

AES S-box implementation. X. Bai [4] proposed a GF(2
8
) inversion algorithm for

SMS4 S-box based on slight modification of design in [1].

In this paper, a new combinational structure of SMS4 S-box with the inversion

algorithm in tower field representation GF(2
8
)→GF(((2

2
)

2
)

2
) based on normal basis,

has been proposed. We have analyzed all possible combinations of normal basis at

each level with trace one from the field generated by irreducible primitive polynomial

of SMS4 cipher. The comparison of our resulting best case architecture with the S-

box design based on proposed GF(2
8
) inverter of [4] is also given.

The organization of the rest of paper is as follows. In subsequent section, structure of

SMS4 block cipher is briefly described with the focus on its S-box. In section 3, the

design of S-box using the composite field representation with normal basis is

explicated. Section 4 gives the comparison of combinatorial S-box designs of SMS4

with different normal basis combinations at subfield level. In section 5, a comparative

analysis is given between our proposed design of S-box with the one based on the

inversion algorithm presented in [4]. Conclusions and work in progress are stated in

section 6.

2 The SMS4

SMS4 block cipher is based on the iterative fiestel structure with input, output, and

key size of 128 bits each. The data input is divided into four 32 bit words. The

algorithm comprises of 32 rounds, and in each round one word is modified by adding

it to other three words with a keyed function. Encryption and decryption processes

have the similar structure and only the key schedule is reversed. For the detailed

description of cipher one may refer to [9]. The official depiction of SMS4 S-box is

given as a lookup table (LUT) with 256 entries. The S-box is commonly implemented

with the ROM lookup table where the pre-computed values are stored. However,

significant hardware resources are required if lookup table is implemented with 16 ×

16 entries. SMS4 S-box is bijective and it substitutes byte input for byte output using

arithmetic computations over GF(2
8
). A method suitable for hardware implementation

of S-box is to first perform affine transformation on GF(2), then carry out inversion in

GF(2
8
), followed by second affine transformation over GF(2) [13,14]. The S-box

algebraic structure is given as the following expression [13].

 . (1)

The row vectors are C1 = 0xCB = (11001011)2 and C2 = 0xD3 = (11010011)2. The

cyclic matrices A1 and A2 in the algebraic expression are as below:

= = (2)

The irreducible primitive polynomial in GF(2
8
) is

 . (3)

3 SMS4 S-box Design in Composite Field

In this section we describe the proposed SMS4 combinatorial structure based on

composite field GF(((2
2
)

2
)

2
) in normal basis with the logical equations for inversion,

multiplications, squaring and addition. SMS4 S-box design in composite field

arithmetic is more efficient than using ROM/RAM for lookup tables (LUT) in area

constrained environments [4]. All finite fields of same cardinality are isomorphic but

their arithmetic efficiency depends significantly on the choice of basis that is used for

the field element representation. For the hardware implementation, normal basis has

significant advantage over polynomial basis as mathematical operations in normal

basis representation generally comprises of rotation, shifting and XORing [11, 12].

3.1 GF(2
8
) Inversion Algorithm using Normal Basis

For input byte x to SMS4 S-box, inverse is computed for the expression (A1.x + C1).

The complexity of basis conversion is dependent on the selected irreducible

polynomial and if the polynomial is adequately chosen, the basis conversion is simple

[7]. Following are the irreducible polynomials and their corresponding normal basis

representation.

GF(2
2
)

GF((2
2
)

2
)

GF(((2
2
)

2
)

2
)

Normal basis (Z
2
, Z)

Normal basis (Y
4
, Y)

Normal basis (X
16

, X)

(4)

Where T = Y
4

+ Y is the trace and N = Y
4

.Y is the norm in GF(2
4
)/GF(2

2
), τ = X

16
+

X is the trace and n = X
16

.X is the norm in GF(2
8
)/GF(2

4
). To minimize the

operations and simplify inversion circuit in composite field we consider only those

basis combinations which have τ = T = 1. The nested structure of GF(2
8
) inverter

comprises of different subfield operations. In the following sections logical structures

for inversion, multiplication and scaling in composite field are given.

Inversion in GF(2
8
), GF(2

4
) and GF(2

2
). Let the pair (ah, al) Є GF(2

4
) represents a

Є GF(2
8
) in terms of Normal basis (X

16
, X). If b Є GF(2

8
) is inverse of a, then

product of a and b is 1.

(5)

Substituting X + X
16

= 1, (X
16

)
2
 = X

16
 + n and (X)

2
 = X + n and solving for bh and bl.

(6)

Where is multiplication and is addition in GF(2
4
). If = [(ah al) ((ah al)

2

n)]
-1

, then inversion in GF(2
8
) is expressed by following relation.

 (7)

The logical structure of GF(2
8
) inverter is shown in figure 1. Similarly, if c Є GF(2

4
)

and it has an inverse d Є GF(2
4
) using normal basis (Y

4
, Y), then c = chY

4
+ clY, ch, cl

∈ GF(2
2
) and d = dhY

4
 + dlY dh, dl ∈ GF(2

2
). If is multiplication and is bitwise

addition in GF(2
2
) and = [(ch cl) ((ch cl)

2
 N)]

-1
, then equation for GF(2

4
)

inversion is given as below:

 (8)

The GF(2
4
) inverter is depicted in figure 2. The inversion in GF(2

2
) is same as

squaring and implemented without gates by swapping of bits. If e Є GF(2
2
) is

represented in normal basis (Z
2
, Z) as e = ehZ

2
 + elZ, eh, el ∈ GF(2) and f is the

inverse of e in GF(2
2
) then inversion in GF(2

2
) is:

 (9)

Multiplication in GF(2
4
) and GF(2

2
). The structures of multipliers in GF(2

4
)

and GF(2
2
) in normal basis are derived as below.

