

A New Distinguisher for CubeHash-8/b and CubeHash-15/b
Compression Functions

Javad Alizadeh1 and Abdolrasoul Mirghadri2

 1 Faculty and Research Center of Communication and Information Technology, IHU
Tehran, Iran

alizadja@gmail.com

2 Faculty and Research Center of Communication and Information Technology, IHU
Tehran, Iran

amrghdri@ihu.ac.ir

Abstract

CubeHash is one of the round 2 candidates of the public SHA-3
competition hosted by NIST. It was designed by Bernstein. In
this paper we find a new distinguisher to distinguish CubeHash
compression function from a random function. This
distinguisher principle is based on rotational analysis that
formally introduced by Khovratovich and Nikolic. In order to
use this technique, we need to compute the probability that four
swap functions in CubeHash round function preserve the
rotational property for any input pair. We compute these
probabilities and find a new distinguisher that distinguish
CubeHash-8/b and CubeHash-15/b compression function from a
random function with probability greater than 538.52− and 1009.72− ,
respectively. Until we know this is the first distinguisher for
CubeHash compression function with more than 14 rounds.
Keywords: SHA-3 candidate, CubeHash, rotational analysis,
distinguisher.

1. Introduction

Hash functions have a very important role in modern
cryptography that used in many areas as digital signatures
and various forms of authentication. A hash function is a
transformation which maps a variable-length input to a
fixed-size output, called message digest. After
developments in the field of hash function cryptanalysis
[13, 14, 15] along with new results targeted against
commonly used hash functions has urged National
Institute of Standards and Technology to announce a
competition for the development of a new hash standard,
SHA-3 [10].
The SHA-3 competition attracted a lot of attention in the
cryptographic community. A total number of 64 hash
function proposals was submitted, 51 of them advanced to
the first round, 14 of them to the second round, and 5 of
them advanced to the third, final round. One of the main
requirements was the evaluation of the security of the

submitted primitive, i.e. providing a detailed analysis on
the resistance of the function against various attacks.
Being one of the most powerful forms of attacks, the
differential [4] and linear [9] analysis got most of the
submitter's focus, while less attention was put on the other
attacks.
Rotational analysis is a relatively new type of attack.
Although this technique was mentioned and applied in
previous works, such as [6], but it formally introduced by
Khovratovich and Nikolic in [7]. It is also used for
cryptanalysis of modified versions of BMW [5] and SIMD
[8] hash functions in [11]. Unlike differential analysis,
where for a pair (x,y), the attacker follows the propagation
of the difference x y⊕ through some transformation, in
rotational analysis the adversary studies the propagation
of the rotational pair (x, x r)<<< through the
transformation.
Khovratovich and Nikolic in [7] analyze the primitives
composed of only three operations: addition, rotation,
XOR (ARX). For these primitives, they prove that the
probability that a rotational pair of inputs will produce a
rotational pair of outputs depends only on the number of
additions.

Previous Results on CubeHash: We refer to part 2. B. 5
of [2] and CubeHash profile in the SHA-3 Zoo [12] for a
complete survey of cryptanalytic results on CubeHash.
The currently best distinguisher attacks on CubeHash-r/b
compression function for r=11 and r=14 were presented
by Ashur and Dunkelman in [1]. They present a
distinguisher of complexity 4702 for Cubehash-11/b
compression function and another distinguisher of
complexity 8122 for Cubehash-14/b compression function.
In this work they use linear cryptanalysis technique [9]
and linear approximations of CubeHash. Until we know

no distinguisher for more than 14 rounds was presented
so far.

Contribution of this Paper. The goal of this work is to
extend the application of rotational analysis to CubeHash
[2], one of the second round of the SHA-3 competition
candidates that have four swap transformations other than
additions, rotations, and XORs. In particular, we find the
rotational probabilities of the four swap transformations
in the CubeHash round function. This allows us that for
several round parameters r and message block sizes b we
present a new distinguisher for CubeHash-r/b
compression function. Specially, we find a distinguisher
for CubeHash-8/b and CubeHash-15/b compression
functions with probability greater than 538.52− and 1009.72− ,
respectively. In CubeHash-r/b, b {1,2,3,...,128}∈ and if in
CubeHash-8/b compression function we set b=1, indeed
we distinguish compression function of CubeHash-8/1,
the first version of CubeHash that suggested to SHA-3
competition, from a random function. Also if in
CubeHash-15/b we set b=32, we distinguish a reduced
version of compression function of CubeHash-16/32 [3],
only with one round less, from a random function.
CubeHash-16/32 is a tweaked version of CubeHash-8/1
which is about 16 times faster than it and after
presentation of cryptanalysis results on CubeHash-8/1
announced the official proposal for all digest lengths
h=224, 256, 384 or 512.
Until we know this is the first distinguisher for CubeHash
compression function with greater than 14 rounds.

