
Hash Functions Based on Three Permutations:
A Generic Security Analysis

Bart Mennink and Bart Preneel

Dept. Electrical Engineering, ESAT/COSIC, KU Leuven, and IBBT, Belgium
bart.mennink@esat.kuleuven.be, bart.preneel@esat.kuleuven.be

Abstract. We consider the family of 2n-to-n-bit compression functions that are solely based
on at most three permutation executions and on XOR-operators, and analyze its collision and
preimage security. Despite their elegance and simplicity, these designs are not covered by the
results of Rogaway and Steinberger (CRYPTO 2008). By defining a carefully chosen equivalence
relation on this family of compression functions, we obtain the following results. In the setting
where the three permutations π1, π2, π3 are selected independently and uniformly at random,
there exist at most four equivalence classes that achieve optimal 2n/2 collision resistance. Under a
certain extremal graph theory based conjecture, these classes are then proven optimally collision
secure. Three of these classes allow for finding preimages in 2n/2 queries, and only one achieves
optimal 22n/3 preimage resistance (with respect to the bounds of Rogaway and Steinberger,
EUROCRYPT 2008). Consequently, a compression function is optimally collision and preimage
secure if and only if it is equivalent to F(x1, x2) = x1⊕π1(x1)⊕π2(x2)⊕π3(x1⊕x2⊕π1(x1)). For
compression functions that make three calls to the same permutation we obtain a surprising
negative result, namely the impossibility of optimal 2n/2 collision security: for any scheme,
collisions can be found with 22n/5 queries. This result casts some doubt over the existence of
any (larger) secure permutation-based compression function built only on XOR-operators and
(multiple invocations of) a single permutation.

Keywords. Hash function, Permutation-based, Collision resistance, Preimage resistance.

1 Introduction

The traditional recipe for the design of a cryptographic hash function is to base it on one
or more block ciphers. Since the late 70s, this methodology developed itself to become the
dominating approach in the area of hash function design and plenty of hash functions have
been constructed accordingly (either explicitly or implicitly) [3, 4, 6, 7]. These designs are,
however, characterized by the fact that the key input to the cipher depends on the input
values; this implies that the key schedule has to be strong and that it needs to be executed for
every encryption (or for every second encryption), which entails a substantial computational
cost. An alternative approach is to fix one or more keys, and restrict the hash function
design to use the block cipher for these keys only. The usage of fixed-key block ciphers, or
alternatively permutations, additionally causes gain that one does not need to implement an
entire block cipher but only a limited number of instantiations of it.

Black, Cochran and Shrimpton [1] were the first to formally study this approach, demon-
strating that a 2n-to-n-bit compression function F using one n-bit permutation π cannot
be secure. This result has been generalized by Rogaway and Steinberger [10], and refined
by Stam [12] and Steinberger [13]. Consider any mn-to-rn-bit compression function us-
ing k n-bit permutations: if 2n(2m−2r−k+1)/(k+1) ≥ 17, collisions can be found in at most
(2n)1−(m−r+1)/(k+1) queries to the underlying primitives, a bound proven by Steinberger in
[13] but commonly known as “Stam’s bound.” Collisions and preimages can even be found
in at most (2n)1−(m−r/2)/k and (2n)1−(m−r)/k queries respectively, provided the compres-
sion function satisfies the “uniformity assumption” [10]. Due to Stam’s bound, a 2n-to-n-bit
compression function, which is the simplest case after all, achieves optimal 2n/2 collision
resistance only if it employs at least three permutations. Yet, it cannot achieve optimal

preimage resistance if it fulfills the uniformity assumption. These observations apply to the
“multi-permutation setting”, where each of the permutations is generated independently, as
well as the “single-permutation setting” where the permutations are the same.

The construction of 2n-to-n-bit compression functions (based on three permutations) that
provably attain optimal collision security, has turned out to be a very challenging exercise.
In [9], Rogaway and Steinberger formally proved a broad class of 2n-to-n-bit compression
functions using three distinct permutations and finite field scalar multiplications optimally
collision and preimage secure (w.r.t. the bounds of [10]), provided the compression function
satisfies a so-called “independence criterion” (a similar result for the single-permutation set-
ting has been obtained by Lee and Kwon [5]). Unfortunately, this technical criterion rules out
the most intuitive and elegant type of designs, namely compression functions that are (apart
from the three permutations) solely based on XOR-operators. As the proof of [9] extensively
relies on its independence criterion, the proof cannot be generalized to compression functions
of this type. In [11], Shrimpton and Stam derived a XOR-based compression function, using
three one-way functions rather than permutations: F(x1, x2) = f1(x1)⊕ f3(f1(x1)⊕ f2(x2)).
This function is proven collision resistant up to 2n/2 queries (asymptotically), but preimages
can be found with high probability after 2n/2 queries [11]. It has been demonstrated by an
automated analysis of Rogaway and Steinberger [9] that the same results hold if f1, f2, f3 are
Davies-Meyer-like compression functions using permutations π1, π2, π3, i.e. fi(x) = x⊕πi(x),
but a formal security analysis has never been given. Since these works, a synthetic formal
collision and preimage security analysis of XOR-based compression functions has remained
an interesting and important theoretical open problem, because of their elegance and simplic-
ity (the functions only employ XOR-operators) as well as their slight efficiency improvement
(XOR-operators are slightly cheaper than finite field multiplications).

Our Contributions. We focus on the entire family of 2n-to-n-bit compression functions
constructed only of three isolated permutations and of XOR-operators, and analyze the se-
curity of these functions against information-theoretic adversaries. For each of the functions,
we either provide a proof of optimal collision resistance or a collision attack faster than the
birthday bound. We also analyze the preimage resistance of the schemes that have optimal
collision security.

The approach followed in this work is based on defining an equivalence class on the set of
compression functions, and is of independent interest: informally, two compression functions
are equivalent if there exists a tight bi-directional preimage and collision security reduction
(cf. Def. 3). Consequently, security results of one compression function hold for the entire
class, and it suffices to analyze the security of one function per class. In this work we restrict
to equivalence reductions that are easy to verify, such as interchanging the inputs to the
compression function.

For the multi-permutation setting, where the three permutations π1, π2, π3 are assumed to
be selected independently and uniformly at random, the results are as follows. A compression
function F is optimally collision secure (asymptotically) if and only if it is equivalent to one
of the four compression functions F1, . . . ,F4:

F1(x1, x2) = x2 ⊕ π2(x2)⊕ π3(x1 ⊕ x2 ⊕ π1(x1)) ,
F2(x1, x2) = x1 ⊕ π1(x1)⊕ π2(x2)⊕ π3(x1 ⊕ x2 ⊕ π1(x1)) ,
F3(x1, x2) = x1 ⊕ π1(x1)⊕ π3(x1 ⊕ x2 ⊕ π1(x1)⊕ π2(x2)) ,
F4(x1, x2) = x1 ⊕ x2 ⊕ π1(x1)⊕ π3(x1 ⊕ x2 ⊕ π1(x1)⊕ π2(x2)) .

(1)

These compression functions are depicted in Fig. 1. Not surprisingly, the permutation-based
variant of the Shrimpton-Stam compression function [11] is included, it equals F3. For com-
pression functions non-equivalent to any of F1,F2,F3,F4, collisions can be found faster than

the birthday bound, namely in at most 22n/5 queries. Compression functions equivalent to F2
are proven optimally preimage secure up to 22n/3 queries, and compression functions equiva-
lent to F1,F3 or F4 are additionally shown to achieve tight 2n/2 preimage security. Therefore,
a compression function achieves optimal collision and preimage resistance (w.r.t. the bounds
of [10]) if and only if it is equivalent to F2. Particularly, this class of functions beats the
Shrimpton-Stam compression function [11] with respect to preimage resistance. These re-
sults are summarized in Table 1.

A minor part of the results in the multi-permutation setting, more concretely the collision
resistance of F1,F2 and F4 and the preimage resistance of F2, are based on an extremal
graph theory based conjecture. Informally, this conjecture bounds the number of solutions
(x1, x2, x3) ∈ X1 × X2 × X3 such that x2 ⊕ x3 = x1 ⊕ π1(x1), where X1, X2, X3 are three
sets of q elements. This conjecture is similar to (but more complex than) a problem posed by
Zarankiewicz in 1951 (cf. [2, Ch. 6.2]), and is of independent interest. In App. D, we analyze
our conjecture in more detail, provide it with a heuristic argument, and compare it with the
conjecture of Zarankiewicz.

Table 1. The security results of this work for the multi-permutation setting. The functions
F1, . . . ,F4 are given in (1) and Fig. 1. The equivalence relation is defined in Def. 3. For F2, the
obtained security results are optimal with respect to the bounds of Rogaway and Steinberger
[10]. The proofs of the results with appended “[c]” fall back on Conjecture 1.

collision preimage

F equivalent to: security attack security attack

F1,F4 2n/2 [c] 2n/2 2n/2 2n/2

F2 2n/2 [c] 2n/2 22n/3 [c] 22n/3

F3 2n/2 2n/2 2n/2 2n/2

none of these ? 22n/5 ? ?

In the single-permutation setting, where the compression function makes three calls to
the same random permutation π, there does not exist any compression function that achieves
optimal collision resistance. In particular, for any possible function, collisions can be found in
at most 22n/5 queries, beating the desired birthday bound. This negative result is surprising,
given the fair amount of secure functions we have found in the multi-permutation setting. The
attacks mainly rely on the fact that the adversary can misuse the single-permutation prop-
erty by introducing dependencies between the two input values x1 and x2. For instance, the
function F2 of (1) satisfies F2(x1, x2) = F2(x1, x2⊕x1⊕π(x1)) in the single-permutation set-

x1

x2

zn

n

n π1

π2

π3

(only for

(only for

(only for
F3, F4)

F1, F2, F3)

F2, F3, F4)

1

Fig. 1. A graphical representation of the compression functions F1, . . . ,F4 of (1).

ting. This result raises the interesting question whether (larger) compression functions exist
based only on XOR-operators and (more than three invocations of) one single permutation.

Outline. In Sect. 2, we present some background information, and formally describe the set
of permutation-based compression functions we have analyzed. In Sect. 3, the equivalence
relation on the set of compression functions is formally defined. The main results are given
in Sect. 4 for the multi-permutation setting and in Sect. 5 for the single-permutation setting.
We conclude the paper in Sect. 6.

2 Preliminaries

For an integer n ∈ N, we denote by {0, 1}n the set of bit strings of length n. For two bit
strings x, y, we denote by x‖y their concatenation and by x ⊕ y their bitwise XOR. If X is

a set, by x
$← X we denote the uniformly random sampling of an element from X . For two

integers m,n ∈ N, we denote by 〈m〉n the encoding of m as an n-bit string. By log we denote
the logarithm function with respect to base 2. By Pn we denote the set of all permutations
operating on n bits. Vectors are denoted as x, and by ‖x‖ =

∑
i |xi| we denote the 1-norm

of x. For a matrix A, by ai,j we denote its coefficient at the ith row and jth column. By ai,∗
we denote the ith row of A, and by a∗,j its jth column.

2.1 Permutation Based Compression Functions

We consider the following type of 2n-to-n-bit compression functions. Let π1, π2, π3 ∈ Pn be
three permutations. For a binary 4× 5 matrix A of the form

A =

a11 a12 0 0 0
a21 a22 a23 0 0
a31 a32 a33 a34 0

a41 a42 a43 a44 a45

 , (2)

the compression function FA : {0, 1}2n → {0, 1}n is defined as follows:

FA(x1, x2) = z , where y1 ← π1(a11x1 ⊕ a12x2) ,
y2 ← π2(a21x1 ⊕ a22x2 ⊕ a23y1) ,
y3 ← π3(a31x1 ⊕ a32x2 ⊕ a33y1 ⊕ a34y2) ,
z ← a41x1 ⊕ a42x2 ⊕ a43y1 ⊕ a44y2 ⊕ a45y3 .

(3)

The function FA is depicted in Fig. 2. If the three permutations are all different, we refer to
it as the multi-permutation setting. If π1, π2, π3 are equal to one permutation π, we are in
the single-permutation setting. In total, we thus analyze 2 · 214 compression functions. Many
of these, however, are trivially weak (cf. Sect. 2.3).

For the single-permutation setting, it is of interest to also consider the case where n-bit
constants are added to the inputs to the permutations (e.g. y1 ← π1(a11x1 ⊕ a12x2 ⊕ b1)
for b1 ∈ {0, 1}n). This results in many more schemes, but requires a more complex analysis.
Therefore, we present our main results on FA of (3), and in App. C we generalize our findings
on the single-permutation setting to cover any FA where additional affine transformations on
the permutation inputs are taken into account.

x1

x2

zn

n

n

π1

π2

π3

a11

a12

a21

a22

a23

a31

a32

a33

a34

a41

a42

a43

a44

a45

1

Fig. 2. The permutation-based compression function FA of (3).

2.2 Security Notions

An adversary is a probabilistic algorithm with oracle access to the underlying permutations
π1, π2, π3. He can make forward and inverse queries to its oracles, and the queries are stored
in a query history Q. By (xk, yk) ∈ Q, for k ∈ {1, 2, 3}, we denote that yk = πk(xk); the
adversary either made a forward query xk to obtain yk or an inverse query yk to obtain xk. In
the remainder, we assume that Q always contains the queries required for the attack, and we
assume that the adversary does not make trivial queries, i.e. queries to which the adversary
already knows the answer in advance. In this work we consider information-theoretic adver-
saries only. This type of adversary has unbounded computational power, and its complexity
is measured by the number of queries made to its oracles.

Definition 1. Let FA : {0, 1}2n → {0, 1}n be a compression function defined by a matrix A
of the form (2). Let A be a collision finding adversary for this compression function. The
advantage of A is defined as

Advcol
FA

(A) = Pr
(
π1, π2, π3

$← Pn, x, x
′ ← Aπi,π

−1
i : x 6= x′, FπiA (x) = FπiA (x′)

)
.

By Advcol
FA

(q) we denote the maximum advantage, taken over all adversaries making q queries
to each of their oracles.

Several definitions for preimage resistance are known, but we opt for everywhere preimage
resistance [8], which intuitively guarantees preimage security for every range point.

Definition 2. Let FA : {0, 1}2n → {0, 1}n be a compression function defined by a matrix
A of the form (2). Let A be an everywhere preimage finding adversary for this compression
function. The advantage of A is defined as

Advepre
FA

(A) = max
z∈{0,1}n

Pr
(
π1, π2, π3

$← Pn, x← Aπi,π
−1
i (z) : z = FπiA (x)

)
.

