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Abstract In this paper, We propose a class of 2k-variable Boolean func-
tions, which have optimal algebraic degree, high nonlinearity, and are 1-
resilient. These functions have optimal algebraic immunity when k > 2 and
u = −2l, 0 ≤ l < k. Based on a general combinatorial conjecture, algebraic
immunity of these functions is optimal when k > 2 and u = 2l, 0 ≤ l < k.
If the general combinatorial conjecture and a new assumption are both true,
algebraic immunity of our functions is also optimal when k > 2, u 6= ±2l, 0 ≤
l < k.

Keywords Boolean function · Algebraic immunity · 1-Resilient · Bal-
ancedness · Nonlinearity · Algebraic degree

1 Introduction

To resist known attacks, Boolean functions used in the combiner and filter
models of stream ciphers are generally required to be balanced, have high
algebraic degree as well as high nonlinearity [2]. Correlation immunity, with
respect to correlation attack, was proposed by Siegenthaler[22] in 1985. Xiao
and Massey[25] gave a simple spectral characterization of correlation immune
Boolean functions. Algebraic attack [1, 7, 8] was introduced by Meier et
al.[7, 14]. It is more proper to speak that algebraic attack was improved by
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them, since the idea of algebraic attacks comes from Shannon. Consequently,
a high algebraic immunity[14] for Boolean functions is needed due to the
standard algebraic attacks.

The interaction of these properties is so complex that some are contrary
to others to some extend. So it is very difficult to find functions achieving
all the necessary criteria. There are several constructions of Boolean func-
tions with optimum algebraic immunity, see [3, 4, 5, 11, 16, 17]. A class of
1-resilient Boolean functions with optimal algebraic immunity was obtained
in [4]. However, The nonlinearity of most of the constructed Boolean func-

tions are often not exceeding 2n−1 −
(
n− 1
bn

2
c

)
, which is insufficient. There

are other that are not satisfied for Boolean functions satisfying some prop-
erties. In 2008, Carlet and Feng proposed in [6] an infinite excellent class
of balanced functions with optimum algebraic immunity as well as very high
nonlinearity. It is the first that the constructed Boolean functions have op-
timal nonlinearity among all known constructions of Boolean functions with
optimal algebraic immunity and meet most of the cryptographic necessities.
Very recently, Tu and Deng proposed in [23] two classes of algebraic immu-
nity optimal functions of even variables based on a combinatoric conjecture.
The nonlinearity of these functions is even better than functions in [6]. Some
constructions in [19, 20] is on 1-resilient Boolean functions with optimal alge-
braic immunity. Balanced Boolean functions, which have maximum algebraic
degree, high nonlinearity and are 1-resilient, were proposed by Tu and Deng
in [24] through a modification to Boolean functions in [23]. Based on the
combinatoric conjecture in [23], their functions are at least of suboptimal
algebraic immunity. Tang D., Carlet C. and Tang X. proposed in [21] a class
of Boolean functions, which have high nonlinearity and optimal algebraic
immunity under a new combinatorial conjecture similar to the combinatoric
conjecture in [23]. The authors generalized Boolean functions in [21, 23] and
put forward two classes of more general Boolean functions with optimal al-
gebraic immunity in [13] under the assumption that a general combinatorial
conjecture[9, 21] is true.

In the present paper, we will modify Boolean functions in [13] to a new
class of 2k-variable Boolean functions. In fact, this class of functions are
the generalization of functions in [24] and have optimal algebraic degree,
high nonlinearity, and are 1-resilient. These functions have optimal algebraic
immunity when k > 2 and u = −2l, 0 ≤ l < k. Based on the general
combinatorial conjecture, algebraic immunity of these functions is optimal
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when k > 2 and u = 2l, 0 ≤ l < k. If the general combinatorial conjecture
and a new assumption are true, algebraic immunity of our functions is also
optimal when k > 2, u 6= ±2l, 0 ≤ l < k.

The rest of the paper is organized as follows. In Section 2, we recall
the necessary background knowledge of Boolean functions. In Section 3, we
propose our construction of a new class of Boolean functions. In Section 4,
we discuss the 1-resilience, the algebraic degree and the nonlinearity of the
constructed Boolean functions. In Section 5, we see the algebraic immunity
of these Boolean functions. In Section 6, we give a similar construction of
Boolean functions whose properties are the same as Boolean function defined
in Section 3.

2 Preliminaries

Let n ≥ 2 be a positive integer. A Boolean function on n variables

f = f(x) = f(x1, · · · , xn) : Fn2 −→ F2

where F2 denotes the finite field with two elements. We denote Bn the set of
all n-variable Boolean functions. Any Boolean function has a unique repre-
sentation as a multivariate polynomial over F2, called the algebraic normal
form(ANF), of the special form

f(x1, · · · , xn) =
∑

I⊆{1,2,··· ,n}

aI
∏
i∈I

xi, aI ∈ F2.

The algebraic degree of f 6= 0, deg(f), is defined as

deg(f) = max{ |I| | I ⊆ {1, 2, · · · , n}, aI 6= 0}.

A Boolean function is affine if it has degree at most 1. The set of all affine
functions is denoted by An. The Hamming weight of f , wt(f), is the size
of the support supp(f) = {x ∈ Fn2 | f(x) = 1 }. A Boolean function f ∈ Bn
is called balanced if |zero(f)| = |supp(f)| = 2n−1, where zero(f) = {x ∈
Fn2 | f(x) = 0 }.

