
Secure and Efficient Proof of Storage with Deduplication

Qingji Zheng
Department of Computer Science
University of Texas at San Antonio

qzheng@cs.utsa.edu

Shouhuai Xu
Department of Computer Science
University of Texas at San Antonio

shxu@cs.utsa.edu

ABSTRACT
Both security and efficiency are crucial to the success of

cloud storage. So far, security and efficiency of cloud storage
have been separately investigated as follows: On one hand,
security notions such as Proof of Data Possession (PDP)
and Proof of Retrievability (POR) have been introduced for
detecting the tamperation of data stored in the cloud. One
the other hand, the notion of Proof of Ownership (POW) has
also been proposed to alleviate the cloud server from stor-
ing multiple copies of the same data, which could substan-
tially reduce the consumption of both network bandwidth
and server storage space. These two aspects are seemingly
quite to the opposite of each other. In this paper, we show,
somewhat surprisingly, that the two aspects can actually co-
exist within the same framework. This is possible fundamen-
tally because of the following insight: The public verifiability
offered by PDP/POR schemes can be naturally exploited to
achieve POW. This “one stone, two birds” phenomenon
not only inspired us to propose the novel notion of Proof
of Storage with Deduplication (POSD), but also guided us
to design a concrete scheme that is provably secure in the
Random Oracle model based on the Computational Diffie-
Hellman (CDH) assumption.

Categories and Subject Descriptors
C.2.4 [Communication Networks]: Distributed Sys-

tems; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software

General Terms
Security

Keywords
cloud storage, outsourced storage, proof of storage, dedu-

plication, integrity checking, proof of ownership, proof of
data possession, proof of retrievability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X­XXXXX­XX­X/XX/XX ...$5.00.

1. INTRODUCTION
Cloud computing is getting increasingly popular because

it can provide low-cost and on-demand use of vast storage
and processing resources. The present paper focuses on the
security and efficiency of cloud storage, namely that clients
outsource their data to cloud storage servers. While cloud
storage offers compelling scalability and availability advan-
tages over the current paradigm of “one storing and main-
taining its own IT systems and data”, it does not come with-
out security concerns. This has led to studies on cloud stor-
age security and efficiency, which are, however, addressed
separately as we discuss below.

From the perspective of cloud storage security, there have
been two notable notions:

• Proof of Data Possession (PDP): This notion was in-
troduced by Ateniese et al. [2]. It allows a cloud client
to verify the integrity of its data outsourced to the
cloud in a very efficient way (i.e., far more efficient
than the straightforward solution of downloading the
data to the client-end for verification). This notion has
been enhanced in various ways [8, 3, 15].

• Proof of Retrievability (POR): This notion was intro-
duced by Juels and Kaliski [10]. Compared with PDP,
POR offers an extra property that the client can ac-
tually “recover” the data outsourced to the cloud (in
the flavor of “knowledge extraction” in zero-knowledge
proof). This notion has been enhanced and extended
in multiple aspects [12, 6, 5, 16].

From the perspective of cloud storage efficiency, dedupli-
cation technique has become a common practice of many
cloud vendors. This is reasonable especially when there are
many duplications in the data outsourced to the cloud (e.g.,
only 25% of data may be unique according to a survey [1]).
As such, the cloud vendor can substantially save storage
space by storing a single copy of each data — no matter how
many clients outsourced it, which explains the term “dedu-
plication”. This issue was first introduced to the research
community by [9]. Because straightforward deduplication is
vulnerable to attacks (e.g., a dishonest client can claim that
it has certain data while it does not), Halevi et al. [13] pro-
posed the notion called Proof of Ownership (POW) as well
as concrete constructions.

Our contributions. Both the security and efficiency
perspectives mentioned above are important and would be
needed by a single cloud storage solution, which is a new
problem that has not been addressed. In this paper, we

1

tackle this problem by proposing a “2-in-1” notion we call
Proof of Data Storage with Deduplication (POSD). Specifi-
cally, we introduce the novel concept of POSD, and formalize
its functional and security definitions. Moreover, we propose
the first efficient POSD scheme and prove its security in the
Random Oracle model based on the Computational Diffie-
Hellman (CDH) assumption. We also analyze and compare
the performance of our scheme and the performance of some
relevant PDP/POR/POW schemes, which suggests that our
POSD scheme is as efficient as the PDP/POR/POW schemes.

Organization. The rest of the paper is organized as fol-
lows. Section 2 briefly reviews the related prior work. Sec-
tion 3 discusses the notations and cryptographic settings.
Section 4 presents the definitions of POSD. Section 5 de-
scribes our POSD scheme and its security as well as perfor-
mance analysis. Section 6 concludes the paper.

2. RELATED WORK
Cloud storage security was not systematically studied un-

til very recently, despite previous investigations for similar
problems (cf. [2]). Ateniese et al. [2] introduced the concept
of PDP, and Juels et. al [10] proposed the concept of POR,
which was improved significantly by Shacham and Waters
[12]. The main difference between the two notions is that
POR uses Error Correction/Erasure Codes to tolerate the
damage to portions of the outsourced data. These solutions
are later enhanced in various ways [8, 4, 5, 6, 16].
Data deduplication of ciphertext data in the pre-cloud era

was studied in [14, 7]. Data deduplication in the context
of cloud computing was recently introduced [9]. Halevi et
al. [13] dubbed the term of POW and presented the first
systematic study of deduplication in cloud, including several
alternative solutions that offer different trade-offs between
security and performance.

3. PRELIMINARIES

3.1 Notations
Let ℓ be a security parameter. A function ε(ℓ) is negligi-

ble if it is smaller than ℓ−const for any constant const and
sufficiently large ℓ.
Let q a ℓ-bit prime and p a prime such that q|(p− 1). Let

F be a data file consisting of n blocks, where the ith block
Fi is composed of m symbols in Zq, i.e. Fi = (Fi1 · · · ,Fim),
where Fi ∈ Zm

q .
Let fid be the identity that uniquely identifies data file

F. Let each file be associated with some auxiliary informa-
tion (i.e. cryptographic tags), denoted by Tag. We consider
two variants of Tag: Tagint is the cryptographic information
for auditing data integrity, and Tagdup is the cryptographic
information for duplication checking.
Let [] denote the optional arguments of a function or al-

gorithm; for example, Alg(a, b[, c]) means that algorithm Alg
has two arguments a and b, and optionally a third argument
c.

3.2 Cryptographic Setting and Assumptions
Let ℓ be a security parameter. Let G and GT be cyclic

groups of prime order q and g be a generator of G. Let
e : G × G → GT be a bilinear map, with the following
properties: (i) e can be computed efficiently; (ii) for all

(u, v) ∈ G × G, and a, b ∈ Zq, e(ua, vb) = e(u, v)ab; (iii)
e(g, g) ̸= 1.

The standard Computational Diffie-Hellman (CDH) Prob-
lem is the following: Given (g, gw, h) ∈ G3, where g, gw, h
are selected uniformly at random from G, compute hw. The
CDH Assumption says that no probabilistic polynomial-time
(ppt) algorithm can solve the CDH Problem with a non-
negligible probability (in ℓ).

The Discrete Log (DLOG) Problem is the following: Given
any prime q-order cyclic group G and two random elements
g and h, find w such that gw = h. The DLOG Assumption
says that no ppt algorithm can solve the DLOG Problem
only with a non-negligible probability (in ℓ). The DLOG
Assumption is weaker than the CDH Assumption.

Let H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Zq be randomly
chosen from the respective families of hash functions. Both
H1 and H2 are modeled as random oracles.

Let PRF : {0, 1}ℓ×{0, 1, }∗ → {0, 1}ℓ be a family of secure
pseudorandom functions.

4. REQUIREMENTS, MODEL AND DEFI­
NITIONS OF POSD

Requirements. Built on top of [2, 10, 13], we summarize
the performance requirements of POSD as:

• A solution should use common functions (e.g., hash
functions) so as to allow cross-client data deduplication
and cross-client cloud data integrity auditing.

• A solution should consume bandwidth that is substan-
tially less than the size of the data file in question. This
prevents the aforementioned trivial solutions.

• A solution should not force the cloud server, when de-
termining whether to conduct a deduplication oper-
ation, to retrieve any significant portion of the data
file in question. This is plausible because it could be
very resource-consuming to load a large data file from
secondary storage to memory.

• A solution should only require the client to make a
single pass over its data file, while using an amount of
memory that is substantially smaller than the size of
the data file in question.

As in the cases of PDP/POR and POW, there are trivial
solutions to fulfill the functions of POSD. Specifically, a
client can download the whole data from the cloud to verify
the integrity of its data outsourced to the cloud, and the
server can ask the client to upload a data file to show that
the client indeed has a copy of the data file before conducting
the deduplication operation. However, this trivial solution
is not practical because it incurs prohibitive communication
overhead. On the other hand, it was also noted in [2, 10, 13]
that simple heuristics will not solve the respective problems
without shortcomings.

Model participants. We consider a cloud storage service
model that involves the following three participants.

(i) Cloud storage server, denoted by S: It provides storage
service with relevant assurance procedures, by which
the cloud storage clients can check the integrity of their
data stored in the cloud and the server can save storage
space via data deduplication in a secure fashion.

2

(ii) Cloud storage clients, denoted by C: A client out-
sources its data to the cloud in a secure fashion, while
allowing the cloud storage server to conduct data dedu-
plication operations. (If a client does not want the
server to conduct this operation, this can be achieved
via an appropriate contract-level agreement that is out
of the scope of the present paper.)

(iii) Third party, denoted by Auditor: A client may al-
low a third party to check the integrity of its data
outsourced to the cloud. Moreover, any client, who
possesses a data file that is duplicated (i.e., the same
data file has been uploaded to the server by another
client), can act as a Auditor of that specific data file.

Communication channels. If the data file outsourced
to the cloud is not confidential, there is no need for pri-
vate channels. (In this case, secure deduplication still can
be relevant because it may be very expensive to eavesdrop
the communication during the transfer of a large data file.)
In the case the outsourced data files are confidential, we
can assume the availability of private communication chan-
nels for the execution of certain protocols. This is com-
mon to PDP/POR/POW [2, 12, 13] and avoids unnecessary
complications in describing the protocols (given that private
channels can be implemented using standard techniques in
a modular fashion). Note that in order to facilitate dedu-
plication, the data will be stored in plaintext in the cloud,
which is the same as in POW [13].

Functional definition. The following definition of POSD
is built on the definitions of PDP/POR [2, 12] and POW [13].

Definition 1. (functional definition) A POSD scheme, de-
noted by Λ, consists of the following tuple of polynomial-
time algorithms (Keygen,Upload,AuditInt,Dedup).

Keygen: This is the key generation algorithm. It takes as
input a security parameter ℓ, and outputs two pairs of
public/private keys (pkint, skint) and (pkdup, skdup),
where pkint is made public and skint is the corre-
sponding private key of a client (this pair of keys may
be used for integrity protection/verification purpose),
pkdup is made public and skdup is the private key of
the server (this pair of keys may be used for secure
deduplication purpose).

Upload: This is the data uploading protocol running by a
client C and a server S over a private channel so that
secrecy of the data is assured. Suppose C wants to
upload a new data file F to the cloud, where S can
easily determine that F has not be outsourced to the
cloud by any client (e.g., by comparing the hash value
provided by C against the list of hash values stored
by the server). For preprocessing, Client C takes as
input a new data file F with a unique identifier fid and
the secret key skint, outputs some auxiliary informa-
tion Tagint that can be used to audit the integrity of
F in the cloud. At the end of the execution, S stores
(fid,F, Tagint) received from C as well as possibly some
deduplication information Tagdup, which may be pro-
duced by the server using skdup. The server may also
keep a hash value of the F’s so as to facilitate the
detection of data duplications and thus the need of
deduplication.

AuditInt: This is the data integrity auditing protocol. It
is executed between server S and Auditor so that
S convinces Auditor that integrity of some data file
stored in the cloud is assured. The Auditor’s input
includes the data file identifier fid and the correspond-
ing client’s pkint. The server’s input includes the data
file F corresponding to fid and the auxiliary informa-
tion Tagint associated to F. Essentially, the protocol
is of challenge-response type, where Auditor sends a
challenge chal to the server and the server computes
and sends back a response resp. If resp is valid with re-
spect to chal as well as the other relevant information,
Auditor outputs 1, meaning that the integrity of F is
assured, and 0 otherwise. Formally, we can write it as:

b← (Auditor(fid, pkint)⇐⇒ S(fid,F, Tagint))

where b ∈ {0, 1}.

Dedup: This is the deduplication checking protocol. It is
executed between server S and client C, who claims to
possess a data file F (the detection of the need to dedu-
plicate can be fulfilled by C sending the hash value of
its data file to S, which can determine whether or not
the data file has been in the cloud). This protocol is
also essentially of challenge-response type. Basically, S
sends a challenge chal to C, which returns a response
resp that is produced using data file F and possibly
other information. S verifies the validity of resp using
possibly Tagdup and pkdup, and outputs 1 if the verifi-
cation is successful (meaning that the client indeed has
data file F) and 0 otherwise. Formally, we can write it
as:

b← (S(fid, Tagdup, [skdup,]pkdup)⇐⇒ C(fid,F))

where b ∈ {0, 1}.

Correctness definition. We require a POSD scheme Λ =
(Keygen,Upload, AuditInt,Dedup) to be correct if, for
honest client and server, the execution of the AuditInt pro-
tocol will always output 1 and the execution of the Dedup
protocol will always output 1.

Security definition. We define security of POSD using
games, which specify both the adversary’s behavior (i.e.,
what the adversary is allowed to do) and the winning con-
dition (i.e., under what circumstance we say the attack is
successful). At a high-level, we require a POSD scheme to
be server unforgeable, which is similar to the security defined
by the data possession game in [2], and (κ, θ) uncheatable,
which is similar to the security definition in [13].

Intuitively, we say a POSD scheme is server unforgeable
if no cheating server can successfully execute the AuditInt
protocol with an honestAuditor with a non-negligible prob-
ability. Formally, we have:

Definition 2. (server unforgeability) For POSD scheme Λ =
(Keygen,Upload,AuditInt,Dedup), consider the follow-
ing game between an adversary A and a challenger, where
A plays the role of the cloud server S while possibly con-
trolling many compromised clients, and the challenger acts
as an honest client.

Setup Stage:

3

• Run algorithm Keygen to generate (pkint, skint) and
(pkdup, skdup). Make pkint and pkdup public, includ-
ing giving skint to the respective client and skdup to
A. Note that the skint of the challenger is not given to
A. For any other client, the corresponding skint may
be given to A as long as it requests (i.e., these clients
are compromised by, or collude with, A).

Challenge Stage: At this stage, A can do anything with re-
spect to the clients other than the challenger. With respect
to the challenger, A does the following.

• A adaptively chooses a data file F ∈ {0, 1}∗ for the
challenger. The challenger picks a unique identifier
fid and runs the Upload protocol with A. At the
end of the execution, A obtains (fid,F, Tagint). The
above process may be repeated for polynomial many
times. Denote by Q = {(fid,F, Tagint)}, the set of
tuples A received from the challenger when executing
the Upload protocol. Note that the challenger keeps
a record of Qfid = {fid}, namely the projection of Q on
attribute fid.

• A can execute AuditInt with the challenger with re-
spect to any fid ∈ Qfid, and execute Dedup with the
challenger with respect to some data file (possibly cho-
sen by A). This process can be executed polynomial
(in ℓ) number of times.

Forgery Stage:

• The adversary outputs an fid ∈ Qfid corresponding to
F that was outsourced to the cloud.

The adversary wins the game if for any F′ ̸= F,

1← (Auditor(fid, pkint)⇐⇒ A(fid,F′, ·)),

We say Λ is server unforgeable if the winning probability for
any ppt algorithm A is negligible in ℓ.

Intuitively, we say a POSD scheme is (κ, θ) uncheatable if
given a file F with min-entropy κ, no cheating client, who can
find F′ containing θ-bit Shannon entropy of F, convinces the
server that it has F with a probability non-negligibly more
than 2−(κ−θ). Formally, we have:

Definition 3. ((κ, θ) uncheatability) For a POSD scheme
Λ = (Keygen, Upload,AuditInt,Dedup), consider the
following game between the adversary A (who plays the role
of the compromised clients) and a challenger (who plays the
role of the server and an honest client).

Setup Stage:

• Run algorithm Keygen to generate (pkint, skint) as
well as (pkdup, skdup). Make pkint and pkdup public,
including giving pkint and pkdup to the adversary A.
For a compromised client, the corresponding skint is
given to A. However, both skdup and the skint cor-
responding to the honest client are only given to the
challenger. (Note that if the skint corresponding to
the honest client is given to A, A could use it to au-
thenticate to the server to download the client’s any
data outsourced to the server.)

• The challenger chooses a data file F of κ-bit min-entropy,
and a unique identifier fid. The challenger honestly
executes the Upload protocol by playing the roles of
both the client and the server, and gives the publicly
observable information to the adversary A.

Challenge Stage: At this stage, A seeks to infer the content
of F by running the Upload, AuditInt and Dedup pro-
tocols with the challenger. In particular, A may penetrate
into the cloud server to learn some portions of F. This is
reasonable because stealing the whole F, or any form of its
compressed version (because F has enough min-entropy and
thus Shannon entropy), could alert the defender about the
compromise because of the abnormal use of network band-
width and/or CPU resources. Moreover, subliminal chan-
nels normally do not offer bandwidth compatible to the mag-
nitude of κ. Note that the above adversarial model also ac-
commodates that A can command the compromised clients
to launch some type of guessing attacks with respect to F,
which is possible for example when F has a public structure
(e.g., Word document or movie file). In any case, suppose
A learned up to θ-bit Shannon entropy of F.

Forgery Stage: A eventually outputs some F′. A wins the
game if

1← (S(fid, Tagdup, [skdup,]pkdup)⇐⇒ C(fid,F′)).

We say Λ is (κ, θ) uncheatable if the winning probability for

any ppt algorithm A is negligibly (in ℓ) more than 2−(κ−θ).
Note that κ− θ ≥ ℓ would be the most often cases because
we mainly deal with large data files, and thus A’s winning
probability is effectively required to be negligible in ℓ.

Discussion. In the above security definitions, we did
not consider the notion of fairness, which was very recently
introduced to prevent a dishonest client from legitimately
accusing an honest cloud server of tampering its data in
the setting of dynamic POR [16]. This is because POSD in
this paper deals with static data, rather than dynamic data
where fairness can be reasonably involved [16]. For static
data, fairness can be easily achieved by letting a client sign
sign F in the Upload protocol or after a successful execution
of the Dedup protocol.

5. POSDCONSTRUCTION AND ANALYSIS

5.1 Basic Ideas
As discussed above, it is conceptually convenient to think

“POSD=PDP/POR+POW” because POSD aims to fulfill the
functionalities of both integrity audit and deduplication. In
this paper, we focus on the scenario of “POSD=PDP+POW”
because of the following. First, POR is more costly that PDP
due to its use of Error Correcting/Erasure Codes for fulfill-
ing retrievability. Second, in the Dedup protocol of POSD
(and POW), retrievability is actually not needed because the
server already knows F. Nevertheless, the basic ideas are
equally applicable to the scenario of “POSD=POR+POW.”
In what follows we first elaborate the insight that led us to
our design.

Relationship between PDP/POR and POW, revisited.
From the definition of POSD, we see some similarity between

4

the AuditInt protocol and the Dedup protocol. Specifi-
cally, both protocols are in a sense for verifying integrity ex-
cept that one is for data in the cloud-end (i.e., cloud server
attests to client) and the other is for data in the client-end
(i.e., client attests to cloud server). Because the AuditInt
protocol is the core of PDP/POR, there is some similarity
between PDP/POR and POW (as noted in [13]) as well as
POSD. However, it is stated in [13] that PDP/POR protocols
are not applicable in the setting of POW (and thus POSD)
— we call this the “Deduplication Gap” between PDP/POR
and POW/POSD— because of the following:

In PDP/POR, there is a preprocessing step that
facilitates that the client can later verify the in-
tegrity of its data in the cloud. Whereas, in the
setting of POW, a new client possesses a secret
data file F, but no other secrets.

Halevi et al. [13] correctly excluded the possibility of us-
ing PDP/POR based on symmetric key cryptosystems [2,
12] for the purpose of POW (because the new client does
not, and should not, know the secret keys). We observe,
however, that Publicly Verifiable PDP/POR protocols are
actually sufficient for the purpose of POW. As we will see,
this is made possible because the client can compute the
needed information from F on the fly and without using any
secret information.

Why is the public verifiability sufficient to bridge
the above “Deduplication Gap”? Conceptually, pub-
lic verifiability of PDP/PORmeaning that a third party, who
may be given some non-secret information by a client, can
verify the integrity of the client’s data in the cloud. Putting
this into the setting of POW/POSD, we can let the Dedup
protocol be essentially the same as the core PDP/POR pro-
tocol by reversing the roles of the client and the server. More
specifically, if the AuditInt protocol is publicly verifiable,
it is possible that only the public key pkint is needed for the
cloud server and only the data file F (as well as the public
parameters, of course) is needed for the client.

5.2 Construction
Recall that q is an ℓ-bit prime and p is another prime

such that q|(p − 1). G and GT are cyclic groups of prime
order q, and e : G × G → GT is a bilinear map. We use
two hash functions (random oracles) H1 : {0, 1}∗ → G and
H2 : {0, 1}∗ → Zq.
F is a data file consisting of n blocks of m symbols in Zq,

namely Fi = (Fi1 · · · ,Fim), where Fi ∈ Zm
q for 1 ≤ i ≤ n. F

is uniquely identified by fid.
The POSD scheme is described as follows (in the end of

this subsection we will explain some design decisions to help
understand our scheme):

Keygen: This algorithm generates cryptographic keys as
follows:

• Select v1 and v2 uniformly at random from Z∗
p such

that the orders of v1 and v2 are q (if v2 is generated
from v1, then the DLOG of v2 to base v1 should be
erased afterwards). Select sj1, sj2 uniformly at random

from Z∗
q for 1 ≤ j ≤ m. Set zj = v

−sj1
1 v

−sj2
2 mod p

for 1 ≤ j ≤ m.

• Let g be a generator of G. Select u uniformly at ran-
dom from G. Select w uniformly at random from Z∗

q ,
and set zg = gw.

• Set pkint = {q, p, g, u, v1, v2, z1, · · · , zm, zg} and the
client’s private key skint = {(s11, s12), · · · , (sm1, sm2), w}.
Note that using an appropriate Pseudorandom Func-
tion (PRF), we can further reduce the storage at the
client-end to constant (i.e., using a single key to the
PRF for generating the s11, s12, · · · , sm1, sm2, w).

• Set pkdup = pkint and skdup = null, where pkdup is
also made public.

Upload: This protocol is performed between a client, who
is to outsource a data file F to the cloud, and the cloud
server as follows:

• For each data block Fi, where 1 ≤ i ≤ n, the client
selects ri1, ri2 uniformly at random from Z∗

q and com-
putes:

xi = vri11 vri22 mod p,

yi1 = ri1 +

m∑
j=1

Fijsj1 mod q,

yi2 = ri2 +
m∑

j=1

Fijsj2 mod q,

ti =
(
H1(fid||i) · uH2(xi)

)w
(in G).

The client sends (fid,F, Tagint) to the server, where
Tagint = {(xi, yi1, yi2, ti)1≤i≤n}.

• Upon receiving (fid,F, Tagint), the server sets Tagdup =
Tagint.

AuditInt: This protocol is executed between an auditor,
which can be the client itself, and the cloud server to verify
the integrity of the client’s data file F stored in the cloud.
Note that the client does not need to give any information
to the auditor except the public keys pkint and the data file
identifier fid.

• The auditor chooses a set of c elements I = {α1, . . . , αc}
where αi is selected uniformly at random from {1, . . . , n},
and chooses a set of coefficients β = {β1, . . . , βc} where
βi is selected uniformly at random from Z∗

q . The au-
ditor sends chal = (I, β) to the server.

• The server computes:

µj =
∑
i∈I

βiFij mod q

for 1 ≤ j ≤ m, and

Y1 =
∑
i∈I

βiyi1 mod q,

Y2 =
∑
i∈I

βiyi2 mod q,

T =
∏
i∈I

tβi
i (in G).

The server sends resp = ({µj}1≤j≤m, {xi}i∈I,Y1,Y2,T)
to the server, where xi = vri11 vri22 mod p for 1 ≤ i ≤ n
were generated by the client in the execution of the
Upload protocol.

5

• Upon receiving resp, the auditor parses resp as
{{µj}1≤j≤m,Y1,Y2,T, {xi}i∈I}, computes

X =
∏
i∈I

xβi
i mod p,

W =
∏
i∈I

H1(fid||i)βi ,

and verifies

X
?
= vY1

1 vY2
2

m∏
j=1

z
µj

j mod p

e(T, g)
?
= e(Wu

∑
i∈I βiH2(xi), zg) (in GT).

If both hold, return 1; otherwise, return 0.

Dedup: This protocol is executed between the client, who
claims to have a data file F with identifier fid that was al-
ready outsourced to the cloud by another client, and the
server. This is a simple variant of the above AuditInt
protocol, where the auditor only needs to know the pub-
lic keys pkint and the data file identifier fid. Here, we let
the cloud server play the role of the auditor (with some mi-
nor adaptations because there are some information that is
not known to the client in producing the response), who
naturally knows pkint and fid.

• The server chooses a set of c elements I = {α1, . . . , αc}
where αi is selected uniformly at random from {1, . . . , n},
and chooses a set of coefficients β = {β1, . . . , βc} where
βi is selected uniformly at random from Z∗

q . The server
sends chal = (I, β) to the client.

• The client computes

µj =
∑
i∈I

βiFij mod q

for 1 ≤ j ≤ m, and sends resp = ({µi}1≤i≤m) to the
server.

• The server computes from Tagdup = {(xi, yi1, yi2, ti)1≤i≤n}:

Y1 =
∑
i∈I

βiyi1 mod q,

Y2 =
∑
i∈I

βiyi2 mod q,

W =
∏
i∈I

H1(fid||i)βi ,

X =
∏
i∈I

xβi
i mod p,

T =
∏
i∈I

tβi
i (in G).

The server verifies

X
?
= vY1

1 vY2
2

m∏
j=1

z
µj

j mod p,

e(T, g)
?
= e

(
Wu

∑
i∈I βiH2(xi), zg

)
(in GT).

If both hold, return 1; otherwise, return 0.

Discussion on some design decisions. To help under-
stand our scheme, now we discuss some design decisions we

made to satisfy both the above performance design require-
ments and the security definitions. First, our Upload and
AuditInt protocols are new. When compared with existing
protocols for the similar purpose [2, 12, 8, 5, 6, 16], it has the
following significant advantage during the execution of the
Upload protocol (a thorough comparison will be present in
Section 5.5). Our scheme only requires the client to perform
O(n) exponentiation operations plus O(mn) multiplication
operations, where n is the number of data blocks and m is
number of symbols in each block (i.e., mn is the number of
symbols in a data file). In contrast, the referred schemes
require the client to perform O(mn) exponentiation oper-
ations plus O(mn) multiplication operations. As such, our
AuditInt protocol would be of independent value as it could
also be used as the core of PDP/POR protocols.

Second, in our POSD scheme we used zj = v
−sj1
1 v

−sj2
2 for

verification, which is reminiscent of the signature scheme in
[11]. However, our scheme is not a digital signature scheme
because we actually allow a sort of manipulation. On the

other hand, we use zj = v
−sj1
1 v

−sj2
2 rather than, for exam-

ple, zj = v
−sj1
1 . This is because security of our construction

partially relies on the DLOG problem, or more precisely the
DLOG of v2 with respect to base v1.

Third, in the Upload protocol, the purpose of ti is to
prevent the server from forging any new legitimate tuple of
(x′

i, y
′
i1, y

′
i2) from a legitimate (xi, yi1, yi2) and Fi. To see

this, let us consider the case without using ti. Note that
(xi, yi1, yi2) with respect to block Fi satisfies

xi = vyi11 vyi22

m∏
j=1

z
Fij
j mod p.

Without using ti, the server can choose r′i1 and r′i2 from Z∗
q ,

and set

x′
i = xiv

r′i1
1 v

r′i2
2 mod p,

y′
i1 = yi1 + r′i1 mod q,

y′
i2 = yi2 + r′i2 mod q

so that (x′
i, y

′
i1, y

′
i2) also satisfies

x′
i = v

y′
i1

1 v
y′
i2

2

m∏
j=1

z
Fij
j mod p.

As another example of attacks, the server can generate (x′
i, y

′
i1, y

′
i2)

as follows: let x′
i = xiz1 mod p, y′

i1 = yi1 and y′
i2 = yi2.

During the execution of the Upload protocol, the server
may return F′

i = {Fi1 + 1,Fi2, . . . ,Fim} by adding one to
the first symbol of block Fi. As a consequence, (x′

i, y
′
i1, y

′
i2)

and F′
i also satisfy

x′
i = v

y′
i1

1 v
y′
i2

2 zFi1+1
1

m∏
j=2

z
Fij
j mod p.

5.3 Correctness Analysis
With respect to correctness definition, the correctness of

6

the POSD scheme can be verified as follows:

vY1
1 vY2

2

m∏
j=1

z
µj

j

= v
∑

i∈I βiyi1
1 v

∑
i∈I βiyi2

2

m∏
j=1

(v
−sj1
1 v

−sj2
2)µj

= v
∑

i∈I βiyi1
1 v

∑
i∈I βiyi2

2

m∏
j=1

(v
−sj1
1 v

−sj2
2)

∑
i∈I βiFij

= v
∑

i∈I βi(ri1+
∑m

j=1 Fijsj1)

1 v
∑

i∈I βi(ri2+
∑m

j=1 Fijsj2)

2

m∏
j=1

(v
−sj1
1 v

−sj2
2)

∑
i∈I βiFij

= v
∑

i∈I βiri1
1 v

∑
i∈I βiri2

2

= (vri11 vri22)
∑

i∈I βi

=
∏
i∈I

xβi
i

= X.

and

e(T, g)

= e

(∏
i∈I

tβi
i , g

)
= e

(∏
i∈I

(
H1(fid||i)uH2(xi)

)wβi

, g

)

= e

(∏
i∈I

(
H1(fid||i)uH2(xi)

)βi

, gw
)

= e

(∏
i∈I

H1(fid||i)
∏
i∈I

uH2(xi)

)βi

, zg


= e

(
Wu

∑
i∈I βiH2(xi), zg

)
.

5.4 Security Analysis
Now we prove that the POSD scheme satisfies Definitions

2 and 3.

Theorem 1. Assume H1 and H2 are hash functions mod-
eled as random oracles, and the CDH problem is hard. The
POSD scheme is server unforgeable.

Proof. We show our proof through a sequence of games
between a challenger, who plays the role of an honest client,
and adversaryA, who acts as the malicious server. The over-
all proof strategy is: given fid′ corresponding to (F, Tagint)
stored in the server and a challenge randomly selected by
the challenger, if the adversary can pass the verification us-
ing (F′, Tag′int) ̸= (F, Tagint), then there is an algorithm that
can solve the CDH problem.

Game0: Game0 is defined as in Definition 2, where the
challenger only keeps the relevant public and private keys,
and Qfid, which is the list of the data file identifiers fid’s it
has used (as mentioned before, a PRF can reduce the storage
of the fid’s to constant).

Game1: Game1 is the same as Game0 except that the
challenger keepsQ = {(fid,F, Tagint)},, the list of (fid,F, Tagint)
involved in the execution of the Upload protocol. In this
case, we prove that if the adversary A can produce a forgery
(fid′,F′, Tag′int) /∈ Q that can pass the test in the AuditInt

protocol with respect to the challenger’s challenge (I, β),
then there is an efficient algorithm that can solve the CDH
problem.

The simulator is constructed as follows:

• For generating the keys, the simulator works as follows:

– Select v1 and v2 uniformly at random from Z∗
p

such that the order of v1 and v2 is q. Select uni-
formly at random sj1 and sj2 from Z∗

q for 1 ≤ j ≤
m. Set zj = v

−sj1
1 v

−sj2
2 mod p for 1 ≤ j ≤ m.

– Let g be a generator of group G, and select h from
G at random. Set u = gγhη, where γ and η are
chosen uniformly at random from Z∗

q .

– Select zg uniformly at random from groupG, which
means that the simulator does not know the cor-
responding w with zg = gw.

– Set pkint = {p, q, g, u, h, v1, v2, z1, . . . , zm, zg} and
pkdup = pkint. However, the simulator only knows
secrets sk = {(s11, s12), . . . , (sm1, sm2)} but not
the w.

• The simulator model H2(·) as a random oracle. Given
xi, if xi has been queried, return H2(xi). Otherwise,
select η uniformly at random from Z∗

q and return η.
The simulator keeps the list of (xi, H2(xi)).

• When the simulator is asked to compute Tagint for
data file F, the simulator executes the following: for
each data block Fi where 1 ≤ i ≤ n, select ri1 and ri2
uniformly at random from Z∗

q and computes

xi = vri11 vri22 mod p,

yi1 = ri1 +

m∑
j=1

Fijsj1 mod q,

yi2 = ri2 +
m∑

j=1

Fijsj2 mod q.

Select λi uniformly at random from Z∗
q and set

H1(fid||i) = gλi/
(
uH2(xi)

)
.

Thus, we have

ti =
(
H1(fid||i)uH2(xi)

)w
= (gw)λi = (zg)

λi .

Set the cryptographic tag for block Fi as (xi, yi1, yi2, ti)
and thus Tagint = {(xi, yi1, yi2, ti)1≤i≤n}. The simu-
lator keeps the list of (fid||i,H1(fid||i)). Note that λi

is unknown to A.

• When A queries H1(fid||i) separately, the simulator
operates as follows. If fid||i has been queried, return
H1(fid||i). Otherwise, select λ′

i uniformly at random

from Z∗
q and return hλ′

i . Note that λ′
i is unknown to

A.

• The simulator interacts withA untilA outputs a forgery
(fid′, (I, β), {xi}i∈I,Y

′
1,Y

′
2,T

′, {µ′
j}1≤j≤m) at the Forgery

stage and wins the game, where (I, β) is chosen at ran-
dom by the simulator.

7

SupposeA produces (fid′, (I, β), {xi}i∈I, Y
′
1,Y

′
2, T

′, {µ′
j}1≤j≤m)

to win Game1. This means that fid′ ∈ Qfid, but

({µ′
j}1≤j≤m, {x′

i}i∈I,Y
′
1,Y

′
2,T

′) ̸= ({µj}1≤j≤m, {xi}i∈I,Y1,Y2,T),
(1)

where µ =
∑

i∈I βiFi mod q, µ′ =
∑

i∈I βiF
′
i mod q, and

(fid′,F, Tagint) ∈ Q from which {xi}i∈I,Y1,Y2,T are com-
puted. The correctness of the scheme implies

e(T, g) = e

(∏
i∈I

H1(fid
′||i)βiu

∑
i∈I βiH2(xi), zg

)
(2)

Since A wins in Game1, we have

e(T′, g) = e

(∏
i∈I

H1(fid
′||i)βiu

∑
i∈I βiH2(x

′
i), zg

)
. (3)

In what follows, we will consider three cases of Eq. (1):

• Case 1: T ̸= T′.

• Case 2: T = T′, but xi ̸= x′
i for some i ∈ I.

• Case 3: T = T′, xi = x′
i for all i ∈ I, but

(Y1,Y2, {µj}1≤j≤m) ̸= (Y′
1,Y

′
2, {µ′

j}1≤j≤m).

In each case, we will utilize, among other things, Eqs. (2)
and (3), to show that the simulator can solve the CDH prob-
lem, which means that A cannot win Game1 with a non-
negligible probability. This will complete the proof.

Case 1: T ̸= T′.
In this case, we have

e(T/T′, g) = e
(
u
∑

i∈I βi(H2(xi)−H2(x
′
i)), zg

)
.

By substituting u with gγhη, we have

e(T/T′, g) = e
(
(gγhη)

∑
i∈I βi(H2(xi)−H2(x

′
i)), zg

)
.

Rearrange the terms, we get

T/T′ = (gwγhwη)
∑

i∈I βi(H2(xi)−H2(x
′
i)).

We claim that∑
i∈I

βi(H2(xi)−H2(x
′
i)) ̸= 0 mod q.

Otherwise, we get T/T′ = 1, which contradicts the assump-
tion T ̸= T′. Together with the fact that zg = gw, we can
get

hw =
(
(T/T′) · z−γ(

∑
i∈I(H2(xi)−H2(x

′
i))

g

) 1∑
i∈I(H2(xi)−H2(x′

i
))
,

which means that if T ̸= T′, the simulator can solve the
CDH problem by computing hw with respect to given g and
zg = gw for unknown w.

Case 2: T = T′, but xi ̸= x′
i for some i ∈ I.

Because T = T′, we have∏
i∈I

H1(fid
′||i)βiu

∑
i∈I βiH2(xi) =

∏
i∈I

H1(fid
′||i)βiu

∑
i∈I βiH2(x

′
i).

By arranging the term, we have

u
∑

i∈I βi(H2(xi)−H2(x
′
i)) = 1.

As the probability that∑
i∈I

βi(H2(xi)−H2(x
′
i)) = 0 mod q

is negligible and u = gγhη, we have

h = g

∑
i∈I γ(H2(xi)−H2(x′

i))∑
i∈I η(H2(xi)−H2(x′

i
))

= gγη
−1 ∑

i∈I(H2(xi)−H2(x
′
i)).

This means that the simulator can solve the DLOG of ran-
dom h with respect to base g, which immediately breaks the
CDH assumption.

Case 3: T = T′, xi = x′
i for all i ∈ I, but

(Y1,Y2, {µj}1≤j≤m) ̸= (Y′
1,Y

′
2, {µ′

j}1≤j≤m).
Note that ∏

i∈I

x′βi
i = v

Y′
1

1 v
Y′
2

2

m∏
j=1

z
µ′
j

j mod p

and ∏
i∈I

xβi
i = vY1

1 vY2
2

m∏
j=1

z
µj

j mod p.

Because xi = x′
i for all i ∈ I, we have

v
Y′
1

1 v
Y′
2

2

m∏
j=1

z
µ′
j

j = vY1
1 vY2

2

m∏
j=1

z
µj

j mod p.

By replacing zj with v
−sj1
1 v

−sj2
2 in the above equation, we

get

v
Y′
1−Y1−

∑m
j=1 sj1(µ

′
j−µj)

1 = v
Y2−Y′

2−
∑m

j=1 sj1(µj−µ′
j)

2 mod p.

Thus, if (Y1,Y2, {µj}1≤j≤m) ̸= (Y′
1,Y

′
2, {µ′

j}1≤j≤m), then
the simulator can compute the DLOG of random v2 with
respect to base v1, which immediately breaks the CDH as-
sumption.

Theorem 2. Assume H1 and H2 are hash functions mod-
eled as random oracles, and the CDH problem is hard. The
POSD scheme is (κ, θ) uncheatable with respect to challenge
of c = n

θ−κ
log(2θ−κ+ϵ) blocks in the Dedup protocol, where

κ is the min-entropy of the file F in question, θ is the amount
of entropy leaked to or stolen by the adversary, and ϵ is neg-
ligible in security parameter ℓ.

Proof. According to Theorem 1, given that H1 and H2

are hash functions modeled as random oracles, and the CDH
problem is hard, our scheme is server unforgeable. That is,
given the challenge {I, β} with file identifier fid, the response
{µ1, · · · , µm, {xi}i∈I,Y1,Y2, T}must be computed honestly
from (fid,F, Tagint), so that∏

i∈I

xβi
i = vY1

1 vY2
2

m∏
j=1

z
µj

j mod p,

e(T, g) = e

(∏
i∈I

H1(fid||i)βiu
∑

i∈I βiH2(xi), zg

)
Without loss of generality, let (I, β) be the challenge with

corresponding file identifier fid in the execution of Dedup.
Let (µ′

1, · · · , µ′
m) be the response from the malicious client

and {x′
i}i∈I,Y

′
1,Y

′
2,T

′ are computed from Tagdup by the

8

cloud server. Recall that Tagdup = Tagint, then we have

{x′
i = xi}i∈I,Y

′
1 = Y1,Y

′
2 = Y2,T

′ = T. Therefore, in
order to satisfy∏

i∈I

x′βi
i = v

Y′
1

1 v
Y′
2

2

m∏
j=1

z
µ′
j

j mod p,

e(T′, g) = e

(∏
i∈I

H1(fid||i)βiu
∑

i∈I βiH2(x
′
i), zg

)
we have µ′

j = µj , 1 ≤ j ≤ m, otherwise we can solve the
DLOG problem of random v2 with respect to base v1 (see
case 3 in the proof of Theorem 1). That is, the malicious
client must compute (µ′

1, · · · , µ′
m) honestly from F. In other

words, the malicious client can win the game only if it can
figure out the unknown bits entropy in the data blocks spec-
ified by the set I.
Let Evnt denote the event that there are c data blocks

with unknown bits entropy and the adversary tries to guess
the unknown bits entropy in order to cheating successfully.
In order to simplify the model, assume that the unknown
bits entropy distributes over the data blocks of F uniformly.
Meanwhile, because the challenged data blocks are chosen
uniformly at random so that we can assume that the un-
known bits entropy distributes over F uniformly. Therefore
the probability

Pr[Evnt] =
1

2c(κ−θ)/n

= 2c(θ−κ)/n

= 2log(2
θ−κ+ϵ) (c =

n

θ − κ
log(2θ−κ + ϵ))

= 2θ−κ + ϵ

=
1

2κ−θ
+ ϵ.

This completes the proof.

5.5 Performance Analysis

0.991 0.992 0.993 0.994 0.995 0.996 0.997 0.998 0.999
0

100

200

300

400

500

600

700

Integrity Assurance

c

Err = 0.1

Err = 0.05

Err = 0.01

Figure 1: The impact of Err and integrity assurance
on challenge size c

On the size of the challenges. The size of the challenges
in the AuditInt protocol is an important performance pa-
rameter. Let Err be the probability of block being cor-
rupted (i.e., portions of the data modified by the server).

Figure 1 shows the required size of challenges in order to
achieve integrity assurance in the interval [0.991, 0.999] un-
der three circumstances: Err= 0.1, Err= 0.05 and Err=
0.01. Consider, for example, the case of Err= 0.01. It only
requires to send less than 500 challenges in order to achieve
99.1% integrity assurance, regardless of the size of the data
blocks. This also explain the advantage of POR and PDP.

512K 576K 640K 704K 768K 832K 896K 960K 1M−1
0

5

10

15

θ

lo
g
(c

)

ǫ = 2−60

ǫ = 2−70

ǫ = 2−80

Figure 2: The impact of θ on the challenge size c:
n = 215 and κ = 1M bits

Theorem 2 shows a lower bound on the number of chal-
lenged data blocks in order to fulfill (κ, θ) uncheatability.
In order to illustrate the impact of the lower bound of c
with parameters κ, θ, n and ϵ, we consider two cases: one
file with small min-entropy (1M bits) and the other with
large min-entropy (128M bits). With respect to negligible
probability 2−80, Figure 2 shows that given a file of 215

data blocks with 1M bits min-entropy, our scheme can ful-
fill (1M, 960K) uncheatability by challenging about 26 data
blocks (or 0.1% portions of the data file).

64M 72M 80M 88M 96M 104M112M120M128M−1
5

10

15

20

25

30

θ

lo
g
(c

)

ǫ = 2−60

ǫ = 2−70

ǫ = 2−80

Figure 3: The impact of θ on the challenge size c:
n = 227 and κ = 128M bits

Figure 3 shows that given a file of 227 data blocks with
128M bits min-entropy, fulfilling (128M, 120M) uncheatability
requires to challenge about 29 data blocks (or 2−18 portions

9

of the data file). This shows that even if the adversary has
obtained 93.75% of the data file (e.g., by penetrating into
the cloud server in a stealthy fashion and without being de-
tected), the attacker cannot cheat against reasonably small
challenges.

Comparison with some relevant schemes. Because
POSD is the first scheme that simultaneously allows proof
of storage integrity and deduplication, in Table 1 we com-
pare its efficiency to the most efficient PDP scheme in [2],
the most efficient POR scheme in [12], and the only exist-
ing POW scheme in [13], respectively. The two particular
PDP and POR schemes are chosen also because they offer
the afore-mentioned public verifiability, namely that a third-
party can examine the storage integrity on behalf of a client,
which is exploited to construct POSD. The POW scheme is
the one based on Merkle-tree in [13]; it is chosen because
its security is compatible with our POSD scheme (there are
more efficient but less secure solutions in[13]). Note that in
the client storage, we consider a single file F. In principle,
each client can outsources polynomially-many data files to
the cloud. In this case, storage of the identifies, fid’s, still
can be made constant by letting each client use a Pseudo-
random Function PRF to generate fid’s from its secret key
while maintaining a counter.
From the perspective of assuring cloud data storage in-

tegrity, we draw the following observations from Table 1.
First, our POSD scheme requires O(n) exponentiations for
a client to preprocess a data file before uploading it to
the cloud. This complexity is substantially smaller than
the preprocessing complexity O(mn) exponentiations of the
schemes in [2, 12]. Second, our POSD scheme incurs O((m+
c)ℓ) communication overhead in the audit process, which is
higher than the O(mℓ) communication overhead of the PDP
and POR schemes. To demonstrate that the extra commu-
nication is not significant especially when we deal with large
files, let us consider the following realistic example. Suppose
a data file consists of 227 blocks of 28 symbols (2.5-GB file if
ℓ = 160). Assume that the probability of block corruption is
Err = 0.01. That is, roughly 221 data blocks are corrupted.
Suppose we want to achieve 99.5% integrity assurance (i.e.,
with probability 99.5% the tamperation of a data file is de-
tected), the extra communication overhead in our POSD
scheme is only 216 bits (8KB). Moreover, it should be noted
that the PDP and POR schemes cannot fulfill deduplication.
From the perspective of secure data deduplication, , we

draw the following observations from Table 1. First, our
POSD scheme is slightly less efficient than the POW scheme.
However, the POW scheme cannot fulfill the auditability
of cloud storage security (note that it was well-known that
Merkle-tree is not sufficient to fulfill PDP/POR [2, 12, 16]).
Second, our POSD scheme incurs smaller communication
overhead becauseO(mℓ) is often much smaller thanO(c log(n)mℓ).
Third, the POW scheme is indeed secure in the standard
model based on the existence of Collision-Resistant Hash
(CRH) functions. However, it cannot fulfill auditability of
cloud storage integrity.