Organization: In section 2 we review the concept of a
distinguisher that use rotational analysis technique
presented in [7]. In Section 3 we describe the hash
function CubeHash and define its compression function.
Section 4 specifies the probabilities that four swap
functions in CubeHash round function preserve the
rotational property for any input pair. In Section 5 we
analyze CubeHash-8/b and CubeHash-15/b compression
functions and present a new distinguisher for them. We
conclude in Section 6 finally.

2. Distinguishers with Rotational Analysis

A rotational distinguisher explores the idea that some
transforms on rotated inputs produce rotated outputs. Let
(X,X r)<<< be a pair of input words, it called a rotational
pair, for some transform F, where r<<< is a cyclic
rotation to the left by r bits. If for an arbitrary input X,
F(X r) F(X) r<<< = <<< then it said that F preserves the
rotational property, in other words, when the input

composes a rotational pair, the output also composes a
rotational pair. The input and the output of a transform
can be a single word or a vector of words, i.e.

1 nX (X ,...,X)=% . Then, a rotational input/output pair is
defined as (X, Y)% % , where i iY X r,i 1,..., n= <<< = . A
system (X)Φ % composed of transforms 1 kF ,...,F preserves
the rotational property, if on rotational input pair,
produces a rotational output pair.
It is better that we attend two important issues. First,
unlike differential analysis where usually out of the whole
input pair only a few words have differences, in rotational
analysis all the input pairs of words have to compose
rotational pairs. Second, there are a few transforms that
preserve the rotational property for any input pair. Usually,
for an arbitrary X, F(X r) F(X) r<<< = <<< only with
some probability Fp , further called a rotational probability
of F, that depends on the rotational amount r. If we
assume that the outputs of the transforms are independent,
then a system Φ composed of transforms 1 kF ,...,F
preserves the rotational property with a probability

1 2 kF F Fp p .ppΦ = [11]. Hence, in order to find the
probability that a system preserves the rotational property,
one only has to find the probabilities that each instance of
the underlying transforms preserves this property. For a
random system with n-bit output, the probability that a
rotational input will produce rotational output is n2− .
Therefore, if a system Φ with n-bit output has a
rotational probability np 2−

Φ > , then this system can be
distinguished from a random system [11].

2.1 Rotational Analysis of ARX Constructions

A thorough rotational analysis of ARX systems was given
in the work of Khovratovich and Nikolic [7]. These
systems are composed only of three transforms: addition,
rotation and XOR. For each of them, the probabilities they
preserve the rotational property were given by:

Lemma 1 (Addition): For n-bit words x, y, and a positive
integer r

r n r n1Pr[(x y) r x r y r] (1 2 2 2).
4

− − −+ <<< = <<< + <<< = + + +

Lemma 2 (Rotation): For n-bit word x and positive
integers r, r′

Pr[(x r) r (x r) r] 1′ ′<<< <<< = <<< <<< =

Lemma 3 (XOR): For n-bit words x, y, and a positive
integer r

Pr[(x y) r x r y r] 1⊕ <<< = <<< ⊕ <<< =

Hence, rotations and XORs preserve the rotational
property with probability 1, while the probability of
addition depends on the size of the words and the rotation
amount. Further in our analysis, the rotation amount will
be fixed to 1.
The proofs of lemma 1 and 2 are simple, and the proof of
lemma 3 can be finding in [7].
In [11], the authors find the probabilities that subtractions,
shifts and bitwise Boolean functions preserve the
rotational property, too, and in this paper we find this
probability for four swap functions used in CubeHash.

3. CubeHash Description

CubeHash [2] is Bernstein’s proposal for the NIST SHA-3
competition [10]. CubeHash works with 32-bit words
(n=32) and uses three simple operations of XOR, rotation
and modular addition and four swap functions showed by