By Advepre
FA

(q) we denote the maximum advantage, taken over all adversaries making q
queries to each of their oracles.

The security definitions for the single-permutation setting, where the compression function
is built on one permutation π, are analogous.

2.3 Invalid Matrices

We will classify the set of optimally collision secure compression functions FA of the form
described in Sect. 2.1, but for some matrices A the induced compression function will clearly
not fulfill the desired security requirements. For instance, if a compression function does
not use one or more permutations, attacks faster than the birthday bound can easily be
constructed. We introduce the notion of “valid” matrices, in order to rule out compression
functions that trivially fail to achieve optimal collision resistance. A matrix A is called “valid”
if it satisfies the following properties:

(1) For the jth column (j = 1, 2), we have a1j +a2j +a3j ≥ 1. This requirement ensures that
input xj is used in the computation of at least one permutation. If this would not be the
case, collisions can easily be constructed;

(2) For the jth column (j = 3, 4, 5), we have ‖a∗,j‖ ≥ 1, and for the ith row (i = 1, 2, 3), we
have ‖ai,∗‖ ≥ 1. Notice that if the ith row (resp. jth column) would consist of zeroes only,
it means that permutation πi (resp. πj−2) is not used in the computation, and collisions
can be found in at most 2n/3 queries by Stam’s bound [12, 13].

In the remainder, we will consider valid matrices A only. By an extensive computation one can
show that 2796 < 212 out of 214 matrices are valid (for both the single- and multi-permutation
setting).

3 Equivalence Classes of Permutation Based Compression Functions

We define an equivalence relation on the set of compression functions FA. This equivalence
relation intuitively describes classes of “equally secure” compression functions, and can be
used to reduce the number of compression functions to be analyzed. Indeed, security prop-
erties of one compression function naturally convey to all compression functions in the same
equivalence class. The equivalence relation is defined in Def. 3, and in Props. 1-4 we describe
the four equivalence reductions that will be used in this work.

Definition 3. Two compression functions FA and FA′ are equivalent if for both collision
and preimage security there exists a tight reduction from FA to FA′, and vice versa.

Proposition 1 (x-reduction). Consider two matrices A =
(
a∗,1 ; a∗,2 ; a∗,3 ; a∗,4 ; a∗,5

)
and A′ =

(
a∗,2 ; a∗,1 ; a∗,3 ; a∗,4 ; a∗,5

)
. Then, the compression functions FA and FA′ are

equivalent. Intuitively, this reduction corresponds to swapping x1 and x2.

Proposition 2 (XOR-reduction). Consider a matrix A =
(
a∗,1 ; a∗,2 ; a∗,3 ;

a∗,4 ; a∗,5
)
, and let k = min{ i | ai,2 6= 0 } (notice that k ∈ {1, 2, 3} as A is valid). Let

c0, . . . , c2 ∈ {0, 1}. Consider the matrix A′ = A⊕
(
c0a∗,2 ; 0 ; [k ≥ 2]c1a∗,2 ; [k ≥ 3]c2a∗,2 ; 0

)
,

where [X] = 1 if X holds and 0 otherwise. Then, the compression functions FA and FA′ are
equivalent. Intuitively, πk is the first permutation that incorporates x2, and this reduction rep-
resents replacing x2 by x2⊕ c0x1⊕

∑k−1
i=1 ciyi, where yi is the outcome of the ith permutation.

Using Prop. 1, the same reduction holds for x1.

Proposition 3 (π-swap-reduction). Let i ∈ {1, 2}, and consider a matrix A with
ai+1,i+2 = 0. Consider the matrix A′ obtained from A by swapping rows ai,∗ and ai+1,∗
and consequently swapping columns a∗,i+2 and a∗,i+3. Then, the compression functions FA
and FA′ are equivalent. Intuitively, this reduction corresponds to swapping πi and πi+1, which
is only possible if the outcome of πi is not used as input of πi+1 (i.e. if ai+1,i+2 = 0).

Proposition 4 (π-inverse-reduction). Consider a matrix A with (a11, a12) = (1, 0). Con-
sider the matrix A′ obtained from A by swapping (a21, a31, a41) and (a23, a33, a43). Then, the
compression functions FA and FA′ are equivalent. Intuitively, this reduction corresponds to
replacing π1 by π−11 . Using Prop. 1 and Prop. 3 on i = 1, the same reduction holds for π2.

Proof (Proof of Props. 1-4). Let FA and FA′ be two compression functions defined as in either
of the propositions. For simplicity, in case of Prop. 2 we only consider k = 2 (so a12 = 0,
a22 = 1 and c2 = 0), for Prop. 3 we only consider i = 1 (so a23 = 0). By construction, the
compression functions FA and FA′ satisfy the following properties:

Fπ1,π2,π3A (x1, x2) =

Fπ1,π2,π3A′ (x2, x1) for Prop. 1,

Fπ1,π2,π3A′ (x1, x2 ⊕ c0x1 ⊕ c1π1(a11x1)) for Prop. 2,

Fπ2,π1,π3A′ (x1, x2) for Prop. 3,

F
π−1
1 ,π2,π3

A′ (π1(x1), x2) for Prop. 4.

(4)

We need to provide a bi-directional collision and preimage security reduction. For concise-
ness, we will provide only the collision security reduction; the case of preimage resistance is
similar and is therefore omitted. Let A be a collision finding adversary for the compression

function FA, that on input of π1, π2, π3
$← Pn, outputs two tuples (x1, x2), (x′1, x

′
2) such that

FπiA (x1, x2) = FπiA (x′1, x
′
2). We construct a collision finding adversary A′ for FA′ that uses A

as a subroutine and on input of π′1, π
′
2, π
′
3

$← Pn outputs a collision for F
π′i
A′ . Adversary A′

operates as follows:

1. In Props. 1 and 2, the adversary A′ sends (π1, π2, π3)← (π′1, π
′
2, π
′
3) to A. In Prop. 3, the

adversary A′ sends (π1, π2, π3) ← (π′2, π
′
1, π
′
3) to A. In Prop. 4, the adversary A′ sends

(π1, π2, π3)← ((π′1)
−1, π′2, π

′
3) to A;

2. A outputs two tuples (x1, x2), (x′1, x
′
2) such that FπiA (x1, x2) = FπiA (x′1, x

′
2);

3. In Prop. 1, A′ outputs collision (x2, x1) and (x′2, x
′
1). In Prop. 2, A′ outputs (x1, x2 ⊕

c0x1⊕ c1π1(a11x1)) and (x′1, x
′
2⊕ c0x′1⊕ c1π1(a11x′1)). In Prop. 3, A′ outputs (x1, x2) and

(x′1, x
′
2). In Prop. 4, A′ outputs ((π′1)

−1(x1), x2) and ((π′1)
−1(x′1), x

′
2).

Notice that in step one, the permutations (π1, π2, π3) are clearly randomly and indepen-
dently distributed as (π′1, π

′
2, π
′
3) are, and therefore A can output (x1, x2), (x′1, x

′
2) such that

Fπ1,π2,π3A (x1, x2) = Fπ1,π2,π3A (x′1, x
′
2) with probability Advcol

FA
(A). For FA′ of Prop. 3, these

tuples indeed render a collision as given in step 3:

F
π′1,π

′
2,π
′
3

A′ (x1, x2) = F
π′2,π

′
1,π
′
3

A (x1, x2) by (4),

= F
π′2,π

′
1,π
′
3

A (x′1, x
′
2) by collision for FA,

= F
π′1,π

′
2,π
′
3

A′ (x′1, x
′
2) by (4).

The same argument applies to the other propositions. In any case, A′ needs at most four
queries more than A, and thus we obtain Advcol

FA
(q) ≤ Advcol

FA′
(q+ 4). The reductions in the

other direction (from FA′ to FA) are identical due to symmetry. ut

Except for Prop. 4, the reductions also hold in the single-permutation setting. We remark
that these reductions are not only restricted to binary matrices, but apply to general matrices
A. In particular, the independence criterion of [9] can be derived using the given reductions.
Also, we note that the reductions can easily be represented by linear matrix operations.

4 Main Result for Multi-Permutation Setting

We classify the set of permutation-based compression functions of the form (3) that achieve
optimal collision resistance. Theorem 1 shows that the set of (asymptotically) secure functions
is fully covered by four equivalence classes; for any other compression function collisions can
be found faster than the birthday bound. One of these four classes – defined by FA2 below –
provides optimal (asymptotic) 22n/3 preimage security, for the other three classes preimages
can be found significantly faster.

Theorem 1. Consider the multi-permutation setting. Let FA be any compression function
defined by a binary matrix A of the form (2). Let FAk for k = 1, 2, 3, 4 be the compression
functions defined by matrices

A1 =

1 0 0 0 0
0 1 0 0 0
1 1 1 0 0

0 1 0 1 1

 , A2 =

1 0 0 0 0
0 1 0 0 0
1 1 1 0 0

1 0 1 1 1

 , A3 =

1 0 0 0 0
0 1 0 0 0
1 1 1 1 0

1 0 1 0 1

 , A4 =

1 0 0 0 0
0 1 0 0 0
1 1 1 1 0

1 1 1 0 1

 . (5)

Let ε > 0.

(i) If FA is equivalent to FAk for k ∈ {1, 2, 3, 4}, it satisfies limn→∞Advcol
FA

(2n/2(1−ε)) = 0.

Otherwise, it satisfies Advcol
FA

(q) = Ω(q5/22n);

(ii) If FA is equivalent to FA2, it satisfies limn→∞Advepre
FA

(22n/3(1−ε)) = 0;

(iii) If FA is equivalent to FAk for k ∈ {1, 3, 4}, it satisfies Advepre
FA

(q) = Θ(q2/2n).

In other words, a compression function offers optimal collision resistance if and only if it is
equivalent to either of FA1 ,FA2 ,FA3 ,FA4 , and additionally achieves optimal preimage resis-
tance (with respect to the bounds of [10]) if and only if it is equivalent to FA2 .

In order to prove Thm. 1, more specifically part (i) for k = 1, 2, 4 and part (ii), we pose
the following conjecture. This conjecture relates to the area of extremal graph theory and is
of independent interest. In particular, it can be shown to be similar to (but more complex
than) a longstanding problem of Zarankiewicz from 1951 [2, Ch. 6.2].

Conjecture 1. Let q ≤ 2n, and let Z be a set of q elements taken uniformly at random from
{0, 1}n. Let β denote the maximum number of tuples (x1, x2, z) ∈ X1 × X2 × Z such that
x1 ⊕ x2 = z, where X1, X2 are any two subsets of {0, 1}n of size q. Formally:

β := max
X1,X2⊆{0,1}n
|X1|=|X2|=q

∣∣{(x1, x2, z) ∈ X1 ×X2 × Z | x1 ⊕ x2 = z}
∣∣ . (6)

There exists a constant d1 such that Pr (β > d1q log q) → 0 for n → ∞ and q < 2n/2. Simi-
larly, there exists a constant d2 such that Pr

(
β > d2q

3/2
)
→ 0 for n→∞ and q < 22n/3.

The first bound is used in the proof Thm. 1(i) for k = 1, 2, 4, and the second bound in
the proof Thm. 1(ii). A detailed heuristic for Conj. 1 is given in App. D, together with a
comparison with Zarankiewicz’s conjecture, but we leave a full proof of Conj. 1 as an open
problem.

4.1 Proof of Theorem 1

The proof of Thm. 1 is structured as follows. Firstly, in Lem. 1 we show that any compression
function FA can be reduced either to an invalid compression function or to a compression
function FA′ defined by a matrix A′ with first two rows 10000, 01000. By construction (see

Sect. 3), the security properties of one compression function are valid for the whole equiv-
alence class. Secondly, in Lem. 2 several collision attacks are described that invalidate the
security of each of the remaining compression functions, except for the classes defined by
FAk (k ∈ {1, 2, 3, 4}) for Ak as in (5). Thirdly, the collision and preimage resistance of the
remaining four compression functions are analyzed in Lem. 3, which completes the proof of
Thm. 1.

Lemma 1. Any compression function FA, for valid A, is equivalent to a compression func-
tion FA′, where either A′ is invalid or the first two rows of A′ equal 10000, 01000.

Proof. The proof is constructive. Several reductions are used, but for ease of notation apos-
trophes are omitted. Let FA be a compression function defined by some valid matrix A. As
A is valid, we have a11 + a12 ≥ 1. If a11 + a12 = 2, we can apply Prop. 2 on c0 = 1 to obtain
a11 + a12 = 1. Now, by Prop. 1 we can assume that (a11, a12) = (1, 0).

Considering the second row of A, we distinguish between a22 = 1 and a22 = 0. In the
former case, a XOR-reduction (Prop. 2) on (c0, c1) = (a21, a23) reduces the scheme to the
required form. In the latter case, where a22 = 0, we proceed as follows. If a32 = 0, A is equiv-
alent to an invalid matrix. Otherwise, by applying Prop. 2 with (c0, c1, c2) = (a31, a33, a34)
we obtain that FA is equivalent to a compression function FA′ , for some matrix A′ with rows
(10000, a′210a

′
2300, 01000, a′41a

′
42a
′
43a
′
44a
′
45). The result is now obtained by swapping π2 and

π3 (Prop. 3 for i = 2). ut

As a direct consequence of Lem. 1, it suffices to consider compression functions FA, where

A =

1 0 0 0 0
0 1 0 0 0
a31 a32 a33 a34 0

a41 a42 a43 a44 1

 (7)

for some binary values a31, . . . , a44. Notice that a45 = 1 because of the validity of the matrix.
We describe a couple of collision attacks that apply to compression functions of this form.
We note that similar results also hold for preimage resistance.

Lemma 2. Let FA be a compression function defined by a valid matrix A of the form (7).

(i) If A satisfies (a31 + a33)(a32 + a34) = 0, then Advcol
FA

(q) = Ω(q4/2n);

(ii) If A satisfies
∨4
j=1 a3j = a4j = 0, then Advcol

FA
(q) = Ω(q3/2n);

(iii) If A satisfies
∧2
j=1 a3ja4,j+2 6= a3,j+2a4j, then Advcol

FA
(q) = Ω(q3/2n);

(iv) If A satisfies a41 + a42 + a43 + a44 = 1, then Advcol
FA

(q) = Ω(q5/22n).

For clarity, the proofs of results (i), (ii), (iii) and (iv) will be given separately.

