
Lattice Signatures Without Trapdoors

Vadim Lyubashevsky?
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Abstract. We provide an alternative method for constructing lattice-based digital signatures which
does not use the “hash-and-sign” methodology of Gentry, Peikert, and Vaikuntanathan (STOC 2008).
Our resulting signature scheme is secure, in the random oracle model, based on the worst-case hardness
of the Õ(n1.5)-SIVP problem in general lattices. The secret key, public key, and the signature size
of our scheme are smaller than in all previous instantiations of the hash-and-sign signature, and our
signing algorithm is also quite simple, requiring just a few matrix-vector multiplications and rejection
samplings. We then also show that by slightly changing the parameters, one can get even more efficient
signatures that are based on the hardness of the Learning With Errors problem. Our construction
naturally transfers to the ring setting, where the size of the public and secret keys can be significantly
shrunk, which results in the most practical to-date provably secure signature scheme based on lattices.

1 Introduction

The versatility of lattice-based cryptography has elevated it to the status of a promising potential
alternative to cryptography based on standard security assumptions such as factoring and discrete
log. But before lattices can become a viable replacement for number-theoretic schemes, it is crucial
to have efficient lattice-based constructions of the most ubiquitous cryptographic primitives in
practical applications, which are arguably encryption schemes and digital signatures.

On the encryption front, lattice-based schemes have been making a lot of progress with re-
cent provably-secure schemes [Reg09,LPR10,LP11,SS11] being almost as practical as (and actually
looking quite similar to) the deployed NTRU [HPS98] encryption scheme, which in turn has many
advantages over number theory-based schemes. Lattice-based signatures, on the other hand, have
been a different story. An early attempt at lattice-based signatures was the GGH scheme [GGH97]
was completely broken in [NR09]. The NTRU signature scheme had an even more more tumul-
tuous history since its introduction in 2001 [HPS01], with attacks [GS02] being followed by fixes
[HHGP+03], until its basic version was also completely broken by Nguyen and Regev [NR09].

Provably secure lattice-based signature schemes were finally constructed in 2008, when Gentry,
Peikert, and Vaikuntanathan [GPV08] constructed a “hash-and-sign” signature scheme based on
the hardness of worst-case lattice problems and Lyubashevsky and Micciancio [LM08] constructed
a one-time signature based on the hardness of worst-case ideal lattice problems. The hash-and-sign
signatures were rather inefficient (with signatures being megabytes long) and the one-time signature,
while being relatively short, still required Merkle trees to become a full-fledged signature. Building
on [LM08], Lyubashevsky proposed a digital signature, using the Fiat-Shamir framework [FS86]
based on the hardness of ideal lattice problems [Lyu09]. This latter scheme has signature lengths on
the order of 60000 bits for reasonable security parameters, and while closer to being practical, it is
still not as small as one would like. Subsequently, lattice-based signature schemes without random
oracles were also constructed [CHKP10,Boy10], but they are all much less efficient in practice than
their random oracle-using counterparts.

? Work supported in part by the European Research Council.



1.1 Related Work and Our Results

A common thread running through constructions of digital signatures in the random oracle model,
whether using the hash-and-sign or the Fiat-Shamir technique [FS86], is to force the distribution
of the signature to be statistically independent of the secret key. If this property is achieved, then
by programming the random oracle, one can hope to produce the valid signatures requested by the
potential forger in the security reduction, without knowing the secret key. Then, when the forger
produces a signature of a new message, it can be used to solve the underlying hard problem. In the
case of lattices, the underlying hard problem is usually the Small Integer Solution (SIS) problem
in which one is given a matrix A and is asked to find a small vector v such that Av = 0 mod q.
The length of v is very close to the length of signatures in the scheme, and thus the challenge for
improving lattice-based signatures based on SIS is to reduce the norm of the signatures produced
by the signing algorithm.

In lattice-based hash-and-sign signatures [GPV08], every signer has a personal uniformly ran-
dom public matrix A ∈ Zn×mq and an associated secret “trapdoor” S ∈ Zm×mq with small coefficients
such that AS = 0 mod q. To sign a message µ, the signer uses his secret key S to produce a short
signature vector z, whose distribution is independent of S, such that Az = H(µ) mod q, where H is
a cryptographic hash function. Since the length of z roughly depends on the norms of the columns
of S, improving the hash-and-sign signature scheme involves coming up with better algorithms for
generating the pairs (A,S) such that S has smaller dimensions and smaller coefficients. Using the
original algorithm due to Ajtai [Ajt99], the signature scheme of [GPV08] produced signatures of
norm Õ(n1.5). A subsequent improvement of the key-generation algorithm by Alwen and Peikert
[AP11] lowered the signature length to Õ(n), and the very recent algorithm of Micciancio and Peik-
ert [MP12] further reduces the constants (and removes some logarithmic factors) from the previous
algorithms.

There has been much less progress in the direction of building lattice-based signature schemes
using the Fiat-Shamir technique. In fact, the only such scheme1 is the ring-based one of Lyuba-
shevsky [Lyu09], in which the signature vectors are of norm Õ(n1.5). The first contribution of this
current work is adapting the ring-SIS based scheme from [Lyu09] to one based on the hardness
of the regular SIS problem which results in signatures of the same Õ(n1.5) length2. Our second
contribution is analogous to what the works [AP11,Pei10,MP12] did for hash-and-sign signatures –
reduce the signature length to Õ(n) (of course the issues that have to be dealt with are completely
different). Our third contribution is showing that the parameters of our scheme can be set so that
the resulting scheme produces much shorter signatures, but is now based on the hardness of the
Learning With Errors (LWE) problem [Reg09] or on the hardness of a low-density version of the
SIS problem. All our results very naturally carry over to the ring setting, where the key bit-size is
reduced by a factor of approximately n (some sample parameters are given in Figure 2).

1 We mention that the lattice-based identification schemes of Lyubashevsky [Lyu08a] and Kawachi et al. [KTX08],
while may be converted into signature schemes, are inherently inefficient because every round of the ID scheme
has soundness error at least 1/2.

2 As a side note to this first result, we think that it is interesting to point out that the ring-structure, which seemed
so native to [Lyu09] (and to [LM08]), turns out to not actually provide any additional functionality, with its
purpose being only to shorten the key-sizes and make operations more efficient. This somewhat resembles the
recent developments in constructions of fully-homomorphic encryption schemes, where the additional structure of
ideal lattices was crucially used in earlier constructions [Gen09,Gen10,BV11b], but was subsequently shown to be
unnecessary [BV11a,AFFP11].
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Our signature scheme is also quite simple, requiring no pre-image sampling over arbitrary lat-
tices. All we do is sample the Normal distribution over Zm, compute a vector-matrix product, do
a random oracle query, compute another vector-matrix product (this time the vector is sparse),
and rejection sample. In fact, in an online/offline setting where we can do pre-computations before
being given the message to sign, the online phase simply consists of doing a few vector additions
(since the matrix is being multiplied by a sparse vector) and rejection sampling.

1.2 Techniques

We now briefly sketch our signature scheme and describe the issues involved in lowering the size
of the signature. The secret key is a matrix S ∈ Zm×kq with small coefficients, and the public key
consists of the matrices A ∈ Zn×mq and T = AS mod q. The matrix A can be shared among all
users, but the matrix T is individual. To sign a message, the signer first picks a vector y ∈ Zmq
according to some distribution D. Then he computes c ∈ Zkq where c ← H(Ay mod q, µ), and
computes the potential signature vector z = Sc + y (there is no reduction modulo q in this step).
The vector z, along with c, will then be output as the signature based on some criteria with the
end goal being that the distribution of (z, c) should be independent of the secret key matrix S.

Choosing when to output the pair (z, c) can be seen as a kind of rejection sampling. If f and g
are probability distributions and M ∈ R is such that for all x, f(x) ≤ Mg(x), then if one samples
elements z from g and outputs them with probability f(z)/(Mg(z)), the resulting distribution is
exactly f , and the expected amount of time needed to output a sample is M .

Our goal, in the signature scheme above, is to come up with distributions f and D so that for
all x, two properties are satisfied: there is a small constant M such that f(x) ≤ Mg(x), where g
is the distribution generated by first picking y from D and adding it to Sc for some random c;
and the expected value of vectors distributed according to f (which is the length of the signature)
is as small as possible. The idea in [Lyu09], when put into the above framework, was to choose y
uniformly from an m-dimensional sphere3 βr+v of radius r + v, where r is some number and v is
the maximum possible length of the vector Sc, and only output z if it fell into a sphere βr of radius
r. It’s not hard to check that if f is the uniform distribution over the sphere βr, then by setting
M = vol(βr+v/βr) ≈ (1 + v/r)m, the distribution of z is exactly f . But in order to keep M small,
we need r > mv = Θ̃(m1.5) = Θ̃(n1.5), and so the vectors z have length Õ(n1.5).

