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Abstract. We consider the family of 2n-to-n-bit compression functions that are solely based
on at most three permutation executions and on XOR-operators, and analyze its collision and
preimage security. Despite their elegance and simplicity, these designs are not covered by the
results of Rogaway and Steinberger (CRYPTO 2008). By defining a carefully chosen equivalence
relation on this family of compression functions, we obtain the following results. In the setting
where the three permutations 71, w2, w3 are selected independently and uniformly at random,
there exist at most four equivalence classes that achieve optimal 2"/2 collision resistance. Under a
certain extremal graph theory based conjecture, these classes are then proven optimally collision
secure. Three of these classes allow for finding preimages in 2"/? queries, and only one achieves
optimal 22n/3 preimage resistance (with respect to the bounds of Rogaway and Steinberger,
EUROCRYPT 2008). Consequently, a compression function is optimally collision and preimage
secure if and only if it is equivalent to F(z1, z2) = 1 ®m1(z1) B2 (x2) B3 (r1 D2 ®71(21)). For
compression functions that make three calls to the same permutation we obtain a surprising
negative result, namely the impossibility of optimal 27/2 collision security: for any scheme,
collisions can be found with 22*/® queries. This result casts some doubt over the existence of
any (larger) secure permutation-based compression function built only on XOR~operators and
(multiple invocations of) a single permutation.
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1 Introduction

The traditional recipe for the design of a cryptographic hash function is to base it on one
or more block ciphers. Since the late 70s, this methodology developed itself to become the
dominating approach in the area of hash function design and plenty of hash functions have
been constructed accordingly (either explicitly or implicitly) [3, [, [6, [7]. These designs are,
however, characterized by the fact that the key input to the cipher depends on the input
values; this implies that the key schedule has to be strong and that it needs to be executed for
every encryption (or for every second encryption), which entails a substantial computational
cost. An alternative approach is to fix one or more keys, and restrict the hash function
design to use the block cipher for these keys only. The usage of fixed-key block ciphers, or
alternatively permutations, additionally causes gain that one does not need to implement an
entire block cipher but only a limited number of instantiations of it.

Black, Cochran and Shrimpton [I] were the first to formally study this approach, demon-
strating that a 2n-to-n-bit compression function F using one n-bit permutation 7 cannot
be secure. This result has been generalized by Rogaway and Steinberger [10], and refined
by Stam [I2] and Steinberger [13]. Consider any mn-to-rn-bit compression function us-
ing k n-bit permutations: if 27(2m—2r—k+1)/(k+1) > 17 collisions can be found in at most
(2”)1*(’”*’"“)/ (k+1) queries to the underlying primitives, a bound proven by Steinberger in
[13] but commonly known as “Stam’s bound.” Collisions and preimages can even be found
in at most (27)1=(m=7/2/k and (27)1=(m=")/k queries respectively, provided the compres-
sion function satisfies the “uniformity assumption” [I0]. Due to Stam’s bound, a 2n-to-n-bit
compression function, which is the simplest case after all, achieves optimal 2™/2 collision
resistance only if it employs at least three permutations. Yet, it cannot achieve optimal



preimage resistance if it fulfills the uniformity assumption. These observations apply to the
“multi-permutation setting”, where each of the permutations is generated independently, as
well as the “single-permutation setting” where the permutations are the same.

The construction of 2n-to-n-bit compression functions (based on three permutations) that
provably attain optimal collision security, has turned out to be a very challenging exercise.
In [9], Rogaway and Steinberger formally proved a broad class of 2n-to-n-bit compression
functions using three distinct permutations and finite field scalar multiplications optimally
collision and preimage secure (w.r.t. the bounds of [10]), provided the compression function
satisfies a so-called “independence criterion” (a similar result for the single-permutation set-
ting has been obtained by Lee and Kwon [5]). Unfortunately, this technical criterion rules out
the most intuitive and elegant type of designs, namely compression functions that are (apart
from the three permutations) solely based on XOR-operators. As the proof of [9] extensively
relies on its independence criterion, the proof cannot be generalized to compression functions
of this type. In [I1], Shrimpton and Stam derived a XOR-based compression function, using
three one-way functions rather than permutations: F(z1,22) = fi(x1) @ f3(fi(z1) @ fa(z2)).
This function is proven collision resistant up to 2/2 queries (asymptotically), but preimages
can be found with high probability after 27/2 queries [11]. It has been demonstrated by an
automated analysis of Rogaway and Steinberger [9] that the same results hold if f1, fa, f3 are
Davies-Meyer-like compression functions using permutations 7y, w9, 73, i.e. fi(z) = z®m;(z),
but a formal security analysis has never been given. Since these works, a synthetic formal
collision and preimage security analysis of XOR-based compression functions has remained
an interesting and important theoretical open problem, because of their elegance and simplic-
ity (the functions only employ XOR~operators) as well as their slight efficiency improvement
(XOR-operators are slightly cheaper than finite field multiplications).

OUR CONTRIBUTIONS. We focus on the entire family of 2n-to-n-bit compression functions
constructed only of three isolated permutations and of XOR-operators, and analyze the se-
curity of these functions against information-theoretic adversaries. For each of the functions,
we either provide a proof of optimal collision resistance or a collision attack faster than the
birthday bound. We also analyze the preimage resistance of the schemes that have optimal
collision security.

The approach followed in this work is based on defining an equivalence class on the set of
compression functions, and is of independent interest: informally, two compression functions
are equivalent if there exists a tight bi-directional preimage and collision security reduction
(cf. Def. . Consequently, security results of one compression function hold for the entire
class, and it suffices to analyze the security of one function per class. In this work we restrict
to equivalence reductions that are easy to verify, such as interchanging the inputs to the
compression function.

For the multi-permutation setting, where the three permutations 7y, mo, 73 are assumed to
be selected independently and uniformly at random, the results are as follows. A compression
function F is optimally collision secure (asymptotically) if and only if it is equivalent to one
of the four compression functions Fq, ..., Fy:

® m3(x1 ® w2 @ m(21)),
® ma(x2) ® m3(x1 @ 22 @ M1 (21)) 5
) mg(z1 ® x2 ® 71 (21)
$1@x2@7r1(951)@ m3(x1 @ w2 @ mi(x1)

& ma(22), M)
® ma(x2)) -

These compression functions are depicted in Fig. [1} Not surprisingly, the permutation-based
variant of the Shrimpton-Stam compression function [11] is included, it equals F3. For com-
pression functions non-equivalent to any of Fy, Fs, F3, F4, collisions can be found faster than



the birthday bound, namely in at most 22"/5 queries. Compression functions equivalent to Fo
are proven optimally preimage secure up to 92n/3 queries, and compression functions equiva-
lent to Fq, F3 or F4 are additionally shown to achieve tight 2"/2 preimage security. Therefore,
a compression function achieves optimal collision and preimage resistance (w.r.t. the bounds
of [10]) if and only if it is equivalent to Fo. Particularly, this class of functions beats the
Shrimpton-Stam compression function [I1] with respect to preimage resistance. These re-
sults are summarized in Table [

A minor part of the results in the multi-permutation setting, more concretely the collision
resistance of Fi,Fy and F4 and the preimage resistance of Fo, are based on an extremal
graph theory based conjecture. Informally, this conjecture bounds the number of solutions
(x1,22,23) € X1 X X9 X X3 such that x9 ® x3 = x1 ® m1(x1), where X1, X5, X3 are three
sets of ¢ elements. This conjecture is similar to (but more complex than) a problem posed by
Zarankiewicz in 1951 (cf. [2, Ch. 6.2]), and is of independent interest. In App. E we analyze
our conjecture in more detail, provide it with a heuristic argument, and compare it with the
conjecture of Zarankiewicz.

Table 1. The security results of this work for the multi-permutation setting. The functions
Fi,...,F4 are given in and Fig. |1l The equivalence relation is defined in Def. . For Fy, the
obtained security results are optimal with respect to the bounds of Rogaway and Steinberger
[10]. The proofs of the results with appended “[c]” fall back on Conjecture

collision preimage
F equivalent to: security  attack security attack
Fl, F, 2n/2 [C] 2n/2 2n/2 2n/2
= 2n/2 [C] 2n/2 2271/3 [C] 22n/3
F3 271/2 2n/2 2n/2 2n/2
none of these ? 92n/5 ? ?

In the single-permutation setting, where the compression function makes three calls to
the same random permutation 7, there does not exist any compression function that achieves
optimal collision resistance. In particular, for any possible function, collisions can be found in
at most 22"/5 queries, beating the desired birthday bound. This negative result is surprising,
given the fair amount of secure functions we have found in the multi-permutation setting. The
attacks mainly rely on the fact that the adversary can misuse the single-permutation prop-
erty by introducing dependencies between the two input values z; and x,. For instance, the
function Fa of satisfies Fo(x1,22) = Fa(x1, 22 ® 21 @ 7(x1)) in the single-permutation set-
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Fig. 1. A graphical representation of the compression functions Fy,...,Fy of .



ting. This result raises the interesting question whether (larger) compression functions exist
based only on XOR-operators and (more than three invocations of) one single permutation.

OUTLINE. In Sect. [2] we present some background information, and formally describe the set
of permutation-based compression functions we have analyzed. In Sect. [3] the equivalence
relation on the set of compression functions is formally defined. The main results are given
in Sect. [ for the multi-permutation setting and in Sect. [f for the single-permutation setting.
We conclude the paper in Sect. [6]

2 Preliminaries

For an integer n € N, we denote by {0,1}" the set of bit strings of length n. For two bit
strings z,y, we denote by z||y their concatenation and by z @ y their bitwise XOR. If X is
a set, by x & X we denote the uniformly random sampling of an element from X. For two
integers m,n € N, we denote by (m),, the encoding of m as an n-bit string. By log we denote
the logarithm function with respect to base 2. By P, we denote the set of all permutations
operating on n bits. Vectors are denoted as x, and by ||x|| = _, |;| we denote the 1-norm
of x. For a matrix A, by a; ; we denote its coefficient at the ith row and j* column. By a;
we denote the i'' row of A, and by a. ; its j*' column.

2.1 Permutation Based Compression Functions

We consider the following type of 2n-to-n-bit compression functions. Let 71, m, 3 € P, be
three permutations. For a binary 4 x 5 matrix A of the form

ail ai2 0 0 0
aoy agzlasy 0 0
asy azz|ass az4 0
a41 (42 Q43 Q44 Q45

the compression function Fy : {0,1}?" — {0,1}" is defined as follows:

Fa(z1,22) = z, where y; < mi(a11z1 @ ajexs),
Y2 < ma(a2121 ® agers G asyr),
y3 < m3(azi1ry © azpxe ® azzyr © azay2),
Z 4 a4121 D ag2T2 D aq3y1 D aq4y2 D aq5ys3 -

3)

The function Fp is depicted in Fig. [2| If the three permutations are all different, we refer to
it as the multi-permutation setting. If 71,9, w3 are equal to one permutation m, we are in
the single-permutation setting. In total, we thus analyze 2 -2 compression functions. Many
of these, however, are trivially weak (cf. Sect. .

For the single-permutation setting, it is of interest to also consider the case where n-bit
constants are added to the inputs to the permutations (e.g. y; <+ mi(a11z1 ® ajoxe ® by)
for by € {0,1}™). This results in many more schemes, but requires a more complex analysis.
Therefore, we present our main results on F5 of , and in App. [C|we generalize our findings
on the single-permutation setting to cover any Fa where additional affine transformations on
the permutation inputs are taken into account.



Fig. 2. The permutation-based compression function Fa of .

2.2 Security Notions

An adversary is a probabilistic algorithm with oracle access to the underlying permutations
w1, 9, 3. He can make forward and inverse queries to its oracles, and the queries are stored
in a query history Q. By (zx,yx) € Q, for k € {1,2,3}, we denote that yp = 7 (zx); the
adversary either made a forward query x; to obtain gy or an inverse query yx to obtain zy. In
the remainder, we assume that Q always contains the queries required for the attack, and we
assume that the adversary does not make trivial queries, i.e. queries to which the adversary
already knows the answer in advance. In this work we consider information-theoretic adver-
saries only. This type of adversary has unbounded computational power, and its complexity
is measured by the number of queries made to its oracles.

