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Abstract—Cloud storage service is gaining popularity in re-
cent years. Client-side deduplication is an effective approach
to save bandwidth and storage, and adopted by several cloud
storage services including Dropbox, MozyHome and Wuala.
Security flaws, which may lead to private data leakage, in
the existing client-side deduplication mechanism are found
recently by Harnik et al. (S&P Magazine, ’10) and Halevi et
al. (CCS ’11). Halevi et al. identified an important security
issue in client-side deduplication which leads to leakage of
users’ private files to outside adversaries, and addressed
this issue by constructing schemes which they called proofs
of ownership (PoW). In a proof of ownership scheme, any
owner of the same file F can prove to the cloud storage
that he/she owns file F in a robust and efficient way, in the
bounded leakage setting where a certain amount of efficiently-
extractable information about file F is leaked. In this paper,
we make two main contributions:
• We construct a hash function Hk : {0, 1}M → {0, 1}L

with time complexity in O(M + L), which is non-linear
and provably pairwise-independent in the random oracle
model. We apply the constructed hash function to obtain a
proof of ownership scheme, which is provably secure w.r.t.
any distribution of input file with sufficient min-entropy,
in the random oracle model. In contrast, the PoW scheme
(the last and the most practical construction) in Halevi et
al. is provably secure w.r.t. only a particular type of
distribution (they call it a generalization of “block-fixing”
distribution) of input file with sufficient min-entropy, in
the random oracle model. The constructed hash function
may have independent interest.

• We propose the first (to the best of our knowledge)
solution to support cross-user client-side deduplication of
encrypted data in the bounded leakage setting. Particu-
larly, we address another important security issue in client-
side deduplication— confidentiality of users’ sensitive files
against the honest-but-curious cloud storage server. We
emphasize that “convergent encryption”, which encrypts
a file F using hash value hash(F ) as encryption key, is
not leakage-resilient and is thus insecure in the setting of
PoW. Therefore, the direct combination of a PoW scheme
and convergent encryption is not a solution for client-side
deduplication over encrypted data.

Keywords-Cloud Storage, Client-side Deduplication, Proofs
of Ownership, Privacy, Leakage-Resilient, Pairwise Indepen-
dent Hash

I. INTRODUCTION

Cloud storage service is gaining popularity. To reduce
resource consumption in network bandwidth and storage,
many cloud storage services including Dropbox [17] and
Wuala [48] employs client-side deduplication [46]. That
is, when a user tries to upload a file to the server, the

server checks whether this particular file is already in the
cloud (uploaded by some user previously), and saves the
uploading process if it is. In this way, every single file will
have only one copy in the cloud (Single Instance Storage).
SNIA white paper [39] reported that the deduplication
technique can save up to 90% storage, dependent on
applications.

According to Halevi et al. [25] and Dropship [19], an
existing implementation of client-side deduplication is as
below: Cloud user Alice tries to upload a file F to the
cloud storage. The client software of the cloud storage
service installed on Alice’s computer, will compute and
send the hash value hash(F ) to the cloud server. The cloud
server maintains a database of hash values of all received
files, and looks up the value hash(F ) in this database. If
there is no match found, then file F is not in the cloud
storage yet. Alice’s client software will be required to
upload F to the cloud storage, and the hash value hash(F )
will be added into the look-up database. If there is a match
found, then file F is already in the cloud storage, uploaded
by other users or even by the same user Alice before. In
this case, uploading of file F from Alice’s computer to
the cloud storage is saved, and the cloud server will allow
Alice to access the file F in its cloud storage. We may refer
to the above client-side deduplication method as “hash-as-
a-proof” method. Note that in this method, the hash value
hash(F ) serves two purposes: (1) it is an index of file
F , used by the cloud server to locate information of F
among a huge number of files; (2) it is treated as a “proof”
that Alice owns file F . Previously, Dropbox1 applied the
above “hash-as-a-proof” method on block-level cross-users
deduplication [25][19].

A. Security Concerns

Different users may possess some identical sensitive
files for many reasons, even if they have no knowledge
on each other. For example they may receive a classified
or copyright-protected file directly or indirectly from the
same source. Partial information of these sensitive files
could be leaked via various channels [25, 26] by some
owners intentionally or unintentionally. Despite its signif-

1In Feb 2012, we noticed that Dropbox disabled the deduplication
across different users, probably due to rent vulnerabilities discovered
in their original cross-user client-side deduplication method. This also
indicates the importance and urgency in the study of security in client-
side deduplication.



icant benefits in saving resource, client-side deduplication
may bring in new security vulnerability and lead to leakage
of users’ sensitive files, especially when a certain amount
of partial information of these files have already been
leaked.

1) Data Privacy against Outside Adversaries: Recently,
an attack on hash-as-a-proof method in popular cloud
storage service like Dropbox and MozyHome is pro-
posed [25, 19]: If the adversary somehow has the short
hash value of a file stored in the cloud storage, he/she could
fool the cloud server that he has the file by presenting only
the hash value as “proof” in the client-side deduplication
process, and thus gain access to that file via the cloud.
This attack is practical and does not require the adversary
to find a collision of the hash function, since client
software of cloud service can be easily bypassed. For
example, an adversary may develop his/her own version
of client software using public API2, and manipulate the
computation result of hash function.

2) Data Privacy against Inside Adversaries (Cloud
Storage Servers): Confidentiality of users’ sensitive data
against the cloud storage server itself is another important
security concern that is not addressed by Halevi et al. [25].
As long as it is possible, prudent users hope to ensure that
the cloud storage server is technically unable to access
their data. Dropbox claims they protect users’ data with
AES encryption. However, the encryption keys are chosen
and kept by Dropbox itself. It is reported that, Dropbox
mistakenly kept all user accounts unlocked for almost 4
hours, due to a new bug in their software [47]. If users’
data are encrypted on client side and the encryption keys
are kept away from Dropbox, then there will be no such
single point of failure of privacy protection of all users’
data, even if Dropbox made such mistakes or was hacked
in. Very recently, a bug in Twitter’s client software is
discovered [44], which allows adversary to access users’
private data.

It is worth to point out that, cloud storage service
providers, including Amazon (S3), Apple (iCloud), Drop-
box, Google (Drive) and Microsoft (SkyDrive), explicitly
or implicitly declare that they reserve rights to access
users’ files, in their official statements of privacy pol-
icy [10, 2, 27, 18, 24, 30].

3) A New Attack—Divide and Conquer: Let us consider
an example: A classified document consists of many pages.
Although the whole document has sufficient min-entropy
to the view of adversaries, the first page has very low min-
entropy, say 1 bit min-entropy which indicates “Accep-
tance” or “Rejection”. Suppose this classified document is
stored in a cloud storage, which supports block-level cross-
user deduplication. Then the adversary could recover the
1 bit unknown information in the first page, through the

2Dorpbox provides public API. Furthermore, such attacks can not
be eliminated just by hidding API, since the adversary could perform
reverse-engineering attack to guess the communication protocol between
client and server of the cloud service.

block-level deduplication3. This is because: (1) dedupli-
cation inevitably provides adversaries a way to do brute
force search for unknown information, and (2) block-level
deduplication that divides a file into blocks and applies
deduplication on each block, will isolate min-entropy of
each block, and allow adversaries to do brute force search
in a much smaller search space. It is not unusual that
a file with high min-entropy contains some part, which
has very low min-entropy compared to its bit-length.
Deterministic encryption scheme also need resolve this
issue [31]. We emphasize that block-level cross-user client-
side deduplication should not be applied over sensitive
files.

4) Poison Attack: When a file F is encrypted on client
side, the cloud server is unable to verify consistency
between the meta-data and ciphertext of file F uploaded by
a user. A malicious user may substitute the valid ciphertext
CF with an equal size poisoned file before uploading it to
the cloud. Suppose a subsequent user Carol uploads the
same file F to the cloud, she will be told that F is already
in cloud and uploading of F is saved. She may delete her
local copy of F to save local storage, and will retrieve
file F from the cloud when necessary. However, what she
can retrieve from the cloud is a poisoned file—her file
F is lost! This attack is also known as Target Collision
attack [43].

5) Plausible Approaches:
Convergent Encryption. Intuitively, convergent encryp-
tion [15, 16] together with PoW might provide a solution
for client-side deduplication of encrypted files: Encrypt
file F to generate ciphertext CF with hash value hash(F )
as encryption key and then apply PoW scheme over CF .
Indeed, cloud storage service provider Wuala [48] adopts
convergent encryption to encrypt users files on client
side and supports cross-user deduplication. However, the
threat models of PoW [25] and convergent encryption are
incompatible. In the setting of PoW [25] where a bounded
amount of efficiently-extractable information about the file
F can be leaked, convergent encryption is insecure, since
its short encryption key is generated from the input file
in a deterministic way and could be leaked. Roughly
speaking, convergent encryption is as insecure as “hash-as-
a-proof” method (i.e using hash value hash(F ) as a proof
of ownership of file F ), in the presence of leakage. There-
fore, all existing works on applying convergent encryption
method to implement deduplication of encrypted data (e.g.
[43, 3, 29]) are insecure in the bounded leakage setting of
PoW [25].
Per-User Encryption Key. Another approach is that each
cloud user chooses his/her own per-user encryption key,
and all files uploaded to the cloud by the same user will
be deterministically encrypted under this user’s encryption

3Users can find whether deduplication occurs by timing the uploading
time or monitoring communication packet between the cloud client
software and cloud server, or develop a custom cloud client software
using public API.
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key. If a single user uploads the same file more than once
to the cloud, the subsequent upload will be saved. This
approach only allows deduplication of files that belong
to the same user, which will severely whittle down the
effect of deduplication. In this paper, we are interested in
the deduplication cross different users, that is, identical
duplicated files from different uses will be detected and
removed safely.