In our present work we show that we can do better by choosing f and D to be the m-dimensional
Normal distribution with standard deviation σ = Θ̃(v) = Θ̃(

√
m), and only require that f(x) ≤

Mg(x) for the x that are not too big. We can then show that M can be set to a constant, and the
rejection sampling algorithm produces a distribution that is statistically close to the distribution of
f . This means that the expected value of the length of the signature of z is σ

√
m = Õ(m) = Õ(n).

We prove the technical rejection sampling theorem in Section 4 and then prove the security of the
above signature scheme based on the hardness of the SIS problem in Section 5.

Notice that the length of the signature is greatly affected by the parameter m, and lowering m,
while leaving everything else the same would produce even shorter signatures. The danger of doing
this is that the problem of recovering S when given A and AS mod q now becomes easier (and is
no longer based on the SIS problem). The intuition is then to set all the parameters so that the
hardness of recovering the secret key is equal, in practice, to the hardness of forging a signature.
In Section 6 we explain how the parameters can be significantly lowered by making our scheme be
based on the LWE problem instead of on SIS.

3 In [Lyu09], it was actually a box, but it does not make a difference for the analysis here.
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1.3 A Comparison with Hash-and-Sign Signatures

On the theoretical side, both the scheme constructed in this paper and the hash-and-sign scheme
that uses the trapdoor sampling algorithms of [AP11,Pei10] are based on the hardness of finding
a vector of length Õ(n) in SIS instances, which by the worst-case to average-case reduction of
Micciancio and Regev [MR07] is as hard as solving approximate SIVP with a factor of Õ(n1.5) in
all n-dimensional lattices. On the practical side, however, the bit-length of our signature and keys
(see Figure 2) are approximately two orders of magnitude smaller for the same security level (see
[RS10] and also Figure 2 in [MP12]). This is mostly due to the constants that are hidden in the
big-Oh notation of the trapdoor generation algorithms of [AP11] and [Pei10].

As mentioned earlier, in a concurrent and independent work, Micciancio and Peikert greatly
improved the constants, and in some cases even removed some logarithmic factors, in the trapdoor
sampling algorithms [MP12]. While the proof techniques are completely different, there are some
high-level similarities between the two schemes. The public key in our scheme is (A,AS) where A
is a random matrix mod q and S is a secret matrix with small coefficients. In [MP12], the public
key is (A,AS + G) where G is an additional public matrix with a very “simple” form. In our
scheme, the signature of a message is an ordered pair (Sc+y, c) where c is a function (that invokes
a random oracle) of the message and the vector y is there to “hide” the shift Sc; while in [MP12],
the signature is (Sc + y1, c + y2) where c is a (different, random oracle-invoking) function of the
message and yi also serve the purpose of hiding the shift Sc (and c itself). While the schemes may
look similar, under the surface they behave rather differently.

The most interesting and significant difference occurs in the way the signatures are generated.
In our scheme, the vector c is a very sparse −1/0/1 vector whose entropy is as small as the security
parameter, but we must output it as part of the signature. In [MP12], however, the size of the
elements in c depends inversely on the number of columns of S, but one only outputs a perturbed
version of c as part of the signature. Notice that the size of our signature is therefore dominated
by the number of rows of S multiplied by the number of bits needed to represent elements in the
vector Sc + y, whereas in [MP12], the number of columns of S may also play a significant role in
the signature length.

The advantage in [MP12] due to the fact that c is never output in the clear is that they may
tailor the perturbations y1,y2 to the particular S that they are supposed to hide, which allows
these perturbations to be smaller than ours in the case that S has enough columns to allow c to
be “small enough”. When instantiating both signature schemes based on the worst-case hardness
of the SIS problem, S needs to have a large number of rows, and thus the fact that the bit-size
of the entries of the signature from [MP12] is smaller than of those in our scheme, may make the
scheme from [MP12] more compact. On the other hand, if one is to instantiate the more practical
version of the schemes based on the hardness of the LWE problem, then the number of rows in S
could be significantly smaller, and thus the fact that the size of our signature does not depend on
the number of columns of S gives it an advantage over the one in [MP12]. We direct the reader to
our sample instantiations in Figure 2 where one can see the signature size rapidly decreasing as the
number of rows (denoted by m) shrinks. The trade-off is that as the number of rows shrinks, the
worst-case hardness assumption becomes stronger, but it is still believed that the security of the
average-case problem remains the same (see Section 3).

Additionally, the number of columns in our secret key S needs to only be large enough to
support multiplication by c, which allows the number of columns to be significantly smaller than
in the secret key of [MP12], where, for technical reasons, reducing the number of columns of S ends
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up increasing the coefficients of c, and thus possibly increasing the size of the signature. This allows
our secret key to be smaller that the one in [MP12]. Compared to the one concrete instantiation
(based on the hardness of the SIS problem) provided in [MP12], where the key size is approximately
226.5 bits and the signature is a 13800 dimensional vector of length 92000, thus requiring at least
13800 · log(92000/

√
13800) ≈ 130000 bits to represent, for the same security level, some of our

instantiations have the signature bit-length about 25% longer, with the benefit of having the keys
be about 10 times smaller (column I of Figure 2). For different instantiations, we can have the
signature bit-length be about 45% shorter and have the same key size (column III of Figure 2).

1.4 Organization of the Paper

In Section 3, we review the average-case SIS problem and its variants upon which the security of
our signature is based. In Section 4, we review some facts about the Normal distribution and prove
a rejection sampling theorem that will be used for proving that the distribution of our signature
output is statistically indistinguishable of the secret key. In Section 5, we construct a signature
secure based on the hardness of SIS, and in Section 6, we modify it to be more efficient, but now
based on LWE or low-density SIS. In Section 7, we sketch how to transfer our signature into the
ring setting. For simplicity, we do not introduce rings or LWE until the sections in which they are
first used for signature scheme constructions.

2 Preliminaries

2.1 Notation

Throughout the paper, we will assume that q is a small (i.e. polynomial-size) prime number and

elements in Zq are represented by integers in the range
[
− q−1

2 , q−1
2

]
. We will represent vectors

by bold-face letters, and matrices by bold-face capital letters. We will assume that all vectors are
column vectors, and vT will denote the transpose of the vector v. The `p norm of a vector v is
denoted by ‖v‖p, and we will usually avoid writing the p for the `2 norm. Whenever dealing with
elements that are in Zq, we always explicitly assume that all operations in which they are involved
end with a reduction modulo q. Thus for a matrix A ∈ Zn×nq and a vector s ∈ Zn, the product

As is a vector in Znq . For a distribution D, we use the notation x
$← D to mean that x is chosen

according to the distribution D. If S is a set, then x
$← S means that x is chosen uniformly at

random from S. For an event E, we write Pr[E;x1
$← D1, . . . , xk

$← Dk] to mean the probability
that E occurs when the xi are chosen from distributions Di. All logarithms are base 2.

2.2 Digital Signatures

We recall the definitions of signature schemes and what it means for a signature scheme to be
secure.

Definition 2.1. A signature scheme consists of a triplet of polynomial-time (possibly probabilistic)
algorithms (G,S, V ) such that for every pair of outputs (s, v) of G(1n) and any n-bit message m,

Pr[V (v,m, S(s,m)) = 1] = 1

where the probability is taken over the randomness of algorithms S and V .
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In the above definition, G is called the key-generation algorithm, S is the signing algorithm, V is
the verification algorithm, and s and v are, respectively, the signing and verification keys.

A signature scheme is said to be secure if there is only a negligible probability that any forger,
after seeing signatures of messages of his choosing, can sign a message whose signature he has not
already seen [GMR88].

Definition 2.2. A signature scheme (G,S, V ) is said to be secure if for every polynomial-time
(possibly randomized) forger F , the probability that after seeing the public key and
{(µ1, S(s, µ1)), . . . , (µq, S(s, µq))} for any q messages µi of its choosing (where q is polynomial in
n), F can produce (µ 6= µi, σ) such that V (v, µ, σ) = 1, is negligibly small. The probability is taken
over the randomness of G, S, V , and F .

In the standard security definition of a signature scheme, the forger should not be able to
produce a signature of a new message. A stronger notion of security, called strong unforgeability
requires that in addition to the above, a forger shouldn’t even be able to come up with a different
signature for a message whose signature he has already seen. The schemes presented in this paper
satisfy this stronger notion of unforgeability.

3 The SIS Problem and its Variants

In this section, we will define the average-case problems upon whose security our signature schemes
will be based. All these problems fall into the category of the Small Integer Solution (SIS) problem,
which is essentially the knapsack problem over elements in Znq .

Definition 3.1 (`2-SISq,n,m,β problem). Given a random matrix A
$← Zn×mq find a vector v ∈

Zm \ {0} such that Av = 0 and ‖v‖ ≤ β.