Definition 1. Let F : {0,1}?" — {0,1}" be a compression function defined by a matriz A
of the form @) Let A be a collision finding adversary for this compression function. The
advantage of A is defined as

Adv,czc;l(A) =Pr (771,71'2,71'3 &P, x0 AT g # ', Fii(z) = FZZ(JU/)) .
By Advf&‘:(q) we denote the mazrimum advantage, taken over all adversaries making q queries
to each of their oracles.

Several definitions for preimage resistance are known, but we opt for everywhere preimage
resistance [8], which intuitively guarantees preimage security for every range point.

Definition 2. Let Fo : {0,1}?" — {0,1}" be a compression function defined by a matriz
A of the form @ Let A be an everywhere preimage finding adversary for this compression
function. The advantage of A is defined as

Advo(A) = zen{loz?i{}n Pr (7['1, T, 3 & Py, T .A’“””;l(z) sz =FY (x)) :

By AdveFZre(q) we denote the mazimum advantage, taken over all adversaries making q
queries to each of their oracles.

The security definitions for the single-permutation setting, where the compression function
is built on one permutation 7, are analogous.



2.3 Invalid Matrices

We will classify the set of optimally collision secure compression functions Fa of the form
described in Sect. but for some matrices A the induced compression function will clearly
not fulfill the desired security requirements. For instance, if a compression function does
not use one or more permutations, attacks faster than the birthday bound can easily be
constructed. We introduce the notion of “valid” matrices, in order to rule out compression
functions that trivially fail to achieve optimal collision resistance. A matrix A is called “valid”
if it satisfies the following properties:

(1) For the j*® column (j = 1,2), we have a;; + as; +as; > 1. This requirement ensures that
input x; is used in the computation of at least one permutation. If this would not be the
case, collisions can easily be constructed;

(2) For the j*® column (j = 3,4,5), we have ||a, ;|| > 1, and for the i*" row (i = 1,2,3), we
have ||a; | > 1. Notice that if the i*® row (resp. j'® column) would consist of zeroes only,
it means that permutation 7; (resp. mj_2) is not used in the computation, and collisions
can be found in at most 2"/3 queries by Stam’s bound [12, 13].

In the remainder, we will consider valid matrices A only. By an extensive computation one can
show that 2796 < 2'2 out of 2! matrices are valid (for both the single- and multi-permutation
setting).

3 Equivalence Classes of Permutation Based Compression Functions

We define an equivalence relation on the set of compression functions Fa. This equivalence
relation intuitively describes classes of “equally secure” compression functions, and can be
used to reduce the number of compression functions to be analyzed. Indeed, security prop-
erties of one compression function naturally convey to all compression functions in the same
equivalence class. The equivalence relation is defined in Def. 3| and in Props. we describe
the four equivalence reductions that will be used in this work.

Definition 3. Two compression functions Fa and Fa/ are equivalent if for both collision
and preimage security there exists a tight reduction from Fa to Fas, and vice versa.

Proposition 1 (z-reduction). Consider two matrices A = (a*,l ;A2 A3 Avd a*,g,)
and A’ = (a*,g; A1 Ax3 ) Axd ] a*,5). Then, the compression functions Fao and Fpr are
equivalent. Intuitively, this reduction corresponds to swapping x1 and x2.

Proposition 2 (XOR-reduction). Consider a matric A = (a*71 ;oAx2 5 Akl ]
a,4; av5), and let k = min{ i | a;» # 0 } (notice that k € {1,2,3} as A is valid). Let
o, ---,co € {0,1}. Consider the matriz A’ = A & (Coa*,g; 0; [k > 2]cia.z; [k > 3|coas2; O),
where [X]| =1 if X holds and 0 otherwise. Then, the compression functions Fa and Far are
equivalent. Intuitively, my is the first permutation that incorporates xo, and this reduction rep-
resents replacing rao by ro ® cox1 O Z;:ll ciyi, where y; is the outcome of the i™™ permutation.
Using Prop. (1, the same reduction holds for xy.

Proposition 3 (m-swap-reduction). Let i € {1,2}, and consider a matric A with
ait1,i+2 = 0. Consider the matriz A’ obtained from A by swapping rows a;. and a;i1«
and consequently swapping columns a, ;o and a, ;3. Then, the compression functions Fa
and Far are equivalent. Intuitively, this reduction corresponds to swapping m; and w1, which
is only possible if the outcome of m; is not used as input of miy1 (i.e. if aj11,42 =0).



Proposition 4 (w-inverse-reduction). Consider a matriz A with (a11,a12) = (1,0). Con-
sider the matriz A’ obtained from A by swapping (a1, as1,a41) and (a3, ass, ass). Then, the
compression functions Fo and Far are equivalent. Intuitively, this reduction corresponds to
replacing m by 7r1_1. Using Prop. |1 and Prop. @ on i =1, the same reduction holds for ms.

Proof (Proof of Props. . Let Fa and F A+ be two compression functions defined as in either
of the propositions. For simplicity, in case of Prop. [2] we only consider k = 2 (so a1z = 0,
aze = 1 and ¢ = 0), for Prop. |3| we only consider i = 1 (so ags = 0). By construction, the
compression functions Fa and Fu: satisfy the following properties:

FZl/ﬂrzﬂrg (1.27 371) for PI‘Op.
Fﬂhm’m( ) 7r1,7r2,7r3 (1317 To D cor1 D Clﬂl(allxl)) for Prop. (4)
X1, ==
A 1,42 7r2,7T1,7T3 (1'1, 1,2) for PI"Op.
FZl/ 2, (m1 (1), 22) for Prop.

We need to provide a bi-directional collision and preimage security reduction. For concise-
ness, we will provide only the collision security reduction; the case of preimage resistance is
similar and is therefore omitted. Let A be a collision finding adversary for the compression
function Fu, that on input of 71, w9, 73 & P,,, outputs two tuples (x1,x2), (), %) such that
FX (21, 22) = FY (2], 25). We construct a collision finding adversary A’ for F/ that uses A
as a subroutine and on input of 7, 7, 74 & P, outputs a collision for FZ;,. Adversary A’
operates as follows:

1. In Props. |I|and 2| the adversary A’ sends (my, w2, m3) < (7], 75, m4) to A. In Prop. (3] the
adversary A’ sends (my,me, m3) < (7h, 7}, 75) to A. In Prop. 4] the adversary A’ sends
(m1,m2,m3) < (7))L, mh, k) to A;

2. A outputs two tuples (z1,22), (2], 2%) such that F}'(x1, ) = Fy (2], z5);

3. In Prop. (1} A’ outputs collision (z2,21) and (x4, 2)). In Prop. [2 A" outputs (z1,z2 @
cor1 ® ermi(anzr)) and (2, 25 ® cory ® crmi(anz))). In Prop. [3) A" outputs (z1,22) and
(2}, 2%). In Prop. 4 A’ outputs ((7})~(z1),22) and ((7})~1(2)), z5).

Notice that in step one, the permutations (71,72, m3) are clearly randomly and indepen-
dently distributed as (7}, 75, m4) are, and therefore A can output (z1,x2), (2], x4) such that
FAU™ (21, 29) = FRU™™ (2, x4) with probability Adv ° (A). For Fas of Prop. |3, these
tuples indeed render a collision as given in step 3:

FE’WQ’W,3 (11, 22) = Fgéﬂr,mg (z1,22) by (),

= F2™ (2 a%) by collision for F
=F (a7, 23) y collision for Fy,
/
1

,xy) by (@).

The same argument applies to the other propositions. In any case, A’ needs at most four
queries more than A, and thus we obtain AdeO'( ) < AdvcoI ,(g+4). The reductions in the
other direction (from Fus to Fa) are identical due to symmetry. O

/ / /
T T, T
=F\ 3 (x

Except for Prop. [d] the reductions also hold in the single-permutation setting. We remark
that these reductions are not only restricted to binary matrices, but apply to general matrices
A. In particular, the independence criterion of [9] can be derived using the given reductions.
Also, we note that the reductions can easily be represented by linear matrix operations.



4 Main Result for Multi-Permutation Setting

We classify the set of permutation-based compression functions of the form that achieve
optimal collision resistance. Theorem shows that the set of (asymptotically) secure functions
is fully covered by four equivalence classes; for any other compression function collisions can
be found faster than the birthday bound. One of these four classes — defined by Fa, below —
provides optimal (asymptotic) 22n/3 preimage security, for the other three classes preimages
can be found significantly faster.

Theorem 1. Consider the multi-permutation setting. Let Fa be any compression function
defined by a binary matriz A of the form @) Let Fa, for k =1,2,3,4 be the compression
functions defined by matrices

01011 10111 10101 11101

Let € > 0.

(1) If Fa is equivalent to Fa, for k € {1,2,3,4}, it satisfies lim,_, Adch‘l’A' (27/2(1=2)) = .
Otherwise, it satisfies Adv%ﬂ (q) = 2(q°/2%");
(i1) If Fa is equivalent to Fa,, it satisfies limy, oo Advﬁ':e(22”/3(1*€)) =0;
(ii) If Fa is equivalent to Fa, for k € {1,3,4}, it satisfies Adv " (q) = O(q?/2m).

In other words, a compression function offers optimal collision resistance if and only if it is
equivalent to either of Fa,,Fa,,Fa,, Fa,, and additionally achieves optimal preimage resis-
tance (with respect to the bounds of [10]) if and only if it is equivalent to Fa,.

In order to prove Thm. [1} more specifically part (i) for ¥ = 1,2,4 and part (ii), we pose
the following conjecture. This conjecture relates to the area of extremal graph theory and is
of independent interest. In particular, it can be shown to be similar to (but more complex
than) a longstanding problem of Zarankiewicz from 1951 [2, Ch. 6.2].

Congjecture 1. Let ¢ < 2™ and let Z be a set of ¢ elements taken uniformly at random from
{0,1}". Let § denote the maximum number of tuples (x1,x2,2) € X; x Xy X Z such that
xr1 @ xo = z, where X7, Xy are any two subsets of {0,1}" of size q. Formally:

= ,T2,2) € X1 X Xo X Z = . 6
b X1 X001 [{(e1,22,2) € X1 x X @1 @22 =2} ©)
| X1]=|X2]=¢

There exists a constant d; such that Pr (8 > diqlogq) — 0 for n — 0o and ¢ < 27/2 Simi-
larly, there exists a constant do such that Pr (B > d2q3/2) — 0 for n — oo and g < 227/3,

The first bound is used in the proof Thm. [Ifi) for k¥ = 1,2,4, and the second bound in
the proof Thm. [1f(ii). A detailed heuristic for Conj. [I]is given in App. [D] together with a
comparison with Zarankiewicz’s conjecture, but we leave a full proof of Conj. 1] as an open
problem.

4.1 Proof of Theorem [1l

The proof of Thm. [I]is structured as follows. Firstly, in Lem. [I| we show that any compression
function Fa can be reduced either to an invalid compression function or to a compression
function Fus defined by a matrix A’ with first two rows 10000,01000. By construction (see



Sect. , the security properties of one compression function are valid for the whole equiv-
alence class. Secondly, in Lem. |2| several collision attacks are described that invalidate the
security of each of the remaining compression functions, except for the classes defined by
Fa, (k€ {1,2,3,4}) for A as in (). Thirdly, the collision and preimage resistance of the
remaining four compression functions are analyzed in Lem. |3 which completes the proof of
Thm. [0l

Lemma 1. Any compression function Fa, for valid A, is equivalent to a compression func-
tion Fas, where either A’ is invalid or the first two rows of A’ equal 10000, 01000.

Proof. The proof is constructive. Several reductions are used, but for ease of notation apos-
trophes are omitted. Let Fo be a compression function defined by some valid matrix A. As
A is valid, we have ai1 + a12 > 1. If a11 + a12 = 2, we can apply Prop. [2lon ¢y = 1 to obtain
a11 + a12 = 1. Now, by Prop. [[| we can assume that (a11,a12) = (1,0).