We identify the field F2n with the vector space Fn2 . The Boolean functions
over F2n can also be uniquely expressed by a univariate polynomial

f(x) =
2n−1∑
i=0

aix
i,
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where a0, a2n−1 ∈ F2, ai ∈ F2k for 1 ≤ i < 2n−1 such that a2
i = a

2i(mod 2n−1)
.

The binary expansion of i is i = i0 + i12 + · · · + in−12n−1, and we denote
i = (i0, i1, · · · , in−1). The algebraic degree of f equals max{wt(i) | ai 6=
0, 0 ≤ i < 2n}, where wt(i) = i0 + i1 + · · ·+ in−1.

The Hamming distance dH(f, g) between two Boolean functions f and
g is the Hamming weight of their difference f + g, i.e. dH(f, g) = |{x ∈
Fn2 | f(x) + g(x) = 1 }|. The nonlinearity Nf of a Boolean function f ∈ Bn is
defined as

Nf = min
g∈An

(dH(f, g)),

Let x = (x1, x2, · · · , xn) and a = (a1, a2, · · · , an) both belong to Fn2 and
a · x = a1x1 + a2x2 + · · ·+ anxn.

Wf (a) =
∑
x∈Fn

2

(−1)f(x)+a·x

is called the Walsh spectrum of f at a. If Wf (a) = 0 for all a with 1 ≤
wt(a) ≤ m, f is called m-th order correlation immune. This is the famous
Xiao-Massey[25] characterization of correlation immune functions. Moreover,
if f is also balanced, we call f m-th order resilient.

For f : F2n −→ F2, the Walsh spectrum of f at a ∈ F2n is defined by

Wf (a) =
∑
x∈F2n

(−1)f(x)+tr(ax),

where tr is the trace function from F2n onto F2, which is defined as

tr(α) =
n−1∑
i=0

α2i , α ∈ F2n .

For f : F2k × F2k −→ F2, the Walsh spectrum of f at (a, b) ∈ F2k × F2k is
defined by

Wf (a, b) =
∑

(x,y)∈F
2k
×F

2k

(−1)f(x,y)+tr(ax+by).

A Boolean function f is balanced if and only if Wf (0) = 0. The non-
linearity of Boolean functions f can also be expressed via its Walsh spectra
as

Nf = 2n−1 − 1

2
max
a∈Fn

2

|Wf (a)|.
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It is well-known that the nonlinearity satisfies the following inequality

Nf ≤ 2n−1 − 2
n
2
−1.

When n is even, the upper bound can be attained, and these Boolean func-
tions are called bent.

Definition 2.1 [14] The algebraic immunity AIn(f) of an n-variable Boolean
function f ∈ Bn is defined to be the lowest degree of nonzero functions g such
that f · g = 0 or (f + 1) · g = 0.

The algebraic immunity, as well as the nonlinearity and degree, is affine
invariant. Courtois and Meier[7] showed AI(f) ≤ dn

2
e. In this paper, we

refer to the knowledge of BCH code in [15] and finite field in [18].

3 Boolean functions with good cryptographic

properties

In this section, we give our construction. In the subsequent sections, we
will consider these functions’ resiliency, algebraic degree, nonlinearity and
algebraic immunity.

Construction 3.1 Let n = 2k ≥ 4, u ∈ Z∗
2k−1

. Let α be a primitive element

of the finite field F2k . Set ∆s = {αs, αs+1, · · · , α2k−1+s−1} where 0 ≤ s <
2k − 1 is an integer. We define a function f ∈ Bn, whose support supp(f)
consistes of the following four disjoint parts:
• { (x, y) | xy2k−1−u ∈ ∆s \ {αs}}
• { (x, y) | xy2k−1−u = αs, y ∈ F∗

2k
\∆s}

• { (αsxu, 0) | x ∈ ∆s}
• { (0, y) | y ∈ ∆s}

4 1-resiliency, algebraic degree and nonlin-

earity of the constructed function

Theorem 4.1 Let Boolean function f be defined as in Construction 3.1.
Then f is 1-resilient.
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Proof: f is balanced since wt(f) = (2k−1−1)(2k−1)+(2k−1−1)+2k−1+2k−1 =
22k−1, which implies Wf (0, 0) = 0.

For any (a, b) ∈ F2k × F2k \ {(0, 0)},

Wf (a, b) =
∑

(x,y)∈F
2k
×F

2k

(−1)f(x,y)+tr(ax+by)

=
∑

(x,y)∈zero(f)

(−1)tr(ax+by) −
∑

(x,y)∈supp(f)

(−1)tr(ax+by)

= −2
∑

(x,y)∈supp(f)

(−1)tr(ax+by)

= −2
2k−1+s−1∑
i=s+1

∑
y∈F∗

2k

(−1)tr(aα
iyu+by) − 2

∑
y∈F∗

2k
\∆s

(−1)tr(aα
syu+by)

−2
∑
x∈∆s

(−1)tr(aα
sxu) − 2

∑
y∈∆s

(−1)tr(by).

