
Universally Composable Security Analysis of OAuth v2.0

Suresh Chari∗ Charanjit Jutla∗ Arnab Roy∗

Abstract

This paper defines an ideal functionality for delegation of web access to a third-party where
the authentication mechanism is password-based. We give a universally-composable (UC) re-
alization of this ideal functionality assuming the availability of an SSL-like ideal functionality.
We also show that this implementation can be further refined to give a browser based imple-
mentation whenever the browser supports https redirection. This implementation matches the
’Authorization Code’ mode of the OAuth Version 2.0 Internet draft proposal, with the addi-
tional requirement that the third-party along with the Authorization Server must support an
SSL-like functionality.

From the universally-composable perspective, our ideal functionality definition is novel in
the respect that it does not require the three parties to decide on a session identifier in advance,
which is usually assumed in a UC setting. This allows us to realize the ideal functionality without
any wrapper code, and thus exactly matching the desired protocol in the OAuth standard.

1 Introduction

We analyze the Web delegation protocol OAuth Version 2.0 in the Universal Composability (UC)
Security framework [1]. In this framework one defines an ideal third party functionality which
is handed inputs by all protocol participants, and the functionality then computes the requisite
function, and returns portions of the computed function to each of the protocol participants as
desired by the protocol. Security of a real-world implementation of the protocol is then proven by a
simulation argument, which essentially shows that if an Adversary can gain any information in the
real-world implementation, it can also obtain the same information in the ideal third party based
protocol.

In the current paper, we only analyze the Authorization Code mode of OAuth 2.0. Analysis of
the Implicit Grant mode of OAuth 2.0 will be given in Part II of this paper.

1.1 Index

Here is s summary of what is covered in this paper.

Section 2 gives an introduction to Ideal Functionalities.

Section 3 gives an introduction to Simulation Based Security Definitions.

∗IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

Section 5 defines the OAuth 2.0 Authorization Code Ideal Functionality F
oauth

∗ . It assumes
that the Client (also called Consumer) and Service Provider have globally known names,
whereas the User (or user agent) only has local identity based on a userid, password account
with these global entities.

Section 6 and Fig 4 give a real-world realization of the Ideal Functionality F
oauth

∗ using SSL.
This implementation is general purpose and does not restrict the User code to be a user agent
(i.e. an http browser). This section rigorously proves that this is a universally composable
(UC) secure implementation. Later, in Fig 5 we give a refinement of this implementation
where the User code is restricted to being a User Agent capable of handling https redirections.
Further still, in Figs 6 and 7 we give refinements where some of the initial flows are based on
hyper-links being sent by authenticated or unauthenticated emails respectively by the Client
(Consumer) to the User.

1.2 Security Analysis Synopsis

Here are some the salient findings related to security of OAuth 2.0 Authorization Code mode.

1. The protocol in Fig 5, which we prove to be a secure realization of our Ideal Functionality
for OAuth, is more or less the same as defined in the IETF internet draft OAuth Version 2.0
Authorization Code mode [2], except for a few fine points noted below.

2. Web-Servers which serve arbitrary Users on the Internet must have public keys for authen-
ticating themselves. Thus, both the Service Provider and the Consumer (Client) must have
public keys. Further, for simplicity, assuming that the public key of the Service Provider is
attested by a global Certificate Authority (CA), the Public Key of the Client should at least
be pre-registered with this globally certified Service Provider (if Client itself does not already
have a globally certified public key). If the Client’s public key is not globally certified, then
its public key must be distributed securely to applications running on User’s machine and
capable of verifying signatures issued with this public key (in essence, implementing SSL).

3. Given that the Service Provider is required to have a globally certified public key, one can
assume that it can handle SSL requests, in particular https requests. Since the Client also has
a public key with the public key securely delivered to the User, the User Machine’s application
must be able to run a protocol with this Client which essentially implements SSL.

4. It is advisable that the login form presented by the Service Provider to the User contain both
the Globally certified name of the Service Provider (e.g. Charles Schwab) and the Globally
known name of the Client (e.g. turboTax) as to whom temporary access is being granted.
While this is not that important in cases where the hyper-link to the Service Provider’s
login page comes from the Client via an SSL connection, but it can be important where the
hyper-link to the Service Provider’s login page comes via un-authenticated email (see fig 7).

5. In the flow where the Client (Consumer) presents the Authorization Code to the Server to
get back an Access Token, the Service Provider should establish that this Client is the same
as the one to whose redirect URI the AccessToken was sent. The correct flows are as follows
(or any equivalent flows). During Authorization Grant, when the Server is presented with

2

a Client’s redirect URI, a public key of the Client, and a certificate on this public key, the
Server must check that this redirect URI belongs to the same entity, by either checking for
this information in the certificate or by checking that this fact has been pre-registered. The
session id for this session is saved by the Server along with this public key of the Client. Later,
when the Client comes back to present the Authorization Code to get the AccessToken, the
Server must check that this request is coming from a Client with the same public key. This
can be done e.g. by using SSL/TLS two-side certificate checking1.

We point out that this check is only required if the Client and User have an authentication
mechanism (e.g. a userid, password) of their own, which is most likely the case. If the Client
never authenticates the User, then because of other security issues, the fine points of the
previous paragraph are moot.

6. If the Client authenticates the User, say by a userid, password account (which could be same
or different from the account the User has with the Provider), then every fresh SSL session
between the User and the Client must re-do this authentication. Thus, in the protocol we give
(Figs 4 and 5), there are two SSL sessions between the User and the Client, and the second
can be replaced by just using the first if the first is still active. If however, the first session
has expired (and cannot even be refreshed) and a new SSL session must be established, then
the authentication of the User by the Client must be re-done in this new SSL session.

2 Introduction to Ideal Functionalities

Cryptographic protocols are inherently multi-party protocols where the parties jointly compute
some function. While the issue of liveness of protocols falls in the realm of distributed computing,
we are interested here in issues related to privacy (secrecy) of the parties, as well as the related
issue of authentication.

These multi-party privacy constraints of a protocol are best defined by hypothetically em-
ploying an ideal trusted third party. In the simplest form of this definitional paradigm, all parties
hand their respective inputs to the ideal trusted third party, which then computes the function on
these inputs as desired by the protocol being defined, and then hands portions of the output to the
individual parties, the portions restricted to what is desired by the protocol.

Note that in the above we assumed that the parties have a secure and persistent tunnel to the
ideal third party, but this being just a definition this assumption is not a concern. In addition,
if the protocol requires that a party in this multi-party protocol be a particular globally known
entity, then we further assume that one of these secure tunnels is known to the ideal third party
to be connected to that globally known entity.2 For parties that are not globally known, the ideal
third party just assumes a persistent connection to some party (e.g. this will guarantee that it
gives output to the same party that supplied some input using that tunnel). These issues will be
brought up again in the examples below.

In a more general setting, this definitional paradigm also allows the ideal third party to leak
certain information to an Adversary (without loss of generality, we always assume that there
is only one monolithic adversary). This maybe a necessary part of the definition as otherwise

1This essentially implements the Secure Channel Ideal Functionality (Fig 1).
2In the real world this can for example be implemented using a public key infrastructure (PKI).