6) Current states of various Cloud Storage Services:
We collect some technique information about various cloud
storage service in Table I. All information comes from
public official blogs, white papers, private communication
with these cloud storage service providers, or through
simple experiments with their public service. We notice
that Microsoft SkyDrive and Google Drive do not provide
client-side deduplication function, even within a single
user account. We conjecture that all cloud storage service
with simple web access support (i.e. without requiring
special browser plug-in) either do not encrypt users’ data
or encrypt users’ data on server side only.

Table I
COMPARISON OF VARIOUS CLOUD STORAGE SERVICES.

Name Deduplication Cross-User Encryption
Dropbox [17] Yes No (See footnote 1) Server side enc

SpiderOak [40] Yes No [41] Client side enc
Wuala [48] Yes Yes Convergent enc

B. Our results and contribution

1) Overview of proposed scheme: We briefly describe
the proposed client-side deduplication scheme over en-
crypted files as below.
First Upload of File F . Suppose Alice is the first user who
uploads a sensitive file F with size ≥32MB to the cloud
storage. She will independently choose a random AES key
τ , and produces two ciphertexts: The first ciphertext CF
is generated by encrypting file F with encryption key τ
using AES method; the second ciphertext Cτ is generated
by encrypting the short AES key τ with file F as the
encryption key using some custom encryption method (See
Figure 1(a)). Next, Alice will compute a long (e.g. 32MB)
digest4 Hk(F ) with public random key k, using our custom
designed pairwise independent hash function Hk, and build
a Merkle Hash Tree MHTF,k over Hk(F ). Let πF denote
the value at the root of MHTF,k (See Figure 1(b)). Finally,
Alice will send a hash value hash(F ), two ciphertexts CF
and Cτ , and a short value πF to the cloud storage server.
The cloud storage server will add a short entry (key =
hash(F ); value = (hash(CF ), Cτ , πF )) into its lookup
database, where the hash value hash(CF ) is computed by
the cloud storage server.
Subsequent Upload of File F . Suppose another user
Carol tries to upload the same file F into the cloud, after

4Similar to Halevi et al. [25], for small file F with size |F | ∈
[ρ, 32MB), Alice hashes F into L bits digest, where L is the max multiple
of ρ in the range [ρ, |F |].

Long User File F Short Secret Key τ

Ciphertext CF = Encτ (F ) Ciphertext Cτ = ÊncF (τ)

Plaintext Plaintext
Encryption Key Encryption Key

(a) The generation of large ciphertext CF and short ciphertext Cτ .

b

b b

Long User File F

Hk(F )

Pairwise-Independent
Hash Hk

πF

Merkle Hash Tree

(b) The generation of short summary value πF from file F .

Figure 1. Illustration of the proposed solution.

Alice has already uploaded F . Carol sends hash value
hash(F ) to the cloud storage server, and the cloud storage
server finds a match of hash(F ) in its lookup database.
The cloud storage server also finds the corresponding
meta data—(hash(CF ), Cτ , πF ). Carol first proves to the
cloud storage server that she indeed owns file F , using a
privacy-preserving proof of ownership scheme and without
revealing useful information of F : The cloud storage server
asks for the value associated to a randomly chosen leaf
node (say the i-th leaf node) in the Merkle Hash Tree
MHTF,k. Carol re-computes the long digest Hk(F ) with
the same public random key k, re-builds the Merkle Hash
Tree over Hk(F ), and finds the value vi associated to the
queried leaf node. Then, Carol can prove to the cloud
storage server that vi is the correct value for i-th leaf using
the Merkle Hash Tree MHTF,k, and the cloud storage
server can verify Carol’s proof against the root value πF
provided by Alice.

Iff the cloud storage server is convinced, it will send the
short ciphertext Cτ to Carol. Carol can decrypt Cτ using
file F as decryption key and obtain the secret AES key τ .
Carol can encrypt her file F with AES key τ to generate
CF and send the hash value hash(CF ) to the cloud storage
server. The cloud will compare Carol’s version of hash
value hash(CF ) with the one computed by itself. If the
two hash values are different, then with overwhelming high
probability5, either Alice has launched a poison attack on
file F , or Carol is cheating, or both. If Alice is honest, she
can recover file F from the cloud, and present file F as

5Except the rare case that a collision of the hash function is found.
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a proof; if Carol is honest, she can present her local copy
of F as a proof.

After this, assuming that both Alice and Carol are
honest, Carol may remove the local copy of file F if she
likes and keeps the AES key τ safely in local storage.
Carol can always recover file F by downloading the
ciphertext CF from the cloud and decrypting it with key
τ .

2) Our Contributions: In this paper, we focus on cross-
user client-side deduplication over users’ sensitive data
files, and protect data privacy from both outside adver-
saries and the honest-but-curious cloud storage server. Our
contributions in this paper can be summarized as below:
• In Section III, we propose a formulation for client-

side deduplication of encrypted files, by enhancing the
formulation of PoW [25]. Our formulation protects
confidentiality of users’ sensitive files against both mali-
cious outside adversaries and honest-but-curious inside
adversaries. Furthermore, our formulation also protects
an important type of partial information (particularly,
any physical bits) of users’ sensitive files, although the
nature of deduplication implies that semantic-security is
unachievable.

• In Section IV, we propose the first weakly-secure (Def-
inition 3) client-side deduplication scheme of encrypted
files in the bounded leakage setting, by enhancing the
convergent encryption method. We prove its security in
Theorem 2.

• In Section V, we propose the first strongly-secure
(Definition 3) client-side deduplication scheme of en-
crypted files in the bounded leakage model. We prove
its security in Theorem 6 in the bounded leakage setting,
in the random oracle model. This scheme consists of
two main components: one is the weakly-secure client-
side deduplication scheme in Section IV, and the other
is a new proof of ownership scheme proposed in Sec-
tion V-A. The new PoW scheme is the first practical and
provably secure construction for proof of ownership,
w.r.t. any distribution of input file with sufficient min-
entropy, under the formulation of Halevi et al. [25].
The new PoW scheme is designed by instantiating the
generic framework of Halevi et al. [25] with a novel and
efficient pairwise-independent hash function Hk with
large output size, where the contribution in construction
of Hk will be described separately.

• In Section V-A1, we construct a keyed hash function
Hk : {0, 1}M → {0, 1}ρ` with large output size, based
on an underlying keyed hash function hk with output
size equal to a constant ρ (e.g. ρ = 256). We prove
in Theorem 4 that Hk is pairwise independent, if hk
is 4`-independent. If the hash function hk is instanti-
ated as hk(x) = SHA256(k‖x), then the computation
complexity of Hk is in O(M + ρ`).
The next Section II briefs the background and discusses

related works. Experiment result is reported in Section VI.
Section VII concludes this paper.

II. BACKGROUND AND RELATED WORKS

A. Background

1) Pairwise-Independent Hash Family: In general,
Wegman and Carter [8, 45] defined that, a hash family
{Hk : M→ {0, 1}L} is `-independent, if for any ` distinct
inputs xi ∈M, for any yi ∈ {0, 1}L (yi’s are not necessar-
ily distinct), i ∈ [1, `], Prk[

∧
1≤i≤` Hk(xi) = yi] = 2−`L.

Particularly, `-independent hash family with ` = 2 is also
called pairwise-independent [8, 45].

It is worth to point out that, pairwise-independent hash
requires large key size such that the key length should be
at least double of the digest length, which is prohibitively
expensive in the applications in PoW [25]. In both this
paper and Halevi et al. [25], short hash key are used due
to the random oracle model.
Linear Hashing. Matrix multiplication and linear equation
system are a useful technique to construct independent
hash family [42, 5]. A simple example is the inner-product-
hash function [42, 5]: the hash output is the inner product
of the key vector and the input vector in a proper field.

In general, such linear hashing satisfies the following
property, which is undesirable in our study: Given a lot of
hash outputs {(ki,Hki(x))} on the same secret input x,
one can efficiently recover x, by solving a large equation
system. We also notice that Halevi et al. [25] gave up
linear hashing due to its slow performance when output
size is large (say, 32MB). In this paper, we seek practical
non-linear pairwise independent hash.
Tabulation Hashing. Tabulation hashing [9, 36] is a
different strategy to construct independent hash family.
It constructs hash function by combining table lookup
with XOR operation. Our construction and proof of the
proposed 2-independent hash borrows some ideas from
tabulation hashing [36].

2) Structure of SHA256 Hash Function: In the under-
lying Merkle-Damgård construction of SHA256 [33], an
input file with some additional padding bits appended at
the end, will be divided into 512-bits blocks. Then each
block will be processed iteratively using an underlying
fixed-input-length compression function f , in order from
left to right in a deterministic way (See Figure 2).
Our Observation. For any bit-strings x and y, the compu-
tation of SHA256(x) and the computation of SHA256(x‖y),
will be identical6 in the processing of the first |x| bits of
input. By saving the repeated computation steps, one can
compute the two hash values SHA256(x) and SHA256(x‖y)
together as fast as computing only a single hash value
SHA256(x‖y) (See Figure 2). The construction of our
proposed hash function in this paper exploits this property
to achieve high performance.

We remark that, (1) the above property also applies on
SHA512, and Sponge function [6] based hash function (e.g.
a SHA3 candidate Keccak Hash [7]); (2) the above idea is

6Except the possible difference in processing the last block in the string
x, due to the length padding scheme.
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y Paddingy
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IV
SHA256(x)

SHA256(x‖y)

Figure 2. Illustration of fast computation of two hash values SHA256(x)
and SHA256(x‖y), where string x = x1‖x2‖ . . . ‖xn. For simplicity, we
assume that string y is short and the length of string x is a multiple of
512—the block size of SHA256 [33].

related to the length extension attack on hash function,
but with very different purpose. It is possible that a hash
function, which is resistant to length extension attack, still
satisfies the above property.

B. Related works

1) Proofs of Ownership: To prevent private data leakage
to outside adversary, Halevi et al. [25] proposed a notion
of “proofs of ownership” (PoW). In a PoW scheme, any
owner of a file F , without necessarily knowing other own-
ers of F , can efficiently prove to the cloud storage server
that he/she owns the file F ; any outside adversary cannot
prove that he/she has the file F with probability larger
than a predefined threshold, even if a certain amount of
efficiently-extractable information of file F is leaked to the
adversary. Such leakage may occur after a proof session
between the adversary and the cloud server completes, and
before a new proof session between them starts.

