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Abstract

By embedding a Toeplitz matrix-vector product (MVP) of dims@nn into a circulant MVP of
dimensionN = 2n+0— 1, whered can be any nonnegative integer, we preseGtg2™) multiplication
algorithm. This algorithm leads to a new redundant reprtasiem, and it has two merits: 1. The flexible
choices of§ make it possible to select a prop&i such that the multiplication operation in ring
GF(2)[x]/(zN +1) can be performed using some asymptotically faster alywst e.g. the Fast Fourier
Transformation (FFT)-based multiplication algorithm;The redundant degrees, which are defined as
N/n, are smaller than those of most previgbl'(2") redundant representations, and in fact they are

approximately equal to 2 for all applicable cases.
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. INTRODUCTION

WhenGF(2") is viewed as am-dimensional vector space, field elements can be repreksente
as n-bit vectors in a basis off F'(2") over GF'(2). Types of bases are various, for example,
polynomial bases, normal bases, dual bases and shiftechqolgl bases (SPB) and so on.
Besides these representations, redundant represestagoome attractive when the valuerof

is large.
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Most previous redundant representations can be classfigdoegroups: one is originated from
polynomial bases and the other from normal bases. In 1998 eGal. presented a multiplication
algorithm in normal bases generated by Gauss periods [1Af&r converting the representation
from normal bases to some polynomials, they embedded a fieddai larger cyclotomic ring,
and then performed ring multiplication using some asynigadly faster multiplication algorithm,
e.g., Fast Fourier Transform (FFT)-based multiplicatitgoathm. Especially, they embedded
GF(2") into cyclotomic ringGF(2)[x]/(z***141) when a type Il optimal normal basis exists. In
2007, this approach was improved by Gathen et al.. They ufest ransformation between type
Il optimal normal bases and suitable polynomial represemts, whose complexity i©(n log, n)
bit operations for the general case [3]. In 2010, Bernsteith bange improved the results of
[3] in several ways [4]. They reduced the size of the suitgdadlynomial fromn + 1 to n, and
they also reduced the transformation cost. These workslynious on type Il optimal normal
bases. Another redundant representations originated geameral normal bases is [5], where the
ordered sef{1,7,7%~%,...,7%" '} was used to desigh'F(2") quadratic parallel multipliers.
Especially, they discussed the case that rankof2 ~2*,...,7*" ' }isn — 1.

Compared to normal bases-based redundant representatioss previous works on redun-
dant representations follow the polynomial approach, hgntleey embed’ F'(2") into a finite
quotient ringGF (2)[x]/(z" + 1), and therefore map &F(2") multiplication operation into a
GF(2)[z]/(zY +1) multiplication. The later can be performed using some asgtigally faster
multiplication algorithm.

Redundant representations first appeared in finite figi2") := GF'(2)[z]/(f(x)) generated
by all-one-polynomialf (z) = Y7, «’. In 1984, Itoh and Tsuijii applied the simplicity of multi-
plication in quotient ringGF(2)[z]/(z" + 1) (where N = n + 1) to the GF(2") multiplication
[6]. In this case, the:-bit vector of aGF'(2") element is mapped to the: + 1)-bit vector of
a GF(2)[z]/(zY + 1) element. Therefore, the redundant degree, which is defisel/a, is
(n+1)/n ~ 1 for these specialsF'(2")s. Besides multiplication, Silverman also analyzed other
operations in these fields [7]. Combining Karatsuba’s algor and redundant representation,
Chang, Hong and Cho presented a low complexity bit-paratiltiplier in 2005 [8]. In 2008,
Namin, Wu and Ahmadi designed a novel serial-in parallélraultiplier in these fields [9].

In 1998, Drolet generalized this idea and introducefl(2™) redundant representations sys-

tematically [10]. His results were corrected and improvatkd by Geiselmann, Muller-Quade



and Steinwandt [11]. Similarly, Wu, Hasan, Blake and Gas@néed simple and highly regular
architectures for finite field multipliers using a redundegfiresentation, and their architectures
can provide area-time trade-offs [12] [13]. In 2001, Geismhn and Lukhaub showed that
GF(2") arithmetic, especially exponentiation, in redundant espntation is perfectly suited
for low power computing [14]. In 2003, Katti and Brennan getiged the idea of quotient ring
GF(2)[z]/(xN +1) to quotient ringsGF (2)[x]/(xN + 2F +1) andGF (2)[] /(xN + %1 + 22 1)
[15], and in the same year, Geiselmann and Steinwandt demeelaedundant representations
to finite fields of arbitrary characteristic [16].

The major disadvantage of the above redundant represamgat that redundant degrees are
often large, for example, the average redundant degreébfoK n < 250 is about 4.58 [13].
Recently, Akleylek and Ozbudak presented a modified rechinéaresentation [17]. Their results
improved some of the previous complexity values signifigardr more precisely, redundant
degrees are decreased to about 1 or 2 for s6fR¢2")s. But for some other values afs, no
improvement on redundant degrees is reported in their pémeexample, cases thats are
prime.

Besides the disadvantage of large redundant degree, sdl ffidynomial-based methods suffer
another disadvantage: for a fixédF'(2"), there is only one choice of a smallar. Because of
this limitation, it might be hard to select a proper fast aion to perform multiplication in
GF(2)[z]/(z™ + 1), for example, FFT does not help whénis a prime [7].

In this article, a different embedding method is used to cvere the above two disadvantages.
Instead of following the polynomial approach, we apply thatmx approach to perform the
embedding step. We map(aF’(2") multiplication operation into a multiplication in the quernt
ring GF(2)[z]/(z¥+1), whereN = 2n+§—1 andd can be any non-negative integer. The flexible
choices ofd make it possible to select a props&t such that the multiplication operation in ring
GF(2)[z]/(z" + 1) can be performed using some asymptotically fast algosthurthermore,
our redundant degreesV{n ~ 2) are smaller than those of most previad$'(2") redundant
representations for all applicable values«s. As a comparison, reference [17] provided only 54
composite values af’s such thatl5 < n < 1956 and their redundant degrees are approximately
equal to 1 or 2. But for oveb0% (composite and prime) values efs in this range, or even
a larger rangd < n < 10,001, redundant degrees of our method are approximately equal to

[18]. Even though, we must note that among these 54 valuesah [17], there are 34 values



of n’s such that their redundant degrees are slightly greatar h

This paper is organized as follows: The equivalence betwegenlant Matrix-Vector Product
(MVP) and GF(2)[z]/(z" + 1) multiplication is introduced in Section 2. In Section 3, the
new 4-stepGF'(2") SPB multiplication algorithm is described. Explicit fortae of the new
SPB redundant representation are given in Section 4, andanpde is presented in Section 5.
Considerations for other bases are included in sectionrtlllyj a few concluding remarks are
made in Section 7.

Il. EQUIVALENