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Abstract

In this paper, we present a new class of public-key cryptosys-
tems, K(IX)SE(1)PKC realizing the coding rate of exactly
1.0, based on random pseudo cyclic codes. We show that
K(IX)SE(1)PKC is secure against the various attacks includ-
ing the attack based on the Gröbner bases calculaion (GB
attack).
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1 Introduction

Most of the multivariate PKC’s are constructed by the simul-
taneous equations of degree larger than or equal to 2 [1]∼[6].
The present author recently proposed several classes of mul-
tivariate PKC’s that are constructed by many sets of linear
equations[7]∼[13].

It should be noted that McEliece PKC[14] can be regarded
as the first member of the class of the linear multivariate PKC.

In this paper we present a new class of public key cryptosys-
tem, K(IX)SE(1)PKC based on pseudo cyclic codes, realizing
the coding rate of exactly 1.0. We show that K(IX)SE(1)PKC
is secure against the attacks including the attack based on the
Gröbner bases calculaion (GB attack)[15].

Throughout this paper, when the variable vi takes on
a value ṽi, we shall denote the corresponding vector v =
(v1, v2, · · · , vn) as

ṽ = (ṽ1, ṽ2, · · · , ṽn). (1)

The vector v = (v1, v2, · · · , vn) will be represented by the
polynomial as

v(x) = v1 + v2x + · · · + vnxn−1. (2)

The ũ, ũ(x) et al. will be defined in a similar manner.

2 K(XI)SE(1)PKC over F2m

2.1 Construction

Let us define a few symbols.
G(x): Random polynomial for generating

random pseudo cyclic code over F2m ,
R0 + R1x + · · · + Rg−1x

g−1 + Rgx
g,

where Ri (i = 1, · · · , g − 1), R0 ̸= 0
and Rg ̸= 0 take on an element of F2m

equally likely in a random manner.
eY : Exponent(period, order) of Y (x).

♯{Ai} : Order of the set {Ai}.
H(Ai) : Ambiguity of Ai, log2 ♯{Ai} (bit).

H(A|B) : Ambiguity (Conditional Entropy) of
A when B is given (bit).

[Rij ]a×b: Random matrix, where Rij (i =
1, · · · , a; j = 1, · · · , b) takes on 0 or 1
equally likely in a random manner.

H
(
[Rij ]a×b

)
: Ambiguity of [Rij ]a×b

∼= ab (bit).
C : Ciphertext, (CI , CII).
CI : First ciphertext.
CII : Second ciphertext.
NV : Total number of variables.
NE : Total number of equations.

Let the message vector A over F2 be represented by

A = (A1, A2, · · · , AN ). (3)

Throughout this paper we assume that the messages
A1, A2, · · · , AN are mutually independent and equally likely.
Let A be transformed into

A · HI = a = (a1, a2, · · · , aN ), (4)

where HI is an N × N non-singular random matrix over F2.
Let a be partitioned into

a = (m1,m2, · · · ,mn), (5)

where mi is given by

mi = (ai1, ai2, · · · , aim). (6)
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In the followings let us regard mi as an element of F2m .
Let us partition the components of a into

mA = (mg+1,mg+2, · · · ,mg+f ), (7)

mB = (mg+f+1,mg+f+2, · · · ,mn), (8)

and

mC = (m1,m2, · · · ,mg), (9)

respectively, where n is given by

n = g + 2f. (10)

We let f be given by

g < f, (11)

due to the reason mentioned in 2.4.
From mA and mB , we obtain

(mA(x)mB(x))α ≡ p(x) mod P (x), (12)

where P (x) is a primitive polynomial of degree f over F2m ,
and α is given by

α = 1 + 2 + 22 + · · · + 2B < 2fm − 1. (13)

Let p(x) be represented by

p = (p1, p2, · · · , pf ). (14)

The first ciphertext CI(x) is given by

CI(x) = p(x). (15)

Remark 1 : All the components of p are calculated at the
sending end from Eq.(12), for the given mA and mB .
Namely all the components are not represented by a set
of equations of degree B. 2

Regarding mA over F2m as an mf -tuple over F2, mA is
transformed into

mAHII = m′
A

=
(
m′

g+1,m
′
g+2, · · · ,m′

g+f

)
,

(16)

where HII is an mf × mf non-singular random matrix over
F2m .