In order for the above problem to not be vacuously hard, we need to have β ≥
√
mqn/m in order

for there to exist a solution v. The signature scheme that we construct in Section 5 is based on
the presumed hardness of the above problem. In Section 6, we construct a more efficient signature
scheme based on the hardness of SIS variants defined below.

Definition 3.2 (SISq,n,m,d distribution). Choose a random matrix A
$← Zn×mq and a vector

s
$← {−d, . . . , 0, . . . , d}m and output (A,As).

Definition 3.3 (SISq,n,m,d search problem). Given a pair (A, t) from the SISq,n,m,d distribution,
find a s ∈ {−d, . . . , 0, . . . , d}m such that As = t.

Definition 3.4 (SISq,n,m,d decision problem). Given a pair (A, t) decide, with non-negligible
advantage, whether it came from the SISq,n,m,d distribution or whether it was generated uniformly
at random from Zn×mq × Znq .

Depending on the relationship between its parameters, the SISq,n,m,d search (and decision)
problem has somewhat different characteristics. If, for example, we have d� qn/m, then with very
high probability there is only one vector s whose coefficients have absolute value at most d such
that As = t, and such instances of the SISq,n,m,d problem are said to be low-density instances
(borrowing from terminology used to describe instances of the random subset sum problem). On
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the other hand, if d� qn/m then the SISq,n,m,d distribution is actually statistically close to uniform
over Zn×mq × Znq (by the leftover hash lemma) and there are many possible solutions s for which
As = t. These instances are traditionally called high-density instances. We will discuss the hardness
of the SIS problem in Section 3.2, below, but we will now mention that the hardest instances are
those in which d ≈ qn/m.

Notice that if m ≥ 2n, then the matrix A
$← Zn×mq will, with high probability, contain n columns

that are linearly independent over Zq (when m ≥ 2n and q is a prime of size at least 2m, this will be
true with probability e−Ω(n)). Without loss of generality, assume that the last n columns of A are
linearly independent, and so A = [A1||A2] where A2 is an n× n invertible matrix. If we consider
the matrix A′ = A−1

2 A = [A−1
2 A1||I], where I is an n × n identity matrix, then we have Av = 0

iff A′v = 0, and so the `2-SISq,n,m,β problem is equally hard if the last n columns of the matrix
A form the identity matrix. Similarly, given an instance (A, t) of the SISq,n,m,d problem, we can
change it to (A−1

2 A,A−1
2 t), and a solution for one will be exactly the same as the solution for the

other. Therefore throughout this paper we will assume, without loss of generality, that the matrix

A ∈ Zn×mq is of the form A = [Ā||I], where Ā is uniformly generated in Zn×(m−n)
q . For reasons

related to lattices, when A is in this form, we will refer to it as being in Hermite Normal Form
[MR08].

3.1 Relations Between the SIS Variants

We now state some results about the relationship between the SIS variants defined above. The
first relationship is an adaptation of a classic theorem of Impagliazzo and Naor [IN96], who showed
that the decisional version of the random subset sum problem is as hard as the search version. This
theorem has been recently generalized by Micciancio and Mol [MM11].

Theorem 3.5. [IN96,MM11] If d is polynomial in n, then there is a polynomial-time reduction
from the SISq,n,m,d search problem to the SISq,n,m,d decision problem.

The next lemma shows that the decision SISq,n,m,d problem gets harder when the value of d
increases. This is a rather intuitive result since the decision SISq,n,m,d problem becomes vacuously
hard when d� qn/m since the SISq,n,m,d distribution will be statistically close to uniform.

Lemma 3.6. For any non-negative integer α such that gcd(2α + 1, q) = 1, there is a polynomial-
time reduction from the SISq,n,m,d decision problem to the SISq,n,m,(2α+1)d+α decision problem.

Proof. To prove the lemma, we will show a transformation that maps the SISq,n,m,d distribution
to the SISq,n,m,(2α+1)d+α distribution, and maps the uniform distribution over Zn×mq ×Znq to itself.

Given (A, t), create a random vector r
$← {−α, . . . , 0, . . . , α}m and output (A, (2α + 1)t + Ar).

First observe that because 2α + 1 is relatively prime to q, our transformation maps the uniform
distribution to itself. And if (A, t) came from the SISq,n,m,d distribution, then (2α + 1)t + Ar =
A((2α + 1)s + r), and since s was chosen uniformly at random from {−d, . . . , 0, . . . , d}m, it’s not
hard to see that (2α+1)s+r is uniformly random in {−(2α+1)d−α, . . . , 0, . . . , (2α+1)d+α}m. ut

We now show that if m = 2n and one can solve the can solve `2-SISq,n,m,β problem for a small-
enough β, then one can solve the decision SISq,n,m,d problem. This result is essentially folklore (see
[MR08]), but we prove it here for completeness.

7



Lemma 3.7. If m = 2n and 4dβ ≤ q, then there is a polynomial-time reduction from solving the
SISq,n,m,d decision problem to the `2-SISq,n,m,β problem.

Proof. Given an instance (A, t) of the SISq,n,m,d decision problem where A = [Ā||I] is in Hermite
Normal Form (where Ā and I are both n× n square matrices), use the `2-SISq,n,m,β oracle on the
matrix A′ = [ĀT ||I] to find a vector v = [(v1)T ||(v2)T ]T such that A′v = ĀTv1 + v2 = 0. Now
consider the inner product 〈v1, t〉 = vT1 t. If t = As = Ās1 + s2, then

vT1 t = vT1 Ās1 + vT1 s2 = −vT2 s1 + vT1 s2 (1)

and since ‖v‖ ≤ β and all the coefficients of s are at most d, we have that |〈v1, t〉| ≤ βd ≤ q/4.
On the other hand, if t is uniformly random, then 〈v1, t〉 will also be uniformly random in Zq.
Therefore the distinguisher for the SISq,n,m,d decision problem simply looks at the absolute value
of the inner product of v1 and t and says that (A, t) came from the SISq,n,m,d distribution if the
absolute value is at most q/4, and he says that (A, t) is uniform, otherwise. In the case that (A, t)
comes from the SISq,n,m,d distribution, the distinguisher will always be correct, and in the case of
the uniform distribution, he will make an error with probability 1/2. ut

In the above lemma, the parameters were set such that the distinguisher only has one-sided
error, but it is actually possible to be looser with the bound for dβ/q and still be able to distin-
guish with non-negligible probability. In fact, solving the `2-SISq,n,m,β problem is the most efficient
method known for solving the decisional SISq,n,m,d problem. We will now outline the basic idea,
and refer the reader to [MR08] for more details. The norm of the m-dimensional vector [sT1 ||sT2 ] is
concentrated tightly around

√
d(d+ 1)m/3, which is the same as the norm of an m-dimensional

normal variable with standard deviation ψ =
√
d(d+ 1)/3 (see Section 4 for a discussion about

the normal distribution). Thus, heuristically, the distribution −vT2 s1 + vT1 s2 in Equation (1) will
be distributed as a 1-dimensional (discrete) normal variable with standard deviation ψβ. It was
shown in [MR07, Lemma 3.3 and Lemma 4.1] that if ψβ

√
2π/q >

√
ln(1/ε)/π, then a 1-dimensional

normal variable with standard deviation ψβ is approximately within statistical distance ε of the
uniform distribution over q. If we want the decision SISq,n,m,d problem to be hard, then we should
make sure that the preceding equality is satisfied for ε ≈ 2−100. Thus we will be aiming for

βψ/q ≥ 2, where ψ =
√
d(d+ 1)m/3. (2)

3.2 Computational Hardness of `2-SIS

The SIS problem gained prominence when Ajtai showed that solving its random, high-density
instances is as hard as solving worst-case instances of certain lattice problems [Ajt96]. Ajtai’s
connection between SIS and worst-case lattice problems has subsequently been tightened up to the
currently best result of Micciancio and Regev [MR07], who show that (for a large-enough q) solving
random instances of the `2-SISq,n,m,β problem is as hard as solving the Õ(

√
nβ)-SIVP problem in

all lattices of dimension n. While these seminal results give us a lot of confidence in the hardness
of SIS, they are not very useful for guiding us in parameter selection when building cryptographic
primitives, mainly because solving the `2-SISq,n,m,β problem requires one to solve lattice problems
in a dimension somewhere between n and m [GN08,MR08], whereas the hardness of the worst-case
Õ(
√
nβ)-SIVP problem is for lattices of dimension only n – which is a seemingly much easier

problem. For this reason, parameter choices for lattice-based primitives have been mostly proposed
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based on the hardness of average-case instances of the SIS (and Ring-SIS4) problem. For example,
the SWIFFT collision-resistant hash function [LMPR08] is essentially based on the hardness of the
ring version of the `2-SIS257,64,1024,32 problem, which under the worst-case to average-case reduction
would only make it as hard as lattice problems in dimension n = 64 (lattice problems in such a
small dimension are easy). Nevertheless, the underlying average-case SIS problem seems to be much
harder, and as far as we are aware, no progress has been made towards lowering the claimed 2106

time for finding a collision using birthday attacks.
The computational hardness of knapsack problems, to which SIS belongs, has been studied since

the early 1980’s, and the main technique for solving random instances of the knapsack problem has
been lattice reduction [LO83]. The basic idea is to define the lattice L(A) = {v ∈ Zm : Av = 0}
and then use lattice reduction algorithms to find short vectors in L(A). The experiments of Gama
and Nguyen [GN08] showed that lattice-reduction algorithms are able to find vectors of length
β ≤ δm · det(L)1/m in m-dimensional lattices L(A), where δ is a parameter that depends on the
quality of the lattice-reduction algorithm being used. The factor δ of the currently best algorithms is
around 1.01, and it is conjectured that a factor of 1.007 may be outside our reach for the foreseeable
future [CN11]. In this paper, we use the value δ = 1.007 for setting the parameters.