Considering the second row of A, we distinguish between ass = 1 and age = 0. In the
former case, a XOR-reduction (Prop. |2)) on (cg,c1) = (a21,az23) reduces the scheme to the
required form. In the latter case, where ase = 0, we proceed as follows. If ago = 0, A is equiv-
alent to an invalid matrix. Otherwise, by applying Prop. 2| with (¢, ¢1,¢2) = (as1, ass, asq)
we obtain that Fp is equivalent to a compression function F s, for some matrix A’ with rows
(10000, a%; 0a5500, 01000, a)y; alyalysal4a)s). The result is now obtained by swapping mo and
73 (Prop. 3| for i = 2). 0

As a direct consequence of Lem. [1], it suffices to consider compression functions Fa, where

1 00 00
1
A— 0 0 00 (7)

a1 azz|ass azs 0
a41 Q42 a43 a44 1

for some binary values asi, ..., a44. Notice that a45 = 1 because of the validity of the matrix.
We describe a couple of collision attacks that apply to compression functions of this form.
We note that similar results also hold for preimage resistance.

Lemma 2. Let Fp be a compression function defined by a valid matriz A of the form @

(i) If A satisfies (as1 + ass)(asz + aza) = 0, then AdvE) (q) = 2(q*/2");
(ii) If A satisfies \/?:1 as; = a4j =0, then Ade:?i(q) = 2(q3/2™);
(iii) If A satisfies /\?:1 a3y j4+2 # a3 j4+2045, then Adv%‘ﬂ (q) = 2(¢3/2™);
(iv) If A satisfies ag1 + aqa + aq3 + agq = 1, then Adv%’\'(q) = (g7 /2%).

For clarity, the proofs of results (i), (ii), (iii) and (iv) will be given separately.

Proof (Proof of Lem. @(z) ). Without loss of generality, we assume asz + azq = 0, i.e. agy =
as1 as2 as3 a34) _ (a31 0 asz30

a41 @42 @43 Q44 a41 a42 aq3 1

asz > 1, by validity of A. This matrix defines the compression function:

azs = 0. Hence, we consider matrices A with ( ), where az; +

Fa(zi,2z2) = aq1z1 @ asoxa & aszmi(z1) & ma(x2) & m3(as1z1 & aszmi(z1)) .

Define the functions fi(z) = anz ® aszmi(x) @ w3(asix ® assmi(z)) and fa(z) = asr @
ma(x). Notice that Fa(z1,22) = fi(z1) @ fa(x2). A collision-finding adversary A for Fap

proceeds as follows. He sets up two lists of ¢ random elements X7 := {xgl), e ,aqu)} and
Xy = {xél),...,mgQ)}, and computes the corresponding values fl(acgk)) and fg(l‘gk)) (for
k=1,...,q). Thus, in total A makes ¢ queries to each of his random oracles. Given one of

the (3)2 combinations x1,2] € Xi, x2,2, € Xs, this combination yields a collision for Fa

with probability ©(27"). Concluding, Adv,czci(q) = 02(q*/2"). O



Proof (Proof of Lem.[3(ii)). For the cases j € {3,4} as explained in Sect. [2.3 (these cases are
in fact redundant due to the validity of A), collisions can be found in at most 2n/3 queries
due to Stam’s bound [12] [13]. We consider a matrix A with azs = a42 = 0 (the case j = 2), a
similar analysis holds for j = 1. Note that Fx satisfies Fa (21, x2) = Fa/(21, m2(22)), where A’
has third and fourth rows (asjassas300, ag1a44a4301). The compression function F s satisfies
the condition of this lemma for j = 4, and invertibility of my guarantees a collision for Fp in
the same amount of queries plus 2. We note that the result also follows from Prop. [ but
as we will use Lem. (ii) in the single-permutation setting as well, we here consider a more
robust reduction. O

Proof (Proof of Lem.[d(iii)). The idea of the attack is to focus on collisions (1, x2) # (], z5)

for which the input to the third permutation 73 is the same. We first consider the case of
a31a32a33a34):(1 1 00

a41 @42 43 Q44 a41 aq2 11

matrix defines compression function

matrices A with ( ), the general case is discussed afterwards. The

Fa(z1,72) = as171 © ageze ® m1(21) © ma(72) © T3(21 D T2) -
We construct an adversary A that aims at finding a collision (z1,z2) # (2}, %) such that

1 @ xe =) B, (8a)

aq1z1 B agoxe ® mi(21) O To(x2) = au1x] B asxh O mi(x]) B ma(ah). (8b)

The adversary sets up two lists of ¢ = 2% elements X; := {xgl),...,xgq)} and Xo :=
{xgl),...,xéq)}, where mgk) = xék) = 0" (k — 1) for £k = 1,...,q. He computes the
corresponding values m; ($§k)) and 772($ék)) (for k = 1,...,q). Fix any z1, 9,2} such that
z1 # 2. Then, there is exactly one x5 such that is satisfied. For any of these q(g)
options, is satisfied with probability ©(27"). For any of such succeeding tuples, the ad-
versary additionally queries m3(z1 @ x2) = m3(x) ) in order to get a collision. Concluding,
AdvEl(q) = 2(¢%/2").
The described attack relies on the key property that the set of equations

a31 a2 a33 a4
(.1‘1 S x'l, T9 D {L‘IQ, 7T1($1) ©® 7T1($/1), 7r2(x2) ® 7T2($/2))T =0

(41 Q42 Q43 Q44
contains an equation in which x1, z9, 2], 25 occur exactly once. By the requirement of A,
(a31 a32 a33 a34

a41 42 @43 @44
key property is satisfied and the attack succeeds. On the other hand, if both rows contain
exactly one zero, one can XOR the first equation to the second one to return to the first

case. O

) contains at least two zeroes. If two zeroes are located in the same row, this

Proof (Proof of Lem. [9(iv)). Without loss of generality, we assume as; = 1. By Lem. [2(ii),
we can consider ags = agz = azq = 1. The matrix defines compression function

FA(xl,xg) =21 D 7r3(a31x1 D oD 7T1(x1) P Wg(xg)) .

We construct a collision adversary A for Fo. The adversary sets up a list of ¢ = 2% random

elements Xy := {:Eél), .. ,l'gQ)}, and computes the corresponding values ygk) = Wg(l’gk))

(for k = 1,...,q). Additionally, the adversary sets up two lists X; := {:Ugl), e ,:L'gQ)} and

Y; = {yz(,)l), e ,y:(,)q)}, where a:gk) = ygk) =0""?%|(k — 1), for k =1,...,q. He computes the

corresponding values ygk) =m (:ng)) and :rgk) = ng(yék)) (fork=1,...,q). Fix any x1,ys3, 2}

such that z1 # 2. Then, there is exactly one 4 such that x; @ y3 = 2} @ v4. The adversary



obtains a collision for Fa if X5 contains two elements o, 25, such that zo@®ys = ag121 By B3
and zh ® yh = an @) @ yi ® 2. Two such xo, z exist with probability 2((4)/2%"). As the
adversary needs to succeed for only one of the q(g) choices of x1,ys, 2}, he finds a collision
for Fo with probability £2(¢°/22"). O

Next, the compression functions evolved from Lem. [1| are analyzed with respect to the
attacks of Lem. 2] Before proceeding, we remark that for the multi-permutation setting, the
following reductions apply to the compression function classes evolved from Lem. [I| We refer
to these reductions as the “M- and N-reduction”.

M-reduction: Applying Prop. [1, and Prop. [3]on i = 1 corresponds to mutually swapping
(52) ¢ (22) and (%) o (2,

aq1 a42 a43 a44

N-reduction: Prop. reduces to swapping (Ziﬂ) < (92772 for j € {1,2}.
J

aq,5+2
We now continue evaluating the matrices A of the form , and consider the different values
of [|az -

||as,«|| = 0. The matrix is invalid and excluded by definition;

lag,«|| = 1. The matrix is vulnerable to the attack of Lem. 2{i);

||as,«|| = 2. The matrix contradicts either one of the requirements of Lem. [2 Technically, if
(as1 + as3)(ase + asz4) = 0 it violates Lem. (i), and otherwise the values ay1, ..., a4 will
violate either the requirement of Lem. [2ii) or of Lem. [2[(iii);

llas || = 3. Due to M- and N-reductions, it suffices to consider agjaspaszaszs = 1110, and

consequently as4 = 1 by Lem. (ii). Lemma (iii) now states that we require a4 = ays,
which gives the following four options for a4ia42a43: 000, 010, 101 and 111. The first one
is vulnerable to the attack of Lem. [2{iv), and the fourth matrix is equivalent to the second
(by consequently applying Prop. 2l on (¢cg,c1) = (1,1), and Prop. [3|for i = 2). We are left
with A; and Ay of :

01011 10111

||as,«|| = 4. Due to M- and N-reductions, it suffices to consider a4ias2aszasa € {0000,
1000, 1010, 1100, 1110, 1111}. The cases 1000 and 1100 are vulnerable to the attacks of
Lems. [2[iv) and [2[iii), respectively. For the cases 0000 and 1111, finding collisions is as
hard as finding collisions for F(x1,z2) = x1 © x2 @ 71(x1) ® ma(x2) (for which collisions
are found in at most 2"/% queries, due to Stam’s bound [12} [13]). We are left with A3 and

A4 Of:

10101 11101

It remains to analyze collision and preimage security of the four compression functions defined
by the matrices of , which is done in the following lemma. Particularly, Lem. |3| completes
the proof of Thm.

Lemma 3. Let e > 0. Then:
(i) limy, s Adv&j\'k (27/20=9)) = 0 for k =1,2,3,4;
(i) litnp 00 AV (227/3072)) = 0, and AdvE®(q) = O(¢%/2") for k =1,3,4.

Proof. Part (i) is proven in App. |A] part (ii) in App. O



5 Main Result for Single-Permutation Setting

In a similar fashion as in Sect. [l we analyze the security of compression functions based
on three calls to the same permutations, the single-permutation setting. It turns out that
there does not exist any compression function of the form that achieves optimal collision
resistance. We note that this result does not rely on Conj. [T} In App. [C] we show how the
results of this section can be generalized to cover any single-permutation compression function
where additional affine transformations on the permutation inputs are taken into account.

Theorem 2. Consider the single-permutation setting, where m1 = w9 = w3 =: w. Any com-
pression function Fa defined by a binary matriz A of the form @ satisfies Adv,cz‘l'(q) =
2(¢/227).

Proof. The proof of Thm. [2]is similar to the proof of Thm. [} and we highlight the differ-
ences. Lemmas [1| and [ still apply, and additionally the M-reduction also holds in the single-
permutation setting. Notice that the N-reduction does not hold as it incorporates Prop. [4
Similar to before, we will evaluate the matrices A of the form (7). The case ||lag .|| < 2 is the
same as before.

l|as,«|| = 3. Due to M-reductions, it suffices to consider azjasgaszass € {1110,0111}.

— agiaseassazs = 1110. The same analysis as in Sect. applies, leaving the matrices Ay
and As of . In the single-permutation setting, the two corresponding compression
functions satisfy Fa, (z1,7(21)) = 7%(z1) and Fa, (21, 22) = Fa, (71,21 © 22 © 7(21))
for any x1,z9. Collisions can thus be trivially found;

— agiassaszazs = 0111. By Lem. (ii), we have aq; = 1. Lemma (iii) now states that
we require aqo = a44, which gives the following four options for asoaq3zaqqs: 000, 010,
101 and 111. The first one is vulnerable to the attack of Lem. [2[iv), the second, third
and fourth matrix satisfy Fa(z1,21) = 21, Fa(z1,21) = 0 and Fa(x1,21) = 7(x1),
respectively, for any x1. Collisions can thus be trivially found;

l|las,«|| = 4. Except for asjassaszass € {1010,1001,0110,0101}, all induced compression
functions satisfy Fa(z1,21) ® 7(0) € {0,21,7(x1)} for any z;, for which collisions can
be trivially found. The cases 1001,0110 are vulnerable to Lem. (iii). The remaining two
cases, which are equivalent by M-reduction, allow for trivial collisions as well: the com-
pression function induced by (a41a42a43a44) = (1010) satisfies Fa (21, 71 (21 ®7(21))) = 0
for any x; (cf. [9]).

Hence, the analyzed compression functions either allow for trivial collision or are vulnerable
to Lem. [2 therewith allowing for collisions in at most 22/% queries. O

Concluding, for any compression function Fp of the form (3), where the three permuta-
tions are equal to one single permutation 7, collisions can be found in at most 22*/5 queries,
hence considerably faster than in 2"/2 queries.