3

there may not be any implementation possible in the real world (i.e. a distributed implementation
without the ideal third party). In a further generalization, the ideal third party may also take
directives and/or inputs from the Adversary.

Ideal Functionality Fsc

Fsc proceeds as follows, running with parties P1, ..., Pn and an adversary S.

1. Upon receiving a value (Establish-session, sid, Pj, initiator) from some party, Pi,
send (sid, Establish-Session, Pi, Pj) to the adversary, and wait to receive a value
(Establish-session, sid, Pi, responder) from Pj . Once this value is received, set a boolean
variable active. Say that Pi and Pj are the partners of this session.

2. Upon receiving a value (Send, sid, m) from a partner Pe, e ∈ {i, j}, and if active is set, send
(Received,sid, m) to the other partner and (sid, Pi, |m|) to the adversary.

3. Upon receiving a value (Expire-session, sid) from either partner, un-set the variable active.

Figure 1: The Secure Channels functionality, Fsc

Ideal Functionality Fssl

The functionality Fssl is between a party Pj (the Server) and an unnamed party designated as the
client. This models the asymmetric situation when the server has a public idenity but a client who
connects to it has no global identity.

1. Upon receiving a value (Establish-session, sid, Pj , initiator) from some party, say Pi,
the functionality first sends the message (sid, Establish-Session, initiator, Pi, Pj) to
the adversary. If the adversary responds positively the functionality records Pi as the
client in this session and sends the message (sid, Establish−request) to Pj . When it
receives the value (Establish-session, sid, responder) from Pj in response it sends
(sid, Establish-Session, respondor, Pj) to the adversary, and it sets the session as active
between client Pi and server Pj .

2. Upon receiving a value (Send,sid, m) from a party Pe, it checks to see if the session sid is
active and that Pe is either Pi or Pj . It then sends (sid, Pe,|m|) to the adversary and when
it receives a positive response it sends (Received,sid, m) to the other partner in the session.

3. Upon receiving a value (Expire-session, sid) from either the client or server in the session
it sets state to inactive and public delayed informs the other party.

Figure 2: The SSL functionality, Fssl

Finally, to allow a compositional definition, we assume that all parties (except the ideal
third party, but including the Adversary) are driven by an all encompassing entity called the
Environment. In other words, the inputs of the parties (possibly related) are actually provided
by the Environment so as to cover all possible scenarios. This notion of Environment is not necessary

to understand ideal functionalities, but it will become important when we discuss compositional
security.

4

Coming to our first example, we discuss the ideal functionality “Secure Channel” described in
Fig 1. It is the ideal functionality representing authenticated and encrypted channels between two
globally known parties, e.g. two parties with public keys in a PKI. Since, the same two parties may
be involved in multiple different secure channel sessions (possibly concurrently), we assume that
the two parties have decided on a session id (sid) before hand; infact this sid may be decided by
the Environment as it drives all the parties anyway. We emphasize that this definition of secure
channel requires that the parties have globally known names. For instance when party Pi initiates
a session with an Establish-session input to the ideal functionality, it is naming a party Pj with
which it wants to have the secure channel session. Similarly, the same named party Pj must
respond with the Establish-session input while naming Pi. Once, both parties have supplied their
Establish-Session inputs, while naming the correct counter-parties, the ideal functionality sets its
local state to active. From then on, either party can send a message to the other party using the
ideal functionality, which only leaks the length of each message to the Adversary (it is possible to
have an ideal functionality which does not even reveal the length of the message to the adversary,
but implementing such a functionality in the real world may be very inefficient).

Moving on to the next example, the SSL ideal functionality in Fig 2, one notices in contrast
to the secure-channel functionality above that only one of the peers is supposed to have a globally
known name, and the session can be initiated by any party P , and whose name is never referred to
in any messages (initialization or otherwise). The adversary is leaked information about the name
being used by this client (e.g. a temporary IP address), which is unavoidable in any real-world
implementation.

3 Introduction to Simulation Based Security Definition

While the previous section only described a way to define the desired goal of a protocol using
an ideal third party, one can also define security of a real-world protocol by relating it to this
ideal functionality. Note that the ideal functionality has precisely characterized what output each
legitimate party gets, and what is leaked to the Adversary. It also characterizes directives that
an Adversary unavoidably controls, e.g. whether a message should be delivered to a counter-party
or not. Thus, if we can show that the real world protocol has the same characteristics, we have
managed to prove desired security constraints of the real protocol.

A real world protocol between some parties is said to realize an ideal functionality, if for
every adversary in the the real world protocol, there is an adversary in the ideal world protocol
(i.e. involving the ideal trusted third party representing the ideal functionality) such that the
Environment interacting with the parties and the two adversaries (the real world and the ideal
world) cannot distinguish between the two scenarios3. Thus, in this definition the Environment
gets the same amount of information in the real and the ideal world. Since the ideal world precisely
defined what the Environment gets (actually what the Adversary gets, which it reports back to the
Environment), one concludes that in the real world protocol also the Environment (and hence the

3The main idea is the generalization of the concept of zero-knowledge. A protocol is said to be zero-knowledge
if for every adversary in the real world that gains some private knowledge there exists another adversary which can
gain the same knowledge from an ideal execution of the protocol. From this, one can then conclude that since the
ideal execution leaks (almost) zero information which is meant to be private, then the adversary in the real world
also gets zero information. Thus, the real protocol is secure in the sense that all information which is meant to be
private remains private.

5

adversary) gets only the precisely defined information.

More rigorous definitions can be found in [1].

Such realization proofs are done by a simulation argument. Given a real world protocol, and
an Adversary A in the real world, the proof constructs a Simulator S that simulates the real world
protocol to A. To do this simulation, S is assumed to reside in the ideal world, and hence has access
to the Ideal Functionality (as an ideal world Adversary S). If such a simulation is possible, then
we have managed to construct for each adversary A in the real world an adversary A′ (which is
obtained by juxtaposing S and A) in the ideal world, such that the Environment can not distinguish
the two scenarios, and hence, by definition, security follows.

3.1 Utility of Ideal Functionality Based Definition

Since our definition of security is based on an ideal functionality, which sometimes describes in
tedious details the various input/output characterizations and interactions with the adversary etc.,
one may wonder if one has covered all issues in such a definition. Luckily, most of the time the
definitions are straightforward, and just describes the parties handing over their inputs, and then
getting back the desired outputs, as well as a characterization of leakage to the Adversary. Thus,
it is easy to be convinced that such a definition is the required security definition.

In many other cases, the protocol even in this ideal setting maybe more complicated, with
multiple interactions. While, an advanced reader or someone well-versed with the issues may easily
be convinced about the robustness of the definition, readers new to the issue may not be convinced.
Fortunately, there is a way to validate these definitions, by using these protocols in higher level
protocols, the latter being the end goal anyway.

