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Abstract 

CubeHash is one of the round 2 candidates of the public SHA-3 
competition hosted by NIST. It was designed by Bernstein. In 
this paper we find a new distinguisher to distinguish CubeHash 
compression function from a random function. This 
distinguisher principle is based on rotational analysis that 
formally introduced by Khovratovich and Nikolic. In order to 
use this technique, we need to compute the probability that four 
swap functions in CubeHash round function preserve the 
rotational property for any input pair. We compute these 
probabilities and find a new distinguisher that distinguish 
CubeHash-8/b and CubeHash-15/b compression function from a 
random function with probability greater than 538.52−  and 1009.72− , 
respectively. Until we know this is the first distinguisher for 
CubeHash compression function with more than 14 rounds. 
Keywords: SHA-3 candidate, CubeHash, rotational analysis, 
distinguisher. 

1. Introduction 

Hash functions have a very important role in modern 
cryptography that used in many areas as digital signatures 
and various forms of authentication. A hash function is a 
transformation which maps a variable-length input to a 
fixed-size output, called message digest. After 
developments in the field of hash function cryptanalysis 
[13, 14, 15] along with new results targeted against 
commonly used hash functions has urged National 
Institute of Standards and Technology to announce a 
competition for the development of  a new hash standard, 
SHA-3 [10]. 
The SHA-3 competition attracted a lot of attention in the 
cryptographic community. A total number of 64 hash 
function proposals was submitted, 51 of them advanced to 
the first round, 14 of them to the second round, and 5 of 
them advanced to the third, final round. One of the main 
requirements was the evaluation of the security of the 

submitted primitive, i.e. providing a detailed analysis on 
the resistance of the function against various attacks. 
Being one of the most powerful forms of attacks, the 
differential [4] and linear [9] analysis got most of the 
submitter's focus, while less attention was put on the other 
attacks.  
Rotational analysis is a relatively new type of attack. 
Although this technique was mentioned and applied in 
previous works, such as [6], but it formally introduced by 
Khovratovich and Nikolic in [7]. It is also used for 
cryptanalysis of modified versions of BMW [5] and SIMD 
[8] hash functions in [11]. Unlike differential analysis, 
where for a pair (x,y), the attacker follows the propagation 
of the difference x y⊕  through some transformation, in 
rotational analysis the adversary studies the propagation 
of the rotational pair (x, x r)<<<  through the 
transformation. 
Khovratovich and Nikolic in [7] analyze the primitives 
composed of only three operations: addition, rotation, 
XOR (ARX). For these primitives, they prove that the 
probability that a rotational pair of inputs will produce a 
rotational pair of outputs depends only on the number of 
additions. 
 
Previous Results on CubeHash: We refer to part 2. B. 5 
of [2] and CubeHash profile in the SHA-3 Zoo [12] for a 
complete survey of cryptanalytic results on CubeHash. 
The currently best distinguisher attacks on CubeHash-r/b 
compression function for r=11 and r=14 were presented 
by Ashur and Dunkelman in [1]. They present a 
distinguisher of complexity 4702 for Cubehash-11/b 
compression function and another distinguisher of 
complexity 8122  for Cubehash-14/b compression function. 
In this work they use linear cryptanalysis technique [9] 
and linear approximations of CubeHash. Until we know 



     

 

no distinguisher for more than 14 rounds was presented 
so far. 
 
Contribution of this Paper. The goal of this work is to 
extend the application of rotational analysis to CubeHash 
[2], one of the second round of the SHA-3 competition 
candidates that have four swap transformations other than 
additions, rotations, and XORs. In particular, we find the 
rotational probabilities of the four swap transformations 
in the CubeHash round function. This allows us that for 
several round parameters r and message block sizes b we 
present a new distinguisher for CubeHash-r/b 
compression function. Specially, we find a distinguisher 
for CubeHash-8/b and CubeHash-15/b compression 
functions with probability greater than 538.52−  and 1009.72− , 
respectively. In CubeHash-r/b, b {1,2,3,...,128}∈  and if in 
CubeHash-8/b compression function we set b=1, indeed 
we distinguish compression function of CubeHash-8/1, 
the first version of CubeHash that suggested to SHA-3 
competition, from a random function. Also if in 
CubeHash-15/b we set b=32, we distinguish a reduced 
version of compression function of CubeHash-16/32 [3], 
only with one round less, from a random function. 
CubeHash-16/32 is a tweaked version of CubeHash-8/1 
which is about 16 times faster than it and after 
presentation of cryptanalysis results on CubeHash-8/1 
announced the official proposal for all digest lengths 
h=224, 256, 384 or 512.  
Until we know this is the first distinguisher for CubeHash 
compression function with greater than 14 rounds. 
 