Using the results of [GN08], Micciancio and Regev [MR08] deduced that to solve high-density
SIS instances, one should only use a maximum of

√
n log q/ log δ of the m columns of the matrix

A in the lattice-reduction algorithm, which should allow one to find a non-zero vector v such that
Av = 0 of length

min
(
q, 22

√
n log q log δ

)
. (3)

4 Rejection Sampling and the Normal Distribution

Definition 4.1. The continuous Normal distribution over Rm centered at v with standard deviation

σ is defined by the function ρmv,σ(x) =
(

1√
2πσ2

)m
e
−‖x−v‖2

2σ2

When v = 0, we will just write ρmσ (x). We will define the discrete Normal distribution over Zm as
follows:

Definition 4.2. The discrete Normal distribution over Zm centered at some v ∈ Zm with standard
deviation σ is defined as Dm

v,σ(x) = ρmv,σ(x)/ρmσ (Zm).

In the above definition, the quantity ρmσ (Zm) =
∑

z∈Zm
ρmσ (z) is just a scaling quantity needed to make

the function into a probability distribution. Also note that for all v ∈ Zm, ρmv,σ(Zm) = ρmσ (Zm),
thus the scaling factor is the same for all v.

Before stating the main theorem of this section, we will prove several facts about the discrete
Normal distribution over Zm.

The first lemma bounds the inner product of a discrete normal variable with any vector in Rm.
The proof of this is already essentially implicit in the proof of [MP12, Lemma 2.8], but we reprove
it here for completeness.

Lemma 4.3. For any vector v ∈ Rm and any σ, r > 0,

Pr[|〈z,v〉| > r; z
$← Dm

σ ] ≤ 2e
− r2

2‖v‖2σ2 .

4 See Section 7 for discussions about the ring versions of lattice problems.
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Proof. For any t > 0, we have:

E

[
exp

(
t

σ2
〈z,v〉

)]
=
∑
z∈Zm

Pr[z] exp

(
1

σ2
〈z, tv〉

)

=

∑
y∈Zm

exp

(
−‖y‖2

2σ2

)−1 ∑
z∈Zm

exp

(
−‖z‖2

2σ2

)
exp

(
1

σ2
〈z, tv〉

)

=

∑
y∈Zm

exp

(
−‖y‖2

2σ2

)−1 ∑
z∈Zm

exp

(
−‖z− tv‖2

2σ2

)
exp

(
t2‖v‖2

2σ2

)

=
ρmtv,σ(Zm)

ρmσ (Zm)
exp

(
t2‖v‖2

2σ2

)
≤ exp

(
t2‖v‖2

2σ2

)
,

where the last inequality follows from [MR07, Lemma 2.9]. We now proceed to prove the claim of
the lemma by applying Markov’s inequality and then the above result. In particular, for any t > 0,
we have:

Pr[〈z,v〉 > r] = Pr

[
exp

(
t

σ2
〈z,v〉

)
> exp

(
tr

σ2

)]
≤
E
[
exp

(
t
σ2 〈z,v〉

)]
exp

(
tr
σ2

)
≤ exp

(
t2‖v‖2

2σ2
− tr

σ2

)
≤ exp

(
− r2

2‖v‖2σ2

)
,

where the last inequality comes from optimally setting t = r/‖v‖2. Since the distribution of z is

symmetric around the origin, we also have that Pr[〈z,v〉 < −r] ≤ exp
(
− r2

2‖v‖2σ2

)
, and applying

the union bound to the two inequalities gives us the claim in the lemma. ut

Lemma 4.4.

1. For any k > 0, Pr[|z| > kσ; z
$← D1

σ] ≤ 2e
−k2

2 ,

2. For any z ∈ Zm, and σ ≥ 3/
√

2π, Dm
σ (z) ≤ 2−m

3. For any k > 0, Pr[‖z‖ > kσ
√
m; z

$← Dm
σ ] < kme

m
2

(1−k2).

Proof. Item 1 follows directly from Lemma 4.3 by substituting m = 1, r = kσ, and v = 1. To prove
item 2, we write

Dm
σ (z) =

e−‖z‖
2/(2σ2)∑

x∈Zm
e−‖x‖2/(2σ2)

≤ 1∑
x∈Zm

e−‖x‖2/(2σ2)
=

1( ∑
x1∈Z

e−x
2
1/(2σ

2)

)
· · ·

( ∑
xm∈Z

e−x2
m/(2σ

2)

) .
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We now use the fact that if f(x) is a non-increasing function between x = 0 and infinity, we
have

∑∞
x=0 f(x) ≥

∫∞
0 f(x)dx. If we let f(x) = e−x

2/(2σ2), then we have

∑
x∈Z

f(x) = 2
∞∑
x=0

f(x)− f(0) ≥ 2

∞∫
0

f(x)dx− f(0) =

∞∫
−∞

f(x)dx− f(0) =
√

2πσ − 1.

Therefore if σ ≥ 3/
√

2π, we have Dm
σ (z) ≤ 2−m.

For 3, we use the result of [Ban93, Lemma 1.5] which shows that for all lattices Λ ∈ Rm and
constants c ≥ 1/

√
2π, ∑

z∈Λ,‖z‖>c
√
m

e−π‖z‖
2
<
(
c
√

2πee−πc
2
)m∑

z∈Λ
e−π‖z‖

2
.

By scaling the lattice Λ by a factor of 1/s, for any constant s, the above implies that for all s,∑
z∈Λ,‖z‖>cs

√
m

e−π‖z‖
2/s2 <

(
c
√

2πee−πc
2
)m∑

z∈Λ
e−π‖z‖

2/s2 .

Setting Λ = Zm and s =
√

2πσ, we obtain

Pr[‖z‖ > c
√

2πσ
√
m; z

$← Dm
σ ] <

(
c
√

2πee−πc
2
)m

.

Finally, we set c = k/
√

2π. ut

The last lemma that we prove will be instrumental in bounding the success probability of our
rejection sampling algorithm.

Lemma 4.5. For any v ∈ Zm, if σ = ω(‖v‖
√

logm), then

Pr[Dm
σ (z)/Dm

v,σ(z) = O(1); z
$← Dm

σ ] = 1− 2−ω(logm),

and more specifically, for any v ∈ Zm, if σ = α‖v‖ for any positive α, then

Pr[Dm
σ (z)/Dm

v,σ(z) < e12/α+1/(2α2); z
$← Dm

σ ] > 1− 2−100.

Proof. By definition, we have

Dm
σ (z)/Dm

v,σ(z) = ρmσ (z)/ρmv,σ(z) =
exp

(
−‖z‖

2

2σ2

)
exp

(
−‖z−v‖

2

2σ2

) = exp

(
−2〈z,v〉+ ‖v‖2

2σ2

)
.

Lemma 4.3 tells us that |〈z,v〉| is smaller than ω(
√

logm‖v‖σ) with probability at least 1 −
2−ω(logm). Thus with this same probability we have that

exp

(
−2〈z,v〉+ ‖v‖2

2σ2

)
< exp

(
ω(
√

logm‖v‖σ) + ‖v‖2

2σ2

)
= O(1),

where the last equality uses σ = ω(‖v‖
√

logm).
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More specifically, from Lemma 4.3, we know that |〈z,v〉| is smaller than 12‖v‖σ with probability
at least 1− 2−100, and therefore we have that with probability at least 1− 2−100,

exp

(
−2〈z,v〉+ ‖v‖2

2σ2

)
< exp

(
24‖v‖σ + ‖v‖2

2σ2

)
= e12/α+1/(2α2),

where the last equality uses σ = α‖v‖. ut

We now prove the main theorem of this section.