 (10)

Substituting Y + Y
4
= 1, (Y

4
)

2
= Y

4
 + N and (Y)

2
 =Y + N.

Fig. 1. GF(2
8
) Inverter Fig. 2. GF(2

4
) Inverter

 (11)

Where is bit wise addition, is multiplication in GF(2
2
) and Є = (ch cl) (dh

dl) N. Similarly GF(2
2
) multiplier in normal basis is represented as:

 (12)

 represents the bit addition, is AND operation and = (eh el) (fh fl). The

above mentioned structures are illustrated in figure 3 and figure 4 respectively.

Scaling and Squaring in GF(2
4
) and GF(2

2
). In GF(2

8
) and GF(2

4
) inverters

there are constant multiplication operations (n × a
2
) and (N × c

2
) and in GF(2

4
)

multiplier there is constant multiplication term (N × c). The combination of squaring

and scaling operation results in further optimization [2]. The computation of these

terms depends on the values of n in GF(2
4
) and N in GF(2

2
) for the chosen normal

basis. N Є GF (2
2
) and N is not equal to zero or one, therefore N and N+1 are the

roots of z
2
 + z + 1. So depending on the choice of basis, scalars for N and N

2
 implies

to scalars for z or z
2
. The two bit factor (N × c) is given in two ways.

(13)

Similarly the square scaling two bit factor (N × c
2
) is represented in following two

ways depending upon choice of conjugate basis pair.

Fig. 3. GF(2
4
) Multiplier Fig. 4. GF(2

2
) Multiplier

(14)

The scaling operation (n x a
2
) is a four bit factor in GF(2

8
) inverter and its

computation in GF(2
2
) depends on the normal basis types and the relation between

norm n and N as in [2]. For computations in GF(2
4
), tables in appendix ‘B’ are used.

3.2 Generating Isomorphic and Inverse Mapping Functions

The standard SMS4 form is defined by 8 bit vector as coefficients of powers of x

which is root of irreducible primitive polynomial in (3). Multiplicative inversion in

composite field is computed after a byte in GF(2
8
) is mapped to its composite field

representation using isomorphism function δ [6]. After the multiplicative inverse is

computed in the composite field, the 8 bit result is mapped back to standard

equivalent representation in GF(2
8
) using inverse isomorphic function δ

-1
. The

isomorphic and it inverse mapping is one to one and onto mapping and is represented

as 8×8 matrix [10]. If byte s is in standard polynomial basis then it can be represented

as a quadratic extension as s = ahX
16

 + alX, ah, al ∈ GF(2
4
), where each 4 bit

coefficient is represented as c = chY
4
 +clY, ch, cl ∈ GF(2

2
), each of which is then

further represented as pair of bits e = ehZ
2
 + elZ in GF(2

2
)/GF(2). If the new byte is

given as t7t6t5t4t3t2t1t0 then we have the following expression [2].

=

 .

(15)

The values of X, Y and Z are substituted from the conjugate basis chosen and these 8

hexadecimal values with coefficient ti represents the columns of 8 × 8 reverse base

transformation matrix δ
-1

. The inverse matrix δ is used for changing standard basis to

corresponding composite field representation [2]. The inverse mapping matrix δ
-1

is

combined with affine transformation matrix A2 for further optimization as in [6]. The

block diagram of SMS4 S-box is given in the figure below.

Fig. 5. SMS4 S-box Block Diagram

4 Results

For the possible choices of norms in GF(2
4
) and GF(2

2
) along with the normal basis

at each subfield level satisfying τ = T = 1, we have 16 possible cases as shown in

appendix ‘A’. SMS4 S-box design based on each case is fully tested and simulated.

The most compact case is the one which gives the least number of XOR gates for

implementation. It can be observed from the results in table 1 that choosing different

normal basis combination results in small difference in number of XOR gates. These

small differences exist due to different mapping matrices and slight differences in the

inverter architectures. The matrices operations for mapping, inverse mapping and

affine transformation are fully optimized using greedy algorithm [10]. The greedy

algorithm operates iteratively on the mentioned matrices determining the occurrences

of all possible repeating pairs in the output. The repeating pairs are pre-computed to

reduce the number of XOR gates. Our best case S-box design (case 5, table 1) saves

35 XOR gates by application of greedy algorithm.

The GF (2
8
) inverter in normal basis comprises of one GF (2

4
) inverter, three GF(2

4
)

multipliers, one square scaling and two additions in GF(2
4
) as shown in figure 1. One

GF(2
4
) inversion is computed using three multipliers, one inversion, one square

scaling and two additions in GF(2
2
) as depicted in figure 2, where one GF (2

4
)

multiplier comprises of three multipliers, four additions and a scaling operation in