Organization: In section 2 we review the concept of a 
distinguisher that use rotational analysis technique 
presented in [7]. In Section 3 we describe the hash 
function CubeHash and define its compression function. 
Section 4 specifies the probabilities that four swap 
functions in CubeHash round function preserve the 
rotational property for any input pair. In Section 5 we 
analyze CubeHash-8/b and CubeHash-15/b compression 
functions and present a new distinguisher for them. We 
conclude in Section 6 finally. 

2. Distinguishers with Rotational Analysis 

A rotational distinguisher explores the idea that some 
transforms on rotated inputs produce rotated outputs. Let 
(X,X r)<<< be a pair of input words, it called a rotational 
pair, for some transform F, where r<<<  is a cyclic 
rotation to the left by r bits. If for an arbitrary input X, 
F(X r) F(X) r<<< = <<<  then it said that F preserves the 
rotational property, in other words, when the input 

composes a rotational pair, the output also composes a 
rotational pair. The input and the output of a transform 
can be a single word or a vector of words, i.e. 

1 nX (X ,...,X )=% . Then, a rotational input/output pair is 
defined as (X, Y)% % , where i iY X r,i 1,..., n= <<< = . A 
system (X)Φ %  composed of transforms 1 kF ,...,F  preserves 
the rotational property, if on rotational input pair, 
produces a rotational output pair. 
It is better that we attend two important issues. First, 
unlike differential analysis where usually out of the whole 
input pair only a few words have differences, in rotational 
analysis all the input pairs of words have to compose 
rotational pairs. Second, there are a few transforms that 
preserve the rotational property for any input pair. Usually, 
for an arbitrary X, F(X r) F(X) r<<< = <<<  only with 
some probability Fp , further called a rotational probability 
of F, that depends on the rotational amount r. If we 
assume that the outputs of the transforms are independent, 
then a system Φ  composed of transforms 1 kF ,...,F  
preserves the rotational property with a probability 

1 2 kF F Fp p .p .....pΦ = [11]. Hence, in order to find the 
probability that a system preserves the rotational property, 
one only has to find the probabilities that each instance of 
the underlying transforms preserves this property. For a 
random system with n-bit output, the probability that a 
rotational input will produce rotational output is n2− . 
Therefore, if a system Φ  with n-bit output has a 
rotational probability np 2−

Φ > , then this system can be 
distinguished from a random system [11]. 

2.1 Rotational Analysis of ARX Constructions 

A thorough rotational analysis of ARX systems was given 
in the work of Khovratovich and Nikolic [7]. These 
systems are composed only of three transforms: addition, 
rotation and XOR. For each of them, the probabilities they 
preserve the rotational property were given by: 
 
Lemma 1 (Addition): For n-bit words x, y, and a positive 
integer r 

r n r n1Pr[(x y) r x r y r] (1 2 2 2 ).
4

− − −+ <<< = <<< + <<< = + + +

 
Lemma 2 (Rotation): For n-bit word x and positive 
integers r, r′  

Pr[(x r) r (x r ) r] 1′ ′<<< <<< = <<< <<< =  
 

Lemma 3 (XOR): For n-bit words x, y, and a positive 
integer r 

Pr[(x y) r x r y r] 1⊕ <<< = <<< ⊕ <<< =  



     

 

 
Hence, rotations and XORs preserve the rotational 
property with probability 1, while the probability of 
addition depends on the size of the words and the rotation 
amount. Further in our analysis, the rotation amount will 
be fixed to 1.  
The proofs of lemma 1 and 2 are simple, and the proof of 
lemma 3 can be finding in [7].  
In [11], the authors find the probabilities that subtractions, 
shifts and bitwise Boolean functions preserve the 
rotational property, too, and in this paper we find this 
probability for four swap functions used in CubeHash. 