1 2 3SWAP ,SWAP ,SWAP , and 4SWAP . It has an internal
state 0 1 31S (S ,S ,...,S)= of 32 words and its variants,
denoted by CubeHash-r/b, are identified by two
parameters r {1,2,...,128}∈ and b {1,2,...,128}∈ which at
each iteration process b bytes in r rounds. Selecting
different values of r and b, allow the selection of a range
of security/performance tradeoffs. The internal state S is
set to a specified value which depends on the digest length
(limited to 512 bits) and parameters r and b. The message
to be hashed is appropriately padded and divided into b-
byte message blocks. At each iteration one message block
is processed as follows. The 32-word internal state S is
considered as a 128-byte value and the message block is
XORed into the first b bytes of the internal state. Then,
the following fixed permutation is applied r times to the
internal state to prepare it for the next iteration. This
permutation called CubeHash round function and denoted
by ROUND in this paper.
1. Add iS into i 16S ⊕ , for 0 i 15≤ ≤ .
2. Rotate iS to the left by seven bits, for 0 i 15≤ ≤ .
3. Swap iS and i 8S ⊕ , for 0 i 7≤ ≤ (We call this swap
function 1SWAP).
4. XOR i 16S ⊕ into iS , for 0 i 15≤ ≤ .

5. Swap iS and i 2S ⊕ for
i {16,17, 20, 21, 24, 25,28, 29}∈

(We call this swap function 2SWAP).
6. Add iS into i 16S ⊕ , for 0 i 15≤ ≤ .
7. Rotate iS to the left by eleven bits, for 0 i 15≤ ≤ .

8. Swap iS and i 4S ⊕ , for i {0,1,2,3,8,9,10,11}∈ (We call
this swap function 3SWAP).
9. XOR i 16S ⊕ into iS , for 0 i 15≤ ≤ .
10. Swap iS and i 1S ⊕ , for

i {16,18,20,22,24,26,28,30}∈
(We call this swap function 4SWAP).
Having processed all message blocks, a fixed
transformation is applied to the final internal state to
extract the hash value as follows. First, the last state word

31S is XORed with integer 1 and then the above
permutation is applied 10 × r times to the resulting
internal state. Finally, the internal state is truncated to
produce the message digest of desired hash length. Refer
to [2] for the full specification.

3.1 CubeHash Compression Function

Compression function of CubeHash-r/b that we denoted
by COMP-r, gives a state of 1024 bits (128-byte) as input
and then applies CubeHash round function, ROUND, r
times to this state and output a new state of 1024 bits
(128-byte).

COMP-8 and COMP-11: COMP-8 is the compression
function of CubeHash-8/b and COMP-15 is the
compression function of CubeHash-15/b.

4. Rotational Analysis of CubeHash Swap
Functions

As mentioned, in order to extend the application of
rotational analysis to CubeHash compression function we
have to find the probabilities that four swap functions
(1 2 3SWAP ,SWAP ,SWAP and 4SWAP) in CubeHash
round function (ROUND) preserve the rotational property
for any input pair. In this section we compute the
probabilities in lemma 4 to lemma 7.

Lemma 4 (1SWAP): Suppose 1SWAP is the swap
function used in step 3 of CubeHash round function. We
choose a random X, rotate it to the left by 1 bit and
produce a pair of rotational input, (X,X 1)<<< . For this
pair, 1SWAP preserves the rotational property with
probability 1. In other words:

1 1Pr[SWAP (X 1) SWAP (X) 1] 1<<< = <<< = .

Lemma 5 (2SWAP): Suppose 2SWAP is the swap
function used in step 5 of CubeHash round function. We

choose a random X, rotate it to the left by 1 bit and
produce a pair of rotational input, (X,X 1)<<< . For this
pair, 2SWAP preserves the rotational property with
probability of 62− . In other words:

6
2 2Pr[SWAP (X 1) SWAP (X) 1] 2−<<< = <<< = .

Lemma 6 (3SWAP): Suppose 3SWAP is the swap
function used in step 8 of CubeHash round function. We
choose a random X, rotate it to the left by 1 bit and
produce a pair of rotational input, (X,X 1)<<< . For this
pair, 3SWAP preserves the rotational property with
probability of 22− . In other words:

2
3 3Pr[SWAP (X 1) SWAP (X) 1] 2−<<< = <<< = .

Lemma 7 (4SWAP): Suppose 4SWAP is the swap
function used in step 10 of CubeHash round function. We
choose a random X, rotate it to the left by 1 bit and
produce a pair of rotational input, (X, X 1)<<< . For this
pair, 4SWAP preserves the rotational property with
probability of 142− . In other words:

14
4 4Pr[SWAP (X 1) SWAP (X) 1] 2−<<< = <<< = .

Proof: The above lemmas will be proved in the Appendix
A.