Halevi et al. [25] proposed three constructions. The first
construction encodes a file using some error erasure code,
and then applies the standard Merkle Hash Tree proof
method over the encoded file. The second construction is
a generic framework. Let Hk : {0, 1}M → {0, 1}L be
any pairwise independent hash family. Given a file F of
M bits long, the second construction computes the hash
value Hk(F ) with a public randomness k as hash key
and applies the standard Merkle Hash Tree proof method
over the L bits value Hk(F ). The third construction is
the most practical one. It designs an efficient hash family
H
′

k : {0, 1}M → {0, 1}L and applies the standard Merkle
Hash Tree proof method over H

′

k(F ). However, their
construction of H

′

k is not pairwise-independent (even if
in the random oracle model). Consequently, the generic
framework in the second construction cannot apply and
a new security proof is required. As the authors explicitly
mentioned, Halevi et al. [25]’s security proof for their third
construction has some limitations: (1) the proof assumes
that the file F is sampled from a particular type of
distribution (Halevi et al. [25] called this distribution as a
generalization of “block-fixing distribution”); (2) the proof
is given “under the unproven assumption that their scheme
will generate a good code” [25] (See Theorem 3 in their
paper [25] ); (3) the proof is given in random oracle model,
where SHA256 is treated as a random function.

Following the generic framework given in the second

construction of Halevi et al. [25], we propose a practical
construction of hash function Hk and obtain a PoW scheme
based on Hk. We prove that Hk is pairwise independent in
the random oracle model. Although it is still in the random
oracle model, our security proof of the proposed PoW
scheme has two advantages over Halevi et al. [25]: (1) it
applies to any distribution of files, instead of a particular
type of distribution; and (2) it only relies on well-known
assumption that AES encryption is semantic secure.

In addition, this paper also aims to protect data privacy
against honest-but-curious cloud storage server, and pro-
poses the first secure solution for client-side deduplication
over encrypted files in the bounded leakage setting.

2) Extremely Efficient “PoW”: Very recently, Pietro and
Sorniotti [37] proposed an efficient “PoW” scheme: They
use the projection of the file F onto K 7 randomly
selected bit-position i1, . . . , iK as the “proof” of own-
ership of the file F , that is, the knowledge of bit-string
F [i1]‖ . . . ‖F [iK ] is a “proof” of ownership of file F .

This scheme is extremely efficient. However this
work [37] has at least these limitations: (1) it does not
protect privacy against honest-but-curious cloud storage
server; (2) it requires that all leakage of file F to the
outside adversary occurs before the very first execution
of their proof protocol; (3) it is secure only if the min-
entropy of file F to the view of adversaries is close to
the bit-length of file F , after the leakage occurs. Thus it
tolerates a little amount of leakage and achieves very weak
security under the formulation of Halevi et al. [25].

3) Existing Attempt for Privacy-Preserving PoW: Re-
cently, Ng et al. [32] made an attempt to support PoW
over encrypted files. Their method encrypted files on client
side and shared the encryption key among a group of
users who know each other. Their method applies existing
scheme [12] to do key management within the group, and
focus on formulating and devising proofs of ownership
scheme in a privacy preserving manner.

Here we brief their PoW scheme as below: A file
is divided into many blocks xi’s, and a commitment
ci is computed from each xi under a secret key. Then
the standard Merkle Hash Tree method applies over the
commitments (c1, c2, . . .). After the completion of Merkle
Hash Tree proof protocol, the verifier knows some commit-
ment value ci, and the prover has to show that he/she has
the knowledge of some secret value xi whose commitment
is ci, without revealing information on xi to the verifier.

We observe that their proof of knowledge of xi against
ci is similar to the generalized Okamoto-Identification
scheme [34], given by Alwen et al. [1]. This proof of
identification scheme allows the verifier to efficiently de-
cide whether the secret value xi is equal to any given
candidate value x, thus allows brute-force search of x.

In summary, Ng et al. [32]’s PoW scheme has the
following limitations: (1) it is very slow in computation: in

7K is a system parameter. In their experiment [37], K takes values in
the range [100, 2000].
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every execution of the proof protocol, to generate all com-
mitment values ci’s, |F |/1024 number of exponentiations8

in a modulo group of size ≈ 21024 are required where |F |
denotes the bit-length of file F ; (2) the encryption key is
shared among a group of “friends”, which is not suitable
for client-side deduplication over encrypted files, since in
current typical client side duplication setting, owners of the
same file will be anonymous to each other; (3) it suffers
from “divide and conquer attack” mentioned previously in
Section I-A3, although (i) it is provably privacy-preserving
under their formulation [32] and (ii) it is applied in file-
level instead of block-level.

In an extreme example, a large file F with L bits min-
entropy to the view of the curious cloud server is divided
into L blocks xi’s where each xi has exactly 1 bit min-
entropy to the view of the curious cloud server. If Ng et
al. [32]’s method is applied over such a file F , then the
honest-but-curious cloud server could learn everything of
the file efficiently in time O(L) instead of O(2L) during
the proof process, by brute-force searching of the value
of each xi independently. In contrast, if the proposed
scheme in this paper applies over the same file F , any
efficient curious cloud server or outside adversary cannot
recover the file and cannot obtain the bit value F [i] at any
bit-position i in file F , assuming F [i] was unknown to
adversaries before the execution of the proof protocol.

Another recent work [49] combines proofs of storage
(i.e POR [28] and PDP [4]) with proofs of ownership.

The security goal of this paper can be roughly de-
scribed as “privacy-preserving PoW” and is close to Zero-
Knowledge Proof of Identification [21, 20]. However, the
latter are designed for short identification and impractical
in our problem, since the counterpart of identification in
our problem could be a large file (say 1GB).

III. LEAKAGE-RESILIENT CLIENT-SIDE
DEDUPLICATION: SECURITY MODEL

In this section, we propose a security formulation for
client-side deduplication of encrypted files, by enhancing
the PoW formulation [25].

A. System Model and Trust Model

1) Cloud Storage Server: Cloud Storage Server (Cloud
Server or Cloud for short) is the entity who provides cloud
storage service to various users. Cloud Storage Server has
a small and fast primary storage and a large but slow
secondary storage. Although the computation power (CPU,
I/O, network bandwidth, etc) of Cloud Storage Server is
much stronger than a single average user, the average
computation power per each online user is usually very
limited. We assume that the small and fast primary storage
is well-protected from outside adversaries, and the large

8One such group exponentiation requires more than 3 milliseconds in
a model PC, which means that it requires more than 3000 seconds to
generate all commitments for a file of size 1 giga-bits. Such expensive
operation will be executed every time when a user tries to upload the
same file to the cloud.

but slow secondary storage could be visible to outside
adversaries.

An example of cloud storage server is Dropbox [17].
Users’ files uploaded to Dropbox are actually stored
in Amazon’s S3 data center (i.e. Dropbox’s secondary
storage) and Dropbox only runs relatively small server
to manage meta data (i.e. Dropbox’s primary storage).
Another cloud storage service provider Wuala [48] stored
users’ files in P2P network (the secondary storage) in the
early stage of the company.

2) Cloud Users: Many cloud users may upload their
files to the cloud storage and possibly remove their lo-
cal copies. These users may download files, which are
uploaded by themselves, from cloud storage. File sharing
among users is not the focus of this paper, although it can
be achieved along with our solution for encrypted data.

3) Bounded Leakage of Users’ Files: In the setting
of PoW in Halevi et al. [25], a bounded amount of
efficiently-extractable information of the input file F could
be leaked by other owners of the same (or even similar)
file unintentionally or intentionally. We treat this as a side
channel leakage of the sensitive file F .

4) Adversaries: We consider two types of adversaries:
Malicious outside adversary and honest-but-curious Cloud
server.
Malicious Outside Adversary. The outside adversary may
obtain some knowledge (e.g. a hash value) of the file of
interest via some channels, and plays a role of cloud user
to interact with the cloud server.
Semi-honest Inside Adversary (Honest-but-Curious
Cloud Server). This honest but curious cloud storage
server (also known as inside adversary) will maintain
the integrity of users’ files and availability of the cloud
service, but is curious about users’ sensitive files. This
could capture at least the following cases in real world
applications:
1) Some technical employee or even the owner of the

cloud tries to access user data due to some reason.
2) The company, which provide the cloud storage ser-

vice, made careless technical mistakes which may leak
users’ private data, e.g. introducing a software bug. It
is reported that Dropbox [47] made users’ data open to
public for almost 4 hours due a new software bug. Very
recently, a bug is discovered in one of Twitter’s official
client software, which allows attackers to access users’
accounts [44].

3) The cloud storage server is hacked in.

B. Syntax Definition

A Client-side Deduplication (called CSD for short)
scheme (E ,D, P , V) consists of four algorithms E , D,
P and V , which are explained as below:
• E(F, 1λ) → (τ, C0, C1): The probabilistic encoding

algorithm E takes as input a data file F and a security
parameter λ, and outputs a short secret per-file encryp-
tion key τ , a short encoding C0 which contains hash(F )
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as a part, and a long encoding C1. C0 will be stored
in cloud server’s small and secure primary storage and
C1 will be stored in cloud server’s large but potentially
insecure secondary storage. The lengths of τ and C0

should be both in O(λ).
• D(τ, C1) → F : The deterministic decoding algorithm

takes as input a secret key τ and the long encoding C1,
and outputs a file F .

• 〈P(F ),V(C0)〉 → (y0; y1, y2): The prover algorithm
P , which takes a file F as input, interacts with the
verifier algorithm V , which takes a short encoding C0

as input. At the end of interaction, the prover algorithm
P gets output y0 ∈ {τ,⊥} and the verifier algorithm V
gets output (y1, y2) where y1 ∈ {Accept, Reject} and
y2 ∈ {hash(C1),⊥}.