3. CubeHash Description 

CubeHash [2] is Bernstein’s proposal for the NIST SHA-3 
competition [10]. CubeHash works with 32-bit words 
(n=32) and uses three simple operations of XOR, rotation 
and modular addition and four swap functions showed by 

1 2 3SWAP ,SWAP ,SWAP , and 4SWAP . It has an internal 
state 0 1 31S (S ,S ,...,S )=  of 32 words and its variants, 
denoted by CubeHash-r/b, are identified by two 
parameters r {1,2,...,128}∈  and b {1,2,...,128}∈  which at 
each iteration process b bytes in r rounds. Selecting 
different values of r and b, allow the selection of a range 
of security/performance tradeoffs. The internal state S is 
set to a specified value which depends on the digest length 
(limited to 512 bits) and parameters r and b. The message 
to be hashed is appropriately padded and divided into b-
byte message blocks. At each iteration one message block 
is processed as follows. The 32-word internal state S is 
considered as a 128-byte value and the message block is 
XORed into the first b bytes of the internal state. Then, 
the following fixed permutation is applied r times to the 
internal state to prepare it for the next iteration. This 
permutation called CubeHash round function and denoted 
by ROUND in this paper. 
1. Add iS into i 16S ⊕ , for 0 i 15≤ ≤ . 
2. Rotate iS to the left by seven bits, for 0 i 15≤ ≤ . 
3. Swap iS and i 8S ⊕ , for 0 i 7≤ ≤  (We call this swap 
function 1SWAP ). 
4. XOR i 16S ⊕ into iS , for 0 i 15≤ ≤ . 

5. Swap iS and i 2S ⊕ for 
i {16,17, 20, 21, 24, 25,28, 29}∈  

(We call this swap function 2SWAP ). 
6. Add iS into i 16S ⊕ , for 0 i 15≤ ≤ . 
7. Rotate iS  to the left by eleven bits, for 0 i 15≤ ≤ . 

8. Swap iS  and i 4S ⊕ , for i {0,1,2,3,8,9,10,11}∈ (We call 
this swap function 3SWAP ). 
9. XOR i 16S ⊕ into iS , for 0 i 15≤ ≤ . 
10. Swap iS and i 1S ⊕ , for  

i {16,18,20,22,24,26,28,30}∈  
(We call this swap function 4SWAP ). 
Having processed all message blocks, a fixed 
transformation is applied to the final internal state to 
extract the hash value as follows. First, the last state word 

31S is XORed with integer 1 and then the above 
permutation is applied 10 × r times to the resulting 
internal state. Finally, the internal state is truncated to 
produce the message digest of desired hash length. Refer 
to [2] for the full specification. 

3.1 CubeHash Compression Function 

Compression function of CubeHash-r/b that we denoted 
by COMP-r, gives a state of 1024 bits (128-byte) as input 
and then applies CubeHash round function, ROUND, r 
times to this state and output a new state of 1024 bits 
(128-byte).  
 
COMP-8 and COMP-11: COMP-8 is the compression 
function of CubeHash-8/b and COMP-15 is the 
compression function of CubeHash-15/b. 

4. Rotational Analysis of CubeHash Swap 
Functions 

As mentioned, in order to extend the application of 
rotational analysis to CubeHash compression function we 
have to find the probabilities that four swap functions 
( 1 2 3SWAP ,SWAP ,SWAP  and 4SWAP ) in CubeHash 
round function (ROUND) preserve the rotational property 
for any input pair. In this section we compute the 
probabilities in lemma 4 to lemma 7. 
 
Lemma 4 ( 1SWAP ): Suppose 1SWAP  is the swap 
function used in step 3 of CubeHash round function. We 
choose a random X, rotate it to the left by 1 bit and 
produce a pair of rotational input, (X,X 1)<<< . For this 
pair, 1SWAP  preserves the rotational property with 
probability 1. In other words: 
 

1 1Pr[SWAP (X 1) SWAP (X) 1] 1<<< = <<< = . 
 

Lemma 5 ( 2SWAP ): Suppose 2SWAP  is the swap 
function used in step 5 of CubeHash round function. We 



     

 

choose a random X, rotate it to the left by 1 bit and 
produce a pair of rotational input, (X,X 1)<<< . For this 
pair, 2SWAP  preserves the rotational property with 
probability of 62− . In other words: 
 

6
2 2Pr[SWAP (X 1) SWAP (X) 1] 2−<<< = <<< = . 

 
Lemma 6 ( 3SWAP ): Suppose 3SWAP  is the swap 
function used in step 8 of CubeHash round function. We 
choose a random X, rotate it to the left by 1 bit and 
produce a pair of rotational input, (X,X 1)<<< . For this 
pair, 3SWAP  preserves the rotational property with 
probability of 22− . In other words: 
 

2
3 3Pr[SWAP (X 1) SWAP (X) 1] 2−<<< = <<< = . 