In the compositional paradigm mentioned earlier, a theorem of Canetti [1] called the com[position
theorem shows that once a real protocol ρ has been proven to realize an ideal functionality F , then
one can build higher level real world protocols which realize higher level functionalities, say G,
by assuming the availability of ideal functionality F in the real-world. The composition the-

orem proves that having obtained such a hybrid protocol (i.e. a real-world protocol using ideal
functionality F), one can convert it to be a fully real-world protocol by embedding ρ in place of F .

If the ideal functionality G, which is the end goal, is clearer to understand and characterize
(hopefully this is the case as it is a high level goal), what we get is a real world protocol which
realizes G. Then, we do not need to worry about whether F was a correct characterization, and
in fact we have indirectly validated that F had the desired properties in the sense that it helps us
securely implement G.

As an example, suppose we are defining an ideal functionality for low level protocol OAuth. This
low level protocol has many flows even with an ideal third party, and an ideal characterization may
not be convincing enough. However, if one realizes that the goal of OAuth is to be a sub-protocol in
a bigger desired goal, say delegated computation, then if we can realize delegated computation with
access to (how so ever defined) ideal functionality OAuth, and further we have proven that there
is a real world protocol ρ which realizes this ideal functionality OAuth, then we get a real-world
realization of delegated computation ideal functionality. Hopefully, the delegated computation ideal
functionality is easier to understand, as it only has high level goals (and high level leaks to the
adversary) which are well understood.

6

4 Conventions for Defining Ideal Functionalities

Delayed Messages When an ideal functionality outputs a value to a party, this delivery of value
can be either public delayed or private delayed. Essentially, since the network in the
real-world is assumed to be under adversarial control, one can only guarantee delivery of
messages in the real-world if the adversary complies. Thus, any value to be delivered to a
party is termed “delayed”, which is a short form saying that the functionality requests the
Adversary to deliver the value, and if the adversary responds positively, then the value is
actually delivered. When the functionality terms the delivery public delayed, it means that
the adversary gets to see the actual value, whereas if it is termed private delayed, then the
adversary only gets to see the length of the message in bits.

Corruption Each ideal functionality has a function called Corrupt which the Adversary can
call to declare a globally known entity (i.e. one with a public key in PKI) corrupted. The
functionality then records in its local state that the party is corrupted. The functionality may
choose to have a different behaviour based on whether certain parties are declared corrupted.
Normally, this would mean, for example, instantly revealing some internal state of the ideal
functionality to the Adversary, as that is what happens in the real-world. Ideally speaking,
one would like to have the case that even if some parties in a protocol are corrupted, it does
not affect the privacy of other parties, and most ideal functionality would be defined in that
fashion. However, one cannot exclude some side effects from happening when some party in
the protocol is corrupted.

As an interesting example related to OAuth, suppose that legitimate Clients (or Consumers)
are registered with the Service Provider. In fact, under PKI attestation of the URIs of the
Clients, the Service Provider just needs to know the global identity of these Clients. If a User
agent contacts (under SSL) a Service Provider with a URI of a Client (attested under PKI
to be associated with a globally known name Pc), and further if the User Agent manages to
provide correct useridA, passwordA to the Service Provider under the same SSL session, then
the Provider can assuredly provide the client Pc information related to the account useridA.
Now consider the situation where the passwordA was easy to guess, and hence the User Agent
was being driven by an illegitimate user (Adversary). If the Client was not authenticating
the User on its own, then the Adversary would end up getting information related to useridA

(via the Client). But, if the Client was also authenticating the User under possibly a different
useridB, passwordB, and if this password was tough to guess for the Adversary, then the
Client will never open a session with this illegitimate user. However, a different Client P ′

c

which is a pre-registered Client may be malicious and may join forces with the Adversary.
In this case, as soon as the illegitimate user presents useridA, passwordA, P ′

c to the Service
Provider, the information related to useridA is essentially given to the Adversary by the
Provider. The ideal functionality would do exactly that, but it needs to be informed that P ′

c

has been corrupted (i.e. it has joined forces with the Adversary).

Session Id The session identifier or sid is assumed to be unique (but non-secret) for each in-
stantiation of the real-world protocol or the ideal functionality. Usually, in the Universal
composability paradigm [1], the sid is assumed to be determined by a wrapper protocol
(hence the Environment) between all legitimate parties, and this pre-determined sid is passed
along with other inputs by the Environment to all legitimate parties of the protocol. How-

7

ever, this wrapper protocol could lead to an inefficient complete protocol, as it may take
additional flows. Thus, in our definition of OAuth’s ideal functionality, we have minimized
any such wrapper protocol for determination of sid, so that the resulting implementation is
in line with practical implementations of OAuth. One implication of this is that the ideal
functionality has many more flows than one would expect. For example, the Service Provider
is not pre-determined by the sid, and is actually passed as an input by the Client. Similarly,
the Client is not pre-determined by the sid, and the Client’s global identity is passed to the
Provider (with possible Adversarial manipulation of this identity) in the ideal functionality.

5 The OAuth Ideal Functionality

Before we embark on giving a definition of the OAuth Ideal Functionality, we paraphrase the
following abstract from the OAuth V2 Internet draft ([2]):

“The OAuth 2.0 authorization protocol enables a third-party application to obtain limited access

to an HTTP service, either on behalf of a resource owner by orchestrating an approval interaction

between the resource owner and the HTTP service, or by allowing the third-party application to

obtain access on its own behalf.”

In this paper we will focus mainly on the first kind of delegation which requires an approval
interaction. In the ideal functionality definition, we will refer to the three parties named above
as User (resource owner), Provider (HTTP Service), and Consumer (third-party). Moreover
in this section, we will assume that the Provider and the Consumer have globally known names,
e.g. public keys with certified domain names in PKI. Only the User will not be assumed to have a
global name. The case where the Consumer has a public key which is not certified by a global CA
is dealt with in a later section.

In particular, the most interesting and wide-spread case arises where the User has a 〈userid,password〉
account with a Provider, which needs to be delegated to the Consumer. The basic idea of the defi-
nition can be summarized as follows: A User starts of using a software provided by a Consumer Pc,
say as a website with PKI certified public key. To model this, the User calls the ideal functionality
with an input message (sid, initiate, Pu, Pc). Here sid is a non-secret but unique session identifier
which is chosen by the User or Environment (wrapping the User). Note that Pu may just be a
temporary identifier, e.g. a temporary IP address. The Consumer, at some point decides that
it needs access to data of the User held at a Provider Ps, again Ps being a website with a PKI
certified public key (see Fig 3 for a formal description and Fig 8 for a pictorial depiction). The
ideal functionality then forwards the name Ps to the User, who in response provides a userid and
password to the ideal functionality (corresponding to its account at Ps). The ideal functionality
then provides the userid and the name Pc to Ps. At this point, Ps may abort, if for example it does
not wish to provide data to Pc, or if it deems userid to be invalid. Otherwise, it responds to the
ideal functionality with the pre-registered pw′ corresponding to the userid provided4.

The ideal functionality next checks the two passwords for equality (the one supplied by the

4Note that, all parties are really being driven by wrapper softwares around these parties, which we treat as a single
monolithic Environment. The main reason for treating the Environment as monolithic is that one cannot assume that
the individual wrapper softwares are not talking to each other via some other protocols and in the process leaking
information. Thus, the universal composability (UC) paradigm lets one analyze the security of the protocol even if
the wrapper softwares are buggy, or downright maliciously collusive.