Case 1. a 6= 0, b = 0, then

Wf (a, 0) = −2
2k−1+s−1∑
i=s+1

∑
y∈F∗

2k

(−1)tr(aα
iyu) − 2

∑
y∈F∗

2k
\∆s

(−1)tr(aα
syu)

−2
∑
x∈∆s

(−1)tr(aα
sxu) − 2

∑
y∈∆s

(−1)tr(0)

= −2
2k−1+s−1∑
i=s+1

∑
y∈F∗

2k

(−1)tr(aα
iyu) − 2

∑
y∈F∗

2k

(−1)tr(aα
syu) − 2k

= −2(2k−1 − 1)(−1) + 2− 2k = 0.
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Case 2. b 6= 0, a = 0, then

Wf (0, b) = −2
2k−1+s−1∑
i=s+1

∑
y∈F∗

2k

(−1)tr(by) − 2
∑

y∈F∗
2k
\∆s

(−1)tr(by)

−2
∑
x∈∆s

(−1)tr(0) − 2
∑
y∈∆s

(−1)tr(by)

= −2
2k−1+s−1∑
i=s+1

∑
y∈F∗

2k

(−1)tr(by) − 2
∑
y∈F∗

2k

(−1)tr(by) − 2k

= −2(2k−1 − 1)(−1) + 2− 2k = 0.

From the above discussion, Wf (a, b) = 0 for ab = 0 and (a, b) ∈ F2k × F2k .
Therefore f is 1-resilient.

Theorem 4.2 Let Boolean function f be defined as in Construction 3.1.
Then deg(f) = n− 2.

Proof: Let g, h ∈ Bn be two n-variable Boolean functions defined by supp(g) =
{ (x, y) |xy2k−i−u ∈ ∆s, y ∈ F∗

2k
} and supp(h) = {(x, y)|xy2k−1−u = αs, y ∈

∆s} ∪ {(αsxu, 0)|x ∈ ∆s} ∪ {(0, y)|y ∈ ∆s}. For (x, y) ∈ {(x, y)|F2k × F2k \
{(x, y)|xy2k−1−u = αs, y ∈ F∗

2k
}}, it is obvious that f = g+h. When (x, y) ∈

{(x, y)|xy2k−1−u = αs, y ∈ F∗
2k
}, g(x, y) + h(x, y) = 1 + 1 = 0 = f(x, y)

for xy2k−1−u = αs, y ∈ ∆s and g(x, y) + h(x, y) = 1 + 0 = 1 = f(x, y) for
xy2k−1−u = αs, y ∈ F∗

2k
\∆s. Thus f = g + h for any (x, y) ∈ F2k × F2k . By

Lagrange’s interpolation formula, we have

h(x, y) =
2k−1−1+s∑

i=s

((x+ αsαiu)2k−1 + 1)((y + αi)2k−1 + 1)

+
2k−1−1+s∑

i=s

((x+αsαiu)2k−1+1)(y2k−1+1)+
2k−1−1+s∑

i=s

(x2k−1+1)((y+αi)2k−1+1)

The coefficient of x2k−1y2k−1 vanishes.
The coefficient of x2k−1y2k−2 is

2k−1+s−1∑
i=s

αi +
2k−1+s−1∑

i=s

αi = 0.
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The coefficient of x2k−2y2k−1 is

2k−1+s−1∑
i=s

αsαiu +
2k−1+s−1∑

i=s

αsαiu = 0.

The coefficient of x2k−2y2k−2 is

2k−1+s−1∑
i=s

αsαiuαi =
2k−1+s−1∑

i=s

αsαi(u+1).

Since g has the following representation

g(x, y) =
2k−2∑
i=1

α−is(1 + α−i)2k−1−1(xy2k−1−u)i,

when the exponent of x is 2k − 2 in g, the exponent of y is 2k − 2 if and
only if u = 2k − 2. So for u = 2k − 2 the coefficient of x2k−2y2k−2 in g is
αs(1+α)2k−1−1, which is not zero. As in this case the coefficient of x2k−2y2k−2

in h vanishes, the coefficient of x2k−2y2k−2 in f is not zero.
For u 6= 2k−2, g does not contain x2k−2y2k−2. The coefficient of x2k−2y2k−2

in h is
2k−1+s−1∑

i=s

αsαi(u+1) = αs(u+2)(1 + αu+1)2k−1−1 6= 0.

Thus the coefficient of x2k−2y2k−2 in f is not zero.
From the above discussion, deg(f) = n− 2. �

We know that for 1-resilient Boolean function g, it should be satisfied
that deg(g) ≤ n− 2 form Siegenthaler’s inequality[22]. So Boolean functions
in Construction 3.1 have optimal algebraic degree. Subsequently, we discuss
the nonlinearity of the constructed functions.

Lemma 4.3 [13] Let k ≥ 2 be a positive integer and α be a primitive element
of F2k . Let ∆s = {αs, · · · , α2k−1+s−1} where 0 ≤ s < 2k − 1 is an integer.
Define

Γs =
∑
γ∈∆s

∑
x∈F∗

2k

(−1)tr(γx
u+x),
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where (u, 2k − 1) = 1. Then

|Γs| ≤ 1 +
2k+1

π
ln

4(2k − 1)

π
.

Lemma 4.4 [6, 13] Let α ∈ F∗
2k

be a primitive element and λ ∈ F2k , and
denote

Sα(λ) =
2k−1+s−1∑

i=s

(−1)tr(λα
i).

If λ 6= 0, then

|Sα(λ)| ≤ 1 +
2

k
2

+1

π
ln

4(2k − 1)

π
.

Theorem 4.5 Let f be the n-variable Boolean function defined by Construc-
tion 3.1. Then

Nf ≥ 2n−1 − 2k+1

π
ln

4(2k − 1)

π
− 2k−1 − 2

2
k
2

+1

π
ln

4(2k − 1)

π
− 3

≈ 2n−1 − 2 ln 2

π
(k +

1

2
)2k − 4 ln 2

π
k2

k
2 .

Proof: By Theorem 4.1, for ab = 0, (a, b) ∈ F2k × F2k , Wf (a, b) = 0.

9



For ab 6= 0, a, b ∈ F2k ,

−1

2
Wf (a, b) =

∑
(x,y)∈supp(f)

(−1)tr(ax+by)

=
2k−1−1+s∑
i=s+1

∑
y∈F∗

2k

(−1)tr(aα
iyu+by) +

∑
y∈F∗

2k
\∆s

(−1)tr(aα
syu+by)

+
∑
x∈∆s

(−1)tr(aα
sxu) +

∑
y∈∆s

(−1)tr(by)

=
2k−1−1+s∑

i=s

∑
y∈F∗

2k

(−1)tr(aα
iyu+by) −

∑
y∈∆s

(−1)tr(aα
syu+by)

+
∑
x∈∆s

(−1)tr(aα
sxu) +

∑
y∈∆s

(−1)tr(by)

=
2k−1−1+s

′∑
i=s′

∑
y∈F∗

2k

(−1)tr(α
iyu+y) −

∑
y∈∆s

(−1)tr(aα
syu+by)

+
∑
x∈∆s

(−1)tr(aα
sxu) +

∑
y∈∆s

(−1)tr(by)

= Γs′ −
∑
y∈∆s

(−1)tr(aα
syu+by) + Sαu(aαs) + Sα(b)

where
∑

x∈∆s
(−1)tr(aα

sxu) =
∑

y∈∆s
′ (−1)tr(aα

sy) = Sαu(aαs) since αu also is
primitive. So we have

| − 1

2
Wf (a, b)| =

1

2
|Wf (a, b)| ≤ |Γs′ |+ |

∑
y∈∆s

(−1)tr(aα
syu+by)|+ |Saαs|+ |Sb|.

By Lemma 4.3 and Lemma 4.4

1

2
|Wf (a, b)| ≤ 1 +

2k+1

π
ln

4(2k − 1)

π
+ 2k−1 + 2(1 +

2
k
2

+1

π
ln

4(2k − 1)

π
).
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So the nonlinearity of f is

Nf = 2n−1 − max
(a,b)∈F

2k
×F

2k

1

2
|Wf (a, b)|

≥ 2n−1 − 2k+1

π
ln

4(2k − 1)

π
− 2k−1 − 2

2
k
2

+1

π
ln

4(2k − 1)

π
− 3

≈ 2n−1 − 2 ln 2

π
k2k − 2k−1 − 4 ln 2

π
k2

k
2

= 2n−1 − 2 ln 2

π
(k +

1

2
)2k − 4 ln 2

π
k2

k
2 .

�

5 Algebraic immunity of the constructed Boolean

function

In this section, we consider the algebraic immunity of the constructed func-
tions. The binary expansion of the integer x is x = x0 +x12+ · · ·+xn−12n−1,
x = (x0, x1, · · · , xn−1), wt(x) := wt(x), where wt(x) = x0 + x1 + · · ·+ xn−1.

Definition 5.1 For 0 ≤ a ≤ 2k − 2, −a := 2k − 1 − a, and wt(−a) :=
wt(2k − 1− a) = k − wt(a) .

Conjecture 5.2 [23] Let k ≤ 2 be an integer. For any 0 ≤ t < 2k − 1.
Define

Sk,t,+ = { (a, b) | 0 ≤ a, b < 2k−1, a+b ≡ t(mod2k−1), wt(a)+wt(b) ≤ k−1}.

Then |Sk,t,+| ≤ 2k−1.

Tu and Deng [23] could validate this conjecture when k ≤ 29. In [10, 12],
the authors proved it is true for many cases of t. Tang et al. in [21] presented
a new combinatorial conjecture similar to Conjecture 5.2 as follows

Conjecture 5.3 [21] Let k ≤ 2 be an integer. For any 0 ≤ t < 2k−1, define

Sk,t,− = { (a, b) | 0 ≤ a, b < 2k−1, a−b ≡ t(mod2k−1), wt(a)+wt(b) ≤ k−1}.

Then |Sk,t,−| ≤ 2k−1.

11



This conjecture has been proved in [9]. The authors also referred to the
following conjecture in [21].

Conjecture 5.4 Let k ≤ 2 be a integer and u ∈ Z∗
2k−1

. For any 0 ≤ t <

2k − 1, define

Sk,t,u = { (a, b) | 0 ≤ a, b < 2k−1, ua+b ≡ t(mod2k−1), wt(a)+wt(b) ≤ k−1}.

Then |Sk,t,u| ≤ 2k−1.

For 2 ≤ k ≤ 15, this general conjecture was checked in [21]. This general
conjecture is Conjecture 5.2 when u = 1 and Conjecture 5.3 when u = −1.

Lemma 5.5 [9] Let Sk,t,u be defined as above. Then it satisfies the following
properties

i) |Sk,t,u| = |{ a | 0 ≤ a ≤ 2k − 2, wt(a) + wt(t− ua) ≤ k − 1}|
ii) |Sk,t,u| = |Sk,2t,u|
iii) |Sk,t,u| = |Sk,t,2u|
iv) |Sk,t,u| = |Sk,u−1t,u−1|

Lemma 5.6 Let k ≤ 2 be a integer and u ∈ Z∗
2k−1

. Set ∆k,t,u = { (a, b) | 0 ≤
a, b < 2k−1, ua+b ≡ t(mod2k−1), wt(a)+wt(b) = k} satisfies the following
properties

i) |∆k,t,u| = |{ a | 0 ≤ a ≤ 2k − 2, wt(a) + wt(t− ua) = k}|
ii) |∆k,t,u| = |∆k,2t,u|
iii) |∆k,t,u| = |∆k,t,2u|
iv) |∆k,t,u| = |∆k,u−1t,u−1|
v) |∆k,t,u| = |∆k,−t,u|

Proof: Similar to the proof of Lemma 5.5 in [9], i), ii), iii) and iv) can be
deduced. (a, b) ∈ ∆k,t,u, i.e. 0 ≤ a, b < 2k − 1, ua + b = t, wt(a) + wt(b) = k
if and only if 0 ≤ a, b < 2k − 1, u(−a) + (−b) = −t, wt(−a) + wt(−b) =
k − wt(a) + k − wt(b) = 2k − k = k if and only if (a, b) ∈ ∆k,−t,u. Hence we
have |∆k,t,u| = |∆k,−t,u|. �

Lemma 5.7 With the above notation, Sk,t,u and Sk,−t,u satisfy

|Sk,t,u|+ |Sk,−t,u| = 2k + 1− |∆k,t,u|.
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Proof: It is obvious that |Sk,t,u| = |{ a ∈ Z2k−1 |wt(a) +wt(t−ua) ≤ k− 1}|.
Since wt(0)+wt(t) ≤ k−1 and wt(u−1t)+wt(0) ≤ k−1, we have {0, u−1t} ⊂
{ a | 0 ≤ a ≤ 2k − 2, wt(a) + wt(a− t) ≤ k − 1}.

For a 6= 0, u−1t, we have

wt(a) + wt(t− ua) = wt(a) + wt(−(−t+ ua))

= k − wt(−a) + k − wt(−t+ ua)

= 2k − (wt(−a) + wt(−t+ ua)).

The map ϕ : Z2k−1 −→ Z2k−1, ϕ(a) = −a is a permutation of Z2k−1. Then

|Sk,t,u| = 2 + |{ a | 0 < a ≤ 2k − 2, a 6= u−1t, wt(a) + wt(t− ua) ≤ k − 1}|
= 2 + |{a|0 < a ≤ 2k − 2, a 6= t, wt(−a) + wt(−t+ ua) ≥ k + 1}|
= 2 + |{a|0 ≤ a ≤ 2k − 2, wt(−a) + wt(−t+ ua) ≥ k + 1}|
= 2 + |{a|0 ≤ a ≤ 2k − 2, wt(a) + wt((−t− ua)) ≥ k + 1}|
= 2 + (2k − 1− |{a|0 ≤ a ≤ 2k − 2, wt(a) + wt(−t− ua) ≤ k}|
= 2k + 1− |{a|0 ≤ a ≤ 2k − 2, wt(a) + wt((−t− ua)) ≤ k − 1}|
−|{a|0 ≤ a ≤ 2k − 2, wt(a) + wt(−t− ua) = k}|

= 2k + 1− |Sk,−t,u| − |∆k,−t,u|.

Hence, by Lemma 5.6 v), we have

|Sk,t,u|+ |Sk,−t,u| = 2k + 1− |∆k,t,u|.

�

Assumption 5.8 With the notation of Conjecture 5.4. Set Tk,u = { t | 0 ≤
t ≤ 2k − 2, |Sk,t,u| = 2k−1}. Then |Tk,u| < 2k−1 for k > 2.

Remark 5.9 Assumption 5.8 is the generalization of the assumption in [24].
Subsequently, we will prove this assumption is valid for u = −2l, 0 ≤ l < k.
Moreover, if Conjecture 5.4 is correct, we can show this assumption is true
for u = 2l, 0 ≤ l < k and check this assumption when 2 < k < 20 besides
u = ±2l, 0 ≤ l < k.

Theorem 5.10 Let k > 2 be an integer and n = 2k, u ∈ Z∗
2k−1

. Assume
Conjecture 5.4 and Assumption 5.8 are correct. Then the Boolean function f
defined in Construction 3.1 has optimal algebraic immunity, i.e. AI(f) = k.
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Proof: We need to prove that both f and f + 1 have no annihilators with
algebraic degrees less than k.