 
Lemma 7 ( 4SWAP ): Suppose 4SWAP  is the swap 
function used in step 10 of CubeHash round function. We 
choose a random X, rotate it to the left by 1 bit and 
produce a pair of rotational input, (X, X 1)<<< . For this 
pair, 4SWAP  preserves the rotational property with 
probability of 142− . In other words: 
 

14
4 4Pr[SWAP (X 1) SWAP (X) 1] 2−<<< = <<< = . 

 
Proof: The above lemmas will be proved in the Appendix 
A. 

5. Rotational analysis of CubeHash-8/b and 
CubeHash-15/b compression functions 

In this section we applied the rotational analysis 
technique to CubeHash and find a new distinguisher for 
CubeHash-8/b compression function (COMP-8) and 
CubeHash-15/b compression function (COMP-15) that 
distinguish these functions from a random function. For 
this purpose we use the results of lemma 1 to lemma 7.  
Now, we consider the COMP-8 function that using three 
simple operations of modular addition, rotation and XOR, 
and four swap functions of 1 2 3SWAP ,SWAP ,SWAP , and 

4SWAP . Suppose we want to find the probability that 
COMP-8 preserves the rotational property. In other words 
if (X, X 1)<<< be a pair of rotational input, we have to 
compute the probability that (Comp-8(X), Comp-
8(X)<<<1) is a pair of rotational output (the probability 
that Comp-8(X<<<1) = Comp-8(X)<<<1). 
By lemma 2 and lemma 3, rotations and XORs preserve 
the rotational property with probability 1. So the desired 

probability is depending on the additions and swap 
functions. In the rotational analysis of COMP-8 if we 
consider left rotation amount fixed to 1, by lemma 1 we 
can find the probability that one addition (on the 32-bit 
words) in COMP-8 preserve the rotational property. This 
probability is: 
 

1 32 1 32 1.416

Pr[(x y) 1 x 1 y 1]
1 (1 2 2 2 ) 2
4

− − − −

+ <<< = <<< + <<<

= + + + >
 

 
Each round of COMP-8 has 32 additions on the 32-bit 
words. Hence the probability that in the one round of 
COMP-8 the rotational property is preserved by all 
addition ( ADDPr ) will be: 
 

32( 1.416) 45.312
ADDPr 2 2− −= >  

 
On the other hand in the each round of COMP-8 four 
swap functions ( 1 2 3SWAP ,SWAP ,SWAP , and 4SWAP ) is 
used too. For these functions we compute the probabilities 
that they preserve the rotational property. These 
probabilities are respectively: 
 

1

2

3

4

SWAP

6
SWAP

2
SWAP

14
SWAP

Pr 1,

Pr 2 ,

Pr 2 ,

Pr 2 .

−

−

−

=

=

=

=

 

 
According to section 2 the probability ( ROUNDPr ) that one 
round of COMP-8 using 32 additions on the 32-bit words, 
XORs, rotations, and swap functions 1 2SWAP ,SWAP , 

3SWAP , and 4SWAP preserve the rotational property is: 
 

1 2

3 4

32
ROUND ADD SWAP SWAP

67.312
SWAP SWAP

Pr (Pr ) (Pr ) (Pr )

(Pr ) (Pr ) 2 .−

= × ×

× × >
 

 
Finally the COMP-8 function has 8 rounds. Hence the 
probability ( COMP 8Pr − ) that this function preserve the 
rotational property for a pair of rotational input such as 
(X,X 1)<<<  and produce a pair of rotational output such 
as (COMP 8(X),COMP 8(X) 1)− − <<<   will be: 
 

8 538.496 1024
COMP 8 ROUNDPr (Pr ) 2 2− −

− = > >>>  
 



     

 

The COMP 8Pr −  is very greater than 10242−  (the probability 
that we can distinguish the CubeHash compression 
function when it is indistinguishable from a random 
function) and allows distinguishing 8-round CubeHash 
compression function using about 5392 call of it. The 
distinguisher of COMP-8 based on rotational analysis 
technique is working this way: 
1- He chooses a random input such as X, computes 
X 1<<< and produces a pair of the rotational input, 
(X,X 1)<<< . 
2- He computes COMP-8 (X), COMP-8( X 1<<< ), and 
COMP-8( X)<<<1 . 
3- He verifies whether 

COMP-8( X<<<1)=COMP-8( X)<<<1  
or not. 
4- If COMP-8( X<<<1)=COMP-8( X)<<<1 , the 
distinguisher can produce a pair of the rotational output, 
(COMP 8(X),COMP 8(X) 1)− − <<< , and distinguishes 
the COMP-8, otherwise go to 1. 
 