Definition 1 (Correctness). We say a CSD scheme
(E ,D, 〈P,V〉) is correct, if the following conditions hold
with overwhelming high probability (i.e. 1−negl(λ)): For
any data file F ∈ {0, 1}∗ and any positive integer λ, and
(τ, C0, C1) := E(F, 1λ),
• D(τ, C1) = F .
• 〈P(F ),V(C0)〉 = (τ ; Accept, hash(C1)).

Here the hash value hash(C1) is required, in order to
defend poison attack. In case that the cloud does not have
plaintext of file F , the cloud storage server alone is not
able to decide whether a given tuple (hash(F ), C0, C1) is
consistent or inconsistent (i.e. poisoned).

C. Security Definition

The original formulation of PoW proposed by
Halevi [25] has two limitations: it does not address the
protection of partial information of users’ files against
outside adversary; it does not address the protection of
confidentiality of users’ files against curious cloud server.
Since the nature of client-side deduplication allows any
user (including adversaries) to do equality test (i.e. check
whether the file on client side is identical to the file on
server side), any solution to client-side deduplication (in-
cluding PoW schemes) cannot achieve semantic security,
that is, any solution will leak some partial information that
will allow the adversary to do brute force search for users’
secret files.

In this subsection, we will propose a security formula-
tion for client-side deduplication, to address the above two
limitations of PoW [25]. Our formulation will address the
protection of useful partial information (particularly any
physical bit in the sensitive file F ) from the malicious
outside adversary or the honest-but-curious cloud server:
Roughly speaking, PPT outside/inside adversary cannot
learn any new information on any physical bit F [i] of file
F from client-side deduplication process beyond the side
channel leakage.

The CSD security game GCSDA (ξ0, ξ1) between a
PPT adversary A and a challenger w.r.t. CSD scheme
(E ,D, 〈P,V〉) is defined as below, where ξ0 > ξ1 ≥

λ. Here ξ0 is the lower bound of min-entropy of the
challenged file F at the beginning of the game, and
the adversary is allowed to learn at most (ξ0 − ξ1) bits
information of file F from the challenger.
Setup. The description of (E ,D, 〈P,V〉) is made public.
Let F be sampled from any distribution over {0, 1}M
with min-entropy ≥ ξ0. where the public integer parameter
M ≥ ξ0 is polynomially bounded in λ. The challenger runs
the encoding algorithm to obtain (τ, C0, C1) := E(F, 1λ).
The challenger sends C1 and hash(F ) to the adversary A.
Learning-I. The adversary A can adaptively make poly-
nomially many queries to the challenger, where concurrent
queries are not allowed9 and each query is in one of the
following forms:
• ENCODE-QUERY: The challenger responses the i-th

ENCODE-QUERY by running the probabilistic encod-
ing algorithm on F to generate (τ (i), C

(i)
0 , C

(i)
1 ) :=

E(F, 1λ) and sending (C
(i)
0 , C

(i)
1 ) to the adversary.

• VERIFY-QUERY: The challenger, running the prover
algorithm P with input F , interacts with adversary
A which replaces the verifier algorithm V , to obtain
(y0; y1, y2) := 〈P(F ),A〉. The adversary knows the
values of y1 and y2.

• PROVE-QUERY: The challenger, running the verifier
algorithm V with input C0, interacts with the adversary
A which replaces the prover algorithm P , to obtain
(y0; y1, y2) := 〈A,V(C0)〉. The adversary A knows the
value of y0.

• LEAK-QUERY(Func): This query consists of a PPT-
computable function Func. The challenger responses
this query by computing y := Func(F ) and sending y
to the adversary. The adversary can make polynomially
many queries in this type, subject to a constraint: the
sum (denote this sum with Y) of bit-lengths of all
function outputs y’s is smaller than (ξ0 − ξ1).
Note: According to Lemma 2.2 in Dodis et al. [14], at most
Y < (ξ0− ξ1) bits information (in term of entropy) about file
F will be leaked to the adversary via this LEAK-QUERY.

Commit. The adversary A chooses a subset of v indices
i1, . . . , iv from [1, |F |], where v ≥ 1 and v+Y ≤ ξ0− ξ1.
The challenger finds the subsequence α ∈ {0, 1}v of F ,
such that, for each j ∈ [1, v], α[j] = F [ij ]. The challenger
chooses a random bit b ∈ {0, 1} and sets αb := α and
α1−b

$←− {0, 1}v . The challenger sends (α0, α1) to the
adversary A.

Guess-I. Let ViewCommit
A denote the view of the adversary

A at this moment. Given ViewCommit
A as input, another PPT

9Similar to Halevi et al. [25], concurrent PROVE-QUERY and LEAK-
QUERY (or VERIFY-QUERY) will allow the adversary to replay messages
back and forth between these two queries, and eliminate the possibility of
any secure and efficient solution to client-side deduplication. Therefore,
both this work and Halevi et al. [25] do not allow concurrent queries
of different types in the security formulation. We clarify that, concurrent
queries of the same type can be supported. Thus, in the real application,
the cloud storage server (verifier) can safely interact with multiple cloud
users (prover) w.r.t. the same file concurrently.
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algorithm (called “extractor”) A∗ outputs a guess bA∗ ∈
{0, 1} of value b.
Note: It is possible (and potentially acceptable) that bA∗ = b

with probability noticeably larger than 1/2. See our requirement
in Definition 3 (especially Equation (1) and (2)).
Learning-II. This phase is identical to the Learning-I
phase, except that the adversary cannot make any LEAK-
QUERY.
Guess-II. The adversary A outputs a guess bA ∈ {0, 1}
of value b, and a guess FA ∈ {0, 1}|F | of the file F .

Based on the above generic security game GCSDA , we
will define the weakly/strongly-secure games against out-
side/inside adversaries in the following Definition 2.

Definition 2. Define four new security games based on
the generic game GCSDA (ξ0, ξ1) as below
• Gw-CSD

A,out (ξ0, ξ1): Identical to the generic game, ex-
cept that adversary A makes only LEAK-QUERY in
Learning-I phase.

• Gw-CSD
A,in (ξ0, ξ1): Identical to the generic game, except

that (1) adversary A makes only LEAK-QUERY in
Learning-I phase and (2) the challenger sends C0 to
the adversary A in the very beginning of the Commit
phase.

• Gs-CSD
A,out (ξ0, ξ1): Identical to the generic game, except

that adversary A makes only PROVE-QUERY and
LEAK-QUERY in Learning-I phase.

• Gs-CSD
A,in (ξ0, ξ1): Identical to the generic game, except

that (1) adversary A makes only ENCODE-QUERY,
VERIFY-QUERY and LEAK-QUERY in Learning-I
phase and (2) the challenger sends C0 to the adversary
A in the very beginning of the Commit phase.

In each of the four new security games, the adversary A
can make ENCODE-QUERY, PROVE-QUERY and VERIFY-
QUERY, but not LEAK-QUERY, in Learning-II phase.

Definition 3 (Strongly-Secure/Weakly-Secure CSD). Let
integer λ be the security parameter and ξ0 > ξ1 ≥ λ. At
first, define two conclusion statements C1, C2 as below
C1: Pr[A finds file F in Guess-II phase ] ≤ negl(λ), i.e.

Pr[FA = F ] ≤ negl(λ).
C2: There exists some PPT extractor algorithm A∗, such

that

Pr [A finds b in Guess-II phase ]

≤Pr [A∗ finds b in Guess-I phase ] + negl(λ). (1)

Equivalently, the above Equation (1) can be written as

Pr [bA = b] ≤ Pr [bA∗ = b] + negl(λ). (2)

We say a CSD system (E ,D, 〈P,V〉) is
• (ξ0, ξ1)-weakly-secure against outside adversary, if for

any PPT adversary A, conclusions C1 and C2 hold in
the security game Gw-CSD

A,out (ξ0, ξ1);
• (ξ0, ξ1)-weakly-secure against inside adversary, if for

any PPT adversary A, conclusions C1 and C2 hold in
the security game Gw-CSD

A,in (ξ0, ξ1);

• (ξ0, ξ1)-strongly-secure against outside adversary, if for
any PPT adversary A, conclusions C1 and C2 hold in
the security game Gs-CSD

A,out (ξ0, ξ1);
• (ξ0, ξ1)-strongly-secure against inside adversary, if for

any PPT adversary A, conclusions C1 and C2 hold in
the security game Gs-CSD

A,in (ξ0, ξ1).

Remarks on the security formulation.
• Our formulation (particularly, Equation (1) and (2) in

Definition 3) requires that Pr[bA = b] ≤ Pr[bA∗ =
b] + negl(λ), which means the adversary A essentially
cannot learn any new information on physical bits
F [i1] . . . F [iv] in file F during Learning-II phase. We
emphasize that it is important to ask some extractor A∗
instead of the adversary A to make a guess bA∗ before
Learning-II, to exclude a trivial attack: Adversary
A intentionally outputs a random guess of b before
Learning-II, and outputs its maximum-likelihood of b
after Learning-II, in order to increase the difference
between success probability in Guess-I and Guess-
II. Note that this requirement follows the style of
original definition of semantic security (Definition 5.2.1
in Goldreich [22]).

• The adversary is allowed to obtain the long encoding C1

of users’ data file F in the above security game, since in
real applications, C1 is typically stored in the large but
potentially insecure secondary storage, as mentioned in
Section III-A1.

• Both game Gw-CSD
A,in (ξ0, ξ1) and game Gs-CSD

A,in (ξ0, ξ1) al-
low the honest-but-curious cloud storage server to know
the short encoding C0 only after the Learning-I phase.
This is due to a fundamental limitation—all LEAK-
QUERYs have to be made before the adversary (i.e. the
server) knows the value C0, otherwise, the adversary
can obtain the encryption key τ by making a LEAK-
QUERY(FuncC0

), where FuncC0
(F ) = 〈P(F ),V(C0)〉.