Let a nonzero Boolean function h : F2k × F2k −→ F2 satisfy deg(h) < k
and f · h = 0. We will prove h = 0. Boolean function h can be written as

h(x, y) =
2k−1∑
i=0

2k−1∑
j=0

hi,jx
iyj,

where hi,j ∈ F2k . By deg(h) < k, we have hi,j = 0 if wt(i)+wt(j) ≥ k, which
implies h2k−1,i = hj,2k−1 = 0 for all 0 ≤ i, j ≤ 2k − 1. {(γyu, y)|y ∈ F∗

2k
, γ ∈

∆s \ {αs}} ∪ {(0, y)|y ∈ ∆s} ⊂ supp(f). By f · h = 0, then h(γyu, y) = 0 for
all y ∈ F∗

2k
, γ ∈ ∆s \ {αs}.

h(γyu, y) =
2k−2∑
i=0

2k−2∑
j=0

hi,j(γy
u)iyj =

2k−2∑
i=0

2k−2∑
j=0

hi,jγ
iyj+ui

can be written as

h(γyu, y) =
2k−2∑
t=0

ht(γ)yt,

where

ht(γ) =
∑

0≤i,j≤2k−2,ui+j≡t(mod 2k−1)

hi,jγ
i

= h0,t + h
1,t−u(mod 2k−1)

γ + h
2,t−2u(mod 2k−1)

γ2

+ · · ·+ h
2k−2,t−(2k−2)u(mod 2k−1)

γ2k−2

Note that {t−ui(mod 2k−1)|0 ≤ i < 2k−1} = Z2k−1 due to (u, 2k−1) = 1.
For any γ ∈ ∆s \ {αs}, h(γyu, y) = 0 for y ∈ F∗

2k
, it follows that

ht(γ) = 0, 0 ≤ t ≤ 2k − 2, for all γ ∈ ∆s \ {αs}.

From the definition of BCH code, we know that the vector

ht = (h0,t, h1,t−u(mod 2k−1)
, h

2,t−2u(mod 2k−1)
, · · · , h

2k−2,t−(2k−2)u(mod 2k−1)
)

is a codeword in some BCH code of length 2k−1 over F2k , having the elements
in ∆s \ {αs} as zeros and the designed distance 2k−1. If this codeword is
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nonzero, its Hamming weight should be greater than or equal to 2k−1. Set
T1 = {t|0 ≤ t ≤ 2k − 2, |Sk,t,u| < 2k−1} and T2 = {t|0 ≤ t ≤ 2k − 2, |Sk,t,u| =
2k−1}. For t ∈ T1, since Sk,t,u < 2k−1, we have ht = 0.

Since h(0, y) = 0 for y ∈ ∆s, i.e.

h(0, y) =
2k−2∑
j=0

h0,jy
j = 0, for y ∈ ∆s

From the definition of BCH code, we know that the vector

(h0,0, h0,1, h0,2, · · · , h0,2k−2)

is a codeword in some BCH code of length 2k − 1 over F2k , having the
elements in ∆s as zeros and the designed distance 2k−1 + 1. Since t ∈ T1,
ht = 0, h0,t = 0. By Corollary 5.12, |T2| < 2k−1, so |T1| ≥ 2k−1, i.e. the
number of nonzero in (h0,0, h0,1, h0,2, · · · , h0,2k−2) is at most 2k−1 − 1. This
contradicts, So h0,0 = h0,1 = h0,2 = · · · = h0,2k−2 = 0.

For t ∈ T2, the Hamming weight of the vector ht at least 2k. However, by
Conjecture 5.4 and h0,t = 0, this vector’ Hamming weight at most 2k−1 − 1.
This contradicts, hence ht = 0

Finally, we have ht = 0 for all 0 ≤ t ≤ 2k − 2.
Since

{(γyu, y)|y ∈ F∗2k , γ ∈ F∗2k \∆s} ∪ {(0, y)|y ∈ F∗2k \∆s} ⊂ supp(f + 1),

a similar argument is applicable to f + 1, it can be proved that f + 1 has no
annihilator of degree less than k.

Therefore, we have AI(f) = k. �

5.1 When u = 2l

Lemma 5.11 Let k > 2 be an integer. Assume that Conjecture 5.2 is true.
Set Tk,+ = {t|0 ≤ t ≤ 2k − 2, |Sk,t,+| = 2k−1}. Then |Tk,+| < 2k−1.

Proof: It is obvious that |∆k,t,+| = |∆k,2t,+| since (a, b) ∈ ∆k,t,+ if and only
if (2a, 2b) ∈ ∆k,2t,+. Since |∆k,t,+| = |∆k,2t,+|, without loss of generality we
suppose that t has the following form

t = 11 · · · 1︸ ︷︷ ︸
n1

00 · · · 0︸ ︷︷ ︸
n2

11 · · · 1︸ ︷︷ ︸
n3

00 · · · 0︸ ︷︷ ︸
n4

· · · 11 · · · 1︸ ︷︷ ︸
n2r−1

00 · · · 0︸ ︷︷ ︸
n2r
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We construct A as follows:

A = 0 · · · 01︸ ︷︷ ︸
n1

00 · · · 0︸ ︷︷ ︸
n2

0 · · · 01︸ ︷︷ ︸
n3

00 · · · 0︸ ︷︷ ︸
n4

· · · 0 · · · 01︸ ︷︷ ︸
n2r−1

00 · · · 0︸ ︷︷ ︸
n2r

It is obtained:

t+ A = 00 · · · 0︸ ︷︷ ︸
n1

0 · · · 01︸ ︷︷ ︸
n2

00 · · · 0︸ ︷︷ ︸
n3

0 · · · 01︸ ︷︷ ︸
n4

· · · 00 · · · 0︸ ︷︷ ︸
n2r−1

0 · · · 01︸ ︷︷ ︸
n2r

Consequently, wt(A) = wt(t+A). By wt(A) + wt(2k − 1−A) = k, we have

(t+ A) + (2k − 1− A) ≡ t(mod2k − 1) andwt(t+ A) + wt(2k − 1− A) = k

That is (t + A, 2k − 1 − A) ∈ ∆k,t,+. If t + A 6= 2k − 1 − A, then it also is
true that (2k − 1− A, t+ A) ∈ ∆k,t,+.

If t + A = 2k − 1 − A, i.e. t ≡ −2A, then (2t + 2A, 2(2k − 1) − 2A) ≡
(t, t) ∈ ∆k,2t,+, which implies ( t

2
, t

2
) ∈ ∆k,t,+. In this case, t has the following

form:
t = 101010 · · · 1010

We construct (a, b) as
a = 0101 · · · 01︸ ︷︷ ︸

k−6

000111

b = 0101 · · · 01︸ ︷︷ ︸
k−6

100011

Obviously, a+ b ≡ t, wt(a) + wt(b) = k, so (a, b) 6= ( t
2
, t

2
), (a, b) ∈ ∆k,t,+

Therefore |∆k,t,+| ≥ 2 for 1 ≤ t ≤ 2k − 2, k > 2, k 6= 4
By Lemma 5.7 Sk,t,+ and Sk,−t,+ satisfies the following equation

|Sk,t,+|+ |Sk,−t,+| = 2k + 1− |∆k,t,+|,

So we have, for 1 ≤ t ≤ 2k − 2, k > 2, k 6= 4

|Sk,t,+|+ |Sk,−t,+| ≤ 2k − 1,

If Conjecture 5.2 is correct, then either |Sk,t,+| < 2k−1 or |Sk,−t,+| < 2k−1 is
true. It is trivial that |Sk,0,+| < 2k−1. So |Tk,+| = |{t|0 ≤ t ≤ 2k−2, |Sk,t,+| =
2k−1}| ≤ 2k−1 − 1 < 2k−1 for k > 2, k 6= 4.

When k = 4, through our computation, it is true |{ t | 0 ≤ t ≤ 2k −
2, |Sk,t,+| = 2k−1}| < 2k−1.

At last, |Tk,+| < 2k−1 for any k > 2 if Conjecture 5.2 is true.
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Corollary 5.12 Let k > 2 be an integer and u = 2l, 0 ≤ l < k, Set Tk,u =
{t|0 ≤ t ≤ 2k − 2, |Sk,t,u| = 2k−1}. Then |Tk,u| < 2k−1.

Proof: Since u = 2l, 0 ≤ l < k, (a, b) ∈ Sk,t,+ if and only if (u−1a, b) ∈ Sk,t,u.
We have |Sk,t,+| = |Sk,t,u|. Hence |Tk,u| = |{t|0 ≤ t ≤ 2k − 2, |Sk,t,u| =
2k−1}| = |{t|0 ≤ t ≤ 2k − 2, |Sk,t,+| = 2k−1| = |Tk,+| < 2k−1. �

Theorem 5.13 Let k > 2 be an integer and n = 2k, u = 2l, 0 ≤ l < k.
Assume Conjecture 5.4 is correct. Then the Boolean function f defined in
Construction 3.1 has optimal algebraic immunity, i.e. AI(f) = k.

Proof: If Conjecture 5.4 is correct, by Theorem 5.10 and Corollary 5.12, it
can be obtained immediately. �

5.2 When u = −2l

Lemma 5.14 For k > 2, 0 < t ≤ 2k − 2, let ∆k,t,− = {(a, b)|0 ≤ a, b ≤
2k − 2, a− b ≡ t(mod2k − 1), wt(a) + wt(b) = k}. Then |∆k,t,−| ≥ 2

Proof: Since (a, b) ∈ ∆k,t,− if and only if (2a, 2b) ∈ ∆k,2t,−, |∆k,t,−| = |∆k,2t,−|.
If t 6= 0, without loss of generality we suppose that t has the following form:

t = 11 · · · 1︸ ︷︷ ︸
n1

00 · · · 0︸ ︷︷ ︸
n2

11 · · · 1︸ ︷︷ ︸
n3

00 · · · 0︸ ︷︷ ︸
n4

· · · 11 · · · 1︸ ︷︷ ︸
n2r−1

00 · · · 0︸ ︷︷ ︸
n2r

It is obvious that (t,−t) ∈ ∆k,2t,−, −t have the following form respectively

−t = 00 · · · 0︸ ︷︷ ︸
n1

11 · · · 1︸ ︷︷ ︸
n2

00 · · · 0︸ ︷︷ ︸
n3

11 · · · 1︸ ︷︷ ︸
n4

· · · 00 · · · 0︸ ︷︷ ︸
n2r−1

11 · · · 1︸ ︷︷ ︸
n2r

If ni ≥ 2 for some 1 ≤ i ≤ 2r, without loss of generality we suppose n1 ≥ 2,
take