Theorem 4.6. Let V be a subset of Zm in which all elements have norms less than T , σ be
some element in R such that σ = ω(T

√
logm), and h : V → R be a probability distribution.

Then there exists a constant M = O(1) such that the distribution of the following algorithm
A:

1: v
$← h

2: z
$← Dm

v,σ

3: output (z,v) with probability min
(

Dmσ (z)
MDmv,σ(z) , 1

)
is within statistical distance 2−ω(logm)

M of the distribution of the following algorithm F :

1: v
$← h

2: z
$← Dm

σ

3: output (z,v) with probability 1/M

Moreover, the probability that A outputs something is at least 1−2−ω(logm)

M .

More concretely, if σ = αT for any positive α, then M = e12/α+1/(2α2), the output of algorithm A
is within statistical distance 2−100

M of the output of F , and the probability that A outputs something

is at least 1−2−100

M .

Proof. The proof of this theorem will follow from Lemmas 4.5 and a general “rejection sampling”
lemma that we will now prove.

Lemma 4.7. Let V be an arbitrary set, and h : V → R and f : Zm → R be probability distributions.
If gv : Zm → R is a family of probability distributions indexed by all v ∈ V with the property that

∃M ∈ R such that ∀v, Pr[Mgv(z) ≥ f(z); z
$← f ] ≥ 1− ε

then the distribution of the output of the following algorithm A:

1: v
$← h

2: z
$← gv

3: output (z, v) with probability min
(

f(z)
Mgv(z) , 1

)
is within statistical distance ε/M of the distribution of the following algorithm F :

1: v
$← h

2: z
$← f

3: output (z, v) with probability 1/M

Moreover, the probability that A outputs something is at least (1− ε)/M .

12



Proof. For each v ∈ V , define Sv to be the set that consists of all z ∈ Zm such that Mgv(z) ≥ f(z).

Notice that by definition, for all z ∈ Sv, the probability that A outputs z is gv(z) min
(

f(z)
Mgv(z) , 1

)
=

f(z)
M and for all z /∈ Sv the probability that z is output is gv(z). We will now bound the probability

that the algorithm A produces some output.

Pr[A outputs something] =
∑
v∈V

h(v)

∑
z∈Sv

f(z)

M
+
∑
z /∈Sv

gv(z)

 ≥∑
v∈V

h(v)
∑
z∈Sv

f(z)

M
≥ 1− ε

M
,

and

Pr[A outputs something] =
∑
v∈V

h(v)

∑
z∈Sv

f(z)

M
+
∑
z /∈Sv

gv(z)


≤
∑
v∈V

h(v)

∑
z∈Sv

f(z)

M
+
∑
z /∈Sv

f(z)

M

 =
1

M
.

We now move on to bounding the statistical distance of the distribution of the output of A and
F . Let NA, NF be the probabilities that A and F do not output anything, respectively. It’s clear
that NF = 1− 1

M , and from above, we know that 1− 1
M ≤ NA ≤ 1− 1−ε

M . Then, we have

∆(A,F) =
1

2

 ∑
z∈Zm, v∈V

|A(z, v)−F(z, v)|+ |NA −NF |


=

1

2

(∑
z∈Zm

∑
v∈V

∣∣∣∣h(v)gv(z) min

(
f(z)

Mgv(z)
, 1

)
− h(v)

f(z)

M

∣∣∣∣+ |NA −NF |

)

≤ 1

2

(∑
z∈Zm

∑
v∈V

h(v)

∣∣∣∣gv(z) min

(
f(z)

Mgv(z)
, 1

)
− f(z)

M

∣∣∣∣+ |NA −NF |

)

=
1

2

∑
v∈V

h(v)

(∑
z∈Zm

∣∣∣∣gv(z) min

(
f(z)

Mgv(z)
, 1

)
− f(z)

M

∣∣∣∣+ |NA −NF |

)

≤ 1

2

∑
v∈V

h(v)

∑
z∈Sv

∣∣∣∣f(z)

M
− f(z)

M

∣∣∣∣+
∑
z /∈Sv

∣∣∣∣gv(z)− f(z)

M

∣∣∣∣+ |NA −NF |


≤ 1

2

∑
v∈V

h(v)

∑
z /∈Sv

f(z)

M
+ |NA −NF |


≤ 1

2

(
ε

M
+

((
1− 1− ε

M

)
−
(

1− 1

M

)))
=

ε

M

ut

To complete the proof of Theorem 4.6, we let the set V in Lemma 4.7 be all vectors v ∈ Zm of
length at most T , the function f be Dm

σ , and the functions gv be Dm
v,σ. ut
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Signing Key: S
$← {−d, . . . , 0, . . . , d}m×k

Verification Key: A
$← Zn×mq ,T← AS

Random Oracle: H : {0, 1}∗ → {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ κ}
Sign(µ,A,S)
1: y

$← Dm
σ

2: c← H(Ay, µ)
3: z← Sc + y

4: output (z, c) with probability min
(

Dmσ (z)

MDm
Sc,σ

(z)
, 1
)

Verify(µ, z, c,A,T)
1: Accept iff
‖z‖ ≤ ησ

√
m and c = H(Az−Tc, µ)

Fig. 1. Signature Scheme.

I II III IV V

n 512 512 512 512 512

q 227 225 233 218 226

d 1 1 31 1 31

k 80 512 512 512 512

η 1.1 1.1 1.2 1.3 1.3

m ≈ 64 + n · log q/ log (2d+ 1) 8786 8139 3253 - -

m = 2n (used in Section 6) - - - 1024 1024

κ s.t. 2κ ·
(
k
κ

)
≥ 2100 28 14 14 14 14

σ ≈ 12 · d · κ ·
√
m 31495 15157 300926 - -

σ ≈ 6 · d · κ ·
√
m (used in Section 6) - - - 2688 83328

M ≈ exp
(
12dκ

√
m/σ + (dκ

√
m/2σ)2

)
2.72 2.72 2.72 7.4 7.4

approximate signature size (bits) ≈ m log (12σ) 163000 142300 73000 14500 19500

approximate secret key size (bits) ≈ m · k · log(2d+ 1) 220 222.5 223 219.5 221.5

approximate public key size (bits) ≈ n · k · log q 220 222.5 223 222.1 222.7

Fig. 2. Signature Scheme Parameters. The parameters in columns I, II, and III are based on the hardness of
the `2-SISq,n,m,β problem where for the β in Theorem 5.1. Columns IV and V are based on the hardness of the
SISq,n,m,d search problem (see Section 6). Furthermore, the parameters in column V are also compatible with the
LWE assumption (see Section 6.1). The security level for all the instantiations is for δ ≈ 1.007 (see Section 3.2). For
the ring-based instantiations in Section 7, the key sizes are smaller by a factor of k.

5 Signature Scheme Based on SIS

In this section we present our main theoretical result – a signature scheme based, in the random
oracle model, on the average-case hardness of the `2-SISq,n,m,β problem for β = Õ(n). The scheme
is presented in Figure 1 and the definition of its parameters and some sample instantiations are in
Figure 2. We will now explain the workings of the scheme and sketch the intuition for its security.

The secret key is an m × k matrix S of random integers of absolute value at most d, and the
public key consists of a random matrix A ∈ Zn×mq and another matrix T ∈ Zm×kq which is equal
to AS. For concreteness, we will consider distributions to be statistically close if they are ≈ 2−100

apart, and we will also want ≈ 100 bits of security from our cryptographic hash function H, and so
we will assume that the output of H is 100 bits.5

To sign a message µ, the signer first picks an m-dimensional vector y from the distribution Dm
σ ,

for some standard deviation σ, then computes c = H(Ay, µ), and finally computes z = Sc + y

5 It is generally considered folklore that for obtaining signatures with λ bits of security using the Fiat-Shamir
transform, one only needs random oracles that output λ bits (i.e. collision-resistance is not a requirement). While
finding collisions in the random oracle does allow the valid signer to produce two distinct messages that have the
same signature, this does not constitute a break.
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(there is no reduction modulo q in this step!). The potential signature which he outputs is (z, c),

but he only outputs it with probability min
(

Dmσ (z)
MDmSc,σ(z) , 1

)
. If nothing was output, the signer runs

the signing algorithm again until some signature is outputted.

The main idea behind this structure of the signing algorithm is to make the distribution of
the signature (z, c) independent of the secret key S. The target distribution for the z’s that we
will be aiming for is Dm

σ , but the elements z in the signature scheme come from the distribution
Dm

v,σ, where v = Sc. This is where we will apply the rejection sampling theorem, Theorem 4.6,
from Section 4 to show that for an appropriately-chosen value of M and σ, the signature algorithm
will output something with probability approximately 1/M and the statistical distance between its
output is statistically close to the distribution in which z is chosen from Dm

σ .