Therefore, no secure CSD scheme exists in this case.
• A CSD scheme does not have any master secret key.

Therefore, the adversary A himself/herself can find
answers to any queries w.r.t any input file F ′ that is
owned by A, without help of the challenger.

• If the long encoding C1 is obtained by encrypting file F
using the convergent encryption [15, 16], i.e. encrypting
the file F under AES method with some hash value
hash′(F ) as encryption key, then the adversary (i.e. the
curious cloud server) will have both ciphertext C1 and
decryption key hash′(F ), and thus obtain the file F ,
where
– C1 is given by the challenger in the security game;
– hash′(F ) can be obtained by making a LEAK-

QUERY.
Therefore, convergent encryption is insecure in our
security game due to the bounded leakage setting.

D. Background on formulation of Proofs of Ownership

Halevi et al. [25] proposed the formulation of proofs
of ownership. In this subsection, we briefly review their
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definitions and analyze the relationship between their
formulation of PoW and our formulation of CSD. Readers
can find more details on PoW in Halevi et al. [25].

Definition 4 (Proofs of Ownership [25]). A proof of
ownership scheme consists of a probabilistic algorithm
S and a pair of interactive algorithm 〈P,V〉, which are
described as below:
• S(F, 1λ) → ψ: The randomized summary function S

takes a file F and the security parameter λ as input,
and outputs a short summary value ψ where the bit-
length of ψ is in O(λ).

• 〈P(F ),V(ψ)〉 → Accept or Reject: The prover al-
gorithm P which takes as input a file F , interacts
with the verifier algorithm V which takes as input a
short summary value ψ, and outputs either accept or
reject.

We point out, the efficiency requirement excludes some
straightforward secure methods: For example, both prover
and verifier have access to the file F and compute a key-ed
hash value over F with a randomly chosen nonce as hash
key per each proof session.

Figure 3. Convert scheme PoW = (S, 〈P,V〉) to scheme CSD =
(E,D, 〈P,V〉). Let E = (KeyGen, Enc, Dec) be a symmetric encryp-
tion scheme.

E(F, 1λ)
1) τ := KeyGen(1λ) ∈ {0, 1}λ.
2) CF := Encτ (F ).
3) ψ := S(F, 1λ).
4) Cτ := (τ, ψ).

D(τ, CF )
1) F ′ := Decτ (CF )
2) Output F ′.

〈P(F ′), V(Cτ )〉
V1↔P1: Run interactive algorithm

〈PoW.P(F ′),PoW.V(ψ)〉. The verifier obtains
output v ∈ {accept, reject}.

V2: If v = accept, send y0 := τ to the prover,
and compute y1 = accept and compute y2 :=
hash(CF ). Otherwise, reject and abort.

Lemma 1. Let PoW and CSD be as in Figure 3 and
ξ0 > ξ1 ≥ λ. If and only if PoW is secure with leakage
threshold (ξ0 − ξ1), slackness λ and negligible soundness
error (as defined in Definition 2 of Halevi [25]), conclusion
C1 (as defined in Definition 3) holds in security game
Gs-CSD
A,out (ξ0, ξ1) w.r.t. scheme CSD against any PPT outside

adversary A.

The above Lemma 1 can be proved straightforwardly
from the security formulation of PoW [25] and our formu-
lation of CSD. We save the details due to space constraint.

IV. WEAKLY-SECURE CLIENT-SIDE DEDUPLICATION

A. Construction

We present the construction of a CSD scheme
WEAK-CSD = (E , D, 〈P,V〉) in Figure 4. Suppose Alice

is the first user who uploads file F . She will execute
algorithm E with file F and security parameter 1λ as input
and obtain a short secret encryption key τ , a short encoding
Cτ ∈ {0, 1}3λ and a long encoding CF . Alice will send
both Cτ and CF to the cloud storage server Bob. Bob
will compute the hash value hash(CF ), put Cτ in secure
and small primary storage, and put CF in the potentially
insecure but large secondary storage. At the last, Bob will
add (key = hash(F ), value = (hash(CF ), Cτ ) into his
lookup database. Suppose Carol is another user who tries
to upload the same file F after Alice. Carol will send
hash(F ) to the cloud storage server Bob. Bob finds that
hash(F ) is already in his lookup database. Then Bob who
is running algorithm V with Cτ as input interacts with
Carol who is running algorithm P with F as input. At
the end of interaction, Carol will learn τ and Bob will
compare the hash value hash(CF ) provided by Carol with
the one computed by himself. Later, Carol can download
CF from Bob at any time and decrypt it to obtain the file
F by running algorithm D(τ, CF ).

Figure 4. The construction of a weakly-secure CSD, denoted as
WEAK-CSD. Let E = (KeyGen, Enc, Dec) be a symmetric encryption
scheme with λ (= ρ) bits long key length and hk : {0, 1}∗ → {0, 1}ρ
be a key-ed hash function. Notice that the random coin of Enc will be
put in the generated ciphertext.

E(F, 1λ)
1) τ := KeyGen(1λ) ∈ {0, 1}λ.
2) s

$←− {0, 1}λ.
3) CF := Encτ (F ).
4) Cτ := (s, hs(F )⊕ τ, hash(F )).
5) Output (τ, Cτ , CF ).

D(τ, CF )
1) F ′ := Decτ (CF )
2) Output F ′.

〈P(F ′), V(Cτ )〉
V1: Parse Cτ as (s, hs(F )⊕τ, hash(F )). Send (s, hs(F )⊕

τ) to the prover.
P1: Compute the secret key y0 as below

y0 := hs(F
′) ⊕

(
hs(F )⊕ τ

)
,where ⊕ refers to XOR.

Encrypta F ′ with key y0 to generate ciphertext CF ′
and compute the hash value y2 := hash(CF ′) of the
ciphertext. Send y2 to verifier.

V2: Let HCF := hash(CF ) be computed for once and
stored for later use. If y2 = HCF , set y1 := accept,
otherwise y1 := reject.

aAs mentioned in the overview in Section I, this encryption step is
required to compute the hash value hash(CF ′ ), which will help the
verifier (i.e. cloud storage server) to detect poison attack.

Theorem 2. Let ξ0 > ξ1 = 2λ. Suppose the encryp-
tion scheme E is semantic secure (Definition 5.2.1 in
Goldreich [22]) and the hash function hk is a random
oracle. Then the WEAK-CSD scheme in Figure 4 is
(ξ0, ξ1)-weakly-secure against outside adversary (inside
adversary, respectively), but not strongly-secure. (Proof is
in Appendix A)
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Alternatively, if {hk} is a non-linear pairwise-
independent hash family, the above theorem can also be
proved with ξ0 > ξ1 = 2λ + O(λ) based on the leftover
hash lemma [5], in the standard model. We will leave this
proof in the full version of this paper.

B. Comparison with Convergent Encryption
1) Our solution is a natural extension of convergent

encryption: In our scheme WEAK-CSD given in Figure 4,
the encryption of file F is (s, hs(F ) ⊕ τ,Encτ (F )). This
encryption method can be treated as a natural extension
of convergent encryption which overcomes the below
shortcomings of convergent encryption.
Revocation of encryption key. It is very difficult,
if not impossible, to revoke the encryption key of con-
vergent encryption, when the current encryption key is
compromised. Suppose a user tries to encrypt file F using
hash(F ) as AES encryption key, and finds that the value
of hash(F ) has already been revealed to Internet by some
other owner of file F . He may switch to use hash′(F )
as encryption key where hash′(·) is another secure hash
function. Meanwhile, the user has to broadcast this switch
of hash function to all future users. This approach will
face two issues: (1) The number of different secure hash
function is very limited. (2) Users may abuse the above
hash-revoking functionality. A natural fixes to the above
two issues are: (1) Use a secure key-ed hash function and
revoke the hash key if necessary. (2) It is not necessary
that every user adopts the same hash function (i.e. the
same keyed-hash function and hash key) to generate the
AES encryption key. Every user can independently choose
a new hash key without notifying others. As a result, a user
can encrypt a file F in this way: Randomly choose a hash
key s and generate the ciphertext (s,AEShs(F )(F )).
Can any hash value be a valid encryption key? It is a
coincidence that the range of hash function (e.g. SHA256)
is consistent with the key space of encryption method (e.g.
AES). Many other encryption schemes have special key
generating algorithm and the generated key should have
a particular structure, for example, some public key en-
cryption schemes. Therefore, convergent encryption cannot
generalize to generic encryption scheme. Our proposed
encryption method overcomes this weakness, by invoking
the key generating algorithm of the underlying encryp-
tion method to generate an encryption key and protect
this generated encryption key using a one-time pad. Let
(KeyGen,Enc,Dec) be the underlying encryption method.
The ciphertext of F will be (s, hs(F )⊕τ,Encτ (F )), where
the hash key s is randomly generated and the underlying
encryption key τ is generated by algorithm KeyGen.
Leakage Resilient. More importantly, convergent en-
cryption is insecure if a bounded amount of efficiently-
extractable information of the plaintext F is leaked. Our
encryption method is resilient to such bounded leakage of
the plaintext F , in the random oracle (assuming h is a
random oracle) or in the standard model (assuming h is
pairwise-independent hash function).

2) Advantage of Convergent Encryption: Convergent
encryption can be used for both client-side and server-side
deduplication. In contrast, our encryption method can be
used only for client-side deduplication, since the one round
interaction in the client-side deduplication is essential for
our solution to synchronize the hash key. Unsurprisingly,
both convergent encryption and our encryption method are
not semantically secure [22].

V. STRONGLY-SECURE CLIENT-SIDE DEDUPLICATION

In this section, we will construct a new PoW scheme by
devising an efficient pairwise-independent hash function
with large output size, and propose a strongly-secure CSD
scheme, denoted as STRONG-CSD, by combing the newly
constructed PoW scheme with the weakly-secure CSD
scheme WEAK-CSD.