5. Rotational analysis of CubeHash-8/b and
CubeHash-15/b compression functions

In this section we applied the rotational analysis
technique to CubeHash and find a new distinguisher for
CubeHash-8/b compression function (COMP-8) and
CubeHash-15/b compression function (COMP-15) that
distinguish these functions from a random function. For
this purpose we use the results of lemma 1 to lemma 7.
Now, we consider the COMP-8 function that using three
simple operations of modular addition, rotation and XOR,
and four swap functions of 1 2 3SWAP ,SWAP ,SWAP , and

4SWAP . Suppose we want to find the probability that
COMP-8 preserves the rotational property. In other words
if (X, X 1)<<< be a pair of rotational input, we have to
compute the probability that (Comp-8(X), Comp-
8(X)<<<1) is a pair of rotational output (the probability
that Comp-8(X<<<1) = Comp-8(X)<<<1).
By lemma 2 and lemma 3, rotations and XORs preserve
the rotational property with probability 1. So the desired

probability is depending on the additions and swap
functions. In the rotational analysis of COMP-8 if we
consider left rotation amount fixed to 1, by lemma 1 we
can find the probability that one addition (on the 32-bit
words) in COMP-8 preserve the rotational property. This
probability is:

1 32 1 32 1.416

Pr[(x y) 1 x 1 y 1]
1 (1 2 2 2) 2
4

− − − −

+ <<< = <<< + <<<

= + + + >

Each round of COMP-8 has 32 additions on the 32-bit
words. Hence the probability that in the one round of
COMP-8 the rotational property is preserved by all
addition (ADDPr) will be:

32(1.416) 45.312
ADDPr 2 2− −= >

On the other hand in the each round of COMP-8 four
swap functions (1 2 3SWAP ,SWAP ,SWAP , and 4SWAP) is
used too. For these functions we compute the probabilities
that they preserve the rotational property. These
probabilities are respectively:

1

2

3

4

SWAP

6
SWAP

2
SWAP

14
SWAP

Pr 1,

Pr 2 ,

Pr 2 ,

Pr 2 .

−

−

−

=

=

=

=

According to section 2 the probability (ROUNDPr) that one
round of COMP-8 using 32 additions on the 32-bit words,
XORs, rotations, and swap functions 1 2SWAP ,SWAP ,

3SWAP , and 4SWAP preserve the rotational property is:

1 2

3 4

32
ROUND ADD SWAP SWAP

67.312
SWAP SWAP

Pr (Pr) (Pr) (Pr)

(Pr) (Pr) 2 .−

= × ×

× × >

Finally the COMP-8 function has 8 rounds. Hence the
probability (COMP 8Pr −) that this function preserve the
rotational property for a pair of rotational input such as
(X,X 1)<<< and produce a pair of rotational output such
as (COMP 8(X),COMP 8(X) 1)− − <<< will be:

8 538.496 1024
COMP 8 ROUNDPr (Pr) 2 2− −

− = > >>>

The COMP 8Pr − is very greater than 10242− (the probability
that we can distinguish the CubeHash compression
function when it is indistinguishable from a random
function) and allows distinguishing 8-round CubeHash
compression function using about 5392 call of it. The
distinguisher of COMP-8 based on rotational analysis
technique is working this way:
1- He chooses a random input such as X, computes
X 1<<< and produces a pair of the rotational input,
(X,X 1)<<< .
2- He computes COMP-8 (X), COMP-8(X 1<<<), and
COMP-8(X)<<<1 .
3- He verifies whether

COMP-8(X<<<1)=COMP-8(X)<<<1
or not.
4- If COMP-8(X<<<1)=COMP-8(X)<<<1 , the
distinguisher can produce a pair of the rotational output,
(COMP 8(X),COMP 8(X) 1)− − <<< , and distinguishes
the COMP-8, otherwise go to 1.

COMP-15 Distinguisher: Similar to whatever we said
about distinguishing of COMP-8, we can construct a
distinguisher based on rotational analysis for 15-round
CubeHash compression function (COMP-15) and
distinguish it from a random function.
Note that the only difference between COMP-8 and
COMP-15 is the number of their rounds. COMP-8 using 8
times of the CubeHash round function (ROUND) while
COMP-15 using 15 times of it. Hence the probability
(COMP 15Pr −) that this function preserve the rotational
property for a pair of rotational input such as
(X,X 1)<<< and produce a pair of rotational output such
as (COMP 15(X),COMP 15(X) 1)− − <<< will be:

15 1009.68 1024
COMP 15 ROUNDPr (Pr) 2 2− −

− = > >>

The COMP 15Pr − is greater than 10242− (the probability that
we can distinguish the CubeHash compression function
when it is indistinguishable from a random function) and
allows distinguishing 15-round CubeHash compression
function using about 10102 call of it. The distinguisher of
COMP-15 based on rotational analysis technique, too and
is working as the COMP-8 distinguisher.