6. CONCLUSION
We motivated the need of the cloud storage notion we call

proof of storage with deduplication or POSD, to fulfill data
integrity and duplication simultaneously. We also presented
an efficient POSD scheme, which is proven secure in the

Random Oracle model based on the Computational Diffie-
Hellman assumption. Compared with the PDP/POR/POW
schemes, which cannot achieve one of the two goals, our
scheme is as efficient as theirs.

One interesting future work is to remove the random or-
acle in the protocol without jeopardizing performance. An-
other is to seek a different design methodology for such
protocols so as to achieve even substantially better perfor-
mance.

7. REFERENCES
[1] The digital universe decade - are you ready?

International Data Corporation, 2010.
http://idcdocserv.com/925.

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring,
L. Kissner, Z. Peterson, and D. Song. Provable data
possession at untrusted stores. In Proceedings of the
14th ACM conference on Computer and
communications security, CCS ’07, pages 598–609,
New York, NY, USA, 2007. ACM.

[3] G. Ateniese, R. Di Pietro, L. V. Mancini, and
G. Tsudik. Scalable and efficient provable data
possession. In Proceedings of the 4th international
conference on Security and privacy in communication
netowrks, SecureComm ’08, pages 9:1–9:10, New York,
NY, USA, 2008. ACM.

[4] G. Ateniese, S. Kamara, and J. Katz. Proofs of
storage from homomorphic identification protocols. In
Proceedings of the 15th International Conference on
the Theory and Application of Cryptology and
Information Security: Advances in Cryptology,
ASIACRYPT ’09, pages 319–333, Berlin, Heidelberg,
2009. Springer-Verlag.

[5] K. D. Bowers, A. Juels, and A. Oprea. Proofs of
retrievability: theory and implementation. In
Proceedings of the 2009 ACM workshop on Cloud
computing security, CCSW ’09, pages 43–54, New
York, NY, USA, 2009. ACM.

[6] Y. Dodis, S. Vadhan, and D. Wichs. Proofs of
retrievability via hardness amplification. In
Proceedings of the 6th Theory of Cryptography
Conference on Theory of Cryptography, TCC ’09,
pages 109–127, Berlin, Heidelberg, 2009.
Springer-Verlag.

[7] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and
M. Theimer. Reclaiming space from duplicate files in a
serverless distributed file system. In Proceedings of the
22 nd International Conference on Distributed
Computing Systems (ICDCS’02), ICDCS ’02, pages
617–, Washington, DC, USA, 2002. IEEE Computer
Society.

[8] C. Erway, A. Küpçü, C. Papamanthou, and
R. Tamassia. Dynamic provable data possession. In
Proceedings of the 16th ACM conference on Computer
and communications security, CCS ’09, pages 213–222,
New York, NY, USA, 2009. ACM.

[9] D. Harnik, B. Pinkas, and A. Shulman-Peleg. Side
channels in cloud services: Deduplication in cloud
storage. IEEE Security and Privacy, 8:40–47,
November 2010.

[10] A. Juels and B. S. Kaliski, Jr. Pors: proofs of
retrievability for large files. In Proceedings of the 14th

10

PDP [2] POR [12] POSD (this paper) POW [13]
total key size O(m) O(m) O(m) 0 (no keys)
use Random Oracle? yes yes yes no
security assumption RSA CDH CDH CRH

For integrity audit purpose
client storage O(1) O(1) O(1) N/A
server storage O(n) O(n) O(n) N/A
audit preprocessing comp. O(mn)Ex+ O(mn)Mu O(mn)Ex+O(mn)Mu O(n)Ex+O(mn)Mu N/A
audit computation (client) O(c)Ex+ O(cm)Mu O(c)Ex+ O(cm)Mu O(c)Ex+ O(cm)Mu N/A
audit computation (server) add add add N/A
audit communication O(mℓ) O(mℓ) O((m+ c)ℓ) N/A
integrity assurance 1− (1− Err)c 1− (1− Err)c 1− (1− Err)c N/A

For deduplication purpose
dedup preprocessing comp. N/A N/A O(n)Ex+O(mn)Mu ECC +O(n2)H
dedup. computation (client) N/A N/A O(cm)Mu O(n2)H
dedup. computation (server) N/A N/A O(c)Ex+O(cm)Mu O(c log(n))H
dedup. communication N/A N/A O(ℓm) O(cmℓ log(n))

Table 1: Efficiency comparison between some PDP, POR, POW and our POSD schemes, where n is the number
of blocks of a data file, m is the number of symbols of a data block, c is the number of blocks that will be
challenged, Err is the probability of block corruption, Ex represents modular exponentiation operation, Mu
represents modular multiplication operation, and N/A indicates that a property is not applicable to a certain
scheme.

ACM conference on Computer and communications
security, CCS ’07, pages 584–597, New York, NY,
USA, 2007. ACM.

[11] T. Okamoto. Provably secure and practical
identification schemes and corresponding signature
schemes. In Proceedings of the 12th Annual
International Cryptology Conference on Advances in
Cryptology, CRYPTO ’92, pages 31–53, London, UK,
1993. Springer-Verlag.

[12] H. Shacham and B. Waters. Compact proofs of
retrievability. In Proceedings of the 14th International
Conference on the Theory and Application of
Cryptology and Information Security: Advances in
Cryptology, ASIACRYPT ’08, pages 90–107, Berlin,
Heidelberg, 2008. Springer-Verlag.

[13] B. P. A. S.-P. Shai Halevi, Danny Harnik. Proofs of
ownership in remote storage systems. Cryptology
ePrint Archive, Report 2011/207, 2011.
http://eprint.iacr.org/.

[14] M. W. Storer, K. Greenan, D. D. Long, and E. L.
Miller. Secure data deduplication. In Proceedings of
the 4th ACM international workshop on Storage
security and survivability, StorageSS ’08, pages 1–10,
New York, NY, USA, 2008. ACM.

[15] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li.
Enabling public auditability and data dynamics for
storage security in cloud computing. IEEE Trans.
Parallel Distrib. Syst., 22:847–859, May 2011.

[16] Q. Zheng and S. Xu. Fair and dynamic proofs of
retrievability. In Proceedings of the first ACM
conference on Data and application security and
privacy, CODASPY ’11, pages 237–248, New York,
NY, USA, 2011. ACM.

11