Proof (Proof of Lem. 2(i)). Without loss of generality, we assume a32 + a34 = 0, i.e. a32 =

a34 = 0. Hence, we consider matrices A with
(a31 a32 a33 a34
a41 a42 a43 a44

)
=
(a31 0 a33 0
a41 a42 a43 1

)
, where a31 +

a33 ≥ 1, by validity of A. This matrix defines the compression function:

FA(x1, x2) = a41x1 ⊕ a42x2 ⊕ a43π1(x1)⊕ π2(x2)⊕ π3(a31x1 ⊕ a33π1(x1)) .

Define the functions f1(x) = a41x ⊕ a43π1(x) ⊕ π3(a31x ⊕ a33π1(x)) and f2(x) = a42x ⊕
π2(x). Notice that FA(x1, x2) = f1(x1) ⊕ f2(x2). A collision-finding adversary A for FA

proceeds as follows. He sets up two lists of q random elements X1 := {x(1)1 , . . . , x
(q)
1 } and

X2 := {x(1)2 , . . . , x
(q)
2 }, and computes the corresponding values f1(x

(k)
1) and f2(x

(k)
2) (for

k = 1, . . . , q). Thus, in total A makes q queries to each of his random oracles. Given one of

the
(
q
2

)2
combinations x1, x

′
1 ∈ X1, x2, x

′
2 ∈ X2, this combination yields a collision for FA

with probability Θ(2−n). Concluding, Advcol
FA

(q) = Ω(q4/2n). ut

Proof (Proof of Lem. 2(ii)). For the cases j ∈ {3, 4} as explained in Sect. 2.3 (these cases are
in fact redundant due to the validity of A), collisions can be found in at most 2n/3 queries
due to Stam’s bound [12, 13]. We consider a matrix A with a32 = a42 = 0 (the case j = 2), a
similar analysis holds for j = 1. Note that FA satisfies FA(x1, x2) = FA′(x1, π2(x2)), where A′

has third and fourth rows (a31a34a3300, a41a44a4301). The compression function FA′ satisfies
the condition of this lemma for j = 4, and invertibility of π2 guarantees a collision for FA in
the same amount of queries plus 2. We note that the result also follows from Prop. 4, but
as we will use Lem. 2(ii) in the single-permutation setting as well, we here consider a more
robust reduction. ut

Proof (Proof of Lem. 2(iii)). The idea of the attack is to focus on collisions (x1, x2) 6= (x′1, x
′
2)

for which the input to the third permutation π3 is the same. We first consider the case of

matrices A with
(a31 a32 a33 a34
a41 a42 a43 a44

)
=
(1 1 0 0
a41 a42 1 1

)
, the general case is discussed afterwards. The

matrix defines compression function

FA(x1, x2) = a41x1 ⊕ a42x2 ⊕ π1(x1)⊕ π2(x2)⊕ π3(x1 ⊕ x2) .

We construct an adversary A that aims at finding a collision (x1, x2) 6= (x′1, x
′
2) such that

x1 ⊕ x2 = x′1 ⊕ x′2 , (8a)

a41x1 ⊕ a42x2 ⊕ π1(x1)⊕ π2(x2) = a41x
′
1 ⊕ a42x′2 ⊕ π1(x′1)⊕ π2(x′2) . (8b)

The adversary sets up two lists of q = 2α elements X1 := {x(1)1 , . . . , x
(q)
1 } and X2 :=

{x(1)2 , . . . , x
(q)
2 }, where x

(k)
1 = x

(k)
2 = 0n−α‖〈k − 1〉α for k = 1, . . . , q. He computes the

corresponding values π1(x
(k)
1) and π2(x

(k)
2) (for k = 1, . . . , q). Fix any x1, x2, x

′
1 such that

x1 6= x′1. Then, there is exactly one x′2 such that (8a) is satisfied. For any of these q
(
q
2

)
options, (8b) is satisfied with probability Θ(2−n). For any of such succeeding tuples, the ad-
versary additionally queries π3(x1⊕x2) = π3(x

′
1⊕x′2) in order to get a collision. Concluding,

Advcol
FA

(q) = Ω(q3/2n).
The described attack relies on the key property that the set of equations(

a31 a32 a33 a34
a41 a42 a43 a44

)
(x1 ⊕ x′1, x2 ⊕ x′2, π1(x1)⊕ π1(x′1), π2(x2)⊕ π2(x′2))> = 0

contains an equation in which x1, x2, x
′
1, x
′
2 occur exactly once. By the requirement of A,(a31 a32 a33 a34

a41 a42 a43 a44

)
contains at least two zeroes. If two zeroes are located in the same row, this

key property is satisfied and the attack succeeds. On the other hand, if both rows contain
exactly one zero, one can XOR the first equation to the second one to return to the first
case. ut

Proof (Proof of Lem. 2(iv)). Without loss of generality, we assume a41 = 1. By Lem. 2(ii),
we can consider a32 = a33 = a34 = 1. The matrix defines compression function

FA(x1, x2) = x1 ⊕ π3(a31x1 ⊕ x2 ⊕ π1(x1)⊕ π2(x2)) .

We construct a collision adversary A for FA. The adversary sets up a list of q = 2α random

elements X2 := {x(1)2 , . . . , x
(q)
2 }, and computes the corresponding values y

(k)
2 = π2(x

(k)
2)

(for k = 1, . . . , q). Additionally, the adversary sets up two lists X1 := {x(1)1 , . . . , x
(q)
1 } and

Y3 := {y(1)3 , . . . , y
(q)
3 }, where x

(k)
1 = y

(k)
3 = 0n−α‖〈k − 1〉α for k = 1, . . . , q. He computes the

corresponding values y
(k)
1 = π1(x

(k)
1) and x

(k)
3 = π−13 (y

(k)
3) (for k = 1, . . . , q). Fix any x1, y3, x

′
1

such that x1 6= x′1. Then, there is exactly one y′3 such that x1 ⊕ y3 = x′1 ⊕ y′3. The adversary

obtains a collision for FA if X2 contains two elements x2, x
′
2 such that x2⊕y2 = a31x1⊕y1⊕x3

and x′2 ⊕ y′2 = a31x
′
1 ⊕ y′1 ⊕ x′3. Two such x2, x

′
2 exist with probability Ω(

(
q
2

)
/22n). As the

adversary needs to succeed for only one of the q
(
q
2

)
choices of x1, y3, x

′
1, he finds a collision

for FA with probability Ω(q5/22n). ut

Next, the compression functions evolved from Lem. 1 are analyzed with respect to the
attacks of Lem. 2. Before proceeding, we remark that for the multi-permutation setting, the
following reductions apply to the compression function classes evolved from Lem. 1. We refer
to these reductions as the “M- and N-reduction”.

M-reduction: Applying Prop. 1, and Prop. 3 on i = 1 corresponds to mutually swapping(a31
a41

)
↔
(a32
a42

)
and

(a33
a43

)
↔
(a34
a44

)
;

N-reduction: Prop. 4 reduces to swapping
(a3j
a4j

)
↔
(a3,j+2

a4,j+2

)
for j ∈ {1, 2}.

We now continue evaluating the matrices A of the form (7), and consider the different values
of ‖a3,∗‖.
‖a3,∗‖ = 0. The matrix is invalid and excluded by definition;
‖a3,∗‖ = 1. The matrix is vulnerable to the attack of Lem. 2(i);
‖a3,∗‖ = 2. The matrix contradicts either one of the requirements of Lem. 2. Technically, if

(a31 + a33)(a32 + a34) = 0 it violates Lem. 2(i), and otherwise the values a41, . . . , a44 will
violate either the requirement of Lem. 2(ii) or of Lem. 2(iii);

‖a3,∗‖ = 3. Due to M- and N-reductions, it suffices to consider a31a32a33a34 = 1110, and
consequently a44 = 1 by Lem. 2(ii). Lemma 2(iii) now states that we require a41 = a43,
which gives the following four options for a41a42a43: 000, 010, 101 and 111. The first one
is vulnerable to the attack of Lem. 2(iv), and the fourth matrix is equivalent to the second
(by consequently applying Prop. 2 on (c0, c1) = (1, 1), and Prop. 3 for i = 2). We are left
with A1 and A2 of (5):

A1 =

1 0 0 0 0
0 1 0 0 0
1 1 1 0 0

0 1 0 1 1

 , A2 =

1 0 0 0 0
0 1 0 0 0
1 1 1 0 0

1 0 1 1 1

 ;

‖a3,∗‖ = 4. Due to M- and N-reductions, it suffices to consider a41a42a43a44 ∈ {0000,
1000, 1010, 1100, 1110, 1111}. The cases 1000 and 1100 are vulnerable to the attacks of
Lems. 2(iv) and 2(iii), respectively. For the cases 0000 and 1111, finding collisions is as
hard as finding collisions for F(x1, x2) = x1 ⊕ x2 ⊕ π1(x1) ⊕ π2(x2) (for which collisions
are found in at most 2n/3 queries, due to Stam’s bound [12, 13]). We are left with A3 and
A4 of (5):

A3 =

1 0 0 0 0
0 1 0 0 0
1 1 1 1 0

1 0 1 0 1

 , A4 =

1 0 0 0 0
0 1 0 0 0
1 1 1 1 0

1 1 1 0 1

 .

It remains to analyze collision and preimage security of the four compression functions defined
by the matrices of (5), which is done in the following lemma. Particularly, Lem. 3 completes
the proof of Thm. 1.

Lemma 3. Let ε > 0. Then:

(i) limn→∞Advcol
FAk

(2n/2(1−ε)) = 0 for k = 1, 2, 3, 4;

(ii) limn→∞Advepre
FA2

(22n/3(1−ε)) = 0, and Advepre
FAk

(q) = Θ(q2/2n) for k = 1, 3, 4.

Proof. Part (i) is proven in App. A, part (ii) in App. B. ut

5 Main Result for Single-Permutation Setting

In a similar fashion as in Sect. 4, we analyze the security of compression functions based
on three calls to the same permutations, the single-permutation setting. It turns out that
there does not exist any compression function of the form (3) that achieves optimal collision
resistance. We note that this result does not rely on Conj. 1. In App. C we show how the
results of this section can be generalized to cover any single-permutation compression function
where additional affine transformations on the permutation inputs are taken into account.

Theorem 2. Consider the single-permutation setting, where π1 = π2 = π3 =: π. Any com-
pression function FA defined by a binary matrix A of the form (2) satisfies Advcol

FA
(q) =

Ω(q5/22n).

Proof. The proof of Thm. 2 is similar to the proof of Thm. 1, and we highlight the differ-
ences. Lemmas 1 and 2 still apply, and additionally the M-reduction also holds in the single-
permutation setting. Notice that the N-reduction does not hold as it incorporates Prop. 4.
Similar to before, we will evaluate the matrices A of the form (7). The case ‖a3,∗‖ ≤ 2 is the
same as before.

‖a3,∗‖ = 3. Due to M-reductions, it suffices to consider a31a32a33a34 ∈ {1110, 0111}.
– a31a32a33a34 = 1110. The same analysis as in Sect. 4.1 applies, leaving the matrices A1

and A2 of (5). In the single-permutation setting, the two corresponding compression
functions satisfy FA1(x1, π(x1)) = π2(x1) and FA2(x1, x2) = FA2(x1, x1 ⊕ x2 ⊕ π(x1))
for any x1, x2. Collisions can thus be trivially found;

– a31a32a33a34 = 0111. By Lem. 2(ii), we have a41 = 1. Lemma 2(iii) now states that
we require a42 = a44, which gives the following four options for a42a43a44: 000, 010,
101 and 111. The first one is vulnerable to the attack of Lem. 2(iv), the second, third
and fourth matrix satisfy FA(x1, x1) = x1, FA(x1, x1) = 0 and FA(x1, x1) = π(x1),
respectively, for any x1. Collisions can thus be trivially found;

‖a3,∗‖ = 4. Except for a41a42a43a44 ∈ {1010, 1001, 0110, 0101}, all induced compression
functions satisfy FA(x1, x1) ⊕ π(0) ∈ {0, x1, π(x1)} for any x1, for which collisions can
be trivially found. The cases 1001, 0110 are vulnerable to Lem. 2(iii). The remaining two
cases, which are equivalent by M-reduction, allow for trivial collisions as well: the com-
pression function induced by (a41a42a43a44) = (1010) satisfies FA(x1, π

−1(x1⊕π(x1))) = 0
for any x1 (cf. [9]).

Hence, the analyzed compression functions either allow for trivial collision or are vulnerable
to Lem. 2, therewith allowing for collisions in at most 22n/5 queries. ut

Concluding, for any compression function FA of the form (3), where the three permuta-
tions are equal to one single permutation π, collisions can be found in at most 22n/5 queries,
hence considerably faster than in 2n/2 queries.

6 Conclusions

We provided a full security classification of 2n-to-n-bit compression functions that are solely
built of XOR-operators and of three permutations. Therewith, we have analyzed compression
functions that are not included in the analysis of Rogaway and Steinberger [9], but yet are
interesting because of their elegance (they only employ XOR-operators) and efficiency (XOR-
operators are slightly cheaper than finite field multiplications by constants). For any of the
215 compression functions of the described form, we either provide a formal collision and
preimage security proof or a collision attack more efficient than the birthday bound.

For the multi-permutation setting, where the three permutations are different, there
are exactly four equivalence classes of functions that allow for optimal collision resistance,
one class of which the compression functions achieve optimal preimage resistance w.r.t. the
bounds of [10]. A summary of these results is given in Table 1. Regarding the absolute num-
ber of collision/preimage secure compression functions, by ways of an extensive computation
one finds 96 functions equivalent to FA1 (including the FA1 itself), 48 functions in each of
the classes defined by FA2 and FA4 , and 24 functions equivalent to FA3 . In total, we have
thus proven 216 compression functions optimally collision secure, 48 of which we have proven
optimally preimage secure. A small part of the results for the multi-permutation setting relies
on an extremal graph theory based conjecture, Conj. 1, which we supported by an extensive
and detailed heuristic. We leave the full analysis of Conj. 1 as an open problem.

For the single-permutation setting, where the three permutations are the same, we show
that it is not possible to construct a 2n-to-n-bit compression function that achieves optimal
collision resistance. In light of the amount of optimally secure compression functions we have
found in the multi-permutation setting, this observation is not as expected. This negative
result casts doubts over the existence of any (larger) permutation-based XOR-based com-
pression function built on (multiple invocations of) one single permutation. We leave this
question as an open problem.