Once we decoupled the distribution of the signature from the distribution of the secret key,
we can use a forger who successfully breaks the signature to solve the `2-SISq,n,m,β problem for
β ≈ Õ(‖z‖). The idea is that given an A, one can create a secret key S and publish the public key
(A,AS). Then one can reply to signing queries of the forger by either using the key S, or simply
by producing signatures by generating z from the distribution Dm

σ and programming the random
oracle accordingly. In our proof (Lemma 5.4), we choose the latter approach because in Section 6,
we will not know a valid secret key, but we would like to be able to still use the the same lemma
there. Once we have a way to reply to signing queries, we use the forking lemma [PS00,BN06] to
use the forger’s valid signatures to recover a short vector v such that Av = 0. One important
caveat is that to prove that v 6= 0, there needs to be a second (unknown to us) valid secret key
S′ such that AS = AS′, and the forger cannot know which secret key we know. To satisfy the
existence of another secret key requires a particular relationship between n,m, and q (Lemma 5.2),
and the indistinguishability of S and S′ is clearly satisfied because the distribution of the signature
is independent of the secret key.

We now discuss the verification procedure. Since we tailored z to be distributed according to
Dm
σ , by Lemma 4.4, we know that with probability at least 1− 2−100, we have ‖z‖ < ησ

√
m. And

since Ay = Az−Tc, the second part of the verification will accept a valid signature.

Theorem 5.1. If there is a polynomial-time forger, who makes at most s queries to the signing
oracle and h queries to the random oracle H, who breaks the signature in Figure 1 (with the rela-
tionship between the parameters as in Figure 2) with probability δ, then there is a polynomial-time
algorithm who can solve the `2-SISq,n,m,β problem for β = (2ησ + 2dκ)

√
m = Õ(dn) with proba-

bility ≈ δ2

2(h+s) . Moreover, the signing algorithm produces a signature with probability ≈ 1/M and
the verifying algorithm accepts a signature produced by an honest signer with probability at least
1− 2−m.

Proof. The theorem is proved in a sequence of two Lemmas. In Lemma 5.3, we show that our
signing algorithm can be replaced by the one in Hybrid 2 of Figure 3, and the statistical distance
between the two outputs will be at most ε = s(h+ s) ·2−n+1 + s · 2−100

M . Since Hybrid 2 produces an
output with probability exactly 1/M , the signing algorithm produces an output with probability
at least (1 − ε)/M . Then in Lemma 5.4, we show that if a forger can produce a forgery with
probability δ when when the signing algorithm is replaced by one in Hybrid 2, then we can use
him to recover a vector v such that ‖v‖ ≤ (2ησ + 2dκ)

√
m and Av = 0 with probability at least(

1
2 − 2−100

) (
δ − 2−100

) (
δ−2−100

h+s − 2−100
)
≈ δ2

2(h+s) . ut
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Hybrid 1

Sign(µ,A,S)

1: y
$← Dm

σ

2: c
$← {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ κ}

3: z← Sc + y

4: with probability min
(

Dmσ (z)

MDm
Sc,σ

(z)
, 1
)

,

5: output (z, c)
6: Program H(Az−Tc, µ) = c

Hybrid 2

Sign(µ,A,S)

1: c
$← {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ κ}

2: z
$← Dm

σ

3: with probability 1/M ,
4: output (z, c)
5: Program H(Az−Tc, µ) = c

Fig. 3. Signing Hybrids

Lemma 5.2. For any A ∈ Zn×mq where m > 64 + n · log q/ log (2d+ 1), for randomly chosen

s
$← {−d, . . . , 0, . . . , d}m, with probability 1 − 2−100, there exists another s′ ∈ {−d, . . . , 0, . . . , d}m

such that As = As′.

Proof. Notice that A can be thought of as a linear transformation whose range has size qn. This
means that there are at most qn elements s ∈ {−d, . . . , 0, . . . , d}m that do not collide with any other
element in {−d, . . . , 0, . . . , d}m. Since the set {−d, . . . , 0, . . . , d}m consists of (2d + 1)m elements,
the probability of randomly selecting a non-colliding element is at most

qn

(2d+ 1)m
≤ qn

(2d+ 1)64+n log q/ log(2d+1)
=

1

(2d+ 1)64
< 2−100

ut

Lemma 5.3. Let D be a distinguisher who can query the random oracle H and either the actual
signing algorithm in Figure 1 or Hybrid 2 in Figure 3. If he makes h queries to H and s queries to
the signing algorithm that he has access to, then for all but a e−Ω(n) fraction of all possible matrices
A, his advantage of distinguishing the actual signing algorithm from the one in Hybrid 2 is at most

s(h+ s) · 2−n+1 + s · 2−ω(logm)

M , or more concretely, s(h+ s) · 2−n+1 + s · 2−100

M .

Proof. We first show that the distinguisher D has advantage of at most s(h + s)2−n+1 of distin-
guishing between the real signature scheme and Hybrid 1. The only difference between the actual
signing algorithm and the algorithm in Hybrid 1 is that in Hybrid 1, the output of the random
oracle H is chosen at random from {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ κ} and then programmed as the
answer to H(Az−Tc, µ) = H(Ay, µ) without checking whether the value for (Ay, µ) was already
set. Since D calls H h times, and the signing algorithm s times, at most s + h values of (Ay, µ)
will ever be set. We now show that each time the Hybrid 1 procedure is called, the probability of
generating a y such that Ay is equal to one of the previous values that was queried is at most
2−n+1. With probability at least 1 − e−Ω(n), the matrix A can be written in “Hermite Normal
Form” (see Section 3) as A = [Ā||I]. Then, for any t ∈ Znq ,

Pr[Ay = t; y
$← Dm

σ ] = Pr[y1 = (t− Āy0); y
$← Dm

σ ] ≤ max
t′∈Znq

Pr[y1 = t′; y1
$← Dn

σ ] ≤ 2−n,

where the last inequality follows from Lemma 4.4. Thus if Hybrid 1 is accessed s times, and the
probability of getting a collision each time is at most (s+ h)2−n+1, the probability that a collision
occurs after s queries is at most s(s+ h)2−n+1.
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We next show that the statistical distance between the outputs of Hybrid 1 and Hybrid 2 is

at most 2−ω(logm)

M . The proof of this fact is almost a direct consequence of Theorem 4.6. Notice

that if both Hybrids simply outputted (z,v = Sc) with probability min
(

Dmσ (z)
MDmSc,σ(z) , 1

)
for Hybrid

1 and probability 1/M for Hybrid 2, then Hybrid 1 exactly plays the role of the algorithm A in
Theorem 4.6 and Hybrid 2 corresponds to F (where the maximum T in Theorem 4.6 corresponds
to dκ

√
m). But instead of outputting v = Sc, the Hybrids output just c. But this does not

increase the statistical distance because given v, one can generate c by picking a random element
c ∈ {w : w ∈ {−1, 0, 1}k, ‖w‖1 ≤ κ} such that Sc = v (for our choice of parameters in this paper,
there will actually be only one possible c, with very high probability), and this will have the exact
same distribution as the c in both Hybrids. And finally, since the signing oracle is called s times,

the statistical distance is no more than s · 2−ω(logm)

M , or more concretely, s · 2−100

M , and we obtain the
claim in the lemma. ut

Lemma 5.4. Suppose there exists a polynomial-time forger F who makes at most h queries to the
signer in Hybrid 2, s queries to the random oracle H, and succeeds in forging with probability δ.

Then there exists an algorithm of the same time-complexity as F that for a given A
$← Zn×mq finds

a non-zero v ∈ Zm such that ‖v‖ ≤ (2ησ + 2dκ)
√
m and Av = 0 with probability at least(

1

2
− 2−100

)(
δ − 2−100

)(δ − 2−100

h+ s
− 2−100

)
.

Proof. Throughout the proof, let DH = {c : c ∈ {−1, 0, 1}k, ‖c‖1 ≤ κ} denote the range of the
random oracle H. Given an A ∈ Zn×mq , we pick S ∈ {−d, . . . , 0, . . . , d}m×k, and then compute and
publish the corresponding verification keys A,T = AS. Let t = h+ s be the bound on the number
of times the the random oracle H is called or programmed during F ’s attack. A random oracle
query can be made by the forger directly, or the random oracle can be programmed by the signing
algorithm when the forger asks to see a signature of some message. We then pick random coins

φ for the forger and ψ for the signer, and we also pick r1, . . . , rt
$← DH, which will correspond

to the responses of the random oracle. We now consider a subroutine A, which takes as input
(A,T, φ, ψ, r1, . . . , rt). The subroutine A initializes F by giving it the public key (A,T) and the
random coins φ, and then proceeds to run F . Whenever F wants some message signed, A runs the
signing algorithm in Hybrid 2 using the signer’s random coins ψ to produce a signature. During
signing, the random oracle H will have to be programmed, and the response of H will be first ri
in the list (r1, . . . , rt) that hasn’t been used yet. Of course, A will have to keep a table of all the
queries to H, so in case the same query is made twice, it will have to reply with the previously
answered ri. The forger F can also make queries to the random oracle, in which case the reply will
similarly be the first unused ri in the list (r1, . . . , rt) (unless the query is not being made for the
first time). Once F finishes running and outputs a forgery (with probability δ), our subroutine A
simply outputs F ’s output.