6. Conclusion

In this paper we find a new distinguisher based on
rotational analysis technique for CubeHash compression
function and distinguish the compression functions of

CubeHash-8/b and CubeHash-15/b with probability
greater than 538.52− and 1009.72− , respectively. If in the
CubeHash-8/b compression function we set b=1, indeed
we distinguish the compression function of CubeHash-8/1,
the first version of CubeHash that suggested to SHA-3
competition, from a random function. Also if we set b=32
in CubeHash-15/b, then we distinguish a reduced version
of the compression function of CubeHash-16/32 (a
tweaked version of CubeHash-8/1) only with one round
less, from a random function. The distinguisher of
CubeHash-15/b compression function presented in this
paper is the first distinguisher that distinguish the
CubeHash compression function with more than 14
rounds from a random function.

References

[1] T. Ashur, O. Dunkelman, "Linear Analysis of Reduced-

Round CubeHash", Cryptology ePrint Archive, Report
2010/535 (2010).

[2] D.J. Bernstein, "Cubehash", Submission to NIST, Round 2
(2009).

[3] D.J. Bernstein, "CubeHash parameter tweak: 16 times
faster".

[4] E. Biham, A. Shamir, "Differential Cryptanalysis of DES-
like Cryptosystems", J. Cryptology, 4(1):3-72 (1991).

[5] D. Gligoroski, V. Klima, S. J. Knapskog, M. El-Hadedy, J.,
S. Amundsen, F. Mj lsnes, "Cryptographic Hash Function
BLUE MIDNIGHT WISH", Submission to NIST (Round 2),
(2009). Available at

 http://people.item.ntnu.no/~danilog/Hash/BMW-
SecondRound/Supporting_Documentation/BlueMidnightWis
hDocumentation.pdf.

[6] L. R. Knudsen, K. Matusiewicz, S. S. Thomsen,
"Observations on the Shabal keyed permutation", OFFICIAL
COMMENT, (2009). Available at

 http://www.mat.dtu.dk/people/S.Thomsen/shabal/shabal.pdf.
[7] D. Khovratovich, I. Nikolic, "Rotational Cryptanalysis of

ARX", Fast Sotftware Encryption (FSE 2010), Springer
(2010).

[8] G. Leurent, C. Bouillaguet, P.-A, Fouque, " SIMD Is a
Message Digest", Submission to NIST (Round 2), (2009).

[9] M. Matsui, "Linear Cryptoanalysis Method for DES
Cipher", T. Helleseth, editor, EUROCRYPT, volume 765 of
Lecture Notes in Computer Science, pages 386-397.
Springer, (1993).

[10] National Institute of Standards and Technology,
Announcing Request for Candidate Algorithm Nominations
for a New Cryptographic Hash Algorithm (SHA-3) Family,
Federal Register Notice (November 2007), available online
at: http://csrc.nist.gov

[11] I. Nikolić, J. Pieprzyk, P. Sokołowski, Ron. Steinfeld,
"Rotational Cryptanalysis of (Modified) Versions of BMW
and SIMD", Available online, (2010).

[12] ECRYPT II, The SHA-3 Zoo, CubeHash Profile, Available
at: http://ehash.iaik.tugraz.at/wiki/CubeHash

[13] X. Wang, H. Yu, "How to Break MD5 and Other Hash
Functions", Advances in Cryptology, EUROCRYPT 2005,
LNCS, Springer-Verlag, (2005).

[14] X. Wang, H. Yu, Y.L. Yin, "Efficient Collision Search
Attacks on SHA-0", Advances in Cryptology, Crypto 2005,
LNCS 3621, Pages 1-16, Springer, (2005).

[15] X. Wang, Y.L. Yin, H. Yu, "Finding Collisions in the Full
SHA-1", Advances in Cryptology, Crypto 2005, LNCS 3621,
Pages 17- 36, Springer, (2005).

Appendix

A. Proofs of Lemma 4 to Lemma 7

Proof of lemma 4 (1SWAP): We would like to prove that
for 1SWAP function by any input such as X:

1 1Pr[SWAP (X 1) SWAP (X) 1] 1.<<< = <<< =

For the proof suppose that 0 1 31S (S ,S ,...,S)= be the state
of CubeHash round function. By attention to definition of

1SWAP in the step 3 of the round function we have

1

i i 8

SWAP :
Swap S and S , for 0 i 7.⊕ ≤ ≤

In fact the 1SWAP function operates on the left half of the
S. Consider this half as

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

X S S S S S S S S S
S S S S S S S

= P P P P P P P P
P P P P P P P

where the means of the notation P is concatenating.
Using the definition of X and 1SWAP function we have

1 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

SWAP (X) S S S S S S S S
S S S S S S S S .