8

User and the one returned by the Provider). If they are not equal, the session is aborted, and the
Adversary is also leaked this information (as it is highly inefficient to not leak this information in the
real-world). If they are equal then the functionality sets a local status variable, say authentication
status to valid, and this status is also revealed to the Adversary.

Next, the ideal Functionality issues a randomly generated AccessToken to the Provider Ps

and Consumer Pc, but only at the Adversary’s directive, i.e. the Adversary can cause denial of
service. This common and secret AccessToken may be used by the two parties to communicate any
information related to the account corresponding to userid. Note again that the wrapper software
of the Provider is given the userid and the AccessToken, and if the wrapper software is buggy, there
are no security guarantees. The ideal functionality only guarantees that a userid has been provided
to the Provider, and further that the password the Provider gave for this userid is same as the
password provided by some arbitrary party Pu, and that the Provider shares the AccessToken with
a globally known entity Pc, the identity Pc being supplied by the same party Pu.

The ideal functionality also provides a capability for the User and the Consumer to send mes-
sages to each other secretly. The authentication of messages originating at Pc do not need any
particular mention since Pc has a global public key, but what is noteworthy is that the delivery of
these messages is only to the User who provided the correct password to the userid submitted to
the Provider.5

The OAuth Ideal Functionality is defined in detail in Figure 3. In this detailed definition, one
notices that the Adversary makes the “Issue Key” calls. As already mentioned, this makes sense as
the network is assumed to be insecure, and hence the Adversary is assumed to control the network.
Thus all network flow is directed by the Adversary, including the issuing of keys. Note that the
Adversary does not control what keys are delivered (unless it has compromised the session), but
only control when and if the keys are delivered.

There are certain other intricacies related to password-based authentication, which can
be ignored in a first reading. Since the password in password-based accounts is usually human
memorizable, it can not be assumed to have full 128 bit entropy (when talking about 128-bit
security for the protocol). Thus, the ideal functionality we define must not guarantee 128-bit
security, since any implementation of such an ideal functionality would require random 128 bit
passwords.

However, as described in [?, ?], one can define an ideal functionality which guarantees that
an Adversary can only by-pass the 128-bit security by performing online guessing attacks. Thus,
other than these guessing attacks (which are un-avoidable), 128-bit security is guaranteed by the
ideal functionality. So, how does one define an ideal functionality where such guessing attacks are
feasible? The functionality allows the Adversary to call it with a guess of the password, and if
the guess is correct, the Adversary is allowed to set shared keys of its choosing (basically giving it
access to the secure channel being setup), and if the guess is incorrect then the session is considered
interrupted, and the legitimate parties (essentially) abort.

5Note that if the Adversary does not deflect the protocol, and change userid to some other userid’, then the
account corresponds to userid as provided by Pu. If however, the Adversary (say posing as another P

′

u
) hijacks (or

deflects) the flow of the protocol by injecting a different userid’, then OAuth will continue in normal fashion only if
the Adversary provides the correct password for userid’, and then it will get results corresponding to this account.

9

6 Implementation of Ideal Functionality F
oauth

∗

The implementation of the Ideal Functionality F
oauth

∗ assuming ideal functionalities for SSL
and Secure Channels is given in Figure 4. This implementation does not assume that the User
program is just a User Agent (i.e. a browser implementing http). However, care has been taken
to make this implementation easily refined into one where the User code can just be replaced by
a browser that supports redirection. Indeed, such a implementation is given in Fig 5. Further,
another implementation where a User may instead be sent a hyper-link of the Provider in an
authenticated email (instead of a response to an https request) from the Consumer is given in
Fig 6. This implementation is a further refinement of the one in Fig 5. Next, an implementation
is given in Fig 7, where the hyper-link is sent via an unauthenticated channel, e.g. posted on a
bulletin board. this implementation is a further refinement of the previous ones. Special attention
should be paid to the notes at the bottom of the figures.

Theorem 1 The implementation realizes the functionality F
oauth

∗.

Proof: We will show that for every probabilistic polynomial time (PPT) adversary A, there exists
a PPT adversary A’, such that the ensembles, corresponding to the view of the environment in
the experiment where it interacts with the adversary A’ involved with the ideal functionality, and
the experiment where it interacts with the adversary A involved with the real implementation,
are indistinguishable. The adversary A’ in the ideal world is obtained by composing a simulator
S with A itself, where S using access to ideal functionality (as ideal world adversary) simulates
the real-world to A. Further, S will ensure that the interaction of F

oauth
∗ with environment is

also indistinguishable with interaction of real parties with the environment. Note that in the ideal
world experiment, the parties Pu, Pc, Ps run as dummies and just pass back and forth the messages
between Z and F

oauth
∗, whereas in the real world, the parties Pu, Pc, Ps are running the protocol

π. Thus to simulate the real world to A, S will need to simulate the real parties Pu, Pc, Pj to A.
We will show that S is able to do so (using access to ideal functionalityF

oauth
∗), and hence as

far as the environment Z is concerned the ideal world and the real world are indistinguishable.

We will show later how S simulates SSL and SC, but for now we deal with how S simu-
lates the real world parties. To begin with, in both worlds, the environment Z sends the input
(sid, initiate, Pu, Pc) to Pu. In the real-world, this prompts Pu to Establish an SSL session by
calling the ideal functionality Fssl, which in turn calls the Adversary A for a response. This call to
A needs to be simulated by S, but since in the ideal world S gets called by F

oauth
∗ as well, S can

at that point simulate a call to A. If A responds positively in the real-world, S in the ideal world
calls F

oauth
∗ positively (note S is using A as a blackbox). Note that this leads to an output via

Pc to the environment of value (sid, params-req, Pu, Pc) in both worlds.

Next, in both worlds, the environment Z sends input (sid, params, Ps) to Pc. In the real world,
this prompts Pc to send a message via the same SSL session to Pu, which is promptly output back
to the environment. In the ideal world, the simulator S gets notified by the ideal functionality
F
oauth

∗ of this input from Pc (as it is being sent to Pu public delayed), and hence S can simulate
a call to A regarding the size of the message in bits (which is what Fssl does in the real world).
Further note that the message is also output to the environment in the ideal world.

Similarly, as long as none of the SSL session establishments are replaced by the Adversary by
its own establishment using corrupted parties, the simulation can be done by S.

10

Now consider the cases where one or more of the SSL sessions siduc1

ssl, siduc2

ssl, sidUPssl may be
initiated by a corrupt principal (P ′

u). We don’t have to consider the secure channel sidcs

sc because a
secure channel authenticates both the peers, and we do not consider corruption of the client and/or
the provider here.

Case siduc1

ssl is initiated by a corrupt principal: First we see how an Adversary A in the real-world
accomplishes this. Assume that the Adversary has managed to corrupt a user (lets call it
P ′

u; infact the user P ′
u in this case may just be the Adversary). From now on we will identify

P ′
u with A, which goes well with our convention that there is only one monolithic Adversary.