6 Conclusions

We provided a full security classification of 2n-to-n-bit compression functions that are solely
built of XOR-operators and of three permutations. Therewith, we have analyzed compression
functions that are not included in the analysis of Rogaway and Steinberger [9], but yet are
interesting because of their elegance (they only employ XOR-operators) and efficiency (XOR-
operators are slightly cheaper than finite field multiplications by constants). For any of the
215 compression functions of the described form, we either provide a formal collision and
preimage security proof or a collision attack more efficient than the birthday bound.



For the multi-permutation setting, where the three permutations are different, there
are exactly four equivalence classes of functions that allow for optimal collision resistance,
one class of which the compression functions achieve optimal preimage resistance w.r.t. the
bounds of [10]. A summary of these results is given in Table [I} Regarding the absolute num-
ber of collision/preimage secure compression functions, by ways of an extensive computation
one finds 96 functions equivalent to Fa, (including the Fa, itself), 48 functions in each of
the classes defined by Fa, and Fa,, and 24 functions equivalent to Fa,. In total, we have
thus proven 216 compression functions optimally collision secure, 48 of which we have proven
optimally preimage secure. A small part of the results for the multi-permutation setting relies
on an extremal graph theory based conjecture, Conj. [I} which we supported by an extensive
and detailed heuristic. We leave the full analysis of Conj.[I] as an open problem.

For the single-permutation setting, where the three permutations are the same, we show
that it is not possible to construct a 2n-to-n-bit compression function that achieves optimal
collision resistance. In light of the amount of optimally secure compression functions we have
found in the multi-permutation setting, this observation is not as expected. This negative
result casts doubts over the existence of any (larger) permutation-based XOR-based com-
pression function built on (multiple invocations of) one single permutation. We leave this
question as an open problem.

The results in this work are derived in the permutation setting. Different results may be
obtained if we consider three underlying primitives to be one-way functions: in particular,
the m-inverse-reduction (Prop. and Lem. |2 rely on the invertibility of these primitives.
Further research questions include the applicability of the approach followed in this work to
different classes of compression functions, for instance with larger domain and range, with
more permutations or random functions instead, or defined over different fields.
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A Proof of Lemma [3|(i)

For Fo, (k = 1,...,4), where the matrices A are given in , the goal is to prove that
lim,, 00 Adv‘,::‘/’ik (2"/ 2(1—8)) = 0 for any € > 0, demonstrating the asymptotic collision security
of Fa, . In the remainder of this section, 71, w2, 73 are assumed to be three permutations taken
uniformly at random from FP,.

The approach followed in this proof is as follows: finding a collision for a function F, with
A of the form (7)), corresponds to obtaining query pairs (1, 1), (2}, 4;) for 71, (%2, y2), (5, ¥5)

for mo, and (x3,y3), (%, y5) for m3 in the query history, such that:

(w1, 22) # (27,23), (9a)
az171 ® a3 © aszys © assy2 = 3, (9b)
as1 Ty B aszewh & aszy; D azsyh = T, (9c)

a1 B as22 B as3y1 B asaye B Y3 = aq12] B agarh B ag3y] S asayy S yh (9d)

(recall that the adversary is required to make the correct queries in order to form the

collision). We will analyze the maximum probability of any adversary, making at most ¢

queries to his oracles, in breaking @), which equals Adv,‘é‘;'(q) by definition. Denote by O;
col

fori=1,...,q the first i queries of the query history Q;. To bound Advg) (q), we distinguish
among the possibilities that z; = :L“; (for 7 = 1,2,3). Formally, we obtain

Advf:‘/’:(q) < Z Pr ( solution for (9) /\ rj=a =i =1(j = 1,2,3)) . (10)
c1,c2,c3€{0,1}

Returning to the four compression functions Fa, (k € {1,2,3,4}), this leaves 32 cases to be
evaluated, but for some choices of ¢;cacs the probability on the right hand side of equals
0. Starting with Fa,, the cases cicac3 € {110,111} violate , the case 010 would give
contradiction for , and 101 would give a contradiction in lines . On the other side,
the case cjcac3 = 000 corresponds to E;(Q,) of Fig. [3| and similarly the cases 001,011, and
100 correspond to events E5(Q,), E9(Qy), Ei10(Qq) of Fig. |3 respectively. A similar analysis
can be applied to Fa,,Fa;,Fa, to obtain the results of Table 2| In general, the following
holds for Fa,, where k € {1,2,3,4}:

collision for Fao, = E1(Qq) V E5(Qy) V E9(Qy) V E10(Qy) , (11a)
collision for Fa, = E2(Qq) V E5(Qy) V E7(Qq) V E9(Qq) V E11(Qy), (11b)
collision for Fa, = E3(Qq) V E6(Qy) V Es(Qy) V E9(Qq) V E13(Q,), (11c)
collision for Fa, = E4(Qq) V Es(Qy) V E9(Qq) V E12(Qy) . (11d)



Table 2. A case distinction for the analysis of for Fa, (k € {1,2,3,4}), where each
column corresponds to a particular choice of cicacs. In case of X, the choice cjcocs renders
violation of one or more equations of @D, otherwise the case corresponds to event E;(Qq)

(I €{1,...,13}) given in Fig.

c1c2c3 000 001 010 011 100 101 110 111

Fa,  Ei(Q) Es(Qy)  X(od) Eo(Qq) Ew(Qq) X (ovlod X (9a) x (oa)
Fao E2(Q) Es(Q) Er(Qy) Eo(Q) En(Qq) X (pfod X (9a) x (od)
Fas  Es(Qq) Ee(Qy) Es(Qy) Eo(Qq) X(od) Eis(Qq) X (oa) X (o)
Fa, Ei(Q) X(EHfpd) Es(Q) Eo(Q) Ei2(Q) Xfod) X (o) X (o)

Here, the events E;(Qq) (I € {1,...,13}) are given in Fig. [3| Thus, it remains to analyze the
probabilities of the events E;(Q,) to occur, but we will analyze these under the condition
that the previous query did not result in success, and some additional condition C(Q,) =

Civ..va(Qq), where the claims C;(Qy),. .., C4(Qy) are given in Fig.
Pr(E/(Qq)) < Pr(Ei(Qq) | ~E1(Qq—1) A ~C(Qq)) + Pr (Ei(Qq-1) V C(Qy)) -
Similarly, the second probability of this bound can be split up further:

Pr (E(Qg-1) V C(Qq)) < Pr(Ei(Qq-1) | "Ei(Qg—2) A 7C(Qg-1)) +
Pr (C(Qq) A ~C(Qq-1)) + Pr (E/(Qg—2) V C(Qy-1)) -

Applying this trick ¢ times eventually gives the following probability bound on E;(Q,):

[}

r (E/(Q,)) Z (Ei(Qi) | "Ei(Qi—1) A=C(Q:)) + > Pr(C(Qi) A=C(Qim1)). (12)

1 i=1

The remainder of the section is now divided as follows. In App. we will bound the
conditioned events E;(Qg) to occur for I € {1,...,13} (first sum of (12)). Then, in App.
a bound on the occurrence of C(Q,) is computed (second sum of (12)). The results are
assembled in App. to prove Lem. [3](i).

A.1 Bounding Occurrence of Conditioned E;(Qq4), I =1,...,13

In this section, we bound the conditioned events E;(Q,) (for I = 1,...,13) to occur, more
specifically the first sum of . The cases | = 1,2, 3,4 are found in Lems. respectively.
The cases | = 10,11,12 are found in Lem. [8 and the remaining cases in Lem. [9]

Let dy be the constant defined in Conj. On input of parameters (g,n), we define
ec(g,n) = Pr (B > diqlog q) of Conj. [1} This quantity tends to 0 for n — oo and for ¢ < 2"/2.
In the remainder of this work, we define ¢; = d1qlog g. We will also consider Conj. [[jon inputs
(q1,m) and (K2q,n), where K3 is a parameter used in Fig.

Kaqilog gy

q
Lemma 4. ZPr (E1(Q;) | 7E1(Qi—1) A =C(Qy)) < g

i=1
Proof. We write Eja, E;b and E;c for the three equations of E;(Q) (Fig. [3). We first bound
the success probability of the i*" query (i = 1,...,q), and then we sum over all values of i.

0 )

Assume first the adversary makes a query x5’ — y3 = m3(x :(3)) fori=1,...,q (the same
treatment holds for queries % — 4, T2 — Y2 or x4 — y5). By Conj. |1} there exist at most ¢;
tuples (2], v}), (x4, y5), (x4, y5) such that E1b is satisfied, except w.p. at most ec(g, n). Denote

+ 2ec(q,n) +ec(qr,n).



EI(Q) : (271,y1),(z/17y/1)’ ($27y2)7 (x/g,yé), E7(Q) : (r1,y1), (xllvyﬁ)v ($37y3)7 (xé’yé) € 9 s.t.

(z3,3), (z3,93) € Q s.t. x1 # o, w3 #£
zlyéxll,zgyéxé,zg;éxg, w165y169z3:w'1@y'1@:c§,
1 Dy O x2 = 23, 3D y3 = 5 D Y5
oy ®y) @ ah = af, Es(Q) : (z1,91), (21, 41), (22, 92),
T2 ®y2 B Yz = zh B Yy Y5 (z3,y3), (x5, 75) € Q s.t.
E2(Q) : (z1,91), (21,91), (2, 92), (25, ¥3), x1 # o, 13 # 3,
(z3,93), (x3,93) € Q s.t. 1 Dy s =] Dy| Dy =x2 D Y2,
x1 # o, w2 # 5, T3 # T3, x3 B ysz = x5 By
1 Dy1 O x2 = 3, Eo(Q) : (z1,11), (z7,v}) € Q s.t.
T DY) By =y, x1 # o],
1@y Dy2 Dys =21 Oy Dys D Ys. T Dy =7, DY,
Es(Q) : (z1,11), (21, 1), (z2,92), (23, ¥3), E10(Q) : (z1,v1), (2,92), (x3,93),
(23,93), (z3,93) € Q s-t. (z3,y3), (x4, y5) € Q s.t.
Ty # @Y, w2 F# Ty, T3 F T3, x2 # Th, T3 # T4,
1 Dy T2 Oy2 = T3, x2 @ w3 = xH Dy =1 D Y1,
71 @Y1 Bz By = 3, o Yo Dy = 7h B yh & .
21 ®y1 Dys =21 DY) Bys. E11(Q) : (z1,41), (w2, y2), (x5, yd),
Ea(Q) : (x1,51), (¢1,91), (¥2,72), (¢5,3), (z3,y3), (4, v4) € Q s.t.
(x3,y3), (x3,93) € Q s.t. T2 # Th,T3 # T,
x1 # ), 2 # x5, 23 # T3, To @ x3 =xh ®rh =11 DY1,
1 Dy1 Dx2 Dy2 = x3,

Y2 Dy3z =y B ys.
s (21, 1), (22, 92), (2, 93),
(z3,y3), (z4,y5) € Q s.t.
T2 # Th, T3 # T4,

x2®y2@x3=xé®yé®zé=ml€9y1,

z1 DYy Oy Dy = 3, E12(Q)
1Dy D2 Dys =] Dyl DxhH D ys.

E5(Q) : (z1,91), (21, 91), (x2,92), (25, y3) € Q s.t.
x1 # x), 10 # Th,

0 / /
m &y O =21 Oy Bab, 22 ® 4 = 2 © 35,

7 ’
T2 Y2 =12 G Y. E15(Q) : (w2,12), (wh,5) € Q s.t.
E6(Q) : (z1,31), (21, 91), (w2,2), (2, 95) € Q s.t. -y

.1‘1¢$/17.1’2¢$/27 $2@y2:$/2€9y§
1 @ylzx/l@y/lv
x2 ® Y2 = 5 D Yo

Fig. 3. The events E;(Q) (I € {1,...,13}) employed in the proof of Lem. [3[(i) (App.[A)). Q is
a query history.

L; to be the number of tuples (z1, 1), (z2,y2) that make equation E;a satisfied for xg). For
any of the tuples satisfying E1b, and any of the tuples satisfying E;a, equation Ejc is satisfied
with probability at most 1/(2" — q). Considering all queries x3 — y3, the adversary succeeds
in breaking E;(Q,) with probability at most > 7 , QLni—Elq + ec(g,n). Notice that by Conj.