GF(2
2
) as in figure 3. Thus total number of logic gates computed in hierarchical

structure of inverter for our best case S-box is 91 XOR and 36 AND. The structures of

multipliers in figure 3 and figure 4 depicts that it requires summation of high and low

halves of each input factor. If the same factor is shared by two different multipliers

then share factor can save one subfield addition [2]. Thus, a four bit common factor in

one GF(2
4
) multiplier can save five XOR gates and a two bit common factor in

GF(2
2
) multiplier can save one XOR gate. In GF(2

8
) inverter in figure 1, all three

GF(2
4
) multipliers have share factors i.e. , ah, al are all shared between respective

two GF(2
4
) multipliers thus saving 15 XOR gates. Similarly in GF(2

4
) normal

inverter we have , ch, cl shared between respective two GF(2
4
) multipliers thus

saving 3 XOR gates. In total 15+3 = 18 XOR gates can be saved by the share factors

in GF(2
8
) and GF(2

4
) normal inverters in hardware implementation. Thus total

number of gates required for case 5 SMS4 S-box are 73 XOR and 36 AND gates.

Table. 1. All Cases of SMS4 S-box design using Normal basis in GF(((2)
2
)

2
)

2

No Conjugate Ordered Pair Basis Logic Gates S-box

 (X
16

, X) (Y
4
,Y) (Z

2
, Z) XOR AND

1 (0x98, 0x99) (0x51, 0x50) (0x5C, 0x5D) 137 36

2 (0x98, 0x99) (0x0C, 0x0D) (0x5C, 0x5D) 135 36

3 (0xBF, 0xBE) (0x51, 0x50) (0x5C, 0x5D) 135 36

4 (0xBF, 0xBE) (0x0C, 0x0D) (0x5C, 0x5D) 139 36

5 (0x94, 0x95) (0x51, 0x50) (0x5C, 0x5D) 134 36

6 (0x94, 0x95) (0x0C, 0x0D) (0x5C, 0x5D) 136 36

7 (0xEF, 0xEE) (0x51, 0x50) (0x5C, 0x5D) 138 36

8 (0xEF, 0xEE) (0x0C, 0x0D) (0x5C, 0x5D) 136 36

9 (0xC5, 0xC4) (0x51, 0x50) (0x5C, 0x5D) 136 36

10 (0xC5, 0xC4) (0x0C, 0x0D) (0x5C, 0x5D) 136 36

11 (0xE3, 0xE2) (0x51, 0x50) (0x5C, 0x5D) 139 36

12 (0xE3, 0xE2) (0x0C, 0x0D) (0x5C, 0x5D) 136 36

13 (0xC9, 0xC8) (0x51, 0x50) (0x5C, 0x5D) 138 36

14 (0xC9, 0xC8) (0x0C, 0x0D) (0x5C, 0x5D) 139 36

15 (0xB3, 0xB2) (0x51, 0x50) (0x5C, 0x5D) 137 36

16 (0xB3, 0xB2) (0x0C, 0x0D) (0x5C, 0x5D) 137 36

5 Comparative Analysis

Our most compact SMS4 S-box comprises of 134 XOR and 36 AND gates with

conjugate pair basis (0x94, 0x95), (0x51, 0x50) and (0x5C, 0x5D) respectively. We

provide comparison of our most compact case 5 S-box design with the one based on

GF(2
8
) inversion algorithm proposed in [4] that uses polynomial basis. The operations

in the subfield and the number of XOR and AND logic gates required to design SMS4

S-box based on [4] is given in table 3. The matrices computations are optimized using

greedy algorithm as in [1].

Table. 2. Logic gates for our Best case SMS4 S-box

Mathematical Operation XOR AND

Affine Trans 1 (A1. x + C1) 29 -

Map GF(2
8
) → GF((2

2
)

2
)

2
 15 -

Map inv + Affine Trans 2 17 -

GF(2
8
) Inversion 73 36

Total 134 36

Table. 3. Logic Gates for SMS4 S-box based on Polynomial Basis Inverter of [4]

6 Conclusion and Future Work

In this paper we have proposed an improved design for SMS4 S-box based on the

combinational logic with a low gate count. The proposed algorithm for computing

SMS4 S-box function is based on composite field GF(((2
2
)

2
)

2
) and we have simulated

all the possible cases of subfield combination depending upon the choice of normal

basis, from which we have determined the best case. All the transformation matrices

are optimized using greedy algorithm. We have proved that our best case S-box

design results in much lower gate count and reduces the complexity by 15% XOR

gates and 42% AND gates over the S-box based on the inversion algorithm of [4].

Our compact architecture of SMS4 S-box can save a significant amount of chip area

in the hardware implementation of SMS4 in ASICs and it can be used for area

constrained and demanding throughput SMS4 integrated circuits for applications

ranging from smart cards to high speed processing units. The future work will

concentrate on the ASIC implementation of the S-box, where our design can be

further improved using the logic gate optimizations depending on specific CMOS

standard library.