Next, when the legitimate user Pu makes an Establish Session call to Fssl, the Adversary A
does not respond with a positive response, and hence in a sense that SSL connection never
takes place. Instead, the Adversary (via P ′

u) initiates a new SSL establish session call to
another instance of Fssl naming the same consumer Pc as server.

since the Adversary is making this Establish session call to Fssl, the Simulator which is
treating A as a black box can see this call being issued. Similarly, when A (via P ′

u) sends a
message (sid, par-req) by calling the Send function of Fssl, again S gets to see this call in
the plain, and checks for integrity of the message, and if so, just responds positively to the
ideal functionality F

oauth
∗ ’s public delayed output to Pc. Thus, in both worlds Pc outputs

the same value par-req to Z. Note that in the real-world Pc has no idea whether P ′
u is

legitimate or not, and hence as long as the message was of proper syntax, it will output it to
Z.

Case sidUPssl is initiated by a corrupt principal: Again, as in the previous case, the Adversary
may not respond positively to a legitimate SSL establish-session request, and instead start
its own SSL session with the Provider Ps. However, since it is A that sends a message
(sid, initiate−req, userid′′, pw′′, P ′′

c) using this SSL session, S is able to see the message.
If the message is not syntactically correct then S just stops. S then sends the message
(sid, initiate−req, userid′′, P ′′

c) to F
oauth

∗ which the latter is expecting. If userid or Pc

have been altered from what F sent to S, then F sets its deflection status to deflected. Note
that this can only happen if A started its own SSL session, although A may choose to keep
userid and Pc same (which although not revealed to A in the real-world protocol, may still
be easily guess-able).

Next, the environment receives the output (sid, initiate−req, userid′′, P ′′
c) in both the

worlds. It responds with (sid, password, pw′) if the environment (i.e. Ps’s wrapper software)
determines that userid′′ and P ′′

c are valid parameters (or it may respond with bad-params;
this case is easy to handle and we skip this case). Note that if P ′′

c is different from Pc, but
still a pre-registered Consumer, then the environment is likely to pass it as a valid parameter.
Further, since the SSL session is being initiated by the Adversary, the initial user Pu is out
of the picture. There are two sub-cases depending on the deflection status of F .

normal: In this case, on the input pw′ from Ps, the functionality F sets its authentication
status based on whether pw′ is same as pw (supplied by Pu). However, this is not what
happens in the real-world, where pw′ is compared with pw′′, the latter being supplied
by A. Thus S must call TestPwd function of F with pw′′, which leads to F ignoring
(or clearing) the authentication status, and instead setting the usurpation status based
on whether pw′ is same as pw′′. (Note that S had obtained pw′′ when A issued a send

11

message call to Fssl – see previous paragraph.) Now, both the real-world and the
ideal-world are in sync.

deflected: In this case, on the input pw′ from Ps, the functionality F does not set its
authentication status anyway, so S just needs to call F’s TestPwd function with pw′′.

Next in the real world, Ps sends the message (sid, authgrant, AuthCode) over sidUPssl only if
passwords matched, in which case in the ideal world S (since it s informed the usurpation
status) just generates random Authcode of its own and delivers it to A.

Note that, in the real-world the Adversary must initiate its own SSL session UC2 with the
Consumer, otherwise the Authcode it obtained from the Provider cannot be delivered back
to the Provider via the consumer. If A indeed starts its own SSL session with Pc, then since
it will call the SSL session with a Send Authcode, the Simulator can check if this Authcode
is same as the one it generated for it.

Case sidCSsc is initiated by a corrupt party P ′
c. In the real-world Ps checks that this P ′

c is same as
the parameter sent to it in sidUPssl, or more precisely its replacement initiated by Adversary
A. Thus, Ps only continues with the protocol in the real-world if sidUPssl was replaced by
Adversary, which had passed a P ′

c then and which was validated by the Environment (i.e. the
environment did not respond with bad−params. In such a scenario, recall that the ideal-world
has set its deflection status as deflected (note corrupt P ′

c is not same as Pc). This means that
the authentication status is empty. Now, if in the real-world P ′

c also happens to report the
correct Authcode in sidCSsc, then Ps and P ′

c (i.e. A) will end up sharing a common random
AccessToken. To emulate this situation, S in the ideal world just calls Issue AccesToken
to Provider with a randomly chosen k. This would lead to setting the AccessToken of the
Provider to k if usurpation status was compromised (i.e. pw′′ = pw′) and P ′

c is corrupted
(which it is). The simulator S also sends a message to P ′

c (i.e. A) (accesstoken, k) under
the appropriated sidCSsc, thus completely emulating the real-world.

Case siduc2

ssl is initiated by a corrupt principal: If in the real-world the first two SSL sessions were
legitimate, and only this one is initiated by A then A can provide the correct Authcode to
Consumer only with negligible probability, as Authcode is generated randomly. Thus, in this
case in the real-world, the Provider and hence the Consumer will not output a common and
random AccessToken. Since, the Simulator S knows that the first two SSL sessions were
legitimate, and this one is not, it just does not make the calls to F

oauth
∗’s Issue Access

Token functions.

If on the other hand, the SSL session between User and Provider was taken over by the
Adversary, then, we know from the previous case that the Adversary knows the usurpation
status, and in case of compromised status, has provided a random Authcode of its own. If
A in this corrupted SSL session sends the same Authcode to Pc, the S gets to see that, and
hence it means in the real world since Pc and Ps behave honestly, Ps will end up issuing valid
(and randomly generated) AccessToken to Pc. So, S just makes the Issue AccessToken calls
for both Consumer and Provider with the same randomly chosen value k. Thus, the view of
the Environment in both the worlds will be same.

As for the (sid, Send,m) values given by the Environment to Pc in the real world, note that
Pc only sends it to the peer if it had obtained an AccessToken, which is only possible if if the

12

password pw′′ the Adversary had provided matched the password Ps had produced, which
means the usurpation status is compromised. Thus in this situation, if this last SSL session
was started by the Adversary, in the real world the Adversary would get the message m, and
the same would hold in the ideal world.

�

7 Acknowledgements

The authors would like to thank Michael Steiner for several helpful comments. The authors would
also like to thank Pau-Chen Chang, Mark Mcgloin, David Robinson, Jeffrey Hoy and Prashant
Kulkarni for helpful discussions, and Mark in particular for encouraging us to write this paper.

References

[1] Ran Canetti, “ Universally Composable Security: A New Paradigm for Cryptographic Proto-
cols”, Proc. Foundations of Computer Science, 2001: 136-145.

[2] The OAuth 2.0 Authorization Protocol draft-ietf-oauth-v2-20.
http://tools.ietf.org/html/draft-ietf-oauth-v2-20.

13

Ideal Functionality F
oauth

∗

Participants: An arbitrary User Pu, Service Provider Ps, Consumer Pc, and Adversary S interact
with functionality F

oauth
∗ (or F).

Status Variables: Deflection Status (default: normal), Usurpation Status (default: normal), Au-
thentication Status (default: empty).