COMP-15 Distinguisher: Similar to whatever we said 
about distinguishing of COMP-8, we can construct a 
distinguisher based on rotational analysis for 15-round 
CubeHash compression function (COMP-15) and 
distinguish it from a random function. 
Note that the only difference between COMP-8 and 
COMP-15 is the number of their rounds. COMP-8 using 8 
times of the CubeHash round function (ROUND) while 
COMP-15 using 15 times of it. Hence the probability 
( COMP 15Pr − ) that this function preserve the rotational 
property for a pair of rotational input such as 
(X,X 1)<<<  and produce a pair of rotational output such 
as (COMP 15(X),COMP 15(X) 1)− − <<<   will be: 
 

15 1009.68 1024
COMP 15 ROUNDPr (Pr ) 2 2− −

− = > >>  
 
The COMP 15Pr −  is greater than 10242−  (the probability that 
we can distinguish the CubeHash compression function 
when it is indistinguishable from a random function) and 
allows distinguishing 15-round CubeHash compression 
function using about 10102 call of it. The distinguisher of 
COMP-15 based on rotational analysis technique, too and 
is working as the COMP-8 distinguisher.  

6. Conclusion 

In this paper we find a new distinguisher based on 
rotational analysis technique for CubeHash compression 
function and distinguish the compression functions of 

CubeHash-8/b and CubeHash-15/b with probability 
greater than 538.52−  and 1009.72− , respectively. If in the 
CubeHash-8/b compression function we set b=1, indeed 
we distinguish the compression function of CubeHash-8/1, 
the first version of CubeHash that suggested to SHA-3 
competition, from a random function. Also if we set b=32 
in CubeHash-15/b, then we distinguish a reduced version 
of the compression function of CubeHash-16/32 (a 
tweaked version of CubeHash-8/1) only with one round 
less, from a random function. The distinguisher of 
CubeHash-15/b compression function presented in this 
paper is the first distinguisher that distinguish the 
CubeHash compression function with more than 14 
rounds from a random function. 
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Appendix 

A. Proofs of Lemma 4 to Lemma 7 
 
Proof of lemma 4 ( 1SWAP ): We would like to prove that 
for 1SWAP  function by any input such as X: 
 

1 1Pr[SWAP (X 1) SWAP (X) 1] 1.<<< = <<< =  
 

For the proof suppose that 0 1 31S (S ,S ,...,S )= be the state 
of CubeHash round function. By attention to definition of 

1SWAP  in the step 3 of the round function we have 
 

1

i i 8

SWAP :
Swap S  and S , for 0  i  7.⊕ ≤ ≤

 

 
In fact the 1SWAP  function operates on the left half of the 
S. Consider this half as 
 

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

X S S S S S S S S S
S S S S S S S

= P P P P P P P P
P P P P P P P

 

 
where the means of the notation P  is concatenating. 
Using the definition of X and 1SWAP  function we have 
 

1 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

SWAP (X) S S S S S S S S
S S S S S S S S .

= P P P P P P P
P P P P P P P P

 

 
Without loss of generality and for simplicity consider 
 

1 0 1 2 3 4 5 6 7

2 8 9 10 11 12 13 14 15

X S S S S S S S S ,
X S S S S S S S S ,

=
=

P P P P P P P
P P P P P P P

 

 
where 1X  and 2X  have 512-bit length. Consider the bit 
representation of them as 
 

0 1 2 254 255
1 1 1 1 1 1

0 1 2 254 255
2 2 2 2 2 2

X x x x .....x x ,
X x x x .....x x .