References

[1] Wolkerstorfer, J., Oswald, E., Lamberger, M.: An ASIC Implementation of the AES

Sboxes. In: CT-RSA, LNCS, vol. 2271, pp. 67–78. Springer, Heidelberg (2002)

Mathematical Operation Instances XOR AND

Affine Trans 1 (x.A1+ C1) 1 29 -

Map GF(2
8
) → GF(2

4
)

2
 1 12 -

Map inv GF(2
4
)

2
→GF(2

8
) 1 10 -

Map GF(2
4
) → GF(2

2
)

2
 1 3 -

Map inv GF(2
2
)

2
→ GF(2

4
) 1 2 -

Affine Trans 2 (y.A2 + C2). 1 29 -

GF(2
4
) Multiplier 3 45 48

GF(2
4
) Squaring 1 2 -

GF(2
4
) Scaling 1 1 -

GF(2
4
) Addition 2 8 -

GF(2
2
) Multiplier 3 9 15

GF(2
2
) Squaring 1 1 -

GF(2
2
) Scaling 1 1 -

GF(2
2
) Addition 2 4 -

GF(2
2
) Inverter 1 1 -

Total 157 63

[2] Canright, D.: A Very Compact Rijndael S-box.Technical Report NPS-MA-04- 001,Naval

Postgraduate School (September 2004)

 http://web.nps.navy.mil/∼dcanrig/pub/NPS-MA-05-001.pdf

[3] Rijmen, V.:Efficient Implementation of the Rijndael S-box (2000)

www.iaik.tugraz.at/RESEARCH/krypto/AES/old/~rijmen/rijndael/sbox.pdf

[4] Bai, X., Xu, Y., Guo, L.: Securing SMS4 Cipher against Differential Power Analysis and

its VLSI implementation. In: ICCS (2008)

[5] Rudra, A., Dubey P., Jutla, C., Kumar, V., Rao, J., Rohatgi, P.: Efficient Rijndael

encryption implementation with composite field arithmetic. In: CHES 2001, LNCS, pp.

171–184, Heidelberg (2001)

[6] Satoh, A., Morioka, S., Takano, K., Munetoh, S.: A compact Rijndael hardware

architecture with S-box optimization. In: ASIACRYPT 2001, LNCS, vol. 2248, pp. 239–

254. Springer Heidelberg (2001).

[7] Mentens, N., Batina, L., Preneel, B., Verbauwhede, I.: A systematic evaluation of compact

hardware implementations for the Rijndael S-box. In: CT-RSA, LNCS, vol. 3376, pp 323-

333. Springer, Heidelberg (2005)

[8] Office of State Commercial Cipher Administration of China. SMS4 cipher for WLAN

products. http://www.oscca.gov.cn/UpFile/200621016423197990.pdf, 2006

[9] Diffie, W., Ledin, G.: SMS4 encryption algorithm for wireless networks. Cryptology

ePrint Archive, Report 2008/329, 2008. http://eprint.iacr.org/

[10] Paar, C.:Efficient VLSI architectures for bit parallel computation in Galois fields. Ph.D

thesis, Institute for Experimental Mathematics, University of Essen, (1994)

[11] Lidl, R., Niederreiter, H.: Introduction to Finite Fields and their Applications. Cambridge

University Press, New York, USA (1986)

[12] Deschamps, J., Sutter, G., Imana, J.: Hardware Implementation of Finite Field Arithmetic.

McGraw-Hill Professional ISBN: 978-0-07-154582-2 (2009)

[13] Erickson, J., Ding, J., Christensen, C.: Algebraic cryptanalysis of SMS4: Grobner basis

attack and SAT attack compared. In : ICISC (2009)

[14] Liu, F., Ji, W., Hu, L., Ding, J., Shuwang, L., Pyshkin, A., R.P. Weinmann, R.: Analysis

of the SMS4 Block Cipher. In: ACISP, LNCS, vol. 4586, pp. 158–170. Springer,

Heidelberg (2007)

http://www.iaik.tugraz.at/RESEARCH/krypto/AES/old/~rijmen/rijndael/sbox.pdf
http://www.oscca.gov.cn/UpFile/200621016423197990.pdf
http://eprint.iacr.org/

Appendix A: GF(2
8
) Representation for SMS4 S-Box

A.1 The table below gives the decimal, hexadecimal and binary values of the

GF(2
8
) generated modulo irreducible primitive polynomial f(x) =

x
8
+x

7
+x

6
+x

5
+x

4
+x

2
+1. Let A be the root of f(x) then the field generated with

respective names of elements is as below:

Dec Hex Binary θi Name Dec Hex Binary θi Name

0 00 00000000 - 0 39 27 00100111 θ187 β4

1 01 00000001 θ0 1 40 28 00101000 θ16 A16

2 02 00000010 θ1 A 41 29 00101001 θ104 G8

3 03 00000011 θ134 G128 42 2A 00101010 θ153 γ8

4 04 00000100 θ2 A2 43 2B 00101011 θ119 β8

5 05 00000101 θ13 G 44 2C 00101100 θ176 F16

6 06 00000110 θ135 H128 45 2D 00101101 θ223 q32

7 07 00000111 θ76 J4 46 2E 00101110 θ169 b2

8 08 00001000 θ3 B 47 2F 00101111 θ114 d128

9 09 00001001 θ210 a16 48 30 00110000 θ138 K128

10 0A 00001010 θ14 D2 49 31 00110001 θ250 n

11 0B 00001011 θ174 g16 50 32 00110010 θ241 m2

12 0C 00001100 θ136 α8 51 33 00110011 θ160 C32

13 0D 00001101 θ34 α2 52 34 00110100 θ36 E4

14 0E 00001110 θ77 b16 53 35 00110101 θ82 P16

15 0F 00001111 θ147 d4 54 36 00110110 θ90 a2

16 10 00010000 θ4 A4 55 37 00110111 θ96 B32

17 11 00010001 θ26 G2 56 38 00111000 θ79 k16

18 12 00010010 θ211 k4 57 39 00111001 θ47 j16

19 13 00010011 θ203 j4 58 3A 00111010 θ54 N2

20 14 00010100 θ15 H 59 3B 00111011 θ220 e32

21 15 00010101 θ152 J8 60 3C 00111100 θ149 Q128

22 16 00010110 θ175 n16 61 3D 00111101 θ50 M2

23 17 00010111 θ168 K8 62 3E 00111110 θ10 C2

24 18 00011000 θ137 J128 63 3F 00111111 θ31 m32

25 19 00011001 θ240 H16 64 40 01000000 θ6 B2

26 1A 00011010 θ35 M32 65 41 01000001 θ165 a32

27 1B 00011011 θ89 Q8 66 42 01000010 θ144 E16

28 1C 00011100 θ78 d16 67 43 01000011 θ73 P64

29 1D 00011101 θ53 b64 68 44 01000100 θ28 D4

30 1E 00011110 θ148 P4 69 45 01000101 θ93 g32

31 1F 00011111 θ9 E 70 46 01000110 θ111 l16

32 20 00100000 θ5 C 71 47 01000111 θ184 L8

33 21 00100001 θ143 m16 72 48 01001000 θ213 g2

34 22 00100010 θ27 N 73 49 01001001 θ193 D64

35 23 00100011 θ110 e16 74 4A 01001010 θ58 f64

36 24 00100100 θ212 b 75 4B 01001011 θ181 c2

37 25 00100101 θ57 d64 76 4C 01001100 θ205 e2

38 26 00100110 θ204 γ4 77 4D 01001101 θ99 N32

Dec Hex Binary θi Name Dec Hex Binary θi Name

78 4E 01001110 θ188 j64 123 7B 01111011 θ238 β

79 4F 01001111 θ61 k64 124 7C 01111100 θ11 F

80 50 01010000 θ17 α 125 7D 01111101 θ253 q2

81 51 01010001 θ68 α4 126 7E 01111110 θ32 A32

82 52 01010010 θ105 a8 127 7F 01111111 θ208 G16

83 53 01010011 θ129 B128 128 80 10000000 θ7 D

84 54 01010100 θ154 b32 129 81 10000001 θ87 g8

85 55 01010101 θ39 d8 130 82 10000010 θ166 b8

86 56 01010110 θ120 H8 131 83 10000011 θ201 d2

87 57 01010111 θ196 J64 132 84 10000100 θ145 M16

88 58 01011000 θ177 N16 133 85 10000101 θ172 Q4

89 59 01011001 θ230 e 134 86 10000110 θ74 P2

90 5A 01011010 θ224 D32 135 87 10000111 θ132 E128

91 5B 01011011 θ234 g 136 88 10001000 θ29 f32

92 5C 01011100 θ170 λ2 137 89 10001001 θ218 c

93 5D 01011101 θ85 λ 138 8A 10001010 θ94 j32

94 5E 01011110 θ115 e128 139 8B 10001011 θ158 k32

95 5F 01011111 θ216 N8 140 8C 10001100 θ112 D16

96 60 01100000 θ139 L128 141 8D 10001101 θ117 g128

97 61 01100001 θ246 l 142 8E 10001110 θ185 e64

98 62 01100010 θ251 q4 143 8F 10001111 θ108 N4

99 63 01100011 θ22 F2 144 90 10010000 θ214 c8

100 64 01100100 θ242 j 145 91 10010001 θ232 f

101 65 01100101 θ244 k 146 92 10010010 θ194 F64

102 66 01100110 θ161 G32 147 93 10010011 θ127 q128

103 67 01100111 θ64 A64 148 94 10010100 θ59 h64

104 68 01101000 θ37 P 149 95 10010101 θ179 h4

105 69 01101001 θ66 E64 150 96 10010110 θ182 c64

106 6A 01101010 θ83 b4 151 97 10010111 θ71 f8

107 6B 01101011 θ228 d 152 98 10011000 θ206 h16

108 6C 01101100 θ91 c32 153 99 10011001 θ236 h

109 6D 01101101 θ163 f4 154 9A 10011010 θ100 M4

110 6E 01101110 θ97 F32 155 9B 10011011 θ43 Q

111 6F 01101111 θ191 q64 156 9C 10011100 θ189 l64

112 70 01110000 θ80 C16 157 9D 10011101 θ226 L32

113 71 01110001 θ248 m 158 9E 10011110 θ
62

 m
64

114 72 01110010 θ48 B16 159 9F 10011111 θ
20

 C
4

115 73 01110011 θ45 a 160 A0 10100000 θ
18

 E
2

116 74 01110100 θ55 e8 161 A1 10100001 θ
41

 P
8

117 75 01110101 θ141 N128 162 A2 10100010 θ
69

 K
64

118 76 01110110 θ221 β2 163 A3 10100011 θ
125

 n
128

119 77 01110111 θ102 γ2 164 A4 10100100 θ
106

 b
128

120 78 01111000 θ150 a128 165 A5 10100101 θ
156

 d
32

121 79 01111001 θ24 B8 166 A6 10100110 θ
130

 C
128

122 7A 01111010 θ51 γ 167 A7 10100111 θ
199

 m
8

A.2 The minimal polynomials over GF(2) and their respective conjugate roots in

terms of θ
i
 are presented in the following table.