2
S1 1 Li < qu, except w.p. at most ec(g, n). We thus obtain upper bound 2,?1_(1 + 2ec(gq,n).

Assume the adversary makes a query ygi) — xgi) =7y l(yéi) ) for i =1,...,q (the same
treatment holds for query y4 — «%). By Conj. [1] there exist at most ¢; tuples (), v}), (a5, y5),

xh,ys) such that Eib is satisfied, except w.p. at most £.(q,n). This consequently leads to
3> Y3

at most ¢; possible values of yéi) @z, ® yh @ 5. For any of these values, by =Ca(Q;) there

exist at most Ky combinations of queries (x1,y1), (z3,y3) such that yéz) G zH DYy DYy =

1 D y1 @ x3 @ y3. For any of these Ksq; choices, the adversary breaks E;(Q;) if azg) hits



C1(Q) : for some c there exist more than K; solutions in Q to one of the 3 equations:

z1 QY1 =c r2DY2=c 3 Dys =c.

C2(Q) : for some c there exist more than K> solutions in O to one of the 3 equations:

1 Dy1 Bxr2 Dy =c¢ r1Dy1 Bxrz Dys =c T2 DYy2 Bx3z Dys =c.

C3(Q) : there exist more than Kaq solutions in O to one of the 3 equations:

1 Dy1 Dr2 Dy2 =3 1 Dy1 D3 Dys = w2 T2 Dy2 Dr3 Dys =T1.

C4(Q) : there exist more than g — 1 solutions in O to one of the 3 equations:

To # xh, T3 # T4, and T2 # xh, T3 # x4, and To # x4, x3 # x4, and
T2 @ x3 = xh O v5, and T2 @ x3 = xh O v5, and 2 ®y3 = 75 @ y5, and
Y2 ®ys = yo D Y5 T2 Dy2 Dysz = zH DYs DY T2 @ y2 D T3 = T5H DYy D TH.

Fig. 4. The claims C1(Q), ..., C4(Q) employed in the proof of Lem. [3(i) (App.[A]). We denote
C(Q) = Civ..v4(Q). The parameters K; > 1, Ko > 1 are any fixed constants. Q is a query
history.

yg) Dys Dxh DyhDys = x1 By ®xs, hence with probability at most 1/(2" — ¢). Considering
all queries yo — 2, the adversary succeeds with probability at most [;ﬁiq_qql +ec(g,n).
Assume the adversary makes a query yéi) — a;g) =7y 1(y§i)) for i = 1,...,q (the same
treatment holds for query y5 — ). By Conj. |1} there exist at most ¢; tuples (2], v}), (x5, y5),
(x4, y5) such that Eqb is satisfied, except w.p. at most ec(¢,n). This consequently leads to at
most ¢; possible values of x4 @ y, & y5. Denote L; to be the number of choices (x2,y2), 25 &
yh @ y4 that make equation Ejc satisfied for yéz). For any of these L; tuples, equation Eja is
satisfied with probability at most ¢/(2" — ¢q). Considering all queries y3 — x3, the adversary
succeeds in breaking E;(Q,) with probability at most Y 7_, 2%’}(1 + ec(g,n). Notice that by
Conj. |1} >7 | L; < dig11og ¢1, except w.p. at most ec(g1, n)H We thus obtain upper bound

% +ec(g,n) +ec(qr,n).
(@)

Assume the adversary makes a query x;’ — yy) =m ($§1)> for i = 1,...,q (the same
treatment holds for queries y; — x1, 27 — v} or y; — z}). By Conj. [1] there exist at most ¢;
tuples (z],v)), (xh, v5), (x4, y5) such that E;b is satisfied, except w.p. at most ec(q,n). This
consequently leads to at most ¢; possible values of 25 ®y5 G ys. Again by Conj. (1] there exist at
most dyq; log g1 combinations of queries (2}, y1), (25, v5), (25, v5), (z2,y2), (z3,y3) such that
Eic is satisfied, except w.p. at most ec(q1,n). For any of these combinations, the adversary
breaks Eq(Q,) if y%z) hits xgl) Do @xs, hence with probability at most 1/(2" —¢q). Considering
all queries 1 — y1, the adversary succeeds with probability at most dlqg,{ilfqg‘h +ec(g,n) +
8C(qla TL)

I h bability i Kaq? log ¢1 9

n any case, the success probability is at most —53—"= + ec(q,n) +ec(q1,n). O

Koq?log q1

q
Lemma 5. ZPI‘ (E2(Q;) | 7E2(Qi—1) A =C(Q;)) < 2 g

=1

+ 2€C(Q7 n) + 5C(Q17 ’I’L)

Proof. We write Esa, Eob and Eac for the three equations of Eo(Q) (Fig. [3). The approach is
similar as before.

Assume first the adversary makes a query xgi) — y:(,)i) = Wg(a?éi)) fori=1,...,q (the same

treatment holds for queries % — 4, £2 — y2 or xh, — y5). By Conj. |1} there exist at most ¢;

! Here, Z (the values z2 @ y2) is a set of ¢ random elements, and the adversary is challenged to find two sets,
one of size q (the values z3) and one of size at most g1 (the values x5 @ y5 @ y3), to maximize the number
of matches. The success probability for this is upper bounded by the success probability in breaking this
problem if all sets are of size gi. Then, we can apply Conj. [l{on (g1,n).



tuples (z],v}), (x4, y5), (x4, y5) such that Eob is satisfied, except w.p. at most ec(g, n). Denote

L; to be the number of tuples (z1, 1), (z2,y2) that make equation Esa satisfied for x:(;). For
any of the tuples satisfying Eob, and any of the tuples satisfying Esa, equation Esc is satisfied
with probability at most 1/(2" — q). Considering all queries x3 — y3, the adversary succeeds

in breaking E9(Q,) with probability at most Y 7, QI;leq + ec(g,n). Notice that by Conj.

7 Li < qu, except w.p. at most ec(g, n). We thus obtain upper bound 2,?31 + 2ec(q,n).
Assume the adversary makes a query yg) — xgi) =73 1(y:())i)) for i = 1,...,q (the same
treatment holds for query y; — 2%, y2 — x2 or y5 — x%). By Conj. |1} there exist at most ¢; tu-
ples (24, v1), (25, 5), (¢4, y4) such that Egb is satisfied, except w.p. at most ec(g, n). This con-
sequently leads to at most ¢; possible values of yéi) d ) DYy ®yhDys. Again by Conj. |1} there
exist at most diqilogq: combinations of queries (x],v)), (x5, y5), (24, y5), (1, y1),

(z2,y2) such that Esc is satisfied for yéi), except w.p. at most £.(q1,n). For any of these

combinations, the adversary breaks Ez(Q,) if l’:(;) hits 1 @ y1 @ x2, hence with probability
at most 1/(2" — q). Considering all queries y3 — x3, the adversary succeeds with probability
at most % +ec(q,n) +ec(qr,n).

Assume the adversary makes a query l'gi) — yg) =m (l’gz)) for i = 1,...,q (the same
treatment holds for queries y; — 1, 7 — y] or y§ — z/). By Conj. [1} there exist at most
q1 tuples (z,91), (z5,95), (25, 95) such that Esb is satisfied, except w.p. at most ec(gq, n).
This consequently leads to at most ¢; possible values of ) @ v} @ v @ y5. For any of these
values, by —Cq(Q;) there exist at most Ko combinations of queries (x2,¥2), (3, y3) such that

To Dys D a3z D ysz = ) By} Dy, D ys. For any of these Kaqi choices, the adversary breaks
E2(Q;) if ygl) hits xgl) @ xo @ x3, hence with probability at most 1/(2" — ¢). Considering all
queries x1 — Y1, the adversary succeeds with probability at most Iz(ﬁiq_qql +ec(gq,n).

Kaq? log q1

In any case, the success probability is at most g T 2ec(q,mn) +ec(qr,m). O
- K3q®
Lemma 6. » Pr(E3(Q;) | ~Es(Q;—1) A ~C(Q;)) < e

=1

Proof. The case of E3(Q,) is fairly similar to the case of Ex(Q,) (see Lem. [5), with the
difference that the usage of Conj. [1]is replaced with =C3(Q;). We write Esa, Esb and Esc for
the three equations of E3(Q) (Fig. |3). The cases of queries 1,2, y1, v}, z3 and 2 are the

same as before (notice that Esa and Esb can be substituted in Esc), resulting in a success
K22q2

probability upper bounded by Sig

Assume the adversary makes a query mg) — yg) = Wg(ﬂ:él)) for i = 1,...,q (the same
treatment holds for queries yo — 9, 2, — v or yb — 24). As =C3(Q;), there exist at most
Kyq tuples (2!, y1), (25, 95), (5, y5) such that Esb is satisfied, and this consequently leads to
at most Kq possible values of x5, @ y5 @ 5 & y5, which behave random. By a slight variant
of =C3(Q;) (as the previously mentioned values behave random), there exist at most K2q
combinations of queries (2}, y]), (25, v5), (z5,95), (1,91), (z3,y3) such that x; & y; B y3 =
zh @ yh @ xh @ y4. For any of these combinations, the adversary breaks E3(Q,) if yél) hits

1 @Y1 @xg) @ x3, hence with probability at most 1/(2" — ). Considering all queries x5 — ya,

2.2
the adversary succeeds with probability at most ;fff

Assume the adversary makes a query yéi) — $§i) = ﬂgl(ygi)) for i = 1,...,q (the

same treatment holds for query y} — z%). As =C3(Q;), there exist at most Kaq tuples
(@], 9)), (xh,y5), (4, y5) such that Esb is satisfied, and this consequently leads to at most Ksg
possible values of =/, ® v ® 5 yh. Denote L; to be the number of choices (z1,y1), z] DY) Dyh

that make equation Egc satisfied for yél). For any of these tuples, equation Esa is satisfied




with probability at most ¢/(2" — ¢). Considering all queries y3 — x3, the adversary succeeds

in breaking E3(Q,) with probability at most > 7 fl_q . Notice that by a slight variant of
q i=1 2n—q
2,2
-C3(Q;), Y% | L; < K2q. We thus obtain upper bound ;f?fq.
2.2
In any case, the success probability is at most gi?fq. O

The slight variant of C3(Q;) employed in the proof of Lem. |§| embraces the case the
adversary has i different tuples (z1,y1) and i different tuples (z3,ys3), but (at most) Kai
different random values zo = x4 ® y5 ® 2% & 4, and aims at finding combinations such that
x1 @ y1 @ 2o = x3 (or similar variants). Rather than introducing a separate claim for this, it
suffices to condition for E3(Q) on claim C(Q) where K»q queries are allowed. This observation
is used in Sect. where the results are assembled.

q 2 2
Lemma 7. Y Pr(Eq(Q;) | “E4(Qi—1) A ~C(Qy)) < dlK?gnlfgq(K”)

i=1
Proof. The case of E4(Q,) is fairly similar to the case of E1(Q,) (see Lem. {)), with the
difference that most of the usages of Conj.[I]are replaced with =Cs(Q;). We write E4a, E4b and
E,c for the three equations of E4(Q) (Fig.[3). Note that equation E4c reduces to yo ®x3PDys =
yh @ 5 @ y5 by substituting equations E4a, E4b. The cases of queries x1, 2}, y1,9], z3 and =}
are the same as before. For queries z,2%,y3 and y4, one follows the same reasoning as
for queries y» — x2 in the analysis of E1(Q,), and for queries ys, y5 one follows the same
reasoning as for y3 — x3 in the analysis of E1(Q,). Concretely, the success probability is at

+ 5C(KZQ7 TL)

d1K2q? log(K.
most %ﬁi(zq) + ec(Kaq,n). 0
Lemma 8.
(K 2

: 0@+

E Pr(E/(Q;) | “Ei(Qi—1) A ~C(Qy)) < 72711 ~ +ec(q,n) forl =11,

i=1

KK 2 2
Rifaq” +q° for 1 = 12.
2" —q

Proof. We start with E11(Qy), and write Ejja, Eq1b for the two equations of E11(Q) (Fig. [3).
The approach is similar as before.