=

=
 

 
By rewriting the input of 1SWAP  function as 1 2X X X= P , 
we have 1 2 1SWAP (X) X X= P . Now we show that 
 

1 1Pr[SWAP (X 1) SWAP (X) 1] 1.<<< = <<< =  
 

In order to show it we compute  
 

1 2 254 255 0 1 2 254 255 0
1 1 1 1 2 2 2 2 2 1X 1 x x .....x x x x x .....x x x ,<<< = P  

 
1 2 254 255 0

1 2 2 2 2 1

1 2 254 255 0
1 1 1 1 2

SWAP (X 1) x x .....x x x
x x .....x x x ,

<<< =

P
 (4.1)  

 
and 
 

1 2 254 255 0
1 2 2 2 2 1

1 2 254 255 0
1 1 1 1 2

SWAP (X) 1 x x .....x x x
x x .....x x x

<<< =

P
 (4.2)  

 
By attention to (4.1) and (4.2) we see that 

1 1SWAP (X 1) SWAP (X) 1<<< = <<<  and for this equality 
no condition is need. Consequently, we showed that   
 

1 1Pr[SWAP (X 1) SWAP (X) 1] 1.<<< = <<< =  
 

■ 
 
Proof of lemma 5 ( 2SWAP ): We would like to prove that 
for 2SWAP  function by any input such as X: 
 

6
2 2Pr[SWAP (X 1) SWAP (X) 1] 2 .−<<< = <<< =  

 
For the proof suppose that 0 1 31S (S ,S ,...,S )= be the state 
of CubeHash round function. By attention to definition of 

2SWAP  in the step 5 of the round function we have 
 

2

i i 2

SWAP :
Swap S  and S , for i {16,17,20,21,24,25,28,29}.⊕ ∈

 

 
In fact the 2SWAP  function operates on the Right half of 
the S. Consider this half as 
 

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

X S S S S S S S S
S S S S S S S S

= P P P P P P P
P P P P P P P P

 

 



     

 

Using the definition of X and 2SWAP  function we have 
 

2 18 19 16 17 22 23 20 21

26 27 24 25 30 31 28 29

SWAP (X) S S S S S S S S
S S S S S S S S

= P P P P P P P
P P P P P P P P

 

 
Without loss of generality and for simplicity consider 
 

1 16 17

2 18 19

3 20 21

4 22 23

X S S ,
X S S ,
X S S ,
X S S ,

=

=

=
=

P
P
P
P

 

5 24 25

6 26 27

7 28 29

8 30 31

X S S ,
X S S ,
X S S ,
X S S ,

=

=

=
=

P
P
P
P

 

 
where iX ,1 i 8,≤ ≤  have 64-bit length. Consider the bit 
representation of them as 
 

0 1 2 62 63
i i i i i iX x x x .....x x=  

 
By rewriting the input of 1SWAP  function as 
 

1 2 3 4 5 6 7 8X X X X X X X X X= P P P P P P P , 
 

we have  
 

2 2 1 4 3 6 5 8 7SWAP (X) X X X X X X X X= P P P P P P P . 
 

Now we show that 
 

6
2 2Pr[SWAP (X 1) SWAP (X) 1] 2−<<< = <<< =  

 
In order to show it we compute 
 

1 2 63 0 1 2 63 0 1 2 63 0
1 1 1 2 2 2 2 3 3 3 3 4

1 2 63 0 1 2 63 0 1 2 63 0
4 4 4 5 5 5 5 6 6 6 6 7

1 2 63 0 1 2 63 0
7 7 7 8 8 8 8 1

X 1 x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x x x ...x x
x x ...x x x x ...x x

<<< = P P
P P P
P P

 

 
1 2 63 0 1 2 63 0 1 2 63 0

2 2 2 2 3 1 1 1 2 4 4 4 5
1 2 63 0 1 2 63 0 1 2 63 0
3 3 3 4 6 6 6 7 5 5 5 6
1 2 63 0 1 2 63 0
8 8 8 1 7 7 7 8

SWAP (X 1) x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x

<<< = P P
P P P
P P

 (5.1) 

 
and 
 

1 2 63 0 1 2 63 0 1 2 63 0
2 2 2 2 1 1 1 1 4 4 4 4 3

1 2 63 0 1 2 63 0 1 2 63 0
3 3 3 6 6 6 6 5 5 5 5 8
1 2 63 0 1 2 63 0
8 8 8 7 7 7 7 2

SWAP (X) 1 x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x

<<< = P P
P P P
P P

 (5.2)   

 

By attention to (5.1) and (5.2) we see that for the equality 
of 2 2SWAP (X 1) SWAP (X) 1<<< = <<<  we need the 
following conditions on some bits of X: 
 

0 0 0 0
1 3 5 7x x x x= = =  

 
and 
 

0 0 0 0
2 4 6 8x x x x= = =  

 
Each of these conditions satisfies with probability of 

31
2

 
 
 

. Consequently, we showed that   

 
6

2 2Pr[SWAP (X 1) SWAP (X) 1] 2 .−<<< = <<< =  
 

■ 
 
Proof of lemma 6 ( 3SWAP ): We would like to prove that 
for 3SWAP  function by any input such as X: 
 