Initiate: On receiving an input message (sid, initiate, Pu, Pc) from Pu, output (public delayed)
the message (sid, params−req) to Pc. On receiving a reply (sid, params, Ps) from Pc,
output (public delayed) the message (sid, params, Ps) to Pu.

On receiving a response (sid, credentials, userid, pw) from Pu, output (sid, initiate−req,
userid, Pc) to adversary S. On receiving a response (sid, initiate−req, userid′, P ′

c)
from adversary S, output (sid, initiate−req, userid′, P ′

c) to Ps. Further, if userid′ is
not the same as userid or P ′

c is not the same as Pc, set the deflection status as deflected.

Next, on receiving a response (sid, password, pw′) from Ps, record pw′ locally. If the de-

flection status is not set as deflected, then check if pw = pw′, and if the two pass-
words are not the same then set the authentication status as aborted and output
(sid, abort−oauth) to the Adversary. Otherwise (if the passwords are same), set au-

thentication status as valid and output (sid, initiate−oauth) to the Adversary. If the
deflection status is set as deflected, skip the above steps and wait for a TestPwd call
from S.

Instead of responding with a pw′, Ps may instead respond with (sid, bad−params), in
which case the functionality sets the authentication status as aborted and outputs
(sid, bad−params) to S.

The following call may be made by the Adversary S (and only S).

TestPwd: On receiving a message (sid, testpwd, pw′′) from S: If pw′ is not recorded locally, then
ignore this call. Else, if pw′′ = pw′ then set usurpation status as compromised, otherwise set
usurpation status as interrupted. Report the usurpation status to S. In either case reset
authentication status to empty. Note that deflection status is immaterial here, and S can
make this call even if deflection status is normal.

The following two calls may also be made by the Adversary S (and only S) in any order.

Issue Access Token to Consumer: On receiving a message (sid, IssueKey2Consumer, k) from S,
if the authentication status is set as valid then output a randomly generated AccessToken to
Pc. Else, if the usurpation status is set as compromised, output k (provided as a parameter
by the Adversary) to Pc. In all other cases, obtain fresh r ← $, and output r to Pc .

Issue Access Token to Service Provider: On receiving a message (sid, IssueKey2SP, k) from
S: if the authentication status is set as valid then output the same AccessToken as above
to Ps. Else, if the usurpation status is set as compromised, and P ′

c is same as Pc or P ′

c is
corrupted, output k (provided as a parameter by the Adversary) to Ps. In all other cases,
obtain fresh r ← $, and output r to Ps .

Send: On receiving an input (sid, Send, m) from P̂ which is either Pu or Pc, check if the authen-
tication status is set as valid. If so, send (sid, P̂ , |m|) to Adversary S, and after receiving a
positive deliver response from S, output (sid, Received, m) to the counter-party of P̂ (i.e. Pc

or Pu resp.). If instead, the usurpation status is set as compromised and if Send originates
from Pc (i.e. P̂ is Pc), and P ′

c == Pc, then send (sid, P̂ , m) to adversary S (i.e. the Adversary
gets the message m). In all other cases, send (sid, P̂ , |m|) to S and take no further action.

Figure 3: A functionality for delegation with explicit key exchange

14

Implementation of F
oauth

∗ using Fssl and Fsc

Participants: The User Agent (Pu), Service Provider (Ps), Consumer (Pc), and Adversary A.

Initiate: On receiving (sid, initiate, Pu, Pc) from Z, Pu initiates an SSL session with ses-
sion id siduc1

ssl with Pc and sends the message (sid, params−req, Pu, Pc). On receiving
(sid, params−req, Pu, Pc) over SSL session siduc1

ssl, Pc outputs (sid, params−req, Pu, Pc). On
receiving (sid, params, Ps) from Z, Pc sends the message (sid, params, Ps) to Pu using SSL
session siduc1

ssl.

On receiving (sid, params, Ps) over siduc1

ssl, Pu outputs (sid, params, Ps) to Z. On
receiving (sid, credentials, userid, pw) from Z, Pu initiates an SSL session with
Ps with session id sidUPssl and sends (sid, initiate−req, userid, pw, Pc). On receiv-
ing (sid, initiate−req, userid, pw, Pc) over the SSL session sidUPssl, Ps queries the
environment with (sid, initiate−req, userid, Pc). The environment responds with
(sid, password, pw′). Ps tests whether pw = pw′. If the check succeeds, Ps gen-
erates a random AuthCode, records (sid, Ps, Pc, Authcode), and sends the message
(sid, authgrant, AuthCode) over sidUPssl.

If the environment responds to Ps with bad−params, Ps just aborts.

On receiving (sid, authgrant, Authcode) over sidUPssl, Pu sends (sid, authgrant, Authcode) to
Pc over a new SSL session siduc2

ssl.

On receiving (sid, authgrant, Authcode) over siduc2

ssl, Pc initiates a secure channel Fsc

with Ps with sid sidcs

sc and sends Ps the message (sid, authgrant, Pc, Authcode). On
receiving (sid, authgrant, Pc, Authcode) over sidcs

sc, Ps checks it against the recorded
information, and makes sure that the Secure channel is with the same global entity
Pc as recorded earlier. If the check succeeds then it generates AccessToken and sends
(sid, accesstoken, AccessToken) over sidcs

sc. It also outputs (sid, keyCS, AccessToken)
to the environment.

On receiving (sid, accesstoken, AccessToken) over sidcs

sc, Pc outputs
(sid, keyCS, AccessToken) to the environment.

Send: On receiving (sid, send, m) from the environment, Pu sends the message (sid, send, m) to
the peer over SSL session siduc2

ssl. On the other hand, on receiving (sid, send, m) from the
environment, Pc checks that it has obtained an AccessToken from Ps, and only then it sends
the message (sid, send, m) to the peer over SSL session siduc2

ssl.

Notes: 1. Pu can use the older SSL session siduc1

ssl instead of a fresh siduc2

ssl, if the former is still
active.

2. If the Consumer also requires a password-based authentication of the User (possibly with
a different userid, password than the one which the User has with the Provider), then
if a fresh siduc2

ssl is initiated, then this password-based authentication by the Consumer
must take place afresh as well.

Figure 4: OAuth v2 Authorization Grant Flow

15

Implementation of Foauth
∗ using HTTPS Redirection

Participants: An arbitrary User Agent Pu, a Service Provider Ps, a Consumer Pc, and Adversary
A. The Service Provider and Consumer are assumed to have SSL supporting URIs with PKI
certificates.

Initiate: On receiving an input (sid, initiate, Pu, Pc) from the environment, Pu initiates
an https session with session id sidUC1ssl with the URI of Pc and query parameters
(sid, params-req, Pu, Pc).

On receiving (sid, params-req, Pu, Pc) over https sidUC1ssl which it outputs to the environ-
ment, Pc obtains the input (sid, params, Ps) from the environement. Then Pc responds with
(sid, redirect uri:Ps, client-params) to Pu using SSL session sidUC1ssl. Since Ps is a globally
known entity, the Consumer Pc can obtain a valid https URI of Ps. The query parameters
called client-params includes the https redirection URI of Pc itself, and other credentials of
Pc. Since the response is a redirection https URI, the user agent Pu automatically initiates
an SSL session with Ps with session id sidUPssl and query parameter (sid, client-params).