a = 010 · · · 0︸ ︷︷ ︸
n1

00 · · · 0︸ ︷︷ ︸
n2

00 · · · 0︸ ︷︷ ︸
n3

00 · · · 0︸ ︷︷ ︸
n4

· · · 00 · · · 0︸ ︷︷ ︸
n2r−1

00 · · · 0︸ ︷︷ ︸
n2r

then

t+ a =

n1︷ ︸︸ ︷
001 · · · 1

n2︷ ︸︸ ︷
10 · · · 0

n3︷ ︸︸ ︷
11 · · · 1

n4︷ ︸︸ ︷
00 · · · 0 · · ·

n2r−1︷ ︸︸ ︷
11 · · · 1

n2r︷ ︸︸ ︷
00 · · · 01

−t+ a = 010 · · · 0︸ ︷︷ ︸
n1

11 · · · 1︸ ︷︷ ︸
n2

00 · · · 0︸ ︷︷ ︸
n3

11 · · · 1︸ ︷︷ ︸
n4

· · · 00 · · · 0︸ ︷︷ ︸
n2r−1

11 · · · 11︸ ︷︷ ︸
n2r

17



So we have (t+ a)− (−t+ a) = 2t, wt(t+ a) +wt(−t+ a) = k, that is to
say (t+ a,−t+ a) ∈ ∆k,2t,−.

If ni = 1 for all 1 ≤ i ≤ 2r,

t = 1010

k−4︷ ︸︸ ︷
1010 · · · 10

−t = 0101 0101 · · · 01︸ ︷︷ ︸
k−4

We take
a = 0011 00 · · · 0︸ ︷︷ ︸

k−4

then

t+ a = 1101

k−4︷ ︸︸ ︷
1010 · · · 10

−t+ a = 1000 0101 · · · 01︸ ︷︷ ︸
k−4

It is attained that (t+ a,−t+ a) 6= (t,−t), (t+ a,−t+ a) ∈ ∆k,t,−.
Therefore |∆k,t,−| ≥ 2 for k > 2, 0 < t ≤ 2k − 2. �

Proposition 5.15 Let k > 2 be an integer. For any 0 < t ≤ 2k − 2, define

Sk,t,− = {(a, b)|0 ≤ a, b < 2k−1, a−b ≡ t(mod2k−1), wt(a)+wt(b) ≤ k−1}.

Then |Sk,t,−| < 2k−1.

Proof: By Lemma 5.7, Sk,t,− and Sk,−t,− satisfy

|Sk,t,−|+ |Sk,−t,−| = 2k + 1− |∆k,t,−|.

|Sk,t,−| = |Sk,−t,−| since Lemma 5.5 iv), we have

2|Sk,t,−| = 2k + 1− |∆k,t,−|.

Since |∆k,t,−| ≥ 2, for k > 2, 0 < t ≤ 2k − 2 by Lemma 5.14, we can get

|Sk,t,−| < 2k−1, for k > 2, 0 < t ≤ 2k − 2

�
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Corollary 5.16 Let u = −2l, 0 ≤ l < k. Then |Sk,t,u| < 2k−1 for k > 2, 0 <
t ≤ 2k − 2.

Proof: By Lemma 5.5 iii), we can get |Sk,t,−| = |Sk,t,−2l |, 0 ≤ l < k. Since
Proposition 5.15, the conclusion can be obtained immediately.

Theorem 5.17 Let k > 2 be an integer, n = 2k, u = −2l, 0 ≤ l < k. Then
the Boolean function f defined in Construction 3.1 has optimal algebraic
immunity, i.e. AI(f) = k.

Proof: By Corollary 5.16, it is obvious that Tk,u < 2k−1. It can be obtained
by Theorem 5.10 and Corollary 5.12. �

6 Conclusion

In this paper, a class of 2k-variable Boolean functions are constructed, and
this class of functions have optimal algebraic degree, high nonlinearity, and
are 1-resilient. Algebraic immunity of our functions is optimal when k > 2
and u = −2l, 0 ≤ l < k. Based on Conjecture 5.4[9, 21], algebraic immunity
of our functions is optimal when k > 2 and u = 2l, 0 ≤ l < k. What’s more,
if Conjecture 5.4[9, 21] and Assumption 5.8 are true, algebraic immunity of
our functions is also optimal when k > 2, u 6= ±2l, 0 ≤ l < k.

Similar to Construction 3.1, we propose

Construction 6.1 Let n = 2k ≥ 4, u ∈ Z∗
2k−1

. Let α be a primitive element

of the finite field F2k . Set ∆s = {αs, αs+1, · · · , α2k−1+s−1} where 0 ≤ s <
2k − 1 is an integer. Then we define a function f ∈ Bn, whose support
supp(f) consistes of the following four disjoint parts:
• { (x, y) | xy2k−1−u ∈ ∆s \ {α2k−1−1+s}}
• { (x, y) | xy2k−1−u = α2k−1−1+s, y ∈ F∗

2k
\∆s}

• { (α2k−1−1+sxu, 0) | x ∈ ∆s}
• { (0, y) | y ∈ ∆s}

All conclusions in this paper are true for Boolean functions defined by
Construction 6.1.
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