With probability δ, F will output a message µ and its signature (z, c) such that ‖z‖ ≤
ησ
√
m and c = H ((Az−Tc), µ) . Notice that if the random oracle H was not queried or pro-

grammed on some input w = (Az−Tc), then F only has a 1/|DH| chance of producing a c such
that c = H (w, µ). Thus with probability 1 − 1/|DH|, c must be one of the ri’s, and so the prob-
ability that F succeeds in a forgery and c is one of the ri’s, is at least δ − 1/|DH|. Let j be such
that c = rj . There are two possibilities: rj was a response to a random oracle query made by F , or
it was programmed during signing. We will deal with the latter, simpler case first.
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Suppose that the signer programmed the random oracle H ((Az′ −Tc), µ′) = c when signing a
message µ′. If the forger outputs a valid forgery (z, c) for some (possibly different) message µ, then
we have H ((Az′ −Tc), µ′) = H ((Az−Tc), µ). If µ 6= µ′ or Az′−Tc 6= Az−Tc, it means that F
found a pre-image of rj . Therefore, we have µ = µ′ and Az′−Tc 6= Az−Tc, and so A(z−z′) = 0.
We know that z− z′ 6= 0 (because otherwise (z, µ) is exactly the same as the old signature (z′, µ′)),
and since ‖z‖, ‖z′‖ ≤ ησ

√
m, we have that ‖z− z′‖ ≤ 2ησ

√
m.

We now turn to the case that rj was a response to a random oracle query made by F . In this case,
we first record the signature (z, rj) of F on the message µ, and then generate fresh random elements

r′j , . . . , r
′
t

$← DH. We then run the subroutineA again with inputs (A,T, φ, ψ, r1, . . . , rj−1, r
′
j , . . . , r

′
t).

By the General Forking Lemma of Bellare and Neven [BN06, Lemma 1], we obtain that the prob-
ability that r′j 6= rj and the forger uses the random oracle response r′j (and the query associated
to it) in its forgery is at least (

δ − 1

|DH|

)(
δ − 1/|DH|

t
− 1

|DH|

)
,

and thus with the above probability, F outputs a signature (z′, r′j) of the message µ and (Az−Tc) =
(Az′−Tc′) where we let c = rj and c′ = r′j . By rearranging terms in the above equality and plugging
in T = AS, we obtain

A(z− z′ + Sc′ − Sc) = 0. (4)

Since ‖z‖, ‖z′‖ ≤ ησ
√
m, and ‖Sc‖, ‖Sc′‖ ≤ dκ

√
m we know that ‖z − z′ + Sc′ − Sc‖ ≤ (2ησ +

2dκ)
√
m.

Now all we need to show is that z − z′ + S(c′ − c) 6= 0. Let i be a position in which ci 6= c′i.
By Lemma 5.2, we know there is at least a 1− 2−100 chance that there exists another secret key S′

such that all the columns, except for column i, of S′ are the same as S, and AS = AS′. It’s clear
that with this definition of S′, if z− z′+ S(c′− c) = 0, then z− z′+ S′(c′− c) 6= 0. More generally,
this shows that for every distinct key S such that z− z′ + S(c′ − c) = 0, there exists a distinct key
S′ which differs from S only in column i, such that z−z′+S′(c′−c) 6= 0. And since the subroutine
A does not get these secret keys as input and does not use them for simulating the signing oracle,
the forger F does not know whether we “know” a secret key like S or like S′, and so we will get
a non-zero answer with probability at least 1/2, since each key has an equal probability of being
chosen. ut

5.1 Setting the Parameters

In Figure 2, we set some sample parameters to demonstrate the influence of their interplay on the
sizes of the signature length and the key size. The secret key is an m × k matrix with coefficients
having absolute value at most d, and so it can be represented by mk log (2d+ 1) bits. The public
key A,T can be spit into two parts – the matrix A can be shared by all users (and so can be
considered as part of the function), whereas the matrix T is individual. The part of the public key
that is individual for each user requires nk log q bits of storage. The signature size is dominated
by the vector z, since c is just a small bit-string that is the output of the cryptographic hash
function H. By design, the vector z is distributed according to Dm

σ , and by Lemma 4.4, we know
that with probability at least 1− 2−100, each coefficient of z is of length at most 12σ. Thus z can
be represented by m log (12σ) bits.
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For security, we use the analysis of [GN08,MR08], as discussed in Section 3.2, and assume that
the smallest vector v such that Av = 0 can be produced has the length specified in Equation (3) of
that section. We would like this vector v to have a larger size than the vector that can be extracted
from the successful forger, which is given in Lemma 5.4. There are some trade-offs between the sizes
of signatures and keys that can be achieved for the same security level. For example, if we change
the value of k from 80 in column I to 512 in column II, it has the effect of making the keys larger by
a factor of around 6, and at the same time reducing the signature size by a little over 10%. Another
interesting trade-off is achieved by raising the value of d as in column III. Notice that what most
affects the length of the signature size is the parameter m. By raising the value of d and q, we can
lower m, and can reduce the signature size by almost 50% at the expense of slightly increasing the
key sizes.

6 Signatures Based on Low-Density SIS and LWE

From the sample instantiations in the previous section, we saw that m is the one parameter that
most affects the signature size. In this section we explore the results of breaking the requirement
that m ≈ 64 + n · log q/ log (2d+ 1) (which is required for Lemma 5.2) and show that this still
gives us a provably-secure signature scheme (based on the low-density SISq,n,m,d problem), but
with much smaller signature and key sizes. Let us consider, for example, taking instantiation III
in Figure 2 and lowering the value of d from 31 to, say, 1, without changing the value of m. The
potential advantage of this modification is that the value of σ goes down by a factor of d, which has
the effect of making the signature vector z smaller (by a factor d), which in turn makes it harder
for the adversary to produce a forgery, since he now needs to find a vector that is d times smaller
than before. This in turn allow us to lower other parameters, such as q and m, which leads to a
“virtuous cycle” of reducing the length of the signature.

We now look at what happens to the security proofs if we proceed as described above. The
main problem is that Lemma 5.2 is no longer true since for every T, there will now be, with
extremely high probability, only one S for which AS = T. The fact that there were multiple S’s
was crucially used at the end of Lemma 5.4 to argue that a successful forger can be used to extract
a small vector v such that Av = 0. On the other hand, the proof of Lemma 5.3 is not affected
by the relationship between d and m, and so the real signature scheme is still indistinguishable
from one that uses Hybrid 2 as its signing algorithm. And since Hybrid 2 does not use the secret
key to produce signatures, for a given A, we can use the secret key S with small coefficients in
the actual signature, but use an S′ with large coefficients (so that there exists an S′′ such that
AS′ = AS′′) in the proof (see Figure 4). If the distribution of the verification key (A,AS) is
computationally indistinguishable from that of (A,AS′) (and it is, based on the hardness of the
low-density SISq,n,m,d problem from Definition 3.4), the distinguisher will not be able to tell that
he is given an invalid key pair. And since we never use the secret key to provide signatures to the
forger in Lemma 5.4, the forger should act in the same way, and we will be able to find a non-zero
v such that Av = 0.

Using the above framework, we can obtain a signature scheme that is based on the hardness
of two problems (i.e. both problems need to be hard for our scheme to be secure): the SISq,n,m,d
decisional problem and the `2-SISq,n,m,β problem with β = (2ησ + 2d′κ)

√
m. Thus the optimal

parameter settings will be where the two problems are equally hard. For the hardness of the `2-
SISq,n,m,β problem we use the bound in Equation (3) and for the hardness of the decisional problem,
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Hybrid 2

Signing Key: S
$← {−d, . . . , 0, . . . , d}m×k

Verification Key: A
$← Zn×mq ,T← AS

Sign(µ,A,S)

1: c
$← {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ κ}

2: z
$← Dm

σ

3: with probability 1/M ,
4: output (z, c)
5: Program H(Az−Tc, µ) = c

Hybrid 3

Signing Key: S
$← {−d′, . . . , 0, . . . , d′}m×k

Verification Key: A
$← Zn×mq ,T← AS

Sign(µ,A,S)

1: c
$← {v : v ∈ {−1, 0, 1}k, ‖v‖1 ≤ κ}

2: z
$← Dm

σ

3: with probability 1/M ,
4: output (z, c)
5: Program H(Az−Tc, µ) = c

Fig. 4. Key-Generation and Signing Hybrids: d′ is set so that d′ = (2α + 1)d + α for some positive integer α
and m ≥ 64 + n · log q/ log (2d′ + 1)

we use Equation (2) in Section 3. We formalize the above intuition in two lemmas analogous to
Lemmas 5.3 and 5.4 from Section 5.