2
3 3Pr[SWAP (X 1) SWAP (X) 1] 2 .−<<< = <<< =  

 
For the proof suppose that 0 1 31S (S ,S ,...,S )= be the state 
of CubeHash round function. By attention to definition of 

3SWAP  in the step 8 of the round function we have 
 

3

i i 4

SWAP :
Swap S  and S , for i {0,1,2,3,8,9,10,11}⊕ ∈

 

 
In fact the 3SWAP  function operates on the left half of 
the S. Consider this half as 
 

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

X S S S S S S S S S
S S S S S S S

= P P P P P P P P
P P P P P P P

 

 
Using the definition of X and 3SWAP  function we have 
 

3 4 5 6 7 0 1 2 3

12 13 14 15 8 9 10 11

SWAP (X) S S S S S S S S
S S S S S S S S

= P P P P P P P
P P P P P P P P

 

 
Without loss of generality and for simplicity consider 
 



     

 

1 0 1 2 3

2 4 5 6 7

3 8 9 10 11

4 12 13 14 15

X S S S S ,
X S S S S ,
X S S S S ,
X S S S S ,

=
=
=
=

P P P
P P P
P P P
P P P

 

 
where iX ,1 i 4,≤ ≤  have 128-bit length. Consider the bit 
representation of them as 
 

0 1 2 126 127
i i i i i iX x x x .....x x=  

By rewriting the input of 3SWAP  function as 
 

1 2 3 4X X X X X= P P P , 

we have  
 

3 2 1 4 3SWAP (X) X X X X= P P P . 
 

Now we show that 
 

2
3 3Pr[SWAP (X 1) SWAP (X) 1] 2−<<< = <<< =  

 
In order to show it we compute  
 

1 2 127 0 1 2 127 0
1 1 1 2 2 2 2 3

1 2 127 0 1 2 127 0
3 3 3 4 4 4 4 1

X 1 x x ...x x x x ...x x
x x ...x x x x ...x x ,

<<< = P
P P

 

 
1 2 127 0 1 2 127 0

3 2 2 2 3 1 1 1 2

1 2 127 0 1 2 127 0
4 4 4 1 3 3 3 4

SWAP (X 1) x x ...x x x x ...x x
x x ...x x x x ...x x

<<< = P
P P

 

(6.1)   

 
and 
 

1 2 127 0 1 2 127 0
3 2 2 2 1 1 1 1 4

1 2 127 0 1 2 127 0
4 4 4 3 3 3 3 2

SWAP (X) 1 x x ...x x x x ...x x
x x ...x x x x ...x x

<<< = P
P P  

(6.2) 
    

 
By attention to (6.1) and (6.2) we see that for the equality 
of 3 3SWAP (X 1) SWAP (X) 1<<< = <<<  we need the 
following conditions on some bits of X: 
 

0 0
1 3x x=  

 
and 
 

0 0
2 4x x=  

Each of these conditions satisfies with probability of 1
2

. 

Consequently, we showed that   
 

2
3 3Pr[SWAP (X 1) SWAP (X) 1] 2 .−<<< = <<< =  

 
■ 
 
Proof of lemma 7 ( 4SWAP ): We would like to prove that 
for 4SWAP  function by any input such as X: 
 

14
4 4Pr[SWAP (X 1) SWAP (X) 1] 2−<<< = <<< =  

 
For the proof suppose that 0 1 31S (S ,S ,...,S )= be the state 
of CubeHash round function. By attention to definition of 

4SWAP  in the step 10 of the round function we have 
 

4

i i 1

SWAP :
Swap S  and S , for i {16,18,20,22,24,26,28,30}⊕ ∈

 

 
In fact the 4SWAP  function operates on the right half of 
the S. Consider this half as 
 

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

X S S S S S S S S
S S S S S S S S

= P P P P P P P
P P P P P P P P

 

 
Using the definition of X and 3SWAP  function we have 
 

4 17 16 19 18 21 20 23 22

25 24 27 26 29 28 31 30

SWAP (X) S S S S S S S S
S S S S S S S S

= P P P P P P P
P P P P P P P P

 

 
Without loss of generality and for simplicity and also 
similarity to the previous proofs, consider 
 

1 16

2 17

3 18

4 19

5 20

6 21

7 22

8 23

X S ,
X S ,
X S ,
X S ,
X S ,
X S ,
X S ,
X S ,

=
=
=
=
=
=
=
=

 