It should be noted that any component m′
i of m′

A is an
element of F2m .

Let r(x) be given by

m′
A(x)xg ≡ r(x) mod G(x)

= r1 + r2x + · · · + rgx
g−1.

(17)

The code word, w(x), generated by the generator polyno-
mial G(x), can be represented by

w(x) = r(x) + m′
A(x)xg. (18)

Regarding the vector r = (r1, r2, · · · , rg) over F2m as a gm-
tuple over F2, it is transformed into

(r1, r2, · · · , rg)HIII = t

= (t1, t2, · · · , tg),
(19)

where HIII is a gm×gm random non-singular matrix over F2.
We see that the ambiguity of HIII over F2 is given approx-

imately by

|HIII | ∼= g2m2 (bit), (20)

an extremely large value for gm >∼ 80.
According to the transformation given by Eq.(19), the code

word w(x) is transformed into

w′(x) = t(x) + m′
A(x)xg ̸= 0 mod G(x), (21)

for r(x) ̸= 0. (22)

The w′(x) is publicized.
At the sending end the message vector mC is transformed

into

{mC(x)}3 = τ(x). (23)

Remark 2 : All the components of τ are calculated at the
sending end from Eq.(23), for the given mC(x). Namely
all the components of τ are not given by a set of quadratic
equations.

With this τ(x), at the sending end, the word u(x) is con-
structed by

u(x) = w′(x) + τ(x)xg. (24)

The second ciphertext CII(x) is given by

CII(x) = u(x). (25)

We have the following set of keys.

Public key : mA, mB , mC , w′, P (x), α, g, 3.
Secret key : HI , HII , HIII , G(x).

2.2 Encryption and Decryption

[Encryption]

Step 1: The vector p̃ is calculated from Eq.(12) for the given
m̃A and m̃B .

Step 2: The ciphertext C̃I(x) is given by p̃(x) from Eq.(15).

Step 3: The w′(x) is caclulated from Eq.(21).

Step 4: Given m̃C(x), the τ̃(x) is calculated from Eq.(23).

Step 5: The ciphertext C̃II(x) is given by ũ(x) = w̃′(x) +
m̃C

3(x)xg from Eqs.(24) and (25).
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Table 1: Example of K(IX)SE(1)PKC(ρ = 1.0).

Example N m dA, dB dC g PC [Ĝ(x)] SPK (KB)

I 544 32 6 2 3 2.94 ∗ 10−39 58.8
II 640 64 3 1 2 2.76 ∗ 10−60 184.3

[Decryption]

Step 1: The t̃(x) is inverse transformed to r̃(x) by t̃ · H−1
III ,

yielding w̃(x) + m̃3
C(x)xg.

Step 2: The m̃C(x) is decoded by

C̃II(x) =
{
w̃(x) + m̃3

C(x)
}d

≡ m̃C(x) mod G(x),
(26)

where d is the inverse element of 3 modulo eG, yielding
w̃(x).

Step 3: From w̃(x), the transformed message m̃′
A(x) is de-

coded.

Step 4: The vector m̃A is obtained by m̃′
AH−1

II .

Step 5: Letting eP be the period of P (x), the message m̃B(x)
is obtained by

m̃B(x) ≡ p̃(x)βm̃−1
A (x) mod P (x), (27)

where β is given by

αβ ≡ 1 mod eP . (28)

Step 6: From m̃A, m̃B and m̃C , the original message, Ã, is
decoded by

(m̃A, m̃B , m̃C)H−1
I = Ã

=
(
Ã1, Ã2, · · · , ÃN

)
.

(29)

2.3 Examples

In Table 1, we present two examples of K(IX)SE(1)PKC over
F2m .