A. A New Proof of Ownership Scheme

Halevi et al. [25] proposed a generic framework, which
combines any pairwise-independent hash function with
large output size and the standard Merkle Hash Tree proof
method, to construct PoW scheme. Halevi et al. [25]
also proposed a practical PoW scheme which is secure
w.r.t. a particular type of distribution of input file with
sufficient min-entropy. In this subsection, following the
generic framework [25], we will propose a new PoW
scheme which is provably secure w.r.t. any distribution of
input file with sufficient min-entropy, by devising a novel
and efficient pairwise-independent hash function with large
output size.

1) A New Keyed-Hash Function with Large Output
Size: We are going to construct a hash function Hk
with large output size (i.e. ρ` bits), using an underlying
hash function hk with small output size (i.e. ρ bits). We
expect the constructed hash function Hk to be pairwise
independent if the underlying hash function hk is 4`-
independent. The details of the construction is in Figure 5.
Let Hk(·) be the subroutine defined in Figure 5. Roughly
speaking, the constructed hash function Hk(F ) can be
summarized as Hk(F ) ⊕ Reverse1(Hk(Reverse0(F ))),
where Reverse0 and Reverse1 are bit-level and block-
level reverse operations, respectively. Notice that none of
the following constructions is pairwise-independent: (1)
Hk(F ); (2) Hk(F ) ⊕ Hk(Reverse0(F )); (3) Hk(F ) ⊕
Reverse1(Hk(F )).
Lemma 3. Let Hk : {0, 1}≥ρ` → {0, 1}ρ` be the hash
function constructed in Figure 5 using the underlying hash
function hk : {0, 1}∗ → {0, 1}ρ. Given an input file
F ∈ {0, 1}∗ with bit-length |F | ∈ [ρ`, 264), we have the
following conclusions on the complexity of Hk(F ):
• Suppose the complexity of computation of hk(x) is in
O(|x|). Then the complexity of Hk(F ) is in O(|F |× `).

• Suppose hk(x) = SHA256(k‖x) and ρ = 256. Then
Hk(F ) can be computed in time O(|F |+ `).

From our observation in Section II-A2, it is straightfor-
ward to derive that, if hk(x) = SHA256(k‖x), then the
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complexity of Hk(F ) is in O(|F | + `), which in turn
implies the above Lemma 3. The details of proof is saved
due to space constraint.

Figure 5. Construction of a keyed-hash function Hk with output size
equal to ρ` bits, using an underlying keyed-hash function hk with output
size equal to ρ bits.

Input: The input is a file F ∈ {0, 1}∗ with bit-length
|F |, where ρ` ≤ |F | < 264 and integers ρ and ` are
public system parameters. The hash key k is from
the key space of the hash function h.

1) Define a subroutine Hk as below:
a) The input is a bit-string w1‖w2‖ . . . ‖w`, where

each substring wi has equal bit-length, and “‖”
denotes the string concatenation operator.

b) For each i ∈ [1, `], compute ui :=
hk(w1‖w2‖ . . . ‖wi) ∈ {0, 1}ρ.

c) The output is u1‖u2‖ . . . ‖u` ∈ {0, 1}ρ`.
2) Let Len ∈ {0, 1}64 be the 64 bits big endian integer

representation of the bit-length of file F . Pad file F
into F ∗ as below:

F ∗ = Pad(F )
def
= ‘0’‖Len‖F‖‘1’‖ ‘0’ . . . ‘0’︸ ︷︷ ︸

R number of ‘0’

‖Len‖‘1’,

where R is the smallest nonnegative integer such that
the bit-length of F ∗ is a multiple of `, i.e. 1 + 64 +
|F |+ 1 +R+ 64 + 1 mod ` = 0.

3) Compute y1‖y2‖ . . . ‖y` := Hk(F ∗), where each yi ∈
{0, 1}ρ.

4) Compute z1‖z2‖ . . . ‖z` := Hk(F ∗), where each zi ∈
{0, 1}ρ and F ∗ is the bit-string obtained by reversing
the order of bits in F ∗.

Output: The output is

Hk(F )
def
=
(
y1‖y2‖ . . . ‖y`

)
⊕
(
z`‖ . . . ‖z2‖z1

)
,

where ⊕ denotes the XOR operator.

Theorem 4. Let Hk : {0, 1}≥ρ` → {0, 1}ρ` be the hash
function constructed in Figure 5 using the underlying
hash function hk : {0, 1}∗ → {0, 1}ρ. If {hk} is a 4`-
independent hash family, then {Hk} is a 2-independent (
i.e. pairwise independent) hash family. (The proof is in
Appendix B)

The combination of the above Theorem 4 and Theorem
2 in Halevi et al. [25], directly implies the following
conclusion:

Corollary 5. A protocol where the input file is first hashed
to a ρ`-bit value using pairwise-independent hash function
Hk constructed in Figure 5, and then we run the Merkle
Hash Tree protocol on the resulting ρ`-bit value, is a proof-
of-ownership as per Definition 2 in Halevi et al. [25], with
leakage threshold ρ` · ( 13 − 1

2ρ ). Here ρ is the block size.

It is worth to point out that in Halevi et al. [25], a

pairwise-independent hash with large output size is re-
quired, in order to achieve a trade-off between security and
computation efficiency. In this paper, such hash function
has an additional new role: protect privacy of users’ files
from the verifier (i.e. the cloud server) during the proof
protocol.

B. Main Construction: Strongly-Secure CSD Scheme

Our main construction is given in Figure 6 and has been
briefed previously in Section I-B1.

Figure 6. The construction of a strongly-secure CSD, denoted as
STRONG-CSD. Let (E0,D0, 〈P0,V0〉) be the weakly-secure CSD
scheme WEAK-CSD in Figure 4 and PoW = (S,P,V) be the PoW
scheme specified in Corollary 5.

E(F, 1λ)
1) (τ, Cτ , CF ) := E0(F, 1λ).
2) π := PoW.S(F, 1λ).
3) Output (τ, (Cτ , π), CF ).

D(τ, CF )
1) F ′ := D0(τ, CF )
2) Output F ′.

〈P(F ′), V(Cτ , π)〉 (Round complexity is O(1) )
P1↔V1: Run 〈PoW.P(F ′),PoW.V(π)〉. If its output is

reject, then abort and reject.
P2↔V2: Run 〈P0(F

′),V0(Cτ )〉 to obtain output
(τ ′; v,HCF ′ ) where v ∈ {accept, reject}.

Theorem 6. Let ξ0 > ξ1 = 2λ. Let hk(x) = SHA256(k‖x)
and k ∈ {0, 1}256. Let (E0,D0, 〈P0,V0〉) be the (ξ0, ξ1)-
weakly-secure CSD scheme WEAK-CSD in Figure 4 and
PoW = (S,P,V) be the PoW scheme specified in Corol-
lary 5 with leakage threshold not greater than (ξ0 − ξ1)
(i.e. ρ` · ( 13 − 1

2ρ ) ≤ (ξ0 − ξ1)). Suppose hash function
hk is a random oracle. Then the client-side deduplication
scheme STRONG-CSD constructed in Figure 6 is (ξ0, ξ1)-
Strongly-Secure against outside adversary (inside adver-
sary, respectively). (The proof is in Appendix C)

Notice that the leakage rate [13] (i.e. the ratio of the
amount of leakage to the entropy of the sensitive file) of
our main scheme STRONG-CSD is 1−ξ1/ξ0 = 1−2λ/ξ0,
which is close to 1 for large ξ0 (e.g. λ = 256, ξ0 = 32×
223).

VI. PERFORMANCE

We have implemented a prototype of the proposed
scheme STRONG-CSD with SHA256 as the full domain
hash hash(·), SHA256(k‖x) as the keyed-hash hk(x), and
AES encryption10 as the semantic-secure symmetric cipher
E. The hash function SHA256 [33] and the symmetric
cipher AES [11] are provided in OpenSSL [35] library (ver-
sion 1.0.0g). The whole program is written in C language
and compiled with GCC 4.4.5. It runs in a single process,
except that the computation of the proposed hash function
Hk runs in two parallel processes. Our implementation is

10AES encryption in CBC mode with fresh random IV, where IV will
be a part of the ciphertext.
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not optimized and further performance improvements can
be expected.

The test machine is a laptop computer, which is
equipped with a 2.5GHz Intel Core 2 Duo mobile CPU
(model T9300), a 3GB PC2700-800MHZ RAM and a
7200RPM hard disk. The test machine runs 32 bits version
of Gentoo Linux OS with kernel 3.1.10. The file system
is EXT4 with 4KB page size.

We run the hash function Hk and the proposed client-
side deduplication scheme STRONG-CSD over files of
size 128MB, 256MB, 512MB, and 1024MB, respectively.
The running time of the hash function Hk and SHA256

is reported in Figure 7(a), and the ratio of the running
time of Hk to the running time of SHA256 is reported in
Figure 7(b). The running time of the proof protocol (i.e.
interactive algorithm 〈P,V〉 ) in STRONG-CSD is reported
in Figure 8, compared with network transfer time of test
files without encryption or deduplication. The running time
of encoding algorithm E is very close to (and smaller than)
the interactive algorithm 〈P,V〉. Here we save the actual
running time for E . All measurement represents the mean
of 5 trails. Since the variants are very small, we do not
report it.

We observe that, for small files, the saving in uploading
time is small if the network upload speed is as fast as
5Mbps or even 20Mbps, but saving in server storage
still matters to the cloud storage server. We remark that,
leakage resilient server-side deduplication over encrypted
files remains an open problem.

VII. CONCLUSION

In this paper, we addressed an important security con-
cern in cross-user client-side deduplication of encrypted
files in the cloud storage: confidentiality of users’ sensitive
files against both outside adversaries and the honest-but-
curious cloud storage server in the bounded leakage model.

On technique aspect, we made two contributions: (1) we
constructed a novel and efficient hash function with large
output size (e.g. 32MB) which is pairwise-independent in
the random oracle model; (2) we enhanced and general-
ized the convergent encryption method, and the resulting
encryption scheme could support client-side deduplication
of encrypted file in the bounded leakage model.