Assume first the adversary makes a query xg) — yél) = 7r3(3:§f)) for i = 1,...,q (the
same treatment holds for queries x5 — y5, xa — yo or = — y5). By Conj. |1} there exist
at most g tuples (zf,v5), (25, y4), (z1,y1) such that the second equality of Ejja is satisfied,
except w.p. at most ec(¢,n). For any such choice, as Cﬂg) is fixed there exists at most one
(x2,y2) such that equation Ejja is satisfied. For any of the combinations, Eq1b is satisfied
with probability at most 1/(2" — q). Considering all queries x3 — y3, the adversary succeeds
in breaking E;1(Q,) with probability at most Q?Lq_lq +ec(gq,n).

Assume the adversary makes a query y:(;) — mg) =73 1(y§1) ) for i = 1,...,q (the same
treatment holds for queries y§ — 24, yo — x2 or y5 — z4). By Conj. [1} there exist at most
q1 tuples (24, 45), (25, 94), (£1,y1) such that the second equality of Ejja is satisfied, except
w.p. at most £.(q,n). For any such choice, as yél) is fixed there exists at most one (x3, y2) such
that equation Eq1b is satisfied. For any of the combinations, Eija is satisfied with probability
at most 1/(2" — ¢). Considering all queries y3 — x3, the adversary succeeds in breaking
E11(Qq) with probability at most 512 + £c(q, n).

Assume the adversary makes a query mgi) — yg) =m (:L‘Y)) for i = 1,...,q (the same
treatment holds for queries y; — z1). By =C4(Q;), there exist at most ¢ — 1 tuples (z2,y2),




(x3,v3), (xh,y5), (x4, y5) such that xo & x3 = x4 & x4 and y2 & y3 = yh & y5. For any such
tuple, the adversary succeeds with probability at most 1/(2" — ¢). Considering all queries
2
q
2" —q

x1 — Y1, the adversary succeeds in breaking E;1(Q,) with probability at most

In any case, the success probability is at most % + ec(g,n). The cases of Ei0(Qy),
Ei2(Q,) are fairly similar, with the major difference that one needs to take into account that
by —C;(Q;) the query history contains at most K collisions zo @y = ¢, for any ¢, and similar
for 3. Additionally, for E12(Q,) the usage of Conj. [1}is replaced with =C3(Q;). Concretely,
the success probabilities are upper bounded by Kigq1+q* +ec(gq,n) for E19(Qq) and %‘fﬂ?

2" —q q
for Elg(Qq). O

q

Lemma 9. » Pr(E/(Q)) | ~E/(Qi-1) A=C(Qy)) =0 for 1 =5,...,9,13, provided Ky = 1.
i=1

Proof. Starting with E5(Q,), for the ith query a:g) > yéi) for i =1,...,q. As =C1(Q;) for

K =1 there does not exist any other query (25, y5) such that :pg) @y;) = 2, ® yh. The same
reasoning applies to the other events. O

A.2 Bounding Occurrence of C(Q,)

In this section, we bound the event C(Q,) to occur, more specifically the second sum of .
Notice that this sum by probability theory equals Pr (C(Q,)). However, we can split up the
probability as follows:

Pr (Cl\/...v4) S Pr (Cl) -+ Pr (CQ | ﬂC1) + Pr (C3 ‘ —\C1V2) + Pr (C4) . (13)

The probability bounds on C1(Qg), ..., Ca(Qy) (the four quantities of (13))) are obtained
in Lems. The proofs rely on the following bound, which holds due to Stirling’s approx-
imation (b! > (b/e)® for any b):

Ki+1
Lemma 10. Pr(C(Q,)) <3-2 <(K1 +1)(2" - Q)> '

Proof. We start with the first equation of C;(Q,). Fix any c. For any (z1,y1), the equation
is satisfied with probability at most 1/(2" — ¢). More than K; such tuples give a collision
with probability at most

(w) () tioma)

Now, the result follows by quantifying over the number of choices for ¢ and the number of
equations of C;(Qy). O

K12¢% >(K2+1)/K1

Lemma 11. Pr(Cy(Q,) | C1(Qy)) < 3-2" <(K2 T2 — g

Proof. We start with the first equation of C2(Q,). Fix any c. Assume the adversary makes a
query xgl) — ygl) for i =1,...,q (the same treatment holds for queries y; — x1, zo — Y2 or
y2 — x2). For any tuple (x2,y2), the equation is satisfied with probability at most 1/(2" —q).

Thus, the query results in a solution with probability at most ¢/(2" — q). The adversary



makes 2¢ queries, and as ~C;(Q,), each “hit” adds at most K; solutions. Therefore, the
adversary needs at least (K2+1)/K; out of at most 2¢ hits. Consequently, Q, contains more
than Ky solutions to the first equation of Cy(Q,) with probability at most

2 q (K2+1)/K1 K12q2e (K2+1)/Ky
< .
((K2+1)/K1> (2"—Q) - <(K2+1)(2”—CI)>

Now, the result follows by quantifying over the number of choices for ¢ and the number of
equations of Ca(Q,). 0

Lemma 12. Pr(C3(Q,) | ~Civ2(Qy)) =0

Proof. We start with the first equation of C3(Q,), a similar reasoning applies to the other
equations. As ~Cy(Qy), for any (x3,y3) there are at most K solutions to 1@y Bra®ys = x3.
As Q, contains ¢ tuples (z3,y3), it contains at most Kpq solutions to the first equation of

C3(Qq). O

e \?
Lemma 13. Pr(Cy(Q,)) <3 <2n — q) .
Proof. We start with the first equation of C4(Q,). By construction, there are at most 7
tuples of queries that satisfy zo ® z3 = 2, ® 2%, and the adversary can achieve this number if
he makes forward queries only, and we will assume henceforth. For any of these tuples, the
second equation is satisfied with probability at most 1/(2"™ — ¢). More than g — 1 such tuples
give a collision with probability at most

() (#5) = ()

Now, the result follows by quantifying over the number of equations of C4(Q,). O

A.3 Assembling the Results

Denote by bndE;(¢q) the bound obtained for conditional events El(Qq) (= 13 Lems
9), and by bndC;(g) the bound obtained for claim C;(Q,) (I =1,...,4, L ems. . Recall

that q1 = diqlogq. Using slight variants of (11H13]), one gets

Adv°°'()§ > bndE(g)+ > bndCyg

1€{1,5,9,10} le{1,...,4}
Advy g) < > bndE(g)+ > bndC(g
1€{2,5,7,9,11} lef{1,...4}
Ade0| ( )S Z bndEl Z bndCl Z bndcl(KQq)
1€{3,6,8,9,13} 1e{1,2,3} 1e{1,2,3}
AdvE (g) < ) bndEg)+ Y bndGlg
1€{4,8,9,12} lef{1,...,4}

Note that the bound for Advc°I ( ) includes a third sum, the cause of which is explained

after Lem.@ Let € > 0. In order to prove lim,, . Advco'k (27/2(1=€)) = 0 (for k = 1,2,3,4),
it suffices to prove that the separate bounds tend to zero for n — oc. The results of Sects.
and hold provided K; = 1, but still hold for any choice of Ks. Set Ko = n — 1. Note
that the ec-parts in the bounds bndE;(¢) all approach 0 for ¢ = 2*/2(1=9): in particular, for
large enough n we have diqlogq < 27/2 and Kaq < 22, and Conj. 1] applies. Therefore, we



omit the ec-parts for simplicity. The evaluations are now fairly the same and mostly rely on
the fact that for large enough n the bounds behave like ’;%f for some constants «, 5. This
function clearly tends to 0 for n — oo. We discuss bndE;(q) and bndCa(gq) in detail. As we
consider the asymptotic behavior, without loss of generality we assume n is large enough to
obtain m < 2% and ﬁ < 2% for ¢ < 2/2. By elementary mathematics,

-1 1 2] 1 2,4 2
bndE; () = = D(dialogq)*log(diglogq) _ din'q®

2" —q 2n
dn*
Consequently, bndE; (27/2(1-9)) < 21n8 , approaching 0 for n — oo. Similarly, for bndCs:
2(Kasq)%e \" 4eng®\"
hq) = Kyq)=3-2"|———— | <3-2"|——
bndCQ(q) bnng( 2(]) 3 (n(2n — Kgq) <3 on ,

8en
2n€

which implies bndC(27/2(1-9)) < 3 < > , approaching 0 for n — oco.

B Proof of Lemma [3((ii)

For Fa, (k = 1,2,3,4), where the matrices Ay are given in , the goal is to prove that
Advfz':: (q) = O(¢?/2") for k = 1,3, 4, and to prove lim, Adv,i'j:z(22”/3(1*€)) = 0 for any
e > 0, demonstrating the asymptotic preimages security of Fa,. In the remainder of this
section, 71, o, w3 are assumed to be three permutations taken uniformly at random from P,
and z denotes any challenge. We will analyze the maximum probability of any adversary A,
making at most ¢ queries to his oracles, in finding preimage for F4, , denoted as Advf:‘?:e (q)
k
by definition. Denote by Q; for i = 1,...,q the first i queries of the query history Q,. By
construction, we have Adv,e:‘:f(q) = Pr(E14(Qy)), Advfz'j:z (q) =Pr(Ei5(Qy)), Advfz'j:: (q) =
Pr(E16(Qy)), and Advf:‘:j(q) = Pr(E17(Qy)), where the events E;/(Q,) (I € {14,...,17})
are given in Fig. 5]

E14(Q) : (z1,y1), (z2,92), (z3,y3) € Q s.t. E16(Q) : (z1,91), (z2,92), (z3,¥3) € Q s.t.
r1 D y1 D x2 = x3, 1 Dy1 Dx2 Dy = x3,
T2 BY2 Dys = 2. 1 BYy1 Dys = 2.

E15(Q) & (z1,91), (z2,92), (z3,y3) € Q s.t. E17(Q) : (z1,11), (%2, ¥y2), (%3,y3) € Q s.t.
1 Dy1 G x2 = 3, 1 Dyr a2 D y2 = 3,
1 Dy1 Dy2 Dys = z. Y2 b3 Dys = z.

Fig. 5. The events E;(Q) (I € {14,...,17}) employed in the proof of Lem. [3(ii) (App. B). Q@
is a query history.

In App. we will upper bound Pr (Ei5(Q,)). In App. we provide a tight bound
for Pr (E;(Q)) for | = 14,16, 17.

B.1 Bounding Occurrence of E15(Qg)

In order to bound Pr (Ei5(Q,)), we define a new claim Cy/(Q). This claim equals Ca(Q) of
Fig. 4] restricted to the third equation and for fixed c instead of for any c. In a similar fashion
as in —, we obtain:

q

Pr(Ei5(Qq)) < ZPI‘(E15(Qi) | 7E15(Qi—1) A ~Civr (Qi)) +

i=1

Pr (C1(Qq)) +Pr (Co(Qq) [ ~C1(Qy)) -

(14)



In Lem. [14] we bound the conditioned occurrence of E15(Q,) (the first part (14)), and in
Lem. [15] we compute probability on Cy/(Qq) (the third part of (14)). A bound on Ci(Q,) is
given in Lem. The results are then assembled to prove lim,, o Advepre(ZZ"/S(l_a)) =0

FA2
for any € > 0.
Let do be the constant defined in Conj. On input of parameters (g,n), we define
el(¢,n) =Pr (B > d2q3/2) of Conj. [1| This quantity tends to 0 for n — oo and for ¢ < 22"/3.

C

doq®? + Koq

q
Lemma 14. ZPI‘ (E15(Qi) | “E15(Qi—1) A ~Crvr (Qs)) < g +eclg,n).

i=1

Proof. We write Ejsa and Ej5b for the two equations of Eq5(Q) (Fig. . The approach is
similar as before. ' ‘ ‘

Assume first the adversary makes a query .CL‘éZ) — yél) = 7'('3(1‘:(;)) for i = 1,...,q (the
same treatment holds for queries y3 — x3, x2 — y2 and yo — x2). Denote L; to be the
number of tuples (z1,y1), (2, y2) that make equation Ejsa satisfied for :Eél). For any of these
tuples, equation Ej5b is satisfied with probability at most 1/(2" — ¢). Considering all queries

x3 — y3, the adversary succeeds in breaking E5(Q,) with probability at most Y ¢, QnLiq.