The results in this work are derived in the permutation setting. Different results may be
obtained if we consider three underlying primitives to be one-way functions: in particular,
the π-inverse-reduction (Prop. 4) and Lem. 2 rely on the invertibility of these primitives.
Further research questions include the applicability of the approach followed in this work to
different classes of compression functions, for instance with larger domain and range, with
more permutations or random functions instead, or defined over different fields.

Acknowledgments. This work has been funded in part by the IAP Program P6/26
BCRYPT of the Belgian State (Belgian Science Policy), in part by the European Com-
mission through the ICT program under contract ICT-2007-216676 ECRYPT II, and in part
by the Research Council K.U.Leuven: GOA TENSE. The first author is supported by a
Ph.D. Fellowship from the Institute for the Promotion of Innovation through Science and
Technology in Flanders (IWT-Vlaanderen).

References

[1] Black, J., Cochran, M., Shrimpton, T.: On the impossibility of highly-efficient blockcipher-based hash
functions. In: Advances in Cryptology - EUROCRYPT 2005. Lecture Notes in Computer Science, vol.
3494, pp. 526–541. Springer-Verlag, Berlin (2005)

[2] Bollobás, B.: Extremal Graph Theory. Academic Press (1978)

[3] Hirose, S.: Some plausible constructions of double-block-length hash functions. In: Fast Software En-
cryption ’06. Lecture Notes in Computer Science, vol. 4047, pp. 210–225. Springer-Verlag, Berlin (2006)

[4] Lai, X., Massey, J.: Hash function based on block ciphers. In: Advances in Cryptology - EUROCRYPT
’92. Lecture Notes in Computer Science, vol. 658, pp. 55–70. Springer-Verlag, Berlin (1992)

[5] Lee, J., Kwon, D.: Security of single-permutation-based compression functions. Cryptology ePrint
Archive, Report 2009/145 (2009)

[6] Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A synthetic approach.
In: Advances in Cryptology - CRYPTO ’93. Lecture Notes in Computer Science, vol. 773, pp. 368–378.
Springer-Verlag, Berlin (1993)

[7] Rabin, M.: Digitalized signatures. In: Foundations of Secure Computation ’78. pp. 155–166. Academic
Press, New York (1978)

[8] Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications, and sepa-
rations for preimage resistance, second-preimage resistance, and collision resistance. In: Fast Software
Encryption 2004. Lecture Notes in Computer Science, vol. 3017, pp. 371–388. Springer-Verlag, Berlin
(2004)

[9] Rogaway, P., Steinberger, J.: Constructing cryptographic hash functions from fixed-key blockciphers. In:
Advances in Cryptology - CRYPTO 2008. Lecture Notes in Computer Science, vol. 5157, pp. 433–450.
Springer-Verlag, Berlin (2008)

[10] Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based hashing. In: Advances in
Cryptology - EUROCRYPT 2008. Lecture Notes in Computer Science, vol. 4965, pp. 220–236. Springer-
Verlag, Berlin (2008)

[11] Shrimpton, T., Stam, M.: Building a collision-resistant compression function from non-compressing
primitives. In: International Colloquium on Automata, Languages and Programming - ICALP (2) 2008.
Lecture Notes in Computer Science, vol. 5126, pp. 643–654. Springer-Verlag, Berlin (2008)

[12] Stam, M.: Beyond uniformity: Better security/efficiency tradeoffs for compression functions. In: Advances
in Cryptology - CRYPTO 2008. Lecture Notes in Computer Science, vol. 5157, pp. 397–412. Springer-
Verlag, Berlin (2008)

[13] Steinberger, J.: Stam’s collision resistance conjecture. In: Advances in Cryptology - EUROCRYPT 2010.
Lecture Notes in Computer Science, vol. 6110, pp. 597–615. Springer-Verlag, Berlin (2010)

A Proof of Lemma 3(i)

For FAk (k = 1, . . . , 4), where the matrices Ak are given in (5), the goal is to prove that
limn→∞Advcol

FAk
(2n/2(1−ε)) = 0 for any ε > 0, demonstrating the asymptotic collision security

of FAk . In the remainder of this section, π1, π2, π3 are assumed to be three permutations taken
uniformly at random from Pn.

The approach followed in this proof is as follows: finding a collision for a function FA, with
A of the form (7), corresponds to obtaining query pairs (x1, y1), (x

′
1, y
′
1) for π1, (x2, y2), (x

′
2, y
′
2)

for π2, and (x3, y3), (x
′
3, y
′
3) for π3 in the query history, such that:

(x1, x2) 6= (x′1, x
′
2) , (9a)

a31x1 ⊕ a32x2 ⊕ a33y1 ⊕ a34y2 = x3 , (9b)

a31x
′
1 ⊕ a32x′2 ⊕ a33y′1 ⊕ a34y′2 = x′3 , (9c)

a41x1 ⊕ a42x2 ⊕ a43y1 ⊕ a44y2 ⊕ y3 = a41x
′
1 ⊕ a42x′2 ⊕ a43y′1 ⊕ a44y′2 ⊕ y′3 (9d)

(recall that the adversary is required to make the correct queries in order to form the
collision). We will analyze the maximum probability of any adversary, making at most q
queries to his oracles, in breaking (9), which equals Advcol

FA
(q) by definition. Denote by Qi

for i = 1, . . . , q the first i queries of the query history Qq. To bound Advcol
FA

(q), we distinguish
among the possibilities that xj = x′j (for j = 1, 2, 3). Formally, we obtain

Advcol
FA

(q) ≤
∑

c1,c2,c3∈{0,1}

Pr
(

solution for (9)
∧

xj = x′j ⇐⇒ cj = 1 (j = 1, 2, 3)
)
. (10)

Returning to the four compression functions FAk (k ∈ {1, 2, 3, 4}), this leaves 32 cases to be
evaluated, but for some choices of c1c2c3 the probability on the right hand side of (10) equals
0. Starting with FA1 , the cases c1c2c3 ∈ {110, 111} violate (9a), the case 010 would give
contradiction for (9d), and 101 would give a contradiction in lines (9b-9c). On the other side,
the case c1c2c3 = 000 corresponds to E1(Qq) of Fig. 3, and similarly the cases 001, 011, and
100 correspond to events E5(Qq),E9(Qq),E10(Qq) of Fig. 3, respectively. A similar analysis
can be applied to FA2 ,FA3 ,FA4 to obtain the results of Table 2. In general, the following
holds for FAk , where k ∈ {1, 2, 3, 4}:

collision for FA1 =⇒ E1(Qq) ∨ E5(Qq) ∨ E9(Qq) ∨ E10(Qq) , (11a)

collision for FA2 =⇒ E2(Qq) ∨ E5(Qq) ∨ E7(Qq) ∨ E9(Qq) ∨ E11(Qq) , (11b)

collision for FA3 =⇒ E3(Qq) ∨ E6(Qq) ∨ E8(Qq) ∨ E9(Qq) ∨ E13(Qq) , (11c)

collision for FA4 =⇒ E4(Qq) ∨ E8(Qq) ∨ E9(Qq) ∨ E12(Qq) . (11d)

Table 2. A case distinction for the analysis of (10) for FAk (k ∈ {1, 2, 3, 4}), where each
column corresponds to a particular choice of c1c2c3. In case of 7, the choice c1c2c3 renders
violation of one or more equations of (9), otherwise the case corresponds to event El(Qq)
(l ∈ {1, . . . , 13}) given in Fig. 3.

c1c2c3 000 001 010 011 100 101 110 111

FA1 E1(Qq) E5(Qq) 7 (9d) E9(Qq) E10(Qq) 7 (9b-9c) 7 (9a) 7 (9a)

FA2 E2(Qq) E5(Qq) E7(Qq) E9(Qq) E11(Qq) 7 (9b-9c) 7 (9a) 7 (9a)

FA3 E3(Qq) E6(Qq) E8(Qq) E9(Qq) 7 (9d) E13(Qq) 7 (9a) 7 (9a)

FA4 E4(Qq) 7 (9b-9d) E8(Qq) E9(Qq) E12(Qq) 7 (9d) 7 (9a) 7 (9a)

Here, the events El(Qq) (l ∈ {1, . . . , 13}) are given in Fig. 3. Thus, it remains to analyze the
probabilities of the events El(Qq) to occur, but we will analyze these under the condition
that the previous query did not result in success, and some additional condition C(Qq) =
C1∨...∨4(Qq), where the claims C1(Qq), . . . ,C4(Qq) are given in Fig. 4:

Pr (El(Qq)) ≤ Pr (El(Qq) | ¬El(Qq−1) ∧ ¬C(Qq)) + Pr (El(Qq−1) ∨ C(Qq)) .

Similarly, the second probability of this bound can be split up further:

Pr (El(Qq−1) ∨ C(Qq)) ≤ Pr (El(Qq−1) | ¬El(Qq−2) ∧ ¬C(Qq−1)) +

Pr (C(Qq) ∧ ¬C(Qq−1)) + Pr (El(Qq−2) ∨ C(Qq−1)) .

Applying this trick q times eventually gives the following probability bound on El(Qq):

Pr (El(Qq)) ≤
q∑
i=1

Pr (El(Qi) | ¬El(Qi−1) ∧ ¬C(Qi)) +

q∑
i=1

Pr (C(Qi) ∧ ¬C(Qi−1)) . (12)

The remainder of the section is now divided as follows. In App. A.1, we will bound the
conditioned events El(Qq) to occur for l ∈ {1, . . . , 13} (first sum of (12)). Then, in App. A.2,
a bound on the occurrence of C(Qq) is computed (second sum of (12)). The results are
assembled in App. A.3, to prove Lem. 3(i).

A.1 Bounding Occurrence of Conditioned El(Qq), l = 1, . . . , 13

In this section, we bound the conditioned events El(Qq) (for l = 1, . . . , 13) to occur, more
specifically the first sum of (12). The cases l = 1, 2, 3, 4 are found in Lems. 4-7, respectively.
The cases l = 10, 11, 12 are found in Lem. 8, and the remaining cases in Lem. 9.

Let d1 be the constant defined in Conj. 1. On input of parameters (q, n), we define
εc(q, n) = Pr (β > d1q log q) of Conj. 1. This quantity tends to 0 for n→∞ and for q < 2n/2.
In the remainder of this work, we define q1 = d1q log q. We will also consider Conj. 1 on inputs
(q1, n) and (K2q, n), where K2 is a parameter used in Fig. 4.

Lemma 4.

q∑
i=1

Pr (E1(Qi) | ¬E1(Qi−1) ∧ ¬C(Qi)) ≤
K2q

2
1 log q1

2n − q
+ 2εc(q, n) + εc(q1, n).

Proof. We write E1a,E1b and E1c for the three equations of E1(Q) (Fig. 3). We first bound
the success probability of the ith query (i = 1, . . . , q), and then we sum over all values of i.

Assume first the adversary makes a query x
(i)
3 → y

(i)
3 = π3(x

(i)
3) for i = 1, . . . , q (the same

treatment holds for queries x′3 → y′3, x2 → y2 or x′2 → y′2). By Conj. 1, there exist at most q1
tuples (x′1, y

′
1), (x

′
2, y
′
2), (x

′
3, y
′
3) such that E1b is satisfied, except w.p. at most εc(q, n). Denote

E1(Q) : (x1, y1), (x′1, y′1), (x2, y2), (x′2, y′2),
(x3, y3), (x

′
3, y
′
3) ∈ Q s.t.

x1 6= x′1, x2 6= x′2, x3 6= x′3,

x1 ⊕ y1 ⊕ x2 = x3,

x′1 ⊕ y′1 ⊕ x′2 = x′3,

x2 ⊕ y2 ⊕ y3 = x′2 ⊕ y′2 ⊕ y′3.
E2(Q) : (x1, y1), (x′1, y′1), (x2, y2), (x′2, y′2),

(x3, y3), (x
′
3, y
′
3) ∈ Q s.t.

x1 6= x′1, x2 6= x′2, x3 6= x′3,

x1 ⊕ y1 ⊕ x2 = x3,

x′1 ⊕ y′1 ⊕ x′2 = x′3,

x1 ⊕ y1 ⊕ y2 ⊕ y3 = x′1 ⊕ y′1 ⊕ y′2 ⊕ y′3.
E3(Q) : (x1, y1), (x′1, y′1), (x2, y2), (x′2, y′2),

(x3, y3), (x
′
3, y
′
3) ∈ Q s.t.

x1 6= x′1, x2 6= x′2, x3 6= x′3,

x1 ⊕ y1 ⊕ x2 ⊕ y2 = x3,

x′1 ⊕ y′1 ⊕ x′2 ⊕ y′2 = x′3,

x1 ⊕ y1 ⊕ y3 = x′1 ⊕ y′1 ⊕ y′3.
E4(Q) : (x1, y1), (x′1, y′1), (x2, y2), (x′2, y′2),

(x3, y3), (x
′
3, y
′
3) ∈ Q s.t.

x1 6= x′1, x2 6= x′2, x3 6= x′3,

x1 ⊕ y1 ⊕ x2 ⊕ y2 = x3,

x′1 ⊕ y′1 ⊕ x′2 ⊕ y′2 = x′3,

x1 ⊕ y1 ⊕ x2 ⊕ y3 = x′1 ⊕ y′1 ⊕ x′2 ⊕ y′3.
E5(Q) : (x1, y1), (x′1, y′1), (x2, y2), (x′2, y′2) ∈ Q s.t.

x1 6= x′1, x2 6= x′2,

x1 ⊕ y1 ⊕ x2 = x′1 ⊕ y′1 ⊕ x′2,
x2 ⊕ y2 = x′2 ⊕ y′2.

E6(Q) : (x1, y1), (x′1, y′1), (x2, y2), (x′2, y′2) ∈ Q s.t.

x1 6= x′1, x2 6= x′2,

x1 ⊕ y1 = x′1 ⊕ y′1,
x2 ⊕ y2 = x′2 ⊕ y′2.

E7(Q) : (x1, y1), (x′1, y′1), (x3, y3), (x′3, y′3) ∈ Q s.t.

x1 6= x′1, x3 6= x′3,

x1 ⊕ y1 ⊕ x3 = x′1 ⊕ y′1 ⊕ x′3,
x3 ⊕ y3 = x′3 ⊕ y′3.

E8(Q) : (x1, y1), (x′1, y′1), (x2, y2),
(x3, y3), (x

′
3, y
′
3) ∈ Q s.t.

x1 6= x′1, x3 6= x′3,

x1 ⊕ y1 ⊕ x3 = x′1 ⊕ y′1 ⊕ x′3 = x2 ⊕ y2,
x3 ⊕ y3 = x′3 ⊕ y′3.

E9(Q) : (x1, y1), (x′1, y′1) ∈ Q s.t.

x1 6= x′1,

x1 ⊕ y1 = x′1 ⊕ y′1.
E10(Q) : (x1, y1), (x2, y2), (x′2, y′2),

(x3, y3), (x
′
3, y
′
3) ∈ Q s.t.

x2 6= x′2, x3 6= x′3,

x2 ⊕ x3 = x′2 ⊕ x′3 = x1 ⊕ y1,
x2 ⊕ y2 ⊕ y3 = x′2 ⊕ y′2 ⊕ y′3.

E11(Q) : (x1, y1), (x2, y2), (x′2, y′2),
(x3, y3), (x

′
3, y
′
3) ∈ Q s.t.

x2 6= x′2, x3 6= x′3,

x2 ⊕ x3 = x′2 ⊕ x′3 = x1 ⊕ y1,
y2 ⊕ y3 = y′2 ⊕ y′3.

E12(Q) : (x1, y1), (x2, y2), (x′2, y′2),
(x3, y3), (x

′
3, y
′
3) ∈ Q s.t.

x2 6= x′2, x3 6= x′3,

x2 ⊕ y2 ⊕ x3 = x′2 ⊕ y′2 ⊕ x′3 = x1 ⊕ y1,
x2 ⊕ y3 = x′2 ⊕ y′3.

E13(Q) : (x2, y2), (x′2, y′2) ∈ Q s.t.

x2 6= x′2,

x2 ⊕ y2 = x′2 ⊕ y′2.

Fig. 3. The events El(Q) (l ∈ {1, . . . , 13}) employed in the proof of Lem. 3(i) (App. A). Q is
a query history.

Li to be the number of tuples (x1, y1), (x2, y2) that make equation E1a satisfied for x
(i)
3 . For

any of the tuples satisfying E1b, and any of the tuples satisfying E1a, equation E1c is satisfied
with probability at most 1/(2n− q). Considering all queries x3 → y3, the adversary succeeds
in breaking E1(Qq) with probability at most

∑q
i=1

Liq1
2n−q + εc(q, n). Notice that by Conj. 1,∑q

i=1 Li ≤ q1, except w.p. at most εc(q, n). We thus obtain upper bound
q21

2n−q + 2εc(q, n).

Assume the adversary makes a query y
(i)
2 → x

(i)
2 = π−12 (y

(i)
2) for i = 1, . . . , q (the same

treatment holds for query y′2 → x′2). By Conj. 1, there exist at most q1 tuples (x′1, y
′
1), (x

′
2, y
′
2),

(x′3, y
′
3) such that E1b is satisfied, except w.p. at most εc(q, n). This consequently leads to

at most q1 possible values of y
(i)
2 ⊕ x′2 ⊕ y′2 ⊕ y′3. For any of these values, by ¬C2(Qi) there

exist at most K2 combinations of queries (x1, y1), (x3, y3) such that y
(i)
2 ⊕ x′2 ⊕ y′2 ⊕ y′3 =

x1 ⊕ y1 ⊕ x3 ⊕ y3. For any of these K2q1 choices, the adversary breaks E1(Qi) if x
(i)
2 hits

C1(Q) : for some c there exist more than K1 solutions in Q to one of the 3 equations:

x1 ⊕ y1 = c x2 ⊕ y2 = c x3 ⊕ y3 = c.

C2(Q) : for some c there exist more than K2 solutions in Q to one of the 3 equations:

x1 ⊕ y1 ⊕ x2 ⊕ y2 = c x1 ⊕ y1 ⊕ x3 ⊕ y3 = c x2 ⊕ y2 ⊕ x3 ⊕ y3 = c.

C3(Q) : there exist more than K2q solutions in Q to one of the 3 equations:

x1 ⊕ y1 ⊕ x2 ⊕ y2 = x3 x1 ⊕ y1 ⊕ x3 ⊕ y3 = x2 x2 ⊕ y2 ⊕ x3 ⊕ y3 = x1.

C4(Q) : there exist more than q − 1 solutions in Q to one of the 3 equations:

x2 6= x′2, x3 6= x′3, and x2 6= x′2, x3 6= x′3, and x2 6= x′2, x3 6= x′3, and

x2 ⊕ x3 = x′2 ⊕ x′3, and x2 ⊕ x3 = x′2 ⊕ x′3, and x2 ⊕ y3 = x′2 ⊕ y′3, and

y2 ⊕ y3 = y′2 ⊕ y′3 x2 ⊕ y2 ⊕ y3 = x′2 ⊕ y′2 ⊕ y′3 x2 ⊕ y2 ⊕ x3 = x′2 ⊕ y′2 ⊕ x′3.

Fig. 4. The claims C1(Q), . . . ,C4(Q) employed in the proof of Lem. 3(i) (App. A). We denote
C(Q) = C1∨...∨4(Q). The parameters K1 ≥ 1, K2 > 1 are any fixed constants. Q is a query
history.

y
(i)
2 ⊕y3⊕x′2⊕y′2⊕y′3 = x1⊕y1⊕x3, hence with probability at most 1/(2n− q). Considering

all queries y2 → x2, the adversary succeeds with probability at most K2qq1
2n−q + εc(q, n).

Assume the adversary makes a query y
(i)
3 → x

(i)
3 = π−13 (y

(i)
3) for i = 1, . . . , q (the same

treatment holds for query y′3 → x′3). By Conj. 1, there exist at most q1 tuples (x′1, y
′
1), (x

′
2, y
′
2),

(x′3, y
′
3) such that E1b is satisfied, except w.p. at most εc(q, n). This consequently leads to at

most q1 possible values of x′2 ⊕ y′2 ⊕ y′3. Denote Li to be the number of choices (x2, y2), x
′
2 ⊕

y′2 ⊕ y′3 that make equation E1c satisfied for y
(i)
3 . For any of these Li tuples, equation E1a is

satisfied with probability at most q/(2n − q). Considering all queries y3 → x3, the adversary
succeeds in breaking E1(Qq) with probability at most

∑q
i=1

Liq
2n−q + εc(q, n). Notice that by

Conj. 1,
∑q

i=1 Li ≤ d1q1 log q1, except w.p. at most εc(q1, n).1 We thus obtain upper bound
d1qq1 log q1

2n−q + εc(q, n) + εc(q1, n).

Assume the adversary makes a query x
(i)
1 → y

(i)
1 = π1(x

(i)
1) for i = 1, . . . , q (the same

treatment holds for queries y1 → x1, x
′
1 → y′1 or y′1 → x′1). By Conj. 1, there exist at most q1

tuples (x′1, y
′
1), (x

′
2, y
′
2), (x

′
3, y
′
3) such that E1b is satisfied, except w.p. at most εc(q, n). This

consequently leads to at most q1 possible values of x′2⊕y′2⊕y′3. Again by Conj. 1, there exist at
most d1q1 log q1 combinations of queries (x′1, y

′
1), (x

′
2, y
′
2), (x

′
3, y
′
3), (x2, y2), (x3, y3) such that

E1c is satisfied, except w.p. at most εc(q1, n). For any of these combinations, the adversary

breaks E1(Qq) if y
(i)
1 hits x

(i)
1 ⊕x2⊕x3, hence with probability at most 1/(2n−q). Considering

all queries x1 → y1, the adversary succeeds with probability at most d1qq1 log q1
2n−q + εc(q, n) +

εc(q1, n).

In any case, the success probability is at most
K2q21 log q1

2n−q + 2εc(q, n) + εc(q1, n). ut

Lemma 5.

q∑
i=1

Pr (E2(Qi) | ¬E2(Qi−1) ∧ ¬C(Qi)) ≤
K2q

2
1 log q1

2n − q
+ 2εc(q, n) + εc(q1, n).

Proof. We write E2a,E2b and E2c for the three equations of E2(Q) (Fig. 3). The approach is
similar as before.

Assume first the adversary makes a query x
(i)
3 → y

(i)
3 = π3(x

(i)
3) for i = 1, . . . , q (the same

treatment holds for queries x′3 → y′3, x2 → y2 or x′2 → y′2). By Conj. 1, there exist at most q1

1 Here, Z (the values x2⊕ y2) is a set of q random elements, and the adversary is challenged to find two sets,
one of size q (the values x3) and one of size at most q1 (the values x′2 ⊕ y′2 ⊕ y′3), to maximize the number
of matches. The success probability for this is upper bounded by the success probability in breaking this
problem if all sets are of size q1. Then, we can apply Conj. 1 on (q1, n).

tuples (x′1, y
′
1), (x

′
2, y
′
2), (x

′
3, y
′
3) such that E2b is satisfied, except w.p. at most εc(q, n). Denote

Li to be the number of tuples (x1, y1), (x2, y2) that make equation E2a satisfied for x
(i)
3 . For

any of the tuples satisfying E2b, and any of the tuples satisfying E2a, equation E2c is satisfied
with probability at most 1/(2n− q). Considering all queries x3 → y3, the adversary succeeds
in breaking E2(Qq) with probability at most

∑q
i=1

Liq1
2n−q + εc(q, n). Notice that by Conj. 1,∑q

i=1 Li ≤ q1, except w.p. at most εc(q, n). We thus obtain upper bound
q21

2n−q + 2εc(q, n).

Assume the adversary makes a query y
(i)
3 → x

(i)
3 = π−13 (y

(i)
3) for i = 1, . . . , q (the same

treatment holds for query y′3 → x′3, y2 → x2 or y′2 → x′2). By Conj. 1, there exist at most q1 tu-
ples (x′1, y

′
1), (x

′
2, y
′
2), (x

′
3, y
′
3) such that E2b is satisfied, except w.p. at most εc(q, n). This con-

sequently leads to at most q1 possible values of y
(i)
3 ⊕x′1⊕y′1⊕y′2⊕y′3. Again by Conj. 1, there

exist at most d1q1 log q1 combinations of queries (x′1, y
′
1), (x

′
2, y
′
2), (x

′
3, y
′
3), (x1, y1),

(x2, y2) such that E2c is satisfied for y
(i)
3 , except w.p. at most εc(q1, n). For any of these

combinations, the adversary breaks E2(Qq) if x
(i)
3 hits x1 ⊕ y1 ⊕ x2, hence with probability

at most 1/(2n− q). Considering all queries y3 → x3, the adversary succeeds with probability
at most d1qq1 log q1

2n−q + εc(q, n) + εc(q1, n).

Assume the adversary makes a query x
(i)
1 → y

(i)
1 = π1(x

(i)
1) for i = 1, . . . , q (the same

treatment holds for queries y1 → x1, x
′
1 → y′1 or y′1 → x′1). By Conj. 1, there exist at most

q1 tuples (x′1, y
′
1), (x

′
2, y
′
2), (x

′
3, y
′
3) such that E2b is satisfied, except w.p. at most εc(q, n).

This consequently leads to at most q1 possible values of x′1 ⊕ y′1 ⊕ y′2 ⊕ y′3. For any of these
values, by ¬C2(Qi) there exist at most K2 combinations of queries (x2, y2), (x3, y3) such that
x2 ⊕ y2 ⊕ x3 ⊕ y3 = x′1 ⊕ y′1 ⊕ y′2 ⊕ y′3. For any of these K2q1 choices, the adversary breaks

E2(Qi) if y
(i)
1 hits x

(i)
1 ⊕ x2 ⊕ x3, hence with probability at most 1/(2n − q). Considering all

queries x1 → y1, the adversary succeeds with probability at most K2qq1
2n−q + εc(q, n).

In any case, the success probability is at most
K2q21 log q1

2n−q + 2εc(q, n) + εc(q1, n). ut

Lemma 6.

q∑
i=1

Pr (E3(Qi) | ¬E3(Qi−1) ∧ ¬C(Qi)) ≤
K2

2q
2

2n − q
.

Proof. The case of E3(Qq) is fairly similar to the case of E2(Qq) (see Lem. 5), with the
difference that the usage of Conj. 1 is replaced with ¬C3(Qi). We write E3a,E3b and E3c for
the three equations of E3(Q) (Fig. 3). The cases of queries x1, x

′
1, y1, y

′
1, x3 and x′3 are the

same as before (notice that E3a and E3b can be substituted in E3c), resulting in a success

probability upper bounded by
K2

2q
2

2n−q .

Assume the adversary makes a query x
(i)
2 → y

(i)
2 = π2(x

(i)
2) for i = 1, . . . , q (the same

treatment holds for queries y2 → x2, x
′
2 → y′2 or y′2 → x′2). As ¬C3(Qi), there exist at most

K2q tuples (x′1, y
′
1), (x

′
2, y
′
2), (x

′
3, y
′
3) such that E3b is satisfied, and this consequently leads to

at most K2q possible values of x′2 ⊕ y′2 ⊕ x′3 ⊕ y′3, which behave random. By a slight variant
of ¬C3(Qi) (as the previously mentioned values behave random), there exist at most K2

2q
combinations of queries (x′1, y

′
1), (x

′
2, y
′
2), (x

′
3, y
′
3), (x1, y1), (x3, y3) such that x1 ⊕ y1 ⊕ y3 =

x′2 ⊕ y′2 ⊕ x′3 ⊕ y′3. For any of these combinations, the adversary breaks E3(Qq) if y
(i)
2 hits

x1⊕y1⊕x(i)2 ⊕x3, hence with probability at most 1/(2n−q). Considering all queries x2 → y2,

the adversary succeeds with probability at most
K2

2q
2

2n−q .

Assume the adversary makes a query y
(i)
3 → x

(i)
3 = π−13 (y

(i)
3) for i = 1, . . . , q (the

same treatment holds for query y′3 → x′3). As ¬C3(Qi), there exist at most K2q tuples
(x′1, y

′
1), (x

′
2, y
′
2), (x

′
3, y
′
3) such that E3b is satisfied, and this consequently leads to at most K2q

possible values of x′2⊕y′2⊕x′3⊕y′3. Denote Li to be the number of choices (x1, y1), x
′
1⊕y′1⊕y′3

that make equation E3c satisfied for y
(i)
3 . For any of these tuples, equation E3a is satisfied

with probability at most q/(2n− q). Considering all queries y3 → x3, the adversary succeeds
in breaking E3(Qq) with probability at most

∑q
i=1

Liq
2n−q . Notice that by a slight variant of

¬C3(Qi),
∑q

i=1 Li ≤ K2
2q. We thus obtain upper bound

K2
2q

2

2n−q .

In any case, the success probability is at most
K2

2q
2

2n−q . ut

The slight variant of C3(Qi) employed in the proof of Lem. 6 embraces the case the
adversary has i different tuples (x1, y1) and i different tuples (x3, y3), but (at most) K2i
different random values z2 = x′2 ⊕ y′2 ⊕ x′3 ⊕ y′3, and aims at finding combinations such that
x1 ⊕ y1 ⊕ z2 = x3 (or similar variants). Rather than introducing a separate claim for this, it
suffices to condition for E3(Q) on claim C(Q) where K2q queries are allowed. This observation
is used in Sect. A.3, where the results are assembled.

Lemma 7.

q∑
i=1

Pr (E4(Qi) | ¬E4(Qi−1) ∧ ¬C(Qi)) ≤
d1K

2
2q

2 log(K2q)

2n − q
+ εc(K2q, n).

Proof. The case of E4(Qq) is fairly similar to the case of E1(Qq) (see Lem. 4), with the
difference that most of the usages of Conj. 1 are replaced with ¬C3(Qi). We write E4a,E4b and
E4c for the three equations of E4(Q) (Fig. 3). Note that equation E4c reduces to y2⊕x3⊕y3 =
y′2 ⊕ x′3 ⊕ y′3 by substituting equations E4a,E4b. The cases of queries x1, x

′
1, y1, y

′
1, x3 and x′3

are the same as before. For queries x2, x
′
2, y3 and y′3, one follows the same reasoning as

for queries y2 → x2 in the analysis of E1(Qq), and for queries y2, y
′
2 one follows the same

reasoning as for y3 → x3 in the analysis of E1(Qq). Concretely, the success probability is at

most
d1K2

2q
2 log(K2q)
2n−q + εc(K2q, n). ut

Lemma 8.

q∑
i=1

Pr (El(Qi) | ¬El(Qi−1) ∧ ¬C(Qi)) ≤

K1qq1 + q2

2n − q
+ εc(q, n) for l = 10,

qq1 + q2

2n − q
+ εc(q, n) for l = 11,

K1K2q
2 + q2

2n − q
for l = 12.

Proof. We start with E11(Qq), and write E11a,E11b for the two equations of E11(Q) (Fig. 3).
The approach is similar as before.

Assume first the adversary makes a query x
(i)
3 → y

(i)
3 = π3(x

(i)
3) for i = 1, . . . , q (the

same treatment holds for queries x′3 → y′3, x2 → y2 or x′2 → y′2). By Conj. 1, there exist
at most q1 tuples (x′2, y

′
2), (x

′
3, y
′
3), (x1, y1) such that the second equality of E11a is satisfied,

except w.p. at most εc(q, n). For any such choice, as x
(i)
3 is fixed there exists at most one

(x2, y2) such that equation E11a is satisfied. For any of the combinations, E11b is satisfied
with probability at most 1/(2n− q). Considering all queries x3 → y3, the adversary succeeds
in breaking E11(Qq) with probability at most qq1

2n−q + εc(q, n).

Assume the adversary makes a query y
(i)
3 → x

(i)
3 = π−13 (y

(i)
3) for i = 1, . . . , q (the same

treatment holds for queries y′3 → x′3, y2 → x2 or y′2 → x′2). By Conj. 1, there exist at most
q1 tuples (x′2, y

′
2), (x

′
3, y
′
3), (x1, y1) such that the second equality of E11a is satisfied, except

w.p. at most εc(q, n). For any such choice, as y
(i)
3 is fixed there exists at most one (x2, y2) such

that equation E11b is satisfied. For any of the combinations, E11a is satisfied with probability
at most 1/(2n − q). Considering all queries y3 → x3, the adversary succeeds in breaking
E11(Qq) with probability at most qq1

2n−q + εc(q, n).

Assume the adversary makes a query x
(i)
1 → y

(i)
1 = π1(x

(i)
1) for i = 1, . . . , q (the same

treatment holds for queries y1 → x1). By ¬C4(Qi), there exist at most q − 1 tuples (x2, y2),

(x3, y3), (x
′
2, y
′
2), (x

′
3, y
′
3) such that x2 ⊕ x3 = x′2 ⊕ x′3 and y2 ⊕ y3 = y′2 ⊕ y′3. For any such

tuple, the adversary succeeds with probability at most 1/(2n − q). Considering all queries

x1 → y1, the adversary succeeds in breaking E11(Qq) with probability at most q2

2n−q .

In any case, the success probability is at most qq1+q2

2n−q + εc(q, n). The cases of E10(Qq),
E12(Qq) are fairly similar, with the major difference that one needs to take into account that
by ¬C1(Qi) the query history contains at most K1 collisions x2⊕y2 = c, for any c, and similar
for x3. Additionally, for E12(Qq) the usage of Conj. 1 is replaced with ¬C3(Qi). Concretely,

the success probabilities are upper bounded by K1qq1+q2

2n−q +εc(q, n) for E10(Qq) and K1K2q2+q2

2n−q
for E12(Qq). ut

Lemma 9.

q∑
i=1

Pr (El(Qi) | ¬El(Qi−1) ∧ ¬C(Qi)) = 0 for l = 5, . . . , 9, 13, provided K1 = 1.

Proof. Starting with E5(Qq), for the ith query x
(i)
2 ↔ y

(i)
2 for i = 1, . . . , q. As ¬C1(Qi) for

K1 = 1 there does not exist any other query (x′2, y
′
2) such that x

(i)
2 ⊕y

(i)
2 = x′2⊕y′2. The same

reasoning applies to the other events. ut

A.2 Bounding Occurrence of C(Qq)

In this section, we bound the event C(Qq) to occur, more specifically the second sum of (12).
Notice that this sum by probability theory equals Pr (C(Qq)). However, we can split up the
probability as follows:

Pr (C1∨...∨4) ≤ Pr (C1) + Pr (C2 | ¬C1) + Pr (C3 | ¬C1∨2) + Pr (C4) . (13)

The probability bounds on C1(Qq), . . . ,C4(Qq) (the four quantities of (13)) are obtained
in Lems. 10-13. The proofs rely on the following bound, which holds due to Stirling’s approx-
imation (b! ≥ (b/e)b for any b): (

a

b

)
≤ ab

b!
≤
(ae
b

)b
.

Lemma 10. Pr (C1(Qq)) ≤ 3 · 2n
(

qe

(K1 + 1)(2n − q)

)K1+1

.

Proof. We start with the first equation of C1(Qq). Fix any c. For any (x1, y1), the equation
is satisfied with probability at most 1/(2n − q). More than K1 such tuples give a collision
with probability at most(

q

K1 + 1

)(
1

2n − q

)K1+1

≤
(

qe

(K1 + 1)(2n − q)

)K1+1

.

Now, the result follows by quantifying over the number of choices for c and the number of
equations of C1(Qq). ut

Lemma 11. Pr (C2(Qq) | ¬C1(Qq)) ≤ 3 · 2n
(

K12q
2e

(K2 + 1)(2n − q)

)(K2+1)/K1

.

Proof. We start with the first equation of C2(Qq). Fix any c. Assume the adversary makes a

query x
(i)
1 → y

(i)
1 for i = 1, . . . , q (the same treatment holds for queries y1 → x1, x2 → y2 or

y2 → x2). For any tuple (x2, y2), the equation is satisfied with probability at most 1/(2n−q).
Thus, the query results in a solution with probability at most q/(2n − q). The adversary

makes 2q queries, and as ¬C1(Qq), each “hit” adds at most K1 solutions. Therefore, the
adversary needs at least (K2 +1)/K1 out of at most 2q hits. Consequently, Qq contains more
than K2 solutions to the first equation of C2(Qq) with probability at most(

2q

(K2 + 1)/K1

)(
q

2n − q

)(K2+1)/K1

≤
(

K12q
2e

(K2 + 1)(2n − q)

)(K2+1)/K1

.

Now, the result follows by quantifying over the number of choices for c and the number of
equations of C2(Qq). ut

Lemma 12. Pr (C3(Qq) | ¬C1∨2(Qq)) = 0.

Proof. We start with the first equation of C3(Qq), a similar reasoning applies to the other
equations. As ¬C2(Qq), for any (x3, y3) there are at most K2 solutions to x1⊕y1⊕x2⊕y2 = x3.
As Qq contains q tuples (x3, y3), it contains at most K2q solutions to the first equation of
C3(Qq). ut

Lemma 13. Pr (C4(Qq)) ≤ 3

(
q2e

2n − q

)q
.

Proof. We start with the first equation of C4(Qq). By construction, there are at most q3

tuples of queries that satisfy x2⊕x3 = x′2⊕x′3, and the adversary can achieve this number if
he makes forward queries only, and we will assume henceforth. For any of these tuples, the
second equation is satisfied with probability at most 1/(2n− q). More than q− 1 such tuples
give a collision with probability at most(

q3

q

)(
1

2n − q

)q
≤
(

q3e

q(2n − q)

)q
.

Now, the result follows by quantifying over the number of equations of C4(Qq). ut

A.3 Assembling the Results

Denote by bndEl(q) the bound obtained for conditional events El(Qq) (l = 1, . . . , 13, Lems. 4-
9), and by bndCl(q) the bound obtained for claim Cl(Qq) (l = 1, . . . , 4, Lems. 10-13). Recall
that q1 = d1q log q. Using slight variants of (11-13), one gets

Advcol
FA1

(q) ≤
∑

l∈{1,5,9,10}

bndEl(q) +
∑

l∈{1,...,4}

bndCl(q) ,

Advcol
FA2

(q) ≤
∑

l∈{2,5,7,9,11}

bndEl(q) +
∑

l∈{1,...,4}

bndCl(q) ,

Advcol
FA3

(q) ≤
∑

l∈{3,6,8,9,13}

bndEl(q) +
∑

l∈{1,2,3}

bndCl(q) +
∑

l∈{1,2,3}

bndCl(K2q) ,

Advcol
FA4

(q) ≤
∑

l∈{4,8,9,12}

bndEl(q) +
∑

l∈{1,...,4}

bndCl(q) .

Note that the bound for Advcol
FA3

(q) includes a third sum, the cause of which is explained

after Lem. 6. Let ε > 0. In order to prove limn→∞Advcol
FAk

(2n/2(1−ε)) = 0 (for k = 1, 2, 3, 4),

it suffices to prove that the separate bounds tend to zero for n→∞. The results of Sects. A.1
and A.2 hold provided K1 = 1, but still hold for any choice of K2. Set K2 = n − 1. Note
that the εc-parts in the bounds bndEl(q) all approach 0 for q = 2n/2(1−ε): in particular, for
large enough n we have d1q log q < 2n/2 and K2q < 2n/2, and Conj. 1 applies. Therefore, we

omit the εc-parts for simplicity. The evaluations are now fairly the same and mostly rely on
the fact that for large enough n the bounds behave like αnβ

2nε for some constants α, β. This
function clearly tends to 0 for n → ∞. We discuss bndE1(q) and bndC2(q) in detail. As we
consider the asymptotic behavior, without loss of generality we assume n is large enough to
obtain 1

2n−K2q
≤ 2

2n and 1
2n−q ≤

2
2n for q < 2n/2. By elementary mathematics,

bndE1(q) =
(n− 1)(d1q log q)2 log(d1q log q)

2n − q
≤ d21n

4q2

2n
.

Consequently, bndE1(2
n/2(1−ε)) ≤ d21n

4

2nε
, approaching 0 for n→∞. Similarly, for bndC2:

bndC′2(q) := bndC2(K2q) = 3 · 2n
(

2(K2q)
2e

n(2n −K2q)

)n
≤ 3 · 2n

(
4enq2

2n

)n
,

which implies bndC′2(2
n/2(1−ε)) ≤ 3

(
8en

2nε

)n
, approaching 0 for n→∞.

B Proof of Lemma 3(ii)

For FAk (k = 1, 2, 3, 4), where the matrices Ak are given in (5), the goal is to prove that
Advepre

FAk
(q) = Θ(q2/2n) for k = 1, 3, 4, and to prove limn→∞Advepre

FA2
(22n/3(1−ε)) = 0 for any

ε > 0, demonstrating the asymptotic preimages security of FA2 . In the remainder of this
section, π1, π2, π3 are assumed to be three permutations taken uniformly at random from Pn,
and z denotes any challenge. We will analyze the maximum probability of any adversary A,
making at most q queries to his oracles, in finding preimage for FAk , denoted as Advepre

FAk
(q)

by definition. Denote by Qi for i = 1, . . . , q the first i queries of the query history Qq. By
construction, we have Advepre

FA1
(q) = Pr (E14(Qq)), Advepre

FA2
(q) = Pr (E15(Qq)), Advepre

FA3
(q) =

Pr (E16(Qq)), and Advepre
FA4

(q) = Pr (E17(Qq)), where the events El(Qq) (l ∈ {14, . . . , 17})
are given in Fig. 5.

E14(Q) : (x1, y1), (x2, y2), (x3, y3) ∈ Q s.t.

x1 ⊕ y1 ⊕ x2 = x3,

x2 ⊕ y2 ⊕ y3 = z.

E15(Q) : (x1, y1), (x2, y2), (x3, y3) ∈ Q s.t.

x1 ⊕ y1 ⊕ x2 = x3,

x1 ⊕ y1 ⊕ y2 ⊕ y3 = z.

E16(Q) : (x1, y1), (x2, y2), (x3, y3) ∈ Q s.t.

x1 ⊕ y1 ⊕ x2 ⊕ y2 = x3,

x1 ⊕ y1 ⊕ y3 = z.

E17(Q) : (x1, y1), (x2, y2), (x3, y3) ∈ Q s.t.

x1 ⊕ y1 ⊕ x2 ⊕ y2 = x3,

y2 ⊕ x3 ⊕ y3 = z.

Fig. 5. The events El(Q) (l ∈ {14, . . . , 17}) employed in the proof of Lem. 3(ii) (App. B). Q
is a query history.

In App. B.1, we will upper bound Pr (E15(Qq)). In App. B.2, we provide a tight bound
for Pr (El(Qq)) for l = 14, 16, 17.

B.1 Bounding Occurrence of E15(Qq)

In order to bound Pr (E15(Qq)), we define a new claim C2′(Q). This claim equals C2(Q) of
Fig. 4 restricted to the third equation and for fixed c instead of for any c. In a similar fashion
as in (12)-(13), we obtain:

Pr (E15(Qq)) ≤
q∑
i=1

Pr (E15(Qi) | ¬E15(Qi−1) ∧ ¬C1∨2′(Qi)) +

Pr (C1(Qq)) + Pr (C2′(Qq) | ¬C1(Qq)) .
(14)

In Lem. 14 we bound the conditioned occurrence of E15(Qq) (the first part (14)), and in
Lem. 15 we compute probability on C2′(Qq) (the third part of (14)). A bound on C1(Qq) is
given in Lem. 10. The results are then assembled to prove limn→∞Advepre

FA2
(22n/3(1−ε)) = 0

for any ε > 0.

Let d2 be the constant defined in Conj. 1. On input of parameters (q, n), we define
ε′c(q, n) = Pr

(
β > d2q

3/2
)

of Conj. 1. This quantity tends to 0 for n→∞ and for q < 22n/3.

Lemma 14.

q∑
i=1

Pr (E15(Qi) | ¬E15(Qi−1) ∧ ¬C1∨2′(Qi)) ≤
d2q

3/2 +K2q

2n − q
+ ε′c(q, n).

Proof. We write E15a and E15b for the two equations of E15(Q) (Fig. 5). The approach is
similar as before.

Assume first the adversary makes a query x
(i)
3 → y

(i)
3 = π3(x

(i)
3) for i = 1, . . . , q (the

same treatment holds for queries y3 → x3, x2 → y2 and y2 → x2). Denote Li to be the

number of tuples (x1, y1), (x2, y2) that make equation E15a satisfied for x
(i)
3 . For any of these

tuples, equation E15b is satisfied with probability at most 1/(2n− q). Considering all queries
x3 → y3, the adversary succeeds in breaking E15(Qq) with probability at most

∑q
i=1

Li
2n−q .

Notice that by Conj. 1,
∑q

i=1 Li ≤ d2q3/2, except w.p. at most ε′c(q, n). We thus obtain upper

bound d2q3/2

2n−q + ε′c(q, n).

Assume the adversary makes a query x
(i)
1 → y

(i)
1 = π1(x

(i)
1) for i = 1, . . . , q (the same

treatment holds for queries y1 → x1). As ¬C2′(Qi), there exist at most K2 tuples (x2, y2),
(x3, y3) such that x2 ⊕ y2 ⊕ x3 ⊕ y3 = z is satisfied. For any of these tuples, equation E15a is
satisfied with probability at most 1/(2n − q). Considering all queries x1 → y1, the adversary
succeeds in breaking E15(Qq) with probability at most K2q

2n−q .

In any case, the success probability is at most d2q3/2+K2q
2n−q + ε′c(q, n). ut

Lemma 15. Pr (C2′(Qq) | ¬C1(Qq)) ≤
(

K12q
2e

(K2 + 1)(2n − q)

)(K2+1)/K1

.

Proof. The proof is identical to the proof of the bound for C2(Qq) (Lem. 11). Note that
C2′(Qq) consists of one equation, and one choice for c only. ut

Let ε > 0. Similar to App. A.3, in order to prove limn→∞Advepre
FA2

(22n/3(1−ε)) = 0,

it suffices to prove that the separate bounds tend to zero for n → ∞. Put K1 = 2 and
K2 = 2n/3 − 1. The evaluations are now fairly the same, and we only discuss the bound
bndE15(q) on E15(Qq). Again, by Conj. 1 the ε′c-part goes to 0 for q = 22n/3(1−ε), and we omit
it for simplicity. Notice that 1

2n−q ≤
2
2n for q ≤ 2n−1. We obtain:

bndE15(q) =
d2q

3/2 + (2n/3 − 1)q

2n − q
≤ 2

d2q
3/2 + 2n/3q

2n
.

Consequently, bndE15(2
2n/3(1−ε)) ≤ 2d2

2nε
+

2

22n/3ε
, which approaches 0 for n→∞.

B.2 Bounding Occurrence of El(Qq), l = 14, 16, 17

In this section, we prove Pr (El(Qq)) = Θ(q2/2n) (l = 14, 16, 17) by providing a lower bound
in Lem. 16, and an upper bound in Lem. 17.

Lemma 16. Pr (El(Qq)) = Ω(q2/2n) for l = 14, 16, 17.

Proof. We consider E14(Qq), the analysis for the other compression functions is analogous2.

We construct an adversary A whose goal is to find tuples (x1, y1) ∈ π1, (x2, y2) ∈ π2,
and (x3, y3) ∈ π3 such that E14(Qq) is satisfied. The adversary proceeds as follows. He sets

up two lists of q random elements X1 := {x(1)1 , . . . , x
(q)
1 } and X2 := {x(1)2 , . . . , x

(q)
2 }, and

computes the corresponding values y
(k)
1 = π1(x

(k)
1) and y

(k)
2 = π2(x

(k)
2) (for k = 1, . . . , q).

Additionally, for each k = 1, . . . , q, the adversary sets y
(k)
3 = x

(k)
2 ⊕y

(k)
2 ⊕z and computes the

corresponding value x
(k)
3 = π−13 (y

(k)
3). Fix any k ∈ {1, . . . , q}, then x

(k)
2 ⊕ y

(k)
2 ⊕ y(k)3 = z by

construction. The adversary obtains a solution for E14(Qq) if X1 contains an element x1 such
that x1⊕ y1 = x2⊕x3. By basic probability theory, such x1 exists with probability Ω(q/2n).
As the adversary needs to succeed for only one of the q choices of k, he finds a solution for
E14(Qq) with probability Ω(q2/2n). ut

Lemma 17. Pr (El(Qq)) = O(q2/2n) for l = 14, 16, 17.

Proof. We consider E14(Qq), the analysis for the other compression functions is analogous.
We write E14a,E14b for the two equations of E14(Qq). The approach is similar to before. By
basic probability theory,

Pr (E14(Qq)) ≤
q∑
i=1

Pr (E14(Qi) | ¬E14(Qi−1) ∧ ¬C1(Qi)) + Pr (C1(Qq)) . (15)

We start with the first probability and consider K1 = 1.

Assume first the adversary makes a query x
(i)
3 → y

(i)
3 = π3(x

(i)
3) for i = 1, . . . , q (the same

treatment holds for queries x2 → y2). For each of the ≤ q tuples (x1, y1), by ¬C1(Qi) the
values x1 ⊕ y1 are distinct, and there exists at most one (x2, y2) such that equation E14a is
satisfied. For any of the combinations, E14b is satisfied with probability at most 1/(2n − q).
Considering all queries x3 → y3, the adversary succeeds in breaking E14(Qq) with probability

at most q2

2n−q .

Assume the adversary makes a query y
(i)
3 → x

(i)
3 = π−13 (x

(i)
3) for i = 1, . . . , q. By ¬C1(Qi),

there exists at most one tuple (x2, y2) such that equation E14b is satisfied. For this tuple,
E14a is satisfied with probability at most q/(2n − q). Considering all queries x3 → y3, the

adversary succeeds in breaking E14(Qq) with probability at most q2

2n−q .

Assume the adversary makes a query y
(i)
2 → x

(i)
2 = π−12 (x

(i)
2) for i = 1, . . . , q. For each of

the ≤ q tuples (x1, y1), by ¬C1(Qi) the values x1 ⊕ y1 are distinct, and there exists at most
one (x3, y3) such that x1⊕y1⊕y2⊕x3⊕y3 = z. For any of the combinations, E14a is satisfied
with probability at most 1/(2n− q). Considering all queries x2 → y2, the adversary succeeds

in breaking E14(Qq) with probability at most q2

2n−q .

Assume the adversary makes a query x
(i)
1 → y

(i)
1 = π1(x

(i)
1) for i = 1, . . . , q (the same

treatment holds for queries y1 → x1). For each of the ≤ q tuples (x3, y3), by ¬C1(Qi) there
exists at most one (x2, y2) such that equation E14b is satisfied. For any of the combinations,
E14a is satisfied with probability at most 1/(2n − q). Considering all queries x1 → y1, the

adversary succeeds in breaking E14(Qq) with probability at most q2

2n−q .

In any case, we obtain
∑q

i=1 Pr (E14(Qi) | ¬E14(Qi−1) ∧ ¬C1(Qi)) ≤
q2

2n − q
. The claim

now immediately follows from (15), Lem. 10, and the fact that q ≤ 2n−1. ut

2 The attack defining the lower bound for E16(Qq) corresponds to an attack by Joux described in [11].

C Generalization of Theorem 2

We generalize our findings on the single-permutation setting to cover any function, where
affine transformations on the inputs to the permutations are taken into account. This general-
ization is straightforward, but technical and more elaborate. For a matrix B = (b1, b2, b3, b4)

>

with elements in {0, 1}n, we define the compression function FAB as follows:

FAB(x1, x2) = z , where y1 ← π1(a11x1 ⊕ a12x2 ⊕ b1) ,
y2 ← π2(a21x1 ⊕ a22x2 ⊕ a23y1 ⊕ b2) ,
y3 ← π3(a31x1 ⊕ a32x2 ⊕ a33y1 ⊕ a34y2 ⊕ b3) ,
z ← a41x1 ⊕ a42x2 ⊕ a43y1 ⊕ a44y2 ⊕ a45y3 ⊕ b4 .

(16)

where A is as in Sect. 2.1. We note that for the multi-permutation setting, this generalization
is of no added value, as the permutations are independently distributed anyway. Adding
constants is, however, a customary approach to obtain “different” permutations from a single
one (e.g. πi(x) = π(bi ⊕ x) for i = 1, 2, 3), but as we will show, the findings of Thm. 2 also
apply to this extended setting.

We reformulate Props. 1-3 to the case of FAB (recall that Prop. 4 did not apply to the
single-permutation setting in the first place). Propositions 1 and 2 apply to any FAB and
FA′B′ with B = B′ and Prop. 3 holds for any B and B′ with (b′i, b

′
i+1) = (bi+1, bi). Given

this, the proof of Thm. 2 almost carries over. Lemmas 1 and 2 apply with straightforward
generalization. It remains to evaluate the matrices A of the form (7) for any B ∈ ({0, 1}n)4×1.
The case ‖a3,∗‖ ≤ 2 is the same as in the proof of Thm. 2.

‖a3,∗‖ = 3. Due to M-reductions, it suffices to consider a31a32a33a34 ∈ {1110, 0111}.
– a31a32a33a34 = 1110. The same analysis as in Sect. 4.1 applies, leaving the matrices

A1 and A2 of (5). In the extended single-permutation setting, the two corresponding
compression functions satisfy FA1B(x1⊕b1, π(x1)⊕b1⊕b3) = π(π(x1)⊕b1⊕b2⊕b3)⊕
b1⊕ b3⊕ b4 and FA2B(x1, x2) = FA2B(x1, x1⊕x2⊕π(x1⊕ b1)⊕ b2⊕ b3) for any x1, x2.
Collisions can thus be trivially found;

– a31a32a33a34 = 0111. By Lem. 2(ii), we have a41 = 1. Lemma 2(iii) now states that
we require a42 = a44, which gives the following four options for a42a43a44: 000, 010,
101 and 111. The first one is vulnerable to the attack of Lem. 2(iv), the second, third
and fourth matrix satisfy FAB(x1, π

−1(π(x1 ⊕ b1)⊕ b2 ⊕ b3)⊕ b2) = x1 ⊕ b2 ⊕ b3 ⊕ b4,
FAB(x1 ⊕ b1, x1 ⊕ b2) = FAB(x1 ⊕ b1 ⊕ b2 ⊕ b3, x1 ⊕ b3) and FAB(x1 ⊕ b1, x1 ⊕ b2) =
π(x1 ⊕ b2 ⊕ b3)⊕ b1 ⊕ b2 ⊕ b4, respectively, for any x1. Collisions can thus be trivially
found;

‖a3,∗‖ = 4. Except for a41a42a43a44 ∈ {1010, 1001, 0110, 0101}, all induced compression
functions satisfy FAB(x1⊕b1, x1⊕b2)⊕π(b1⊕b2⊕b3)⊕a41b1⊕a42b2⊕b4 ∈ {0, x1, π(x1)}
for any x1, for which collisions can be trivially found. The cases 1001, 0110 are vulnerable
to Lem. 2(iii). The remaining two cases, which are equivalent by M-reduction, allow for
trivial collisions as well: the compression function induced by (a41a42a43a44) = (1010)
satisfies FAB(x1, π

−1(x1 ⊕ π(x1 ⊕ b1)⊕ b2 ⊕ b3)⊕ b2) = b2 ⊕ b3 ⊕ b4 for any x1.

Hence, any of the analyzed compression functions either allows for trivial collision or is
vulnerable to Lem. 2, therewith allowing for collisions in at most 22n/5 queries.

Concluding, for any compression function FAB of the generalized form (16), collisions can
be found in at most 22n/5 queries, hence considerably faster than in 2n/2 queries.

D Heuristic Argument for Conjecture 1

In this section, we provide a heuristic argument for the first part of Conj. 1, a similar argument
applies to part two. Throughout the argument it becomes clear why the conjecture is similar
to but more complex than Zarankiewicz problem [2, Ch. 6.2], as claimed in Sect. 4.

In more detail, we will show that the conjecture should hold for d1 = 10 for large enough
n. Let Z be a given set of q < 2n/2 random elements. Denote by Pr (succ(Z)) the probability
that there exist two sets X1, X2 such that the number of solutions (x1, x2, z) ∈ X1×X2×Z
with x1 ⊕ x2 = z is larger than 10q log q. In this heuristic argument we will provide a bound
on Pr (succ(Z)). In fact, we will first consider q = 2α and show that the number of solutions
is with high probability upper bounded by 2q log q + q. If q is no power of two, the number
of solutions is then clearly upper bounded by the amount of solutions for q′ = 2dlog qe, hence
upper bounded by 8q log q + 2q ≤ 10q log q (provided q ≥ 2).

Before proceeding, we pose the following claim on Z:

D1(Z) : there exist z1, z2 ∈ Z such that z1 = z2.

Clearly, Pr (D1(Z)) ≤ q2/2n, and by probability theory we have

Pr (succ(Z)) ≤ Pr (succ(Z) | ¬D1(Z)) + Pr (D1(Z)) ≤ Pr (succ(Z) | ¬D1(Z)) +
q2

2n
. (17)

Therefore, it suffices to analyze succ(Z) given that Z contains no collisions. The goal for an

adversary now is to come up with two sets X1 = {x(1)1 , . . . , x
(q)
1 } and X2 = {x(1)2 , . . . , x

(q)
2 }

such that
∣∣{(x1, x2, z) ∈ X1 ×X2 × Z | x1 ⊕ x2 = z}

∣∣ is maximized.

Consider a q × q matrix X with rows corresponding to x
(i)
1 and columns to x

(j)
2 , and the

coefficient xij of X equals z ∈ Z if x
(i)
1 ⊕ x

(j)
2 = z, and is empty if x

(i)
1 ⊕ x

(j)
2 6∈ Z. Now,

the goal of the adversary is to maximize the number of filled coefficients of X, by smartly

choosing x
(i)
1 , x

(j)
2 . Denote by s(X) the maximum number of elements in the matrix X. Some

restrictions apply to the choices for x
(i)
1 , x

(j)
2 .

(i) An element z ∈ Z does not occur twice in one row or column (it would imply a collision
in X1 or X2);

(ii) Let i, i′, j, j′ ∈ {1, . . . , q} and z1, z2 ∈ Z. If xij = xi′j′ = z1 and xij′ = z2, then xi′j = z2
(obtained by XORing the first three equations);

(iii) Let i, i′, j, j′ ∈ {1, . . . , q} and z1, . . . , z4 ∈ Z satisfying z1⊕ z2⊕ z3⊕ z4 = 0. If xij = z1,
xij′ = z2 and xi′j = z3, then xi′j′ = z4 (obtained by XORing the first three equations).

The problem now reduces to smartly positioning in X as many elements from Z as possible.

Let K be maximal such that there exists a set of values z1, . . . , z2K ∈ Z satisfying
z1⊕z2 = . . . = z2K−1⊕z2K . We call this set of values a K-way collision, and two consecutive
elements z2i−1, z2i are called a twin. Using properties (ii,iii), the adversary can obtain a 4×4
submatrix of X filled with four values z1, z2, z3, z4 each occurring four times3, but as we will
argue this is essentially the best the adversary can get. Notice that this also demonstrates
that the best approach followed by the adversary is to exploit the K-way collision.

In Fig. 6, we introduce four claims D2(Z), . . . ,D5(Z) to further analyze event succ(Z),
and we bound the occurrence of these events provided ¬D1(Z).

–
[
Pr (D2(Z) | ¬D1(Z)) ≤ 2n

(
2q2e

(K2 + 1)2n

)(K2+1)]
The proof is similar to the proof of

Lem. 11, with the difference that now q random values are generated (being Z) that
piece for piece may result in a solution;

–
[
Pr (D3(Z) | ¬D1∨2(Z)) ≤ 2n

(
K3

2q
2n

)2]
Fix any c. By ¬D2(Z), there are at most 23

(
K2

3

)
possible choices for z1, z3, z5 (the choices for z2, z4, z6 follow directly), any of which satisfies

3 The adversary chooses x
(1)
1 , sets x

(j)
2 = zj ⊕ x(1)1 for j = 1, 2, 3, 4, and x

(i)
1 = zi ⊕ x(1)2 for i = 2, 3, 4. By

properties (ii,iii), the remaining coefficients are filled.

D2(Z) : for some c there exist more than K2

solutions in Z to:

z1 6= z2, and

z1 ⊕ z2 = c.

D3(Z) : for some c there exist more than one
solution in Z to (with different z7 for each
solution):

z1, . . . , z7 distinct, and

z2i−1 ⊕ z2i = c (for i = 1, 2, 3), and

z1 ⊕ z3 ⊕ z5 ⊕ z7 = 0.

D4(Z) : for some c there exist a solution in Z
to:

z1, . . . , z12 distinct, and

z2i−1 ⊕ z2i = c (for i = 1, . . . , 5), and

z1 ⊕ z3 ⊕ z5 ⊕ z11 = 0, and

z7 ⊕ z9 ⊕ z11 ⊕ z12 = 0.

D5(Z) : let d ≥ 4, for some c there exists a
solution in Q to:

z1, . . . , z2d distinct, and

z2i−1 ⊕ z2i = c (for i = 1, . . . , d), and

z1 ⊕ z3 ⊕ · · · ⊕ z2d−1 = 0.

Fig. 6. The claims D2(Z), . . . ,D5(Z) employed in the heuristic argument for Conj. 1
(App. D). The parameter K2 > 1 is any fixed constant.

the second equation with probability at most q/2n. As we require more than one different

value z7 to be hit, and Z contains q different possibilities for z
(7)
3 by ¬D1(Z), Z contains

more than one solution to D3(Z) with probability at most(
23
(
K2

3

)
2

)(q
2n

)2
≤
(
K3

2q

2n

)2

.

Now, the result follows by quantifying over the number of choices for c;

–
[
Pr (D4(Z) | ¬D1∨2(Z)) ≤ 2n

(
K3

2q
2n

)2]
Fix any c. By ¬D2(Z), there are at most 25

(
K2

5

)
possible choices for z1, z3, . . . , z9 (the choices for z2, z4, . . . , z10 follow directly). For any
choice, the second and third equation are both satisfied with probability at most q/2n.
Therefore, Z contains a solution to D4(Z) with probability at most

25
(
K2

5

)(q
2n

)2
≤
(
K3

2q

2n

)2

.

Now, the result follows by quantifying over the number of choices for c;

–
[
Pr (D5(Z) | ¬D1(Z)) ≤ 2n

∞∑
d=4

q2d

(2n)d+1

]
Fix any c, d. Without loss of generality we can

consider the values of Z to be generated piece for piece. Consider the generation of zi
for i = 1, . . . , q. For any other value z, the first equation is satisfied with probability at
most 1/2n. Thus, the query results in a solution with probability at most q/2n. In total q
values are generated, and as ¬D1(Z), each “hit” adds at most 1 solution. Therefore, we
need d out of at most q hits. Given that d pairs are found, the second equation of D5(Z)

is then satisfied with probability at most 1/2n, as the values z
(i)
3 are different by ¬D1(Z).

Consequently, Z contains a solution to D5(Z) with probability at most(
q

d

)(q
2n

)d
· 1

2n
≤ q2d

(2n)d+1
.

Now, the result follows by quantifying over the number of choices for c and d (in fact, we
are using D5(Z) for d = 4, 6 only but we generalize its usage for simplicity).

We obtain for (17):

Pr (succ(Z) | ¬D1) ≤ Pr (succ(Z) | ¬D1∨...∨5) + Pr (D2 | ¬D1) + Pr (D3 | ¬D1∨2)

+ Pr (D4 | ¬D1∨2) + Pr (D5 | ¬D1) .
(18)

Similar to before (e.g., Sect. A.3), one can show that for K2 = n− 1 the second part of (18)
approaches 0 for q = 2n/2(1−ε) and n → ∞. In what remains, we heuristically argue that
Pr (succ(Z) | ¬D1∨...∨5(Z)) is expected to equal 0 for d1 = 10.

Naturally, the maximal number of solutions is achieved when the adversary includes in the

matrix X as many boxes
(za zb
zb za

)
as possible, where za, zb denotes any twin of the maximal K-

way collision. However, it may be the case that three values z1, z2, z3 coming from different
twins form a collision with a value z ∈ Z no member of the K-way collision, therewith
resulting in more solutions due to property (iii) described above. However, by ¬D3(Z), there
is only one such possible value z, and XORed with any other values from different twins it
does not collide with another element from Z (by ¬D4(Z)). Thus, the value z appears in X
at most q times, and no other value can occur. We just scrap this value out of the matrix,
continue with the matrix built of the K-way collision only, and add q to the finally obtained
number of elements in the matrix. Concluding, the best approach is to consider the matrix
X consisting of 2 × 2 submatrices that satisfy the following property: each block is either
entirely filled by a twin of the K-way collision, or empty. Additionally, any two rows of 2× 2
submatrices share at most 2 “positions” (by ¬D3(Z)). Now, we can constrict rows 2i−1 and
2i (for i = 1, . . . , q/2) and columns 2j − 1 and 2j (for j = 1, . . . , q/2) to obtain a matrix
X[q/2]. Here we replace every 2× 2 submatrix by the first element of the twin. Matrix X[q/2]

still satisfies properties (i,ii), and moreover it satisfies the next properties:

(iv) The matrix does not contain a full 2× 3 (or 3× 2) submatrix (by ¬D3(Z));
(v) For any d ≥ 4, the matrix does not contain d different values that XOR up to 0 (by
¬D5(Z)).

Now, the number of coefficients filled in X satisfies s(X) ≤ 4s(X[q/2])+q, and hence we bound
the maximum number of elements in any matrix X[q/2] satisfying (i,ii,iv,v).

Before proceeding, we point out the relation of our conjecture with Zarankiewicz con-
jecture4. Let Gn = (V1 ∪ V2, E) be a bipartite graph on color classes V1, V2 of equal size n.
Zarankiewicz problem regards the case of determining the maximal graph Gn that does not
contain any complete bipartite subgraph on 3 + 3 vertices. With respect to our problem, we
can consider X[q/2] to represent an incidence matrix of a bipartite graph, where the rows
correspond to one side of the bipartition, and the columns to the other side. An element

xij ∈ X[q/2] is non-empty if and only if x
(i)
1 ⊕ x

(j)
2 = z ∈ Z, and the corresponding edge

is labeled by z. By virtue of (i,ii,iv,v) several restrictions apply to this graph: for instance,
it does not contain a complete bipartite subgraph on 2 + 3 vertices (property (iv)), and it
does not contain a complete bipartite subgraph on 2 + 2 vertices where the four edges have
different labels (property (v)). Various other restrictions to this matrix can be extracted from
the randomness of Z, but for our heuristic argument the restrictions put forward suffice.

We proceed with the heuristic argument. Consider a matrix X[q/2] that achieves the
maximum number of solutions. X[q/2] is likely to have two elements z1, z2 ∈ Z occurring q/2
times, which can be seen as follows. Consider a first element z1. Suppose z1 occurs q/2 − 1
times, w.l.o.g. (by graph isomorphism) at the first q/2− 1 diagonal elements of X[q/2]. This
means that xq/2,q/2 6= z1. Without loss of generality,

∣∣{i | xi,q/2 ∈ Z}∣∣ ≤ ∣∣{j | xq/2,j ∈ Z}∣∣.
We construct the matrix X

[q/2]
, with the first q/2− 1 columns identical to the ones of X[q/2],

but with xq/2,q/2 = z1. By property (ii) and the fact that all diagonal elements of X
[q/2]

equal z1, we obtain xi,q/2 = xq/2,i = xq/2,i for i = 1, . . . , q/2 − 1. It is easy to check that

X
[q/2]

satisfies (i,ii,iv,v) if X[q/2] does. In particular, it does not violate property (i) (similar
argument applies to other properties): it would violate (i) if xi,q/2 = xij = xij for some

i, j ∈ {1, . . . , q/2 − 1}, which for the original matrix X[q/2] would imply that xq/2,i = xij ,

4 Generalizations of Zarankiewicz problem exist, but this problem is the most well-known among them.

and thus (by property (ii) for X[q/2]) xq/2,j = xii = z1, impossible by construction. Thus, we

obtained a matrix X
[q/2]

with z1 occurring q/2 times and with at least as many solutions as
X[q/2]. A second element is likely to occur q/2 times for similar reasons.

X[q/2] can thus be considered to be of the following form:

X[q/2] =

z1 z2
z2 z1

X12 · · · X1, q
4

X21
z1 z2
z2 z1

· · · X2, q
4

...
...

. . .
...

X q
4
,1 X q

4
,2 · · ·

z1 z2
z2 z1

,

for some 2 × 2 submatrices Xij . Now, by property (ii) we have Xij = Xji for all i, j. Addi-
tionally, as no two rows share three columns (and vice versa), each block is either empty or
an (anti-)diagonal matrix where the two (anti-)diagonal elements are equal by property (ii).
Consequently, we can constrict rows 2i − 1 and 2i (for i = 1, . . . , q/4) and columns 2j − 1
and 2j (for j = 1, . . . , q/4) to obtain a matrix X[q/4]. Here each 2× 2 block on the diagonal
of X[q/2] is constricted to z1, and each other block to its only element. Now, the number of
coefficients in X[q′] (with q′ = q/2) satisfies s(X[q′]) ≤ 2 · (q′/2) + 2s(X[q′/2]): the second part
counts each element in X[q′/2] as two original elements, and we add two remaining from the
original diagonal blocks. The matrix X[q/4] satisfies (i,ii,iv,v) if X[q/2] does. For (i,ii,v) this is
clear, and we briefly consider property (iv). Notice that a diagonal element of X[q/4] corre-
sponds to a full 2×2 submatrix of X[q/2] but a non-empty non-diagonal element corresponds
to a diagonal or anti-diagonal 2×2 submatrix with one and the same element. Suppose X[q/4]

contains a full 2 × 3 submatrix X[2×3]. If X[2×3] involves two diagonal elements, it implies
z3 ⊕ z4 = 0 for some z3, z4 ∈ Z (impossible by ¬D1(Z)). If X[2×3] involves one diagonal ele-
ment, it implies z1⊕z2⊕z3⊕z4 = 0 for some z3, z4 ∈ Z (impossible by (v)). If X[2×3] involves
zero diagonal elements, it implies z1 ⊕ z2 ⊕ z3 ⊕ z4 ⊕ z5 ⊕ z6 = 0 for some z3, z4, z5, z6 ∈ Z
(impossible by (v)). The last property comes from selecting 6 coefficients of X[q/2] such that
in any row/column either two or zero coefficients are selected. By the form of X[2×3] and the
properties (i,ii), this turns out to be possible for the matrix X[q/2].

We reduced the problem to a smaller dimension q/4, but with the same properties. This
analysis can be applied recursively, until we are left with a 2×2 matrix X[2]. By induction to
the size of q, we can now show that for matrices satisfying properties (i,ii,iv,v) the number
of elements is upper bounded by q log(2q). For q = 2, we have s(X[2]) = 4 = q log(2q), so the
claim holds. Suppose s(X[k/2]) ≤ k/2 log k. Then,

s(X[k]) ≤ 2 · (k/2) + 2s(X[k/2]) ≤ k(1 + log k) = k log(2k) .

Thus, s(X[q/2]) ≤ q/2 log q. For the original matrix X, we now obtain s(X) ≤ 4s(X [q/2])+q ≤
2q log q+q, which completes the argument for q a power of two. As explained in the beginning
of this appendix, this result implies s(X) ≤ 10q log q for any q.

	Hash Functions Based on Three Permutations:A Generic Security Analysis
	Bart Mennink and Bart Preneel