Lemma 6.1. Let D be a distinguisher who can query the random oracle H and either the actual key-
generation/signing algorithms in Figure 1 or those in Hybrid 3 in Figure 4. If he makes h queries
to H and s queries to the signing algorithm that he has access to, and can distinguish the real world

from Hybrid 3 with advantage δ, then he has advantage Ω(δ/k)−
(
s(h+ s) · 2−n+1 + s · 2−ω(logm)

M

)
in solving the SISq,n,m,d decision problem.

Proof. By Lemma 5.3, we know that the statistical distance between Hybrid 2 and the actual

signing algorithm is
(
s(h+ s) · 2−n+1 + s · 2−ω(logm)

M

)
. The only difference between Hybrids 2 and

3 is the manner in which S is created in the key-generation algorithm. Using Lemma 3.6 and a
hybrid argument, we then obtain that distinguishing the verification key in Hybrid 3 from uniform
(A,U) ∈ Zn×mq × Zn×kq is as hard as the SISq,n,m,d decision problem (with a loss of a factor
k in the advantage due to the hybrid argument). And since the verification key in Hybrid 2 is
also indistinguishable from uniform based on the harness of the SISq,n,m,d decision problem, the
two verification keys are computationally indistinguishable. And because the signing algorithm is
independent of the key-generation in both hybrids, the claim in the lemma follows. ut

Lemma 6.2. Suppose there exists a polynomial-time forger F who is given the verification key
and access to the signing algorithm from Hybrid 3, and makes at most h queries to the signing
algorithm, s queries to the random oracle H, and succeeds in forging with probability δ. Then there

exists an algorithm of the same time-complexity as F that for a given A
$← Zn×mq finds a v ∈ Zm

such that ‖v‖ ≤ (2ησ + 2d′κ)
√
m and Av = 0 with probability at least(

1

2
− 2−100

)(
δ − 2−100

)(δ − 2−100

h+ s
− 2−100

)
.

Proof. The proof is exactly the same as the one of Lemma 5.4, with d′ playing the role of d. ut

6.1 The LWE Problem

In the Learning With Errors (LWE) problem, one is given an oracle that produces ordered pairs
of the form (ai, bi) ∈ Znq × Z where the ai are uniformly random in Znq , and bi = ai · s + ei where
s is some secret vector in Znq and ei is some “error” of small absolute value. Regev [Reg09] showed
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that there is a quantum reduction from approximating SIVP in all lattices to solving random
instances of LWE when the errors ei come from the discrete Normal distribution Dψ, and Peikert
later showed a classical reduction to LWE from some different lattice problems [Pei09].

An equivalent version of LWE, as shown in [ACPS09], is if the secret key is selected from the
distribution Dn

ψ rather than from the uniform distribution. In addition, Regev also showed that
the decisional version of the LWE problem, where one is asked to decide whether the ordered pairs
(ai, bi) come from the uniform distribution or whether they are generated such that bi = ai · s + ei,
is as hard as the search version.

Using the above definitions, observe that if we have a matrix A = [Ā||I] ∈ Zn×2n
q , where

Ā
$← Zn×nq , then distinguishing pairs (A,As), where each s

$← D2n
ψ , from uniformly distributed

pairs in Zn×2n
q ×Z2n

q is exactly the decisional LWE problem. By the hybrid argument, distinguishing
(A,AS), where each column of the k columns of S is distributed according to D2n

ψ , from uniformly

distributed pairs in Zn×2n
q × Z2n×k

q is also as hard as LWE. Therefore, except for the distribution
of the secret key S, the LWE problem is exactly the low-density SISq,n,2n,d problem, and so we
can easily change the scheme in the previous section based on the hardness of low-density SIS to
be based on LWE instead.

The most important feature of the secret key S that is used in the proofs is the norm of

each of its columns. If the norm of s
$← Dm

ψ is approximately the same as that of a vector s′
$←

{−d, . . . , 0, . . . , d}m, then the security and correctness of the scheme from this section will go

through almost entirely unchanged. It can be seen that if ψ ≈
√

d·(d+1)
3 , then the length of s is

approximately the same as that of a vector s′ (since ‖s‖ is tightly concentrated around ψ
√
m and

‖s′‖ around
√
d(d+ 1)m/3). So a scheme based on LWE where ψ ≈ 18 would have approximately

the same signature size and key lengths as the scheme in column V of Figure 2 where d = 31.
Notice that the LWE-based scheme in column V produces signatures that are slightly longer

than those produced by the scheme in column IV that is based on the SISq,n,2n,1 problem. At this
point, we are not aware of any algorithms that specifically attack SISq,n,2n,1 which would justify
making the signature longer just so that it is based on the hardness of the LWE problem. But
in view of the recent algorithm of Arora and Ge [AG11], which uses algebraic attacks to attack
the LWE problem with very small errors, there may be reasons to think that the instantiation in
column V could be more secure because it uses larger coefficients.

7 Ring Variants of the Signature Scheme

In general, cryptographic schemes based on the SIS and the LWE problems tend to have very
large keys sizes, as can be seen in our table in Figure 2. In our case, the reason for this is that
the matrices S and T have rather large dimensions and every entry in the matrix is independent
of the others. A way to reduce the key sizes is to make all the matrices not independent. Consider
constructing the matrix A ∈ Zn×mq as follows: pick its first column a0 uniformly at random from
Znq and then let the the next n − 1 columns, a1, . . . ,an−1 be the coefficient representation of the
polynomial a0x

i in the ring Zq[x]/〈f〉 for some univariate polynomial f(x) of degree n. The n+ 1st

column of A is then picked at random, and the next n− 1 columns are filled in the same fashion as
above (for simplicity, assume that m is an integer multiple of n). Notice that with this construction
of A, As is equivalent to polynomial multiplications and additions in the ring Zq[x]/〈f〉.

It was shown by Micciancio [Mic07] that if f(x) = xn − 1, then the function As is a one-way
function based on the worst-case hardness of the shortest vector problem in cyclic lattices, and
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this result was subsequently improved to show that if f(x) is an irreducible polynomial over the
integers, then the ring equivalent of the `2-SISq,n,m,β problem is as hard as worst-case ideal lattice
problems [PR06,LM06,Lyu08b]. A useful irreducible polynomial that has since been used in ring
constructions is xn + 1, where n is a power of 2. We now describe the ring-version of our signature
scheme. All the parameters are the same as in Figure 2 (except the parameter k no longer exists),
and we assume that m = γn is an integer multiple of n.

The secret key is s1, . . . , sγ ∈ Zq[x]/〈xn + 1〉 where every coefficient of every si is chosen
uniformly and independently from {−d, . . . , 0, . . . , d}. The public key is then (a1, . . . ,aγ , t) where
each ai is uniformly random in Zq[x]/〈xn + 1〉 and t = a1s1 + . . .+ aγsγ . To sign a message µ, we

generate y1, . . . ,yγ
$← Dn

σ and compute c = H(a1y1 + . . .+aγyγ , µ). We then compute z1 ← s1c1 +

y1, . . . , zγ ← sγcγ + yγ , and output the signature (z1, . . . , zγ , c) with probability min
(

Dmσ (z̄)
MDmv̄,σ(z̄) , 1

)
where z̄ = [zT1 || . . . ||zTγ ]T and v̄ = [(s1c)T || . . . ||(sγc)T ]T . The verification procedure checks that
‖z̄‖ ≤ 2σ

√
m and that c = H(a1z1 + . . .+ aγzγ − tc, µ).

The proof that the above scheme is based on the hardness of the ring version of `2-SISq,n,m,β is
essentially the same as the proof presented in Section 5. Notice that the signature size of the ring
scheme stays the same, but the key sizes all get reduced by a factor of k.

For the case of the schemes in Section 6, things are almost the same as well. One theoretical
caveat is that there is no ring-equivalent of Theorem 3.5 which shows the equality between the search
and decision versions of the ring-SISq,n,m,d problems. Thus the ring-version of this construction is
only based on the decision version of ring-SISq,n,m,d. On the other hand, Lyubashevsky, Peikert,
and Regev [LPR10] showed that there is a quantum reduction from worst-case lattice problems to
the decision version of the ring-LWE problem (for certain rings, of which Zq[x]/〈xn + 1〉 is one
when q = 1(mod 2n)), and so the ring version of the construction from Section 6.1 is also based on
worst-case instances of problems in ideal lattices.
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