Notice that by Conj. |1} > | L; < daq®/?, except w.p. at most el(gq,n). We thus obtain upper

dog3/? /
bound 22,?7q +el(q,n).

Assume the adversary makes a query mgi) — yY) =m (azgl)) for i = 1,...,q (the same
treatment holds for queries y; — x1). As =Co/(Q;), there exist at most Ko tuples (x2,y2),
(x3,ys3) such that xo @ yo @ x3 ® y3 = z is satisfied. For any of these tuples, equation Ejsa is
satisfied with probability at most 1/(2" — ¢). Considering all queries x1 — ¥, the adversary
succeeds in breaking E;5(Q,) with probability at most ;,fz_qq.

doq®/?+Koaq /
W +€c(q7n)' 0

In any case, the success probability is at most

K12¢% (K2+1)/ K1
(K2 +1)(2" — Q)> '

Proof. The proof is identical to the proof of the bound for Cy(Q,) (Lem. [11]). Note that
Co(Qy) consists of one equation, and one choice for ¢ only. O

Lemma 15. Pr(Cy(Q,) | 7C1(Qq)) < (

epre

Let ¢ > 0. Similar to App. |[A.3] in order to prove lim, AdvFA2 (22”/3(1_5)) = 0,
it suffices to prove that the separate bounds tend to zero for n — oco. Put K17 = 2 and
Ky = 273 — 1. The evaluations are now fairly the same, and we only discuss the bound
bndE;5(q) on E15(Qy). Again, by Conj. the el-part goes to 0 for ¢ = 22*/30-2) "and we omit

it for simplicity. Notice that 2n1_q < 2% for ¢ < 2"~1. We obtain:

doa3/? on/3 _ 1 doag3/2 4+ on/3
bndEs5(g) = =22 ;n(q 4y ; 1.

2d
Consequently, bndEq5(227/3(1-2)) < =2

< oe 1 Jangae which approaches 0 for n — oc.

B.2 Bounding Occurrence of E;(Q,), | = 14,16,17

In this section, we prove Pr (E;(Q,)) = ©(¢%/2") (I = 14,16, 17) by providing a lower bound
in Lem. and an upper bound in Lem.

Lemma 16. Pr (E;(Q,)) = £2(¢*/2") for | = 14,16,17.



Proof. We consider E14(Qy), the analysis for the other compression functions is analogoueﬂ

We construct an adversary A whose goal is to find tuples (x1,y1) € 71, (22,y2) € 7o,
and (z3,y3) € w3 such that Ej4(Qg) is satisfied. The adversary proceeds as follows. He sets
up two lists of ¢ random elements X; := {$§1)7 . ,xgq)} and Xy = {Igl), .. ,xgq)}, and
computes the corresponding values ygk) =m (acgk)) and yék) = Wz(xék)) (for £k = 1,...,q).

(k) (*) oy, (K)

Additionally, for each k =1, ..., q, the adversary sets y3’ = x5’ @y, @z and computes the

corresponding value :cgk) = ng(yék)). Fix any k € {1,...,q}, then xék) <) yék) @ yék) =z by
construction. The adversary obtains a solution for E14(Qq) if X contains an element x1 such
that x1 @ y; = x2 @ x3. By basic probability theory, such z; exists with probability £2(q/2").
As the adversary needs to succeed for only one of the ¢ choices of k, he finds a solution for

E14(Q,) with probability 2(q*/2"). O
Lemma 17. Pr (E;(Q,)) = O(¢?/2") for | = 14,16,17.

Proof. We consider E14(Qy), the analysis for the other compression functions is analogous.
We write Ejsa, E14b for the two equations of E14(Qg). The approach is similar to before. By
basic probability theory,

LS

r (E1a(Qy)) Z (E1a(Qs) | 7E14(Qi—1) A=C1(Q4)) + Pr(Ci(Qy)).  (15)

We start with the first probability and consider K; = 1.

Assume first the adversary makes a query xgl) — yél) = 7T3(1'§Z)) fori =1,...,q (the same
treatment holds for queries xo — 2). For each of the < ¢ tuples (z1,y1), by 7C1(Q;) the
values z1 @ y; are distinct, and there exists at most one (z2,y2) such that equation Ejsa is
satisfied. For any of the combinations, Ej4b is satisfied with probability at most 1/(2" — q).

Considering all queries x3 — y3, the adversary succeeds in breaking Eq4(Q,) with probability
2

2’?—11 .
Assume the adversary makes a query y:(;) — 33:(;) = ﬂgl(xg)) fori=1,...,q. By =C1(9Qy),
there exists at most one tuple (z2,y2) such that equation Ej4b is satisfied. For this tuple,

E14a is satisfied with probability at most ¢/(2™ — ¢q). Considering all queries 3 — ys3, the
2
adversary succeeds in breaking E14(Qy)

q
7‘L _q .
Assume the adversary makes a query yé) — :L‘gL) =Ty ( (l)) fori=1,...,q. For each of

the < ¢ tuples (z1,y1), by =C1(Q;) the values z1 @ y; are distinct, and there exists at most
one (x3,ys3) such that x1 ®y; Dys ®x3Dys = z. For any of the combinations, Eq4a is satisfied
with probability at most 1/(2" — q). Considering all queries xo — 1o, the adversary succeeds
in breaking Ej4(Q,) with probability at most 2n

Assume the adversary makes a query :cg) — yp =m (xgz)) for i = 1,...,q (the same

treatment holds for queries y; — x1). For each of the < ¢ tuples (x3,y3), by =C1(Q;) there

exists at most one (zg,y2) such that equation Ej4b is satisfied. For any of the combinations,

Ei4a is satisfied with probability at most 1/(2" — ¢). Considering all queries x; — yi, the
2

adversary succeeds in breaking Ej4(Q,) 237(1.
2
In any case, we obtain Y ¢ | Pr(E14(Q;) | 7E14(Qi—1) A C1(Q;)) < 2nq_ . The claim
now immediately follows from ([15]), Lem. and the fact that ¢ < 27~ L. O

2 The attack defining the lower bound for E16(Q,) corresponds to an attack by Joux described in [TT].



C Generalization of Theorem [2|

We generalize our findings on the single-permutation setting to cover any function, where
affine transformations on the inputs to the permutations are taken into account. This general-
ization is straightforward, but technical and more elaborate. For a matrix B = (b1, be, b, b4)T
with elements in {0, 1}", we define the compression function Fap as follows:

FaB(z1,22) = 2z, where y; < mi(a1121 ® aoz2 @ by),

Y2 < m2(a2171 B agers B azy G ba), (16)
y3 < m3(az1r1 B azara B aszyr P aszays B b3),

2 4 ag171 D ag2T2 D a43y1 D asay2 D as5y3 D by .

where A is as in Sect. We note that for the multi-permutation setting, this generalization
is of no added value, as the permutations are independently distributed anyway. Adding
constants is, however, a customary approach to obtain “different” permutations from a single
one (e.g. mi(x) = w(b; ® z) for i = 1,2, 3), but as we will show, the findings of Thm. [2] also
apply to this extended setting.

We reformulate Props. to the case of Fap (recall that Prop. 4| did not apply to the
single-permutation setting in the first place). Propositions [l| and [2| apply to any Fap and
Fagr with B = B’ and Prop. (3 holds for any B and B’ with (b},b;,,) = (bi41,b;). Given
this, the proof of Thm. [2] almost carries over. Lemmas [I] and [2] apply with straightforward
generalization. It remains to evaluate the matrices A of the form @ for any B € ({0,131,
The case ||as || < 2 is the same as in the proof of Thm.
||as,«|| = 3. Due to M-reductions, it suffices to consider asjaszaszazs € {1110,0111}.

— agiasgaszazs = 1110. The same analysis as in Sect. applies, leaving the matrices
Aq and Ay of . In the extended single-permutation setting, the two corresponding
compression functions satisfy Fa,g(z1 ® b1, m(x1) Dby ©b3) = w(m(x1) Dby Dbe D b3) D
b1 @ b3 ® by and FA2B(I’1, .%'2) = FA2B(£U1, r1 D X2 @71’(.1‘1 D bl) @by D b3) for any ri, rs.
Collisions can thus be trivially found;

— agiassaszazs = 0111. By Lem. (ii), we have aq; = 1. Lemma (iii) now states that
we require aqo = a44, which gives the following four options for asoaq3zaqqs: 000, 010,
101 and 111. The first one is vulnerable to the attack of Lem. [2[iv), the second, third
and fourth matrix satisfy FAB(-%'L 7T71<7T({B1 D bl) @by D bg) D bz) =21 Dby D b3 P by,
Fap(z1 @ b1, z1 ®by) = Fap(z1 ® b1 & by @ bg, x1 ® b3) and Fap(z @ by, z1 & be) =
(21 B by @ bg) @ by @ by @ by, respectively, for any z1. Collisions can thus be trivially

found;
||las,«|| = 4. Except for asjassaszass € {1010,1001,0110,0101}, all induced compression

functions Satisfy FAB(-%'I ®b1, 1P bQ) @W(bl ® by D bg) @ ag1b1 D agebs Dby € {0, X1, 71'(331)}
for any z1, for which collisions can be trivially found. The cases 1001, 0110 are vulnerable
to Lem. (iii). The remaining two cases, which are equivalent by M-reduction, allow for
trivial collisions as well: the compression function induced by (a41a42a43a44) = (1010)
satisfies Fag(z1, 7 1 (21 @ m(21 © b1) © by © b3) ® ba) = by @ b3 @ by for any x1.

Hence, any of the analyzed compression functions either allows for trivial collision or is
vulnerable to Lem. [2, therewith allowing for collisions in at most 22*/® queries.

Concluding, for any compression function Fap of the generalized form , collisions can
be found in at most 22*/% queries, hence considerably faster than in 27/2 queries.

D Heuristic Argument for Conjecture

In this section, we provide a heuristic argument for the first part of Conj. |1} a similar argument
applies to part two. Throughout the argument it becomes clear why the conjecture is similar
to but more complex than Zarankiewicz problem [2, Ch. 6.2], as claimed in Sect.



In more detail, we will show that the conjecture should hold for d; = 10 for large enough
n. Let Z be a given set of ¢ < 2/2 random elements. Denote by Pr (succ(Z)) the probability
that there exist two sets X1, X such that the number of solutions (x1,x2,2) € X; x X9 x Z
with 1 @ x2 = z is larger than 10qlogq. In this heuristic argument we will provide a bound
on Pr (succ(Z2)). In fact, we will first consider ¢ = 2% and show that the number of solutions
is with high probability upper bounded by 2¢log g + ¢. If ¢ is no power of two, the number
of solutions is then clearly upper bounded by the amount of solutions for ¢/ = 21841 hence
upper bounded by 8¢logq + 2¢ < 10glog g (provided ¢ > 2).

Before proceeding, we pose the following claim on Z:

D1(Z) : there exist 21,22 € Z such that z; = 25.

Clearly, Pr (D1(Z)) < ¢?/2", and by probability theory we have

2

Pr (succ(Z)) < Pr (succ(Z) | -D1(Z)) + Pr (D1(Z)) < Pr (succ(Z) | -D1(Z)) + g—n (17)

Therefore, it suffices to analyze succ(Z) given that Z contains no collisions. The goal for an

((1)}

adversary now is to come up with two sets X; = {asgl), .. ,azgq)} and Xy = {xgl), Cey T
such that ‘{($1,$2,Z) EXixXoxZ | x1Pa= z}‘ is maximized.

Consider a g x ¢ matrix X with rows corresponding to xgi) and columns to a:éj ), and the

coefficient x;; of X equals z € Z if azgi) @ xéj) = z, and is empty if xgi) &3] xéj) ¢ Z. Now,
the goal of the adversary is to maximize the number of filled coefficients of X, by smartly

choosing mgi), 2. Denote by s(X) the maximum number of elements in the matrix X. Some

restrictions apply to the choices for :L‘gi),xéj ).