On receiving this message, Ps responds to Pu over sidUPssl, with a login-password form, to which
the user agent responds by outputting the form along with Ps’s identity to the environment
(which in this case is possibly just a human User along with a certificate checker). The
Environment (or the human) responds with a userid and password pw, which the User agent
forwards to Ps using sidUPssl. Next, Ps queries the environment with the received userid
along with client-params (since Pc is also a globally known entity, this is just equivalent to
outputting the identifier Pc itself), to obtain a password pw′ corresponding to this userid (or a
bad-params response). On pw validation (i.e. pw = pw′), Ps generates a fresh random number
Authcode, and saves (sid, initiate, Ps, Pc, Authcode) in its local memory, and responds over
sidUPssl with the redirect URI of Pc (obtained from client-params) and query parameter
(sid, authgrant, AuthCode).

Since the user-agent Pu receives a redirect URI, which is an https URI of Pc, it
automatically starts a new SSL session sidUC2ssl with Pc, over which it sends query
paramter (sid, authgrant, AuthCode). On receiving (sid, authgrant, Authcode) over sidUC2ssl,
Pc initiates a secure channel Fsc with Ps with sid sidCSsc and sends Ps the message
(sid, authgrant, Pc, Authcode).

On receiving (sid, authgrant, Pc, Authcode) over sidCSsc, Ps checks it against the recorded
information. If the check succeeds then it generates a random AccessToken and sends
(sid, accesstoken, AccessToken) over sidCSsc. It also outputs (sid, KeyCS, AccessToken) to
the environment.

On receiving (sid, accesstoken, AccessToken) over sidCSsc, Pc outputs
(sid, KeyCS, AccessToken) to the environment.

Send: This is same as in Fig 4.

Notes: 1. The User agent may check if the rediection URI of Pc is same as the URI Pc it used in
SSL session sidUC1ssl, and if that session is still alive, it can use that same session instead
of a new sidUC2ssl.

Figure 5: OAuth v2 Authorization Grant Flow

16

Implementation of Foauth
∗ using Authenticated E-mail and HTTPS Redirection

Participants: An arbitrary User Agent Pu, a Service Provider Ps, a Consumer Pc, and Adversary
A. The Service Provider and Consumer are assumed to have SSL supporting URIs with PKI
certificates.

Initiate: On receiving an input (sid, initiate, Pu, Pc) from the environment, Pu initiates
an https session with session id sidUC1ssl with the URI of Pc and query parameters
(sid, params-req, Pu, Pc).

On receiving (sid, params-req, Pu, Pc) over https sidUC1ssl which it outputs to the environ-
ment, Pc obtains the input (sid, params, Ps) from the environement. Then Pc responds with
(sid, uri:Ps, client-params) to Pu using Fauth(Pc), Since Ps is a globally known entity, the
Consumer PC can obtain a valid https URI of Ps. The query parameters called client-params

includes the https redirection URI of Pc itself, and other credentials of Pc. The user agent Pu

on receiving this authenticated message from Pc initiates an SSL session with Ps (using the
supplied uri of Ps) with session id sidUPssl and query parameter (sid, client-params).a

On receiving this message, Ps responds to Pu over sidUPssl, with a login-password form, and
the rest of the implementation is same as in Fig 5

Notes: 1. The same notes as in Fig 5 apply here.

2. The ideal functionality Fauth is defined in the appendix. It essentially, delivers a
message only if the sender is Pc, thus guaranteeing the receiver that the message received
came from Pc. This, for example, can be the case where the User has a trusted email
server, and the e-mail received has a certified signature of Pc.

3. Note that session sidUC1ssl need not be an SSL session, but sidUC2ssl must be an SSL session.

atechnically, the User must click on the supplied link, but we will assume the worst case that the user
always clicks on the link.

Figure 6: OAuth v2 Authorization Grant Flow in Email Settings

17

Implementation of Foauth
∗ using Bulletin Board and HTTPS Redirection

Participants: An arbitrary User Agent Pu, a Service Provider Ps, a Consumer Pc, and Adversary
A. The Service Provider and Consumer are assumed to have SSL supporting URIs with PKI
certificates.

Initiate: On receiving an input (sid, initiate, Pu, Pc) from the environment, Pu initiates
an https session with session id sidUC1ssl with the URI of Pc and query parameters
(sid, params-req, Pu, Pc).

On receiving (sid, params-req, Pu, Pc) over https sidUC1ssl which it outputs to the environ-
ment, Pc obtains the input (sid, params, Ps) from the environement. Then Pc responds with
(sid, uri:Ps, client-params) to Pu using an un-authenticated and unencrypted channel. Since
Ps is a globally known entity, the Consumer PC can obtain a valid https URI of Ps. The query
parameters called client-params includes the https redirection URI of Pc itself, and other
credentials of Pc. The user agent Pu on receiving this un-authenticated message from Pc,
initiates an SSL session with Ps (using the supplied uri Ps) with session id sidUPssl and query
parameter (sid, client-params).a

On receiving this message, Ps first checks that the client-params has the URI of some Pc

along with its Application name which are globally known (e.g. via PKI). Next, Ps responds
to Pu over sidUPssl, with a login-password form along with the Application name of Pc displayed

on the form, to which the user agent responds by outputting the form along with Ps’s identity
to the environment (which in this case is possibly just a human User, along with a PKI
certificate checker). We will assume here that the User Agent gets human assist in verifying
the the Pc displayed on the form is the same as the Pc initially supplied to the User-agent in
the initiate call. b

The Environment (or the human) responds with a userid and password pw, which the User
agent forwards to Ps using sidUPssl. Rest of the implementation is same as in Fig 5

Notes: 1. The same notes as in Fig 6 apply here.

atechnically, the User must click on the supplied link, but we will assume the worst case that the user
always clicks on the link.

bMore rigorously, this mode would require a different ideal functionality where both Ps and Pc are
provided in the params output to Pu, instead of Pu providing Pc in the initiate call.

Figure 7: OAuth v2 Authorization Grant Flow in Bulletin Board Settings

18

Ideal Functionality Flow Foauth
∗

Z
initiate,Pu,Pc

−−−−−−−−→ Pu −→ F −→ S
+ve

←−−−−−−−
−→ Pc −→ Z

S ←− F ←− Pc

params,Ps

←−−−−− Z
+ve

−−−−−−−−−→
Z ←− Pu ←− F

Z
userid,pw
−−−−−→ Pu −→ F

initiate−req,userid,Pc

−−−−−−−−−−−−−→ S
userid′,P ′

c←−−−−−
if 〈userid′, P ′

c〉 6= 〈userid, Pc〉
set deflected = true

F
initiate−req,userid′,P ′

c−−−−−−−−−−−−−−→ Ps −→ Z

F ←− Ps
pw′

←−− Z
if not deflected and pw == pw′

set auth = valid

F
initiate-oauth
−−−−−−−−−→ S

F
IssueKey2Cons, k
←−−−−−−−−−− S

if auth = valid
AccessToken← $

Z
AccessToken
←−−−−−−− Pc

AccessToken
←−−−−−−− F

F
IssueKey2Prov, k
←−−−−−−−−−− S

if auth = valid

Z
AccessToken
←−−−−−−− Ps

AccessToken
←−−−−−−− F

Z
Send,m
−−−−→ Pc −→ F

if auth = valid
Send,Pc,|m|
−−−−−−→ S

+ve
←−−−−−−−

F
Received,m
−−−−−−→ Pu

Received,m
−−−−−−→ Z

Figure 8: An example flow of the Ideal World Implementation involving F
oauth

∗ , with Ad-
versary mostly responding positively. The symbol Z stands for the Environment, F for the ideal
functionality, and S for the Adversary.