The proposed hash function may have independent
interests. Design of practical and provably secure proof
of ownership scheme (client-side deduplication scheme,
respectively) in the standard model remains an open prob-
lem.
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APPENDIX A.
PROOF OF THEOREM 2

Proof: For any PPT outside adversary ACSD against the
WEAK-CSD scheme in Figure 4, we construct a PPT adversary AE

against the underlying encryption scheme E, based on ACSD .
Construction of AE: The adversary AE is given a ciphertext CF =
E.Encτ (F ) where the encryption key τ and the input file F are unknown
and F has at least ξ0 bits min-entropy. AE is allowed to learn any output
of Func(F ) from the oracle OF , where the PPT-computable function
Func is chosen by AE.
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AE can simulate a security game GSim as below, where AE plays the
role of challenger and ACSD plays the role of adversary:
Setup. AE randomly chooses a file F Sim ∈ {0, 1}|F | and learns the hash
value hash(F ) from the oracle OF . AE independently and randomly

chooses τ (0), s(0)1 , s
(0)
2

$←− {0, 1}λ. Set C(0)
F := CF and Cτ(0) :=

(s
(0)
1 , s

(0)
2 , hash(F )).

Learning-I. AE simply forwards LEAKQUERY made by ACSD to the
oracle OF and forwards the response given by the oracle to ACSD .
Commit. AE learns the value of the challenged subsequence α =
F [i1]‖ . . . ‖F [iv ] and then exactly follows the rest part of Commit phase
in the real game GCSDA .
Guess-I. Denote the output of the extractor as bSimA∗CSD

∈ {0, 1}.
Learning-II. Challenger AE answers the following queries made by
ACSD
• ENCODE-QUERY: For the i-th ENCODE-QUERY, the challenger
AE independently and randomly chooses τ (i), s

(i)
1 , s

(i)
2

$←−
{0, 1}λ. Set C

(i)
F := E.Encτ(i) (F Sim) and Cτ(i) :=

(s
(i)
1 , s

(i)
2 , hash(F ), hash(C

(i)
F )). Note that hash(F ) is obtained

from the oracle OF in the Setup phase.
• VERIFY-QUERY: AE runs the prover algorithm and ACSD runs

the verifier algorithm. Denote with (u1, u2) the message received
from ACSD . If (u1, u2) = (s

(i)
1 , s

(i)
2 ) for some i ≥ 0, then send

hash(C
(i)
F ) toACSD ; otherwise, send a random value H $←− {0, 1}λ

to ACSD .
• PROVE-QUERY: AE runs V(Cτ(0) ) to interact with adversary
ACSD , following the description in game GCSDA exactly.

Guess-II. The adversary ACSD outputs a guess bSimACSD ∈ {0, 1} of b
and F Sim

ACSD ∈ {0, 1}
|F | of file F .

At the end, AE outputs F Sim
ACSD and wins if F = F Sim

ACSD . Therefore,

Pr[AO
F

(CF , |F |) = F ] = Pr[F Sim
ACSD = F ]. (3)

So far, AE has received at most (λ+ξ0−ξ1) bits (in term of length)
message about the unknown file F from the oracle OF . Thus, after
leakage from the oracle, the unknown file F should have at least (ξ1 −
λ) = λ bits min-entropy.

Claim 1. Suppose E is private key ciphertext-indistinguishable and
hk(·) be a random oracle. The simulated game GSim is computationally
indistinguishable with the real game GReal = Gw-CSD

ACSD,out(ξ0, ξ1), to
the view of adversary ACSD .

Sketch Proof of Claim 1: The two hash values hash(F ) and
hash(CF ) in game GSim are identical to those in the game GReal.
Since hk is assumed to be a random oracle, (s

(i)
1 , s

(i)
2 ) in game GSim is

identically distributed as (s, hk(F )⊕τ) in game GReal. Since the under-
lying encryption scheme E is semantic secure which implies E private-
key ciphertext-indistinguishable, C(i)

F in game GSim is computationally
indistinguishable to a valid ciphertext of F in game GReal.

Claim 1 implies that

|Pr[F Sim
ACSD = F ]− Pr[F Real

ACSD = F ]| ≤ negl(λ) (4)

|Pr[bSimACSD = bSim]− Pr[bRealACSD = bReal]| ≤ negl(λ) (5)

|Pr[bSimA∗CSD = bSim]− Pr[bRealA∗CSD
= bReal]| ≤ negl(λ). (6)

For any PPT adversary B, if B can learn from the oracle OF at
most (λ + ξ0 − ξ1) bits information about the unknown plaintext F
where F has at least ξ0 bits min-entropy before leakage via the oracle,
then Pr[BOF (|F |) = F ] ≤ negl(λ). Since the underlying encryption
method E is semantic secure [23],

Pr[AO
F

(CF , |F |) = F ] ≤ Pr[BO
F

(|F |) = F ] + negl(λ). (7)

Combining Eq (3), Eq (4) and Eq (7), we have

Pr[F Real
ACSD = F ] ≤ negl(λ). (8)

In Learning-II phase of GSim, the challenger AE does not make any
new queries to OF , and all responses that AE provided to ACSD are
computed from randomly sampled values and information that ACSD
has already known before Learning-II (i.e. the hash values hash(F )

and hash(CF )). Therefore, there exists some PPT extractor A∗CSD , such
that Pr[bSimACSD = bSim] ≤ Pr[bSimA∗CSD

= bSim] + negl(λ). Combine the
above equation with Eq (5) and Eq (6), we have

Pr[bRealACSD = bReal] ≤ Pr[bRealA∗CSD
= bReal] + negl(λ). (9)

Combination of Eq (8) and Eq (9) implies that the client side dedu-
plication scheme WEAK-CSD is (ξ0, ξ1)-weakly-secure against outside
adversary. The weak-security against inside adversary can be proved in
an identical way except that E sends C(0)

τ toACSD at the very beginning
of Commit phase in GSim. We save the details.

The proof of non-strong-security is straightforward: In a strongly-
secure game, in Learning-I phase, an outside adversary could obtain
(s, hs(F )⊕ τ) by making a PROVE-QUERY and learn the value hs(F )
by making a LEAK-QUERY. As a result, the outside adversary finds the
secret per-file encryption key τ and thus decrypt CF to recover file F .

APPENDIX B.
PROOF OF THEOREM 4

Recall that, for any bit-string x, we denote with x the bit-string
obtained by reserving the order of bits in x. It is not difficult to derive
the following claim from the description of Hk in Figure 5.

Claim 2. Let F be a file of size ≥ ρ` bits and F ∗ = Pad(F ) be the
padded version of F . Break F ∗ into ` equal length bit-strings wi’s, i.e.
F ∗ = w1‖ . . . ‖w`. Let yi, zi, i ∈ [1, `], as in Figure 5. We have

yi = hk(w1‖w2‖ . . . ‖wi); (10)
zi = hk(w`‖w`−1‖ . . . ‖w`−i+1); (11)

z`−i+1 = hk(w`‖w`−1‖ . . . ‖wi); (12)

the i-th ρ-bits-block of Hk(F ) is

yi ⊕ z`−i+1 = hk(w1‖ . . . ‖wi)⊕ hk(w`‖w`−1‖ . . . ‖wi). (13)

For each ι ∈ {0, 1}, let w(ι)
1 ‖w

(ι)
2 ‖ . . . ‖w

(ι)
` = Pad(Fι), where

bit-strings w(ι)
i have equal lengths: |w(ι)

1 | = |w(ι)
2 | = . . . = |w(ι)

` |.
In order to simplify the exposition, let us define notations Pref

(ι)
i and

Pref
(ι)
i , i ∈ [1, `], ι ∈ {0, 1}, as below

• Pref
(ι)
i

def
= w

(ι)
` ‖w

(ι)
`−1‖ . . . ‖w

(ι)
i , with initial bit equal to 1;

• Pref
(ι)
i

def
= w

(ι)
1 ‖w

(ι)
2 ‖ . . . ‖w

(ι)
i , with initial bit equal to 0.

Let us describe the computation of Hk(F0) and Hk(F1) in an
alternative way with 2` steps as below, which is equivalent to the
description in Figure 5. Let ∆i, i ∈ [0, 2`], be the set of all inputs
that are fed into the hash function hk(·) during the first i steps. ∆0 is
an empty set.
• At the i-th step, i = 1, 2, . . . , `, compute the i-th ρ-bits-block

of Hk(F0): y(0)i ⊕ z
(0)
`−i+1 = hk(Pref

(0)
i ) ⊕ hk(Pref

(0)
i ). Add

the two inputs of hk(·) to ∆i−1 to generate ∆i: ∆i
def
= ∆i−1 ∪

{Pref(0)i , Pref
(0)
i }.

• At the (`+i)-th step, i = 1, 2, . . . , `, compute the i-th ρ-bits-block of
Hk(F1): y(1)i ⊕z

(1)
`−i+1 = hk(Pref

(1)
i )⊕hk(Pref

(1)
i ). Add the two

inputs of hk(·) to ∆`+i−1 to generate ∆`+i: ∆`+i
def
= ∆`+i−1 ∪

{Pref(1)i , Pref
(1)
i }.

Claim 3. For each i ∈ [1, 2`], ∆i−1 ( ∆i, i.e. ∆i−1 is a proper
subset of ∆i.

Proof of Claim 3: For each i ∈ [1, 2`], definition of ∆i implies
∆i−1 ⊆ ∆i. Therefore, we only need prove that ∆i \∆i−1 6= ∅. Now
we do a case analysis based on whether i ∈ [1, `] or i ∈ [`+ 1, 2`].
Case 1: i ∈ [1, `]. We want to show that Pref

(0)
i ∈ ∆i \ ∆i−1.