Dec Hex Binary θi Name Dec Hex Binary θi Name

168 A8 10101000 θ
155

 e
4
 212 D4 11010100 θ84 K4

169 A9 10101001 θ
198

 N
64

 213 D5 11010101 θ215 n8

170 AA 10101010 θ
40

 C
8
 214 D6 11010110 θ229 j2

171 AB 10101011 θ
124

 m
128

 215 D7 11010111 θ233 k2

172 AC 10101100 θ
121

 j
128

 216 D8 11011000 θ92 L4

173 AD 10101101 θ
122

 k
128

 217 D9 11011001 θ183 l8

174 AE 10101110 θ
197

 L
64

 218 DA 11011010 θ164 P32

175 AF 10101111 θ
123

 l
128

 219 DB 11011011 θ72 E8

176 B0 10110000 θ178 Q16 220 DC 11011100 θ98 J32

177 B1 10110001 θ70 M64 221 DD 11011101 θ60 H4

178 B2 10110010 θ231 p8 222 DE 11011110 θ192 B64

179 B3 10110011 θ126 p128 223 DF 11011111 θ180 a4

180 B4 10110100 θ225 H32 224 E0 11100000 θ81 K16

181 B5 10110101 θ19 J 225 E1 11100001 θ95 n32

182 B6 10110110 θ235 n4 226 E2 11100010 θ249 p2

183 B7 10110111 θ42 K2 227 E3 11100011 θ159 p32

184 B8 10111000 θ171 g4 228 E4 11100100 θ49 J16

185 B9 10111001 θ131 D128 229 E5 11100101 θ30 H2

186 BA 10111010 θ86 Q2 230 E6 11100110 θ46 L2

187 BB 10111011 θ200 M8 231 E7 11100111 θ219 l4

188 BC 10111100 θ116 f128 232 E8 11101000 θ56 D8

189 BD 10111101 θ107 c4 233 E9 11101001 θ186 g64

190 BE 10111110 θ217 h2 234 EA 11101010 θ142 f16

191 BF 10111111 θ157 h32 235 EB 11101011 θ109 c128

192 C0 11000000 θ140 M128 236 EC 11101100 θ222 l32

193 C1 11000001 θ101 Q32 237 ED 11101101 θ113 L16

194 C2 11000010 θ247 q8 238 EE 11101110 θ103 h8

195 C3 11000011 θ44 F4 239 EF 11101111 θ118 h128

196 C4 11000100 θ252 p 240 F0 11110000 θ151 j8

197 C5 11000101 θ207 p16 241 F1 11110001 θ167 k8

198 C6 11000110 θ23 L 242 F2 11110010 θ25 M

199 C7 11000111 θ237 l2 243 F3 11110011 θ202 Q64

200 C8 11001000 θ243 p4 244 F4 11110100 θ52 G4

201 C9 11001001 θ63 p64 245 F5 11110101 θ8 A8

202 CA 11001010 θ245 n2 246 F6 11110110 θ239 q16

203 CB 11001011 θ21 K 247 F7 11110111 θ88 F8

204 CC 11001100 θ162 K32 248 F8 11111000 θ12 B4

205 CD 11001101 θ190 n64 249 F9 11111001 θ75 a64

206 CE 11001110 θ65 C64 250 FA 11111010 θ254 q

207 CF 11001111 θ227 m4 251 FB 11111011 θ133 F128

208 D0 11010000 θ38 J2 252 FC 11111100 θ33 E32

209 D1 11010001 θ195 H64 253 FD 11111101 θ146 P128

210 D2 11010010 θ67 G64 254 FE 11111110 θ209 f2

211 D3 11010011 θ128 A128 255 FF 11111111 θ173 c16

Name Minimal Polynomial Conjugate Roots (θi)