= P P P P P P P
P P P P P P P P

Without loss of generality and for simplicity consider

1 0 1 2 3 4 5 6 7

2 8 9 10 11 12 13 14 15

X S S S S S S S S ,
X S S S S S S S S ,

=
=

P P P P P P P
P P P P P P P

where 1X and 2X have 512-bit length. Consider the bit
representation of them as

0 1 2 254 255
1 1 1 1 1 1

0 1 2 254 255
2 2 2 2 2 2

X x x xx x ,
X x x xx x .

=

=

By rewriting the input of 1SWAP function as 1 2X X X= P ,
we have 1 2 1SWAP (X) X X= P . Now we show that

1 1Pr[SWAP (X 1) SWAP (X) 1] 1.<<< = <<< =

In order to show it we compute

1 2 254 255 0 1 2 254 255 0
1 1 1 1 2 2 2 2 2 1X 1 x xx x x x xx x x ,<<< = P

1 2 254 255 0

1 2 2 2 2 1

1 2 254 255 0
1 1 1 1 2

SWAP (X 1) x xx x x
x xx x x ,

<<< =

P
 (4.1)

and

1 2 254 255 0
1 2 2 2 2 1

1 2 254 255 0
1 1 1 1 2

SWAP (X) 1 x xx x x
x xx x x

<<< =

P
 (4.2)

By attention to (4.1) and (4.2) we see that

1 1SWAP (X 1) SWAP (X) 1<<< = <<< and for this equality
no condition is need. Consequently, we showed that

1 1Pr[SWAP (X 1) SWAP (X) 1] 1.<<< = <<< =

■

Proof of lemma 5 (2SWAP): We would like to prove that
for 2SWAP function by any input such as X:

6
2 2Pr[SWAP (X 1) SWAP (X) 1] 2 .−<<< = <<< =

For the proof suppose that 0 1 31S (S ,S ,...,S)= be the state
of CubeHash round function. By attention to definition of

2SWAP in the step 5 of the round function we have

2

i i 2

SWAP :
Swap S and S , for i {16,17,20,21,24,25,28,29}.⊕ ∈

In fact the 2SWAP function operates on the Right half of
the S. Consider this half as

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

X S S S S S S S S
S S S S S S S S

= P P P P P P P
P P P P P P P P

Using the definition of X and 2SWAP function we have

2 18 19 16 17 22 23 20 21

26 27 24 25 30 31 28 29

SWAP (X) S S S S S S S S
S S S S S S S S

= P P P P P P P
P P P P P P P P

Without loss of generality and for simplicity consider

1 16 17

2 18 19

3 20 21

4 22 23

X S S ,
X S S ,
X S S ,
X S S ,

=

=

=
=

P
P
P
P

5 24 25

6 26 27

7 28 29

8 30 31

X S S ,
X S S ,
X S S ,
X S S ,

=

=

=
=

P
P
P
P

where iX ,1 i 8,≤ ≤ have 64-bit length. Consider the bit
representation of them as

0 1 2 62 63
i i i i i iX x x xx x=

By rewriting the input of 1SWAP function as

1 2 3 4 5 6 7 8X X X X X X X X X= P P P P P P P ,

we have

2 2 1 4 3 6 5 8 7SWAP (X) X X X X X X X X= P P P P P P P .

Now we show that

6
2 2Pr[SWAP (X 1) SWAP (X) 1] 2−<<< = <<< =

In order to show it we compute

1 2 63 0 1 2 63 0 1 2 63 0
1 1 1 2 2 2 2 3 3 3 3 4

1 2 63 0 1 2 63 0 1 2 63 0
4 4 4 5 5 5 5 6 6 6 6 7

1 2 63 0 1 2 63 0
7 7 7 8 8 8 8 1

X 1 x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x x x ...x x
x x ...x x x x ...x x

<<< = P P
P P P
P P

1 2 63 0 1 2 63 0 1 2 63 0

2 2 2 2 3 1 1 1 2 4 4 4 5
1 2 63 0 1 2 63 0 1 2 63 0
3 3 3 4 6 6 6 7 5 5 5 6
1 2 63 0 1 2 63 0
8 8 8 1 7 7 7 8