19

Implementation of Foauth
∗ using Fssl

Z
initiate,Pu,Pc

−−−−−−−−→ Pu
Estab-sess,Pu,Pc

−−−−−−−−−−→ Fuc1
ssl −→ A

+ve
←−−−−−−−
Estab-req
−−−−−→ Pc

A ←− Fuc1
ssl

Estab-sess
←−−−−−− Pc

Pu

Send,〈par-req〉
−−−−−−−−→ Fuc1

ssl −→ Pc

params-req
−−−−−−→ Z

Z
Ps←− Pu ←− Fuc1

ssl

Send
←−− Pc

params,Ps

←−−−−− Z

Z
cred,userid,pw
−−−−−−−−→ Pu

Estab-sess,Pu,Ps

−−−−−−−−−−→ Fup
ssl −→ A

+ve
←−−−−−−−
Estab-req
−−−−−→ Ps −→ Z

A ←− Fup
ssl ←− Ps

Estab-sess
←−−−−−− Z

Pu

Send,〈userid,pw,Pc〉
−−−−−−−−−−−→ Fup

ssl −→ Ps
userid,Pc

−−−−−→ Z

Ps

password,pw′

←−−−−−−− Z
if pw == pw′

Pu
Authcode
←−−−−− Fup

ssl

Send,Authcode
←−−−−−−−− AuthCode← $

Pu
Estab-sess,Pu,Pc

−−−−−−−−−−→ Fuc2
ssl −→ A

+ve
←−−−−−−−
Estab-req
−−−−−→ Pc −→ Z

A ←− Fuc2
ssl ←− Pc

Estab-sess
←−−−−−− Z

Pu
Send,AuthCode
−−−−−−−−→ Fuc2

ssl −→ Pc

Pc
Estab-sess,Pc,Ps

−−−−−−−−−−→ Fsc
Estab-sess,Ps,Pc

←−−−−−−−−−− Ps

Pc
Send,Authcode
−−−−−−−−→ Fsc

Authcode
−−−−−→ Ps

if Authcode same

Z
AccessToken
←−−−−−−− Pc

AccessToken
←−−−−−−− Fsc

Send,AccessToken
←−−−−−−−−−− AccessToken← $

AccessToken
−−−−−−−→ Z

Z
Send,m
−−−−→ Pc

if AccessToken 6= ⊥
Send,m
−−−−→ Fuc2

ssl

Received,m
−−−−−−→ Pu

Received,m
−−−−−−→ Z

Figure 9: An example flow of the Real World Realization of F
oauth

∗ using Fssl and Fsc, with
Adversary mostly responding positively.

20

Protocol execution in the real world model

Participants: Parties P1, ..., Pn running protocol π with adversary A and environment Z on input
z. When a party wants to deliver a message to another party, it instructs the Adversary to do so by
writing the message (and the recepient’s identity) on Adversary’s incoming message communication
tape. All participants have the security parameter k.

1. While Z has not halted do:

(a) Z is activated (i.e., its activation tape is set to 1). In addition to its own readable tapes,
Z has read access to the output tapes of all the parties and of A. The activation ends
when Z enters either the halting state or the waiting state. If Z enters the waiting state
then it is assumed to have written some arbitrary value on the input tape of exactly one
entity (either A or of one party out of P1, ..., Pn). This entity is activated next.

(b) Once A is activated, it proceeds according to its program performing one of the following
operations:

i. Deliver a (possibly fake) message m to party Pi. Delivering m means writing m on
the incoming message tape of Pi, together with the identity of some party Pj as the
sender of this message.

ii. Corrupt a party Pi. Upon corruption A learns the current internal state of Pi, and
Z learns that Pi was corrupted. (Say, the state of Pi is written on A’s input tape,
and Z actually drove A to corrupt Pi.) Also, from this point on, Pi may no longer
be activated.

In addition, at any time during its activation A may write any information of its choice
to its output tape.
If A delivered a message to some party in an activation, then this party is activated once
A enters the waiting state. Otherwise, Z is activated as in Step 1a.

(c) Once an uncorrupted party Pi is activated (either due to a new incoming message, deliv-
ered by A, or due to a new input, generated by Z), it proceeds according to its program
and possibly writes new information on its output tape and Adversary’s incoming mes-
sage tape. Once Pi enters the waiting or the halt states, Z is activated as in Step
1a.

2. The output of the execution is the first bit of the output tape of Z.

Figure 10: The order of events in a protocol execution in the real world model

21

The ideal process

Participants: Environment Z and ideal-process adversary S, interacting with ideal functionality F
and dummy parties P̃1, ..., P̃n. All participants have the security parameter k; Z also has input z.

• The ideal functionality acts as a joint sub-routine to all the dummy parties. Hence, all
its communications to the dummy parties is trusted and secure. The ideal functionality
also communicates with the adversary, and to model delayed delivery to the parties, the
functionality takes delivery instructions from the adversary. The functionality may report to
the adversary some crucial state changes, and on corruption of some party by the adversary
(which is communicated to the functionality), the functionality may disclose more information
to the adversary.

• The rest of the process is same as the real process, and the only role of the dummy parties
is to copy its input from the environment to the sub-routine tape of the functionality, and
similarly to copy the output from the functionality to the input tape of the encironment. The
dummy parties never write on the incoming message communication tape of the Adversary.

Figure 11: The ideal process for a given ideal functionality, F .

Protocol execution in the F-hybrid model

Participants: Parties P1, ..., Pn running protocol π with multiple copies of an ideal functionality F ,
with adversary H, and with environment Z on input z. The hybrid process is similar to the ideal
process, with F being a joint sub-routine to the parties, except that now the parties are not just
dummies. They may communicate with the adversary, and have some other internal computations
just as in the real process.

Figure 12: The hybrid model

Functionality F-auth

1. Upon receiving an input (Send, sid, Pi, Pj , m) from party Pi, send the input to the adversary.

2. Upon receiving a “deliver” response from the adversary, write (sid, Pi, Pj , m) on the subrou-
tine tape of Pj .

3. Upon receiving a message (Corrupt-Sender, sid, m′) from the adversary before the “deliver”
response, write (sid, Pi, Pj , m′) on the subroutine tape of Pj and halt.

Figure 13: The message Authentication functionality F-auth

22