Let us show a schematic diagram of Example II.
Let us discuss on the size of the public key required for

K(IX)SE(1)PKC over F2m by an example for simplicity.
Let the degree of mY (x) be denoted by dY . In the follow-

ings, we assume that dA, dB and dC are chosen so that the
relation,

dA = dB (30)
3dC = dA (31)

Figure 1: Schematic diagram of K(IX)SE(1)PKC over F2m

(Example II in Table 1).

may hold.
The total number of variables, NV , is given by

NV = N = (dA + dB + dC + 3)m. (32)

The total number of equations, NE , is given by

NE = (2dA + dB + 2dC + 5)m. (33)

The size of the public key is given by

SPK1 = NV · NE

= (dA + dB + dC + 3)(2dA + dB + 2dC + 5)m2.

(34)

2.4 Security considerations

Let us discuss on several possible attacks on K(IX)SE(1)PKC.

Attack 1: Exhaustive attack on G(x) over F2m

The generator polynomial G(x) can be represented by

G(x) = R0 + R1x + · · · + Rg−1x
g−1 + Rgx

g, (35)

where we assume that Ri(i = 0, 1, · · · , g) takes on an element
of F2m equally likely except that R0 and Rg are required to
be nonzero element.

As a result, the probability of estimating G(x) correctly in
an exhaustive manner, PC

[
Ĝ(x)

]
, is given by

PC

[
Ĝ(x)

]
= (2m − 1)−2 · 2−(g−1)m

∼= 2−(g+1)m.
(36)
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Letting m and g satisfy

(g + 1)m >∼ 80, (37)

the probability PC

[
Ĝ(x)

]
is given by

PC [Ĝ(x)] <∼ 2−80, (38)

a sufficiently small value.
For example, PC

[
Ĝ(x)

]
’s are given by 2−128 = 2.94 ∗10−39

for Example I and 2−192 = 2.76 ∗ 10−60 for Example II in
Table 1, extremely small values.

We see that K(IX)SE(1)PKC would be secure against the
Attack 1 provided that Eq.(37) is satisfied. 2

Attack 2: Attack on m′
A based on t

The t is given by a linear transformation of r and is given
as it is in word u. In order to be secure against the Attack
2, the relation, g < f (Eq.(11)), should be strictly satisfied.
The conditional entropy, H(m′

A|t) is given by

H(m′
A|t) = (f − g)m (bit). (39)

For exmaples I and II in Table 1, the conditional entropy
H(m′

A|t) is given by

H(m′
A|t) = 128 (bit) (40)

a sufficiently large value.
It is easy to see that once m′

A is disclosed, m3
C(x) is dis-

closed.
We conclude that K(IX)SE(1)PKC is secure against Attack

2.　 2

Attack 3: Attack on mB(x) by estimating mA(x)
We assume here that Eq.(30) holds, namely dA = dB . By

estimating mA(x) in an exhaustive manner for a given p(x),
mB(x) can be disclosed. The probability of disclosing mB(x)
by estimating mA(x) is given by

PC [m̂B(x)] = 2−(dA+1)m. (41)

For examples I and II, the probability PC [m̂B(x)]’s are given
by 2−7∗32 = 3.71 ∗ 10−68 and 2−4∗96 = 2.54 ∗ 10−116 respec-
tively, extremely small values.

We see that K(IX)SE(1)PKC is secure against Attack 3. 2

Attack 4: GB attack on the ciphertext
The ciphertext CI(x) can be represented by a set of simulta-

neous equations of degree B in the variables A1, A2, · · · , AN .
The ciphertext CII(x) can be represented by a set of linear and
quadratic equations in the variables A1, A2, · · · , AN . Namely
the GB attack should solve the following sets of simultaneous
equations.

SE(I) : The fm simultaneous of degree B in the variables
A1, A2, · · · , AN .

SE(II) : The gm linear equations and fm quadratic equa-
tions in the variables A1, A2, · · · , AN .

The degree B takes on 223 for Example I and, 255 for Example
II, in Table 1, extremely large values. The number of variables
N takes on 544 for Example I and, 640 for Exmaple II, also
large values.

We conclude that K(IX)SE(1)PKC is secure against Attack
4. 2

3 Conclusion

In this paper we have presented K(IX)SE(1)PKC based on
random pseudo cyclic codes. We have shown that our pro-
posed K(IX)SE(1)PKC can be made sufficiently secure against
the various attacks including the attack based on the Gröbner
bases calculation.
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