(i) An element z € Z does not occur twice in one row or column (it would imply a collision
in X; or X»);
(ii) Let ¢,4', 7,5 € {1,...,q} and 21,20 € Z. If xj; = xyrjy = 21 and ;5 = 2o, then zy; = 2o
(obtained by XORing the first three equations);
(iii) Let ¢,7',7,5' € {1,...,q} and 21,...,24 € Z satisfying 21 B 20 P 23 P 24 = 0. If x;; = 21,
Ty = z2 and Ty = 23, then @y = 24 (obtained by XORing the first three equations).

The problem now reduces to smartly positioning in X as many elements from Z as possible.

Let K be maximal such that there exists a set of values zi1,...,20x € Z satisfying
21D 29 = ... = 295 _1D29x. We call this set of values a K-way collision, and two consecutive
submatrix of X filled with four values z1, 29, 23, z4 each occurring four timesEL but as we will
argue this is essentially the best the adversary can get. Notice that this also demonstrates
that the best approach followed by the adversary is to exploit the K-way collision.

In Fig. [f| we introduce four claims Dy(Z),...,Ds5(Z) to further analyze event succ(Z),
and we bound the occurrence of these events provided —D;(Z).

2(]26 (K2+1)
— |:PI'<D2(Z) | -D1(Z2)) < 2m (W> } The proof is similar to the proof of

Lem. 11, with the difference that now ¢ random values are generated (being Z) that
piece for piece may result in a solution;

2
- [Pr (D3(Z) [ -D1v2(2)) < 2" <K§q> } Fix any ¢. By —D3s(Z), there are at most 23(122)

2'VL
possible choices for z1, 23, z5 (the choices for z9, 24, z¢ follow directly), any of which satisfies

3 The adversary chooses a:<11>, sets xé” =2; ® :vgl) for j = 1,2,3,4, and xgi) =2z P 17<21) for i = 2,3,4. By



D2(Z) : for some c there exist more than K> D4(Z) : for some c there exist a solution in Z

solutions in Z to: to:
z1 # z2, and z1,...,212 distinct, and
21D ze =c. 22i—1 @ z2; = c (for i =1,...,5), and

5 =0 d
D3(Z) : for some c there exist more than one 71 @23 B2 D21 » an
solution in Z to (with different z7 for each 27 D 29 © 211 B 212 = 0.

solution): .
D5(Z) : let d > 4, for some c there exists a

21,...,27 distinct, and solution in Q to:
z2i—1 ® z2; = ¢ (for i =1,2,3), and 21,...,224 distinct, and
21D 23 D25 D27 =0. 29i—1 @z =c (fori=1,...,d), and

21D 23D D2og—1 =0.

Fig.6. The claims Dy(Z),...,D5(Z) employed in the heuristic argument for Conj.
(App. @ The parameter Ko > 1 is any fixed constant.

the second equation with probability at most ¢/2". As we require more than one different
value z7 to be hit, and Z contains g different possibilities for z§7) by =D1(Z), Z contains

more than one solution to D3(Z) with probability at most

K 2
2°(%) (g)Q _ (K3q
2 2n) T\ 2"
Now, the result follows by quantifying over the number of choices for ¢;

2
- [Pr (D4(Z) | =D1v2(2)) < 2™ (i%q> } Fix any c. By =D2(Z), there are at most 2° (I?)

possible choices for z1, 23, ..., 29 (the choices for z9, 24, ..., 219 follow directly). For any
choice, the second and third equation are both satisfied with probability at most ¢/2".
Therefore, Z contains a solution to D4(Z) with probability at most

2
(%) (L) < Kiq
) ALY AL
Now, the result follows by quantifying over the number of choices for ¢;
o0 2d

_ [Pr (D5(Z) | -D1(2)) < 27 Z (QZT-H} Fix any ¢, d. Without loss of generality we can

consider the values of Z to be generated piece for piece. Consider the generation of z;
for i = 1,...,q. For any other value z, the first equation is satisfied with probability at
most 1/2". Thus, the query results in a solution with probability at most ¢/2™. In total ¢
values are generated, and as =D;(Z), each “hit” adds at most 1 solution. Therefore, we
need d out of at most ¢ hits. Given that d pairs are found, the second equation of D5(Z)
is then satisfied with probability at most 1/2", as the values zéz) are different by —=D1(Z2).
Consequently, Z contains a solution to Ds(Z) with probability at most

¢\ (a)? 1 >
) <2
V(&) <
Now, the result follows by quantifying over the number of choices for ¢ and d (in fact, we
are using D5(Z) for d = 4,6 only but we generalize its usage for simplicity).

We obtain for ((17]):

Pr (succ(Z) | -D1) < Pr (succ(Z) | =D1v..v5) + Pr (D2 | =D1) + Pr (D3 | =D1v2)

(18)
+Pr (D4 | 7D1v2) + Pr (D5 | =-Dy).



Similar to before (e.g., Sect. , one can show that for Ko = n — 1 the second part of
approaches 0 for ¢ = 27/20=¢) and n — oo. In what remains, we heuristically argue that
Pr (succ(Z) | =Div..v5(Z)) is expected to equal 0 for dy = 10.

Naturally, the maximal number of solutions is achieved when the adversary includes in the
matrix X as many boxes ('Z: 2) as possible, where z,, zp denotes any twin of the maximal K-
way collision. However, it may be the case that three values z1, 29, z3 coming from different
twins form a collision with a value z € Z no member of the K-way collision, therewith
resulting in more solutions due to property (iii) described above. However, by =D3(Z), there
is only one such possible value z, and XORed with any other values from different twins it
does not collide with another element from Z (by —D4(Z)). Thus, the value z appears in X
at most ¢ times, and no other value can occur. We just scrap this value out of the matrix,
continue with the matrix built of the K-way collision only, and add q to the finally obtained
number of elements in the matrix. Concluding, the best approach is to consider the matrix
X consisting of 2 x 2 submatrices that satisfy the following property: each block is either
entirely filled by a twin of the K-way collision, or empty. Additionally, any two rows of 2 x 2
submatrices share at most 2 “positions” (by =D3(Z)). Now, we can constrict rows 2i — 1 and
2i (for : = 1,...,q/2) and columns 2j — 1 and 2j (for j = 1,...,¢/2) to obtain a matrix
X19/2 Here we replace every 2 x 2 submatrix by the first element of the twin. Matrix X2/2
still satisfies properties (i,ii), and moreover it satisfies the next properties:

(iv) The matrix does not contain a full 2 x 3 (or 3 x 2) submatrix (by =D3(Z2));
(v) For any d > 4, the matrix does not contain d different values that XOR up to 0 (by

-D5(2)).

Now, the number of coefficients filled in X satisfies s(X) < 4s5(X[%/2) +¢, and hence we bound
the maximum number of elements in any matrix Xla/2] satisfying (i,ii,iv,v).

Before proceeding, we point out the relation of our conjecture with Zarankiewicz con-
jectur(ﬂ Let G, = (V4 U Va, E) be a bipartite graph on color classes V1, V, of equal size n.
Zarankiewicz problem regards the case of determining the maximal graph G,, that does not
contain any complete bipartite subgraph on 3 4 3 vertices. With respect to our problem, we
can consider X[9/2 to represent an incidence matrix of a bipartite graph, where the rows
correspond to one side of the bipartition, and the columns to the other side. An element
Ty € X9/2 is non-empty if and only if :Egi) &) xgj )= 2ecz , and the corresponding edge
is labeled by z. By virtue of (i,ii,iv,v) several restrictions apply to this graph: for instance,
it does not contain a complete bipartite subgraph on 2 + 3 vertices (property (iv)), and it
does not contain a complete bipartite subgraph on 2 + 2 vertices where the four edges have
different labels (property (v)). Various other restrictions to this matrix can be extracted from
the randomness of Z, but for our heuristic argument the restrictions put forward suffice.

We proceed with the heuristic argument. Consider a matrix X/9/2l that achieves the
maximum number of solutions. X[%/? is likely to have two elements 21, 2o € Z occurring ¢ /2
times, which can be seen as follows. Consider a first element z;. Suppose z; occurs ¢q/2 — 1
times, w.l.o.g. (by graph isomorphism) at the first ¢/2 — 1 diagonal elements of X%/2. This
means that ;5 4/2 # z1. Without loss of generality, ‘{z | T q/2 € Z}‘ < ‘{j | g2, € Z}‘
We construct the matrix X[q/ 2], with the first ¢/2 — 1 columns identical to the ones of Xla/2
but with Z,/54/2 = z1. By property (ii) and the fact that all diagonal elements of X[q/ 2
equal 21, we obtain T; ;0 = Tg/0; = Tg/9,; for i = 1,...,q/2 — 1. It is easy to check that
X9 gatisfies (i,ii,iv,v) if X192 does. In particular, it does not violate property (i) (similar
argument applies to other properties): it would violate (i) if T; ;0 = Zi; = w4 for some
i,j € {1,...,q/2 — 1}, which for the original matrix X[%/2] would imply that Tq/2i = Tijs

4 Generalizations of Zarankiewicz problem exist, but this problem is the most well-known among them.



and thus (by property (ii) for X[9/2]) Tq/2,j = Tii = 21, impossible by construction. Thus, we

obtained a matrix X[q/ ) with z; occurring ¢/2 times and with at least as many solutions as

X19/21 A second element is likely to occur ¢/2 times for similar reasons.
X19/2] can thus be considered to be of the following form:

Z1 =
D TR X, q
z9 21 ’4
21 22
[a/2] Xav || | X2t
X = 2 <1 s

21 22

Xg[Xgqg| -
47 47 Z2 Zl

for some 2 x 2 submatrices X;;. Now, by property (ii) we have X;; = Xj; for all 4, j. Addi-
tionally, as no two rows share three columns (and vice versa), each block is either empty or
an (anti-)diagonal matrix where the two (anti-)diagonal elements are equal by property (ii).
Consequently, we can constrict rows 2i — 1 and 2¢ (for ¢ = 1,...,¢/4) and columns 2j — 1
and 2j (for j = 1,...,q/4) to obtain a matrix X%/4, Here each 2 x 2 block on the diagonal
of X[9/2] is constricted to z1, and each other block to its only element. Now, the number of
coefficients in X191 (with ¢/ = ¢/2) satisfies s(X[71) < 2. (¢//2) 4+ 25(X[/2]): the second part
counts each element in X7/2) as two original elements, and we add two remaining from the
original diagonal blocks. The matrix X[%/4 satisfies (i,ii,iv,v) if X12/2] qoes. For (i,ii,v) this is
clear, and we briefly consider property (iv). Notice that a diagonal element of X12/4 corre-
sponds to a full 2 x 2 submatrix of X[9/2] but a non-empty non-diagonal element corresponds
to a diagonal or anti-diagonal 2 x 2 submatrix with one and the same element. Suppose X2/4
contains a full 2 x 3 submatrix X2*3l. If X2%3| involves two diagonal elements, it implies
23 ® 24 = 0 for some 23,24 € Z (impossible by =Dy (Z)). If X2*3| inyolves one diagonal ele-
ment, it implies 21 @ 20 ® 23D 24 = 0 for some 23, 24 € Z (impossible by (v)). If X[2%3] involves
zero diagonal elements, it implies z1 P 20 B 23 B 24 P 25 D 26 = 0 for some z3, 24, 25, 26 € Z
(impossible by (v)). The last property comes from selecting 6 coefficients of X!9/2 such that
in any row/column either two or zero coefficients are selected. By the form of X[2*3! and the
properties (i,ii), this turns out to be possible for the matrix X[9/2),

We reduced the problem to a smaller dimension ¢/4, but with the same properties. This
analysis can be applied recursively, until we are left with a 2 x 2 matrix X2. By induction to
the size of ¢, we can now show that for matrices satisfying properties (i,ii,iv,v) the number
of elements is upper bounded by glog(2q). For ¢ = 2, we have s(X[?) = 4 = glog(2q), so the
claim holds. Suppose s(X*/2) < k/2log k. Then,

s(XFy < 2. (k/2) 4+ 2s(XIF/2) < k(1 +log k) = klog(2k) .

Thus, s(X9/2l) < q/21log q. For the original matrix X, we now obtain s(X) < 4s(X9/2) ¢ <
2q log ¢+ ¢, which completes the argument for ¢ a power of two. As explained in the beginning
of this appendix, this result implies s(X) < 10qlog ¢ for any gq.
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