9 24

10 25

11 26

12 27

13 28

14 29

15 30

16 31

X S ,
X S ,
X S ,
X S ,
X S ,
X S ,
X S ,
X S ,

=
=
=
=
=
=
=
=

 

 
where iX ,1 i 16,≤ ≤  have 32-bit length. Consider the bit 
representation of them as 
 



     

 

0 1 2 30 31
i i i i i iX x x x .....x x=  

 
By rewriting the input of 3SWAP  function as 
 

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

X X X X X X X X X
X X X X X X X X

= P P P P P P P
P P P P P P P P , 

we have  
 

4 2 1 4 3 6 5 8 7

10 9 12 11 14 13 16 15

SWAP (X) X X X X X X X X
X X X X X X X X

= P P P P P P P
P P P P P P P P

 
Now we show that 
 

14
4 4Pr[SWAP (X 1) SWAP (X) 1] 2−<<< = <<< =  

 
In order to show it we compute  
 

1 2 31 0 1 2 31 0 1 2 31 0
1 1 1 2 2 2 2 3 3 3 3 4

1 2 31 0 1 2 31 0 1 2 31 0
4 4 4 5 5 5 5 6 6 6 6 7

1 2 31 0 1 2 31 0 1 2 63 0
7 7 7 8 8 8 8 9 9 9 9 10
1 2 63 0 1 2 63
10 10 10 11 11 11 11 12

X 1 x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x x x ...x x
x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x

<<< = P P
P P P
P P P
P P 0 1 2 63 0

12 12 12 13

1 2 63 0 1 2 63 0 1 2 63 0
13 13 13 14 14 14 14 15 15 15 15 16
1 2 63 0
16 16 16 1

x x ...x x
x x ...x x x x ...x x x x ...x x

x x ...x x

P
P P P
P

 

 

1 2 31 0 1 2 31 0 1 2 31 0
4 2 2 2 3 1 1 1 2 4 4 4 5

1 2 31 0 1 2 31 0 1 2 31 0
3 3 3 4 6 6 6 7 5 5 5 6
1 2 31 0 1 2 31 0 1 2 63 0
8 8 8 9 7 7 7 8 10 10 10 11
1 2 63 0 1 2
9 9 9 10 12 12

SWAP (X 1) x x ...x x x x ...x x x x ...x x
x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x x x ...x x
x x ...x x x x ...x

<<< = P P
P P P
P P P
P P 63 0 1 2 63 0

12 13 11 11 11 12
1 2 63 0 1 2 63 0 1 2 63 0
14 14 14 15 13 13 13 14 16 16 16 1

1 2 63 0
15 15 15 16

x x x ...x x

x x ...x x x x ...x x x x ...x x
x x ...x x

P
P P P
P

 (7.1)   

and 

 
1 2 31 0 1 2 31 0 1 2 31 0

4 2 2 2 1 1 1 1 4 4 4 4 3

1 2 31 0 1 2 31 0 1 2 31 0
3 3 3 6 6 6 6 5 5 5 5 8

1 2 31 0 1 2 31 0 1 2 63 0
8 8 8 7 7 7 7 10 10 10 10 9

1 2 63 0 1 2
9 9 9 12 12 12

SWAP (X) 1 x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x x x ...x x
x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x

<<< = P P
P P P
P P P
P P 63 0 1 2 63 0

12 11 11 11 11 14

1 2 63 0 1 2 63 0 1 2 63 0
14 14 14 13 13 13 13 16 16 16 16 15

1 2 63 0
15 15 15 2

x x x ...x x
x x ...x x x x ...x x x x ...x x

x x ...x x

P
P P P
P

 (7.2)   

 
By attention to (7.1) and (7.2) we see that for the equality 
of 4 4SWAP (X 1) SWAP (X) 1<<< = <<<  we need the 
following conditions on some bits of X: 
 

0 0 0 0 0 0 0 0
1 3 5 7 9 11 13 15x x x x x x x x= = = = = = =  

 
and 
 

0 0 0 0 0 0 0 0
2 4 6 8 10 12 14 16x x x x x x x x= = = = = = =  

 
Each of these conditions satisfies with probability of 

71
2

 
 
 

. Consequently, we showed that   

 
14

4 4Pr[SWAP (X 1) SWAP (X) 1] 2 .−<<< = <<< =  
 

■ 
 
 
 
 
 