SWAP (X 1) x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x

<<< = P P
P P P
P P

 (5.1)

and

1 2 63 0 1 2 63 0 1 2 63 0
2 2 2 2 1 1 1 1 4 4 4 4 3

1 2 63 0 1 2 63 0 1 2 63 0
3 3 3 6 6 6 6 5 5 5 5 8
1 2 63 0 1 2 63 0
8 8 8 7 7 7 7 2

SWAP (X) 1 x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x

<<< = P P
P P P
P P

 (5.2)

By attention to (5.1) and (5.2) we see that for the equality
of 2 2SWAP (X 1) SWAP (X) 1<<< = <<< we need the
following conditions on some bits of X:

0 0 0 0
1 3 5 7x x x x= = =

and

0 0 0 0
2 4 6 8x x x x= = =

Each of these conditions satisfies with probability of

31
2

 
 
 

. Consequently, we showed that

6

2 2Pr[SWAP (X 1) SWAP (X) 1] 2 .−<<< = <<< =

■

Proof of lemma 6 (3SWAP): We would like to prove that
for 3SWAP function by any input such as X:

2
3 3Pr[SWAP (X 1) SWAP (X) 1] 2 .−<<< = <<< =

For the proof suppose that 0 1 31S (S ,S ,...,S)= be the state
of CubeHash round function. By attention to definition of

3SWAP in the step 8 of the round function we have

3

i i 4

SWAP :
Swap S and S , for i {0,1,2,3,8,9,10,11}⊕ ∈

In fact the 3SWAP function operates on the left half of
the S. Consider this half as

0 1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

X S S S S S S S S S
S S S S S S S

= P P P P P P P P
P P P P P P P

Using the definition of X and 3SWAP function we have

3 4 5 6 7 0 1 2 3

12 13 14 15 8 9 10 11

SWAP (X) S S S S S S S S
S S S S S S S S

= P P P P P P P
P P P P P P P P

Without loss of generality and for simplicity consider

1 0 1 2 3

2 4 5 6 7

3 8 9 10 11

4 12 13 14 15

X S S S S ,
X S S S S ,
X S S S S ,
X S S S S ,

=
=
=
=

P P P
P P P
P P P
P P P

where iX ,1 i 4,≤ ≤ have 128-bit length. Consider the bit
representation of them as

0 1 2 126 127
i i i i i iX x x xx x=

By rewriting the input of 3SWAP function as

1 2 3 4X X X X X= P P P ,

we have

3 2 1 4 3SWAP (X) X X X X= P P P .

Now we show that

2
3 3Pr[SWAP (X 1) SWAP (X) 1] 2−<<< = <<< =

In order to show it we compute

1 2 127 0 1 2 127 0
1 1 1 2 2 2 2 3

1 2 127 0 1 2 127 0
3 3 3 4 4 4 4 1

X 1 x x ...x x x x ...x x
x x ...x x x x ...x x ,

<<< = P
P P

1 2 127 0 1 2 127 0

3 2 2 2 3 1 1 1 2

1 2 127 0 1 2 127 0
4 4 4 1 3 3 3 4

SWAP (X 1) x x ...x x x x ...x x
x x ...x x x x ...x x

<<< = P
P P

(6.1)

and

1 2 127 0 1 2 127 0
3 2 2 2 1 1 1 1 4

1 2 127 0 1 2 127 0
4 4 4 3 3 3 3 2

SWAP (X) 1 x x ...x x x x ...x x
x x ...x x x x ...x x

<<< = P
P P

(6.2)

By attention to (6.1) and (6.2) we see that for the equality
of 3 3SWAP (X 1) SWAP (X) 1<<< = <<< we need the
following conditions on some bits of X:

0 0
1 3x x=

and

0 0
2 4x x=

Each of these conditions satisfies with probability of 1
2

.

Consequently, we showed that

2
3 3Pr[SWAP (X 1) SWAP (X) 1] 2 .−<<< = <<< =

■

Proof of lemma 7 (4SWAP): We would like to prove that
for 4SWAP function by any input such as X:

14
4 4Pr[SWAP (X 1) SWAP (X) 1] 2−<<< = <<< =

For the proof suppose that 0 1 31S (S ,S ,...,S)= be the state
of CubeHash round function. By attention to definition of

4SWAP in the step 10 of the round function we have

4

i i 1

SWAP :
Swap S and S , for i {16,18,20,22,24,26,28,30}⊕ ∈

In fact the 4SWAP function operates on the right half of
the S. Consider this half as

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

X S S S S S S S S
S S S S S S S S

= P P P P P P P
P P P P P P P P

Using the definition of X and 3SWAP function we have

4 17 16 19 18 21 20 23 22

25 24 27 26 29 28 31 30

SWAP (X) S S S S S S S S
S S S S S S S S

= P P P P P P P
P P P P P P P P

Without loss of generality and for simplicity and also
similarity to the previous proofs, consider