Since ∆i
def
= ∆i−1∪{Pref

(0)
i , Pref

(0)
i }, we have Pref

(0)
i ∈ ∆i. ∆i−1

consists of at most 2(i − 1) number of elements Pref
(0)
j ,Pref

(0)
j , j ∈

[1, i− 1]. Pref(0)i is different from any Pref
(0)
j , j ∈ [1, i− 1], since

the former has initial bit ‘0’, and the latter has initial bit ‘1’. Pref(0)i is
different from any Pref

(0)
j , j ∈ [1, i− 1], since the former has longer

14



length than the latter. We can show that Pref
(0)
i ∈ ∆i \ ∆i−1 in a

similar way. Here we save the details.
Case 2: i ∈ [` + 1, 2`]. In this case, we prove the claim by proof
of contradiction. Suppose for some i ∈ [` + 1, 2`], ∆i = ∆i−1.
That implies, both Pref

(1)
i−` and Pref

(1)
i−` are already in the set ∆i−1.

∆i−1 consists of at most 2(i−1) number of elements Pref(0)j ,Pref
(0)
j ,

j ∈ [1, `], and Pref
(1)
j−`,Pref

(1)
j−`, j ∈ [`+ 1, i− 1]. Due to the similar

arguments as in Case 1, Pref
(1)
i−` is different from any Pref

(1)
j−` or

Pref
(1)
j−`, j ∈ [`+ 1, i− 1]. That is, Pref(1)i−`,Pref

(1)
i−` 6∈ ∆i−1 \∆`.

Thus, both Pref
(1)
i−` and Pref

(1)
i−` should be in the set ∆`.

Notice that all Pref(ι)j have initial bit ‘0’ and all Pref
(ι)
j have initial

bit ‘1’, j ∈ [1, `], ι ∈ {0, 1}. The only remaining possibility is that:
There are some j0, j1 ∈ [1, `], such that Pref

(1)
i−` = Pref

(0)
j0

and

Pref
(1)
i−` = Pref

(0)
j1

. Recall that the value of the 65-bits prefix of Pref(0)j0
(Pref(1)i−` respectively) equal to the bit-length of file F0 (F1, respec-

tively), due to the padding as in Figure 5. As a result, Pref(1)i−` = Pref
(0)
j0

implies that |F0| = |F1|. Furthermore, |Pref(1)i−`| = |Pref(0)j0 | and

|Pref(1)i−` = Pref
(0)
j1
|, imply that i − ` = j0 = j1. Consequently,

Pad(F0) = Pad(F1), which implies F0 = F1—This is a contradiction
with our precondition that F0 and F1 are distinct files! This completes
the proof for Case 2. The Claim 3 is proved.

Now we are ready to prove Theorem 4. Recall that hk(·) is 4`-
independent, i.e. for any 4` number of distinct inputs xi, i ∈ [1, 4`], all
hk(xi) are independent uniform random variables over {0, 1}ρ, where
the probability is taken over random choice of the hash key k.

Note that the size of set ∆2` is at most 4`. For each x ∈ ∆2`,
hk(x) will be an independent uniform random variables over {0, 1}ρ.
Since for each i ∈ [1, 2`], ∆i−1 ( ∆i, the computation of each
ρ-bits block in the hash digests Hk(F0) and Hk(F1) will involve at
least one new independent random variable as an operand of the XOR
operation. More precisely, in the computation of y(ι)i ⊕ z

(ι)
`−i+1 =

hk(Pref
(ι)
i ) ⊕ hk(Pref

(ι)
i ), i ∈ {0, 1}, either y(ι)i or z(ι)`−i+1 (or both

) is a new independent random variable over {0, 1}ρ. Thus, for any two
values Y0, Y1 ∈ {0, 1}ρ`, Prk [Hk(F0) = Y0 ∧ Hk(F1) = Y1] =(

1
2ρ

)2`
= 1

22ρ`
. The proof of Theorem 4 completes.

APPENDIX C.
SKETCH PROOF OF THEOREM 6

At first, we construct a simulator hSimk , then prove Theorem 6 with
the help of this simulator.

A. hSimk : Simulator of Keyed-Hash hk
For each hash key k, given the length |F | and hash value hash(F ) of

an unknown file F , we construct a simulator hSimk for the hash function

hk in this subsection. Randomly choose a value HF
$←− {0, 1}ρ` and set

Hk(F ) := HF for the unknown file F . We will ensure a property: For
any file F ′, if |F ′| = |F | and hash(F ′) = hash(F ), then HSim

k (F ′) =
HF . Otherwise, the value HSim

k (F ′) is uniformly randomly sampled from
the space {0, 1}ρ`.

We say a pair of strings (x1, x2) is a i-match w.r.t. a hash value
H , if there exists F ′ ∈ {0, 1}|F | and some integer i ∈ [1, `], such
that hash(F ′) = H , Pad(F ′) = w1‖w2‖ . . . ‖w`, |w1| = |w2| =
. . . = |w`|, x1 = w1‖w2‖ . . . ‖wi and x2 = wi‖wi+1‖ . . . ‖w`. It
is straightforward to verify that the relation “i-match” can be decided
efficiently.

Let Ri be the set of the very first i inputs that are fed into function
hSimk (·). The i-th input xi (i ≥ 2) to the function hSimk (·) is bounded, if
there exists some input xj ∈ Ri−1, such that either (xi, xj) or (xj , xi)
is a v-match w.r.t. hash(F ) for some v ∈ [1, `].

Upon receiving i-th query xi that is fed into function hSimk (·), compute
hSimk (xi) as below
1) xi is not a new query, i.e. xi ∈ Ri−1: The value hSimk (xi) has been

defined previously.
2) xi is not bounded: independently and randomly choose yi

$←−
{0, 1}ρ and set hSimk (xi) := yi.

3) xi is bounded: Find xj , j ∈ [1, i−1], such that (xi, xj) or (xj , xi)
is a v-match w.r.t hash(F ). Compute and output hSimk (xi) :=

HF,v ⊕ hSimk (xj) where HF,v denotes the v-th ρ-bits block in the
string HF .

Claim 4. If the hash function hash (e.g. SHA256) is collision-resistant,
then the simulator hSimk is computationally indistinguishable from a real
random oracle hk .

B. Reduction Proof
We consider inside adversary at first. Suppose As is a PPT inside

adversary that breaks the strong-security of the STRONG-CSD scheme
in Figure 6. We intend to construct a PPT inside adversaryAw that breaks
the weak-security of the underlying WEAK-CSD scheme in Figure 4.
Construction of Aw: Intuitively, STRONG-CSD combines both
WEAK-CSD and the PoW scheme in Corollary 5. During the security
game Gw-CSD

Aw,in between adversary Aw and the w-CSD-challenger, Aw
will invoke hSimk to simulate the PoW scheme without knowing the secret
file F , and thus simulate a strong-security game Gs-CSD

As,in whereAw plays
the role of s-CSD-challenger and As plays the role of adversary. Denote
the below simulated game as GSim

in .
w-CSD.Setup. w-CSD-challenger generates (F, τ, Cwτ , CF ) in the
same way as in Setup phase in game Gs-CSD

As,out. The adversaryAw obtains
CF and hash(F ) from the w-CSD-challenger. Given (k, |F |, hash(F )),
invoke hSimk to obtain Hk(F ) = HF without knowing F , where k is a
randomly chosen hash key. Let π denote the hash value at the root of
Merkle Hash Tree over HF . Set Cτ := (Cwτ , π). Aw samples a file
F Sim from the sampling space of F under the same distribution where
|F Sim| = |F |.
s-CSD.Setup. Aw , playing the role of s-CSD-challenger, sends CF

to the adversary As.
w-CSD.Learning-I. Note that As can make LEAK-QUERY, ENCODE-
QUERY, VERIFY-QUERY to Aw , but Aw can only make LEAK-QUERY
to the w-CSD-challenger.
s-CSD.Learning-I.Aw answers queries made byAs in the following

way:

• ENCODE-QUERY: Randomly choose s(i)1 , s
(i)
2

$←− {0, 1}λ. Recall
that, given (k, |F |, hash(F )), hSimk ensures that Hk(F ) = HF
without knowing F . Let π(i) denote the value at the root of Merkle
Hash Tree over HF . Set C(i)

τ := (s
(i)
1 , s

(i)
2 , hash(F ), π(i)) and

C
(i)
F := E.Encτ(i) (F Sim). Send (C

(i)
τ , C

(i)
F ) to As.

• VERIFY-QUERY: Aw runs PoW.PhSim with Hk(F ) but without F ,
to interact with As who replace the verifier algorithm PoW.V(Cτ ).
After Aw computes Hk(F ) by invoking hSimk w.r.t any hash key k
provided by the verifier As, Aw can follow the rest part of algorithm
PoW.P exactly to interact with the verifier As.

• LEAK-QUERY: Forward the query made by As to the w-CSD-
challenger and forward the reply from the w-CSD-challenger to As.

w-CSD.Commit and w-CSD.Guess-I.
s-CSD.Commit and s-CSD.Guess-I. Similar to LEAK-QUERY in

s-CSD.Learning-I, Aw just forward messages back and forth between
adversary As and w-CSD-challenger.
w-CSD.Learning-II.
s-CSD.Learning-II. Aw answers the queries made by As in the

same way as in s-CSD.Learning-I. Additionally, As can make PROVE-
QUERY, and As runs PoW.V with π as input to respond it.
w-CSD.Guess-II.
s-CSD.Guess-II. Aw just forward messages back and forth between

adversary As and w-CSD-challenger.

Claim 5. Suppose the encryption scheme E is semantic-secure. The
simulated game GSim

in is computationally indistinguishable to a real game
Gs-CSD
As,in to the view of PPT adversary As.

Let C1, C2 be as defined in Definition 3. Therefore, conclusion C1 (C2,
respectively) in the strong-security game Gs-CSD

As,in implies conclusion C1

(C2, respectively) in the weak-security game Gw-CSD
Aw,in . As a result, Aw

breaks the weak-security of WEAK-CSD—Contradiction!
The strong-security of STRONG-CSD against outside adversary can

be proved similarly with the help of hSimk . We save details.
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