1 x + 1 θ0

λ x2 + x + 1 θ85 , θ170

α x4 + x + 1 θ17 , θ34, θ68 , θ136

β x4 + x3 + 1 θ238 , θ221 , θ187 , θ119

γ x4 + x3 + x2 + x + 1 θ51 , θ102 , θ204 , θ153

A x8 + x7 + x6 + x5 + x4 + x2 + 1 θ1, θ2, θ4 , θ8 , θ16, θ32 , θ64 , θ128

B x8 + x7 + x5 + x4 + x3 + x2 + 1 θ3, θ6, θ12, θ24, θ48, θ96, θ192, θ129

C x8 + x4 + x3 + x + 1 θ5, θ10, θ20, θ40, θ80, θ160, θ65, θ130

D x8 + x6 + x5 + x4 + 1 θ7, θ14, θ28, θ56, θ112, θ224, θ193, θ131

E x8 + x5 + x4 + x3 + x2 + x + 1 θ9, θ18, θ36, θ72, θ144, θ33, θ66, θ132

F x8 + x6 + x3 + x2 + 1 θ11, θ22, θ44, θ88, θ176, θ97, θ194, θ133

G x8 + x7 + x3 + x2 + 1 θ13, θ26, θ52, θ104, θ208, θ161, θ67, θ134

H x8 + x5 + x4 + x3 + 1 θ15, θ30, θ60, θ120, θ240, θ225, θ195, θ135

J x8 + x5 + x3 + x2 + 1 θ19, θ38, θ76, θ152, θ49, θ98, θ196, θ137

K x8 + x7 + x6 + x4 + x3 + x2 + 1 θ21, θ42, θ84, θ168, θ81, θ162, θ69, θ138

L x8 + x7 + x2 + x + 1 θ23, θ46, θ92, θ184, θ113, θ226, θ197, θ139

M x8 + x7 + x4 + x3 + x2 + 1 θ25, θ50, θ100, θ200, θ145, θ35, θ70, θ140

N x8 + x7 + x3 + x + 1 θ27, θ54, θ108, θ216, θ177, θ99, θ198, θ141

P x8 + x5 + x3 + x + 1 θ37, θ74, θ148, θ41, θ82, θ164, θ73, θ146

Q x8 + x7 + x6 + x5 + x2 + x + 1 θ43, θ86, θ172, θ89, θ178, θ101, θ202, θ149

a x8 + x7 + x6 + x4 + x2 + x + 1 θ45, θ90, θ180, θ105, θ210, θ165, θ75, θ150

b x8 + x7 + x6 + x3 + x2 + x + 1 θ212, θ169, θ83, θ166, θ77, θ154, θ53, θ106

c x8 + x7 + x5 + x3 + 1 θ218, θ181, θ107, θ214, θ173, θ91, θ182, θ109

d x8 + x7 + x5 + x + 1 θ228, θ201, θ147, θ39, θ78, θ156, θ57, θ114

e x8 + x7 + x6 + x5 + x4 + x + 1 θ230, θ205, θ155, θ55, θ110, θ220, θ185, θ115

f x8 + x7 + x6 + x + 1 θ232, θ209, θ163, θ71, θ142, θ29, θ58, θ116

g x8 + x6 + x5 + x4 + x2 + x + 1 θ234, θ213, θ171, θ87, θ174, θ93, θ186, θ117

h x8 + x6 + x5 + x3 + 1 θ236, θ217, θ179, θ103, θ206, θ157, θ59, θ118

j x8 + x6 + x5 + x + 1 θ242, θ229, θ203, θ151, θ47, θ94, θ188, θ121

k x8 + x6 + x5 + x2 + 1 θ244, θ233, θ211, θ167, θ79, θ158, θ61, θ122

l x8 + x7 + x6 + x5 + x4 + x3 + 1 θ246, θ237, θ219, θ183, θ111, θ222, θ189, θ123

m x8 + x4 + x3 + x2 + 1 θ248, θ241, θ227, θ199, θ143, θ31, θ62, θ124

n x8 + x7 + x5 + x4 + 1 θ250, θ245, θ235, θ215, θ175, θ95, θ190, θ125

p x8 + x6 + x5 + x4 + x3 + x + 1 θ252, θ249, θ243, θ231, θ207, θ159, θ63, θ126

q x8 + x6 + x4 + x3 + x2 + x + 1 θ254, θ253, θ251, θ247, θ239, θ223, θ191, θ127

Appendix B: Tables for GF(2
4
) Computations

B.1 The table below gives the decimal, hexadecimal and binary values of the

GF(2
4
) generated modulo irreducible primitive polynomial g(x) = x

4
+ x + 1. Let α be

the root of g(x) then the field generated with respective names of elements is as

below:

Dec Hex ANF

i
 Bin

i

i
 Name

0 00 0 0000 - 0

1 01 x 0001 0
 1

2 02 x
2
 0010 1

 α

3 03 x + 1 0011 4
 α

4

4 04 x
2
 0100 2

 α
2

5 05 x
2
 + 1 0101 8

 α
8

6 06 x
2
 + x 0110 5

 λ

7 07 x
2
 + x + 1 0111 10

 λ
2

8 08 x
3
 1000 3

 γ

9 09 x
3
 + 1 1001 14

 β

10 0A x
3
 + x 1010 9

 γ
8

11 0B x
3
 + x + 1 1011 7

 β
8

12 0C x
3
 + x

2
 1100 6

 γ
2

13 0D x
3
 + x

2
+ 1 1101 13

 β
2

14 0E x
3
 + x

2
+ x 1110 11

 β
4

15 0F x
3
 + x

2
+ x + 1 1111 12

 γ
4

B.2 The table below gives the minimal polynomials over GF(2) and their

respective conjugate roots in terms of
i
 are presented using irreducible primitive

polynomial g(x) = x
4
+ x + 1.

Name
Minimal

Polynomial
Conjugate Roots (θ

i
)

1 x + 1 0

λ x
2
 + x + 1 5

,
10

α x
4
 + x + 1

,
2
,

4
,

8

β x
4
 + x

3
 + 1 14

,
13

,
11

,
7

γ x
4
 + x

3
 + x

2
 + x + 1 3

 ,
6
,

12
 ,

9

B.3 The addition table in GF(16) using the naming convention in table A.1 is

given below:

 0 1 α α
2
 γ α

4
 λ γ

2
 β

8
 α

8
 γ

8
 λ

2
 β

4
 γ

4
 β

2
 β

0 0 1 α α
2
 γ α

4
 λ γ

2
 β

8
 α

8
 γ

8
 λ

2
 β

4
 γ

4
 β

2
 β

1 1 0 α
4
 α

8
 β α λ

2
 β

2
 γ

8
 α

2
 β

8
 λ γ

4
 β

4
 γ

2
 γ

α α α
4
 0 λ γ

8
 1 α

2
 β

4
 β λ

2
 γ α

8
 γ

2
 β

2
 γ

4
 β

8

α
2
 α

2
 α

8
 λ 0 γ

2
 λ

2
 α γ γ

4
 1 β

4
 α

4
 γ

8
 β

8
 β β

2

γ γ β γ
8
 γ

2
 0 β

8
 β

4
 α

2
 α

4
 β

2
 α γ

4
 λ λ

2
 α

8
 1

α
4
 α

4
 α 1 λ

2
 β

8
 0 α

8
 γ

4
 γ λ β α

2
 β

2
 γ

2
 β

4
 γ

8

λ λ λ
2
 α

2
 α β

4
 α

8
 0 γ

8
 β

2
 α

4
 γ

2
 1 γ β β

8
 γ

4

γ
2
 γ

2
 β

2
 β

4
 γ α

2
 γ

4
 γ

8
 0 λ

2
 β λ β

8
 α α

4
 1 α

8

β
8
 β

8
 γ

8
 β γ

4
 α

4
 γ β

2
 λ

2
 0 β

4
 1 γ

2
 α

8
 α

2
 λ α

α
8
 α

8
 α

2
 λ

2
 1 β

2
 λ α

4
 β β

4
 0 γ

4
 α β

8
 γ

8
 γ γ

2

γ
8
 γ

8
 β

8
 γ β

4
 α β γ

2
 λ 1 γ

4
 0 β

2
 α

2
 α

8
 λ

2
 α

4

λ
2
 λ

2
 λ α

8
 α

4
 γ

4
 α

2
 1 β

8
 γ

2
 α β

2
 0 β γ γ

8
 β

4

β
4
 β

4
 γ

4
 γ

2
 γ

8
 λ β

2
 γ α α

8
 β

8
 α

2
 β 0 1 α

4
 λ

2

γ
4
 γ

4
 β

4
 β

2
 β

8
 λ

2
 γ

2
 β α

4
 α

2
 γ

8
 α

8
 γ 1 0 α λ

β
2
 β

2
 γ

2
 γ

4
 β α

8
 β

4
 β

8
 1 λ γ λ

2
 γ

8
 α

4
 α 0 α

2

β β γ β
8
 β

2
 1 γ

8
 γ

4
 α

8
 α γ

2
 α

4
 β

4
 λ

2
 λ α

2
 0

B.4 The multiplication table in GF(16) is given as below:

 0 1 α α
2
 γ α

4
 λ γ

2
 β

8
 α

8
 γ

8
 λ

2
 β

4
 γ

4
 β

2
 β

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 α α
2
 γ α

4
 λ γ

2
 β

8
 α

8
 γ

8
 λ

2
 β

4
 γ

4
 β

2
 β

α 0 α α
2
 γ α

4
 λ γ

2
 β

8
 α

8
 γ

8
 λ

2
 β

4
 γ

4
 β

2
 β 1

α
2
 0 α

2
 γ α

4
 λ γ

2
 β

8
 α

8
 γ

8
 λ

2
 β

4
 γ

4
 β

2
 β 1 α

γ 0 γ α
4
 λ γ

2
 β

8
 α

8
 γ

8
 λ

2
 β

4
 γ

4
 β

2
 β 1 α α

2

α
4
 0 α

4
 λ γ

2
 β

8
 α

8
 γ

8
 λ

2
 β

4
 γ

4
 β

2
 β 1 α α

2
 γ

λ 0 λ γ
2
 β

8
 α

8
 γ

8
 λ

2
 β

4
 γ

4
 β

2
 β 1 α α

2
 γ α

4

γ
2
 0 γ

2
 β

8
 α

8
 γ

8
 λ

2
 β

4
 γ

4
 β

2
 β 1 α α

2
 γ α

4
 λ

β
8
 0 β

8
 α

8
 γ

8
 λ

2
 β

4
 γ

4
 β

2
 β 1 α α

2
 γ α

4
 λ γ

2

α
8
 0 α

8
 γ

8
 λ

2
 β

4
 γ

4
 β

2
 β 1 α α

2
 γ α

4
 λ γ

2
 β

8

γ
8
 0 γ

8
 λ

2
 β

4
 γ

4
 β

2
 β 1 α α

2
 γ α

4
 λ γ

2
 β

8
 α

8

λ
2
 0 λ

2
 β

4
 γ

4
 β

2
 β 1 α α

2
 γ α

4
 λ γ

2
 β

8
 α

8
 γ

8

β
4
 0 β

4
 γ

4
 β

2
 β 1 α α

2
 γ α

4
 λ γ

2
 β

8
 α

8
 γ

8
 λ

2

γ
4
 0 γ

4
 β

2
 β 1 α α

2
 γ α

4
 λ γ

2
 β

8
 α

8
 γ

8
 λ

2
 β

4

β
2
 0 β

2
 β 1 α α

2
 γ α

4
 λ γ

2
 β

8
 α

8
 γ

8
 λ

2
 β

4
 γ

4

β 0 β 1 α α
2
 γ α

4
 λ γ

2
 β

8
 α

8
 γ

8
 λ

2
 β

4
 γ

4
 β

2