1 16

2 17

3 18

4 19

5 20

6 21

7 22

8 23

X S ,
X S ,
X S ,
X S ,
X S ,
X S ,
X S ,
X S ,

=
=
=
=
=
=
=
=

9 24

10 25

11 26

12 27

13 28

14 29

15 30

16 31

X S ,
X S ,
X S ,
X S ,
X S ,
X S ,
X S ,
X S ,

=
=
=
=
=
=
=
=

where iX ,1 i 16,≤ ≤ have 32-bit length. Consider the bit
representation of them as

0 1 2 30 31
i i i i i iX x x xx x=

By rewriting the input of 3SWAP function as

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

X X X X X X X X X
X X X X X X X X

= P P P P P P P
P P P P P P P P ,

we have

4 2 1 4 3 6 5 8 7

10 9 12 11 14 13 16 15

SWAP (X) X X X X X X X X
X X X X X X X X

= P P P P P P P
P P P P P P P P

Now we show that

14
4 4Pr[SWAP (X 1) SWAP (X) 1] 2−<<< = <<< =

In order to show it we compute

1 2 31 0 1 2 31 0 1 2 31 0
1 1 1 2 2 2 2 3 3 3 3 4

1 2 31 0 1 2 31 0 1 2 31 0
4 4 4 5 5 5 5 6 6 6 6 7

1 2 31 0 1 2 31 0 1 2 63 0
7 7 7 8 8 8 8 9 9 9 9 10
1 2 63 0 1 2 63
10 10 10 11 11 11 11 12

X 1 x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x x x ...x x
x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x

<<< = P P
P P P
P P P
P P 0 1 2 63 0

12 12 12 13

1 2 63 0 1 2 63 0 1 2 63 0
13 13 13 14 14 14 14 15 15 15 15 16
1 2 63 0
16 16 16 1

x x ...x x
x x ...x x x x ...x x x x ...x x

x x ...x x

P
P P P
P

1 2 31 0 1 2 31 0 1 2 31 0
4 2 2 2 3 1 1 1 2 4 4 4 5

1 2 31 0 1 2 31 0 1 2 31 0
3 3 3 4 6 6 6 7 5 5 5 6
1 2 31 0 1 2 31 0 1 2 63 0
8 8 8 9 7 7 7 8 10 10 10 11
1 2 63 0 1 2
9 9 9 10 12 12

SWAP (X 1) x x ...x x x x ...x x x x ...x x
x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x x x ...x x
x x ...x x x x ...x

<<< = P P
P P P
P P P
P P 63 0 1 2 63 0

12 13 11 11 11 12
1 2 63 0 1 2 63 0 1 2 63 0
14 14 14 15 13 13 13 14 16 16 16 1

1 2 63 0
15 15 15 16

x x x ...x x

x x ...x x x x ...x x x x ...x x
x x ...x x

P
P P P
P

 (7.1)

and

1 2 31 0 1 2 31 0 1 2 31 0

4 2 2 2 1 1 1 1 4 4 4 4 3

1 2 31 0 1 2 31 0 1 2 31 0
3 3 3 6 6 6 6 5 5 5 5 8

1 2 31 0 1 2 31 0 1 2 63 0
8 8 8 7 7 7 7 10 10 10 10 9

1 2 63 0 1 2
9 9 9 12 12 12

SWAP (X) 1 x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x x x x ...x x
x x ...x x x x ...x x x x ...x x

x x ...x x x x ...x

<<< = P P
P P P
P P P
P P 63 0 1 2 63 0

12 11 11 11 11 14

1 2 63 0 1 2 63 0 1 2 63 0
14 14 14 13 13 13 13 16 16 16 16 15

1 2 63 0
15 15 15 2

x x x ...x x
x x ...x x x x ...x x x x ...x x

x x ...x x

P
P P P
P

 (7.2)

By attention to (7.1) and (7.2) we see that for the equality
of 4 4SWAP (X 1) SWAP (X) 1<<< = <<< we need the
following conditions on some bits of X:

0 0 0 0 0 0 0 0
1 3 5 7 9 11 13 15x x x x x x x x= = = = = = =

and

0 0 0 0 0 0 0 0
2 4 6 8 10 12 14 16x x x x x x x x= = = = = = =

Each of these conditions satisfies with probability of

71
2

 
 
 

. Consequently, we showed that

14

4 4Pr[SWAP (X 1) SWAP (X) 1] 2 .−<<< = <<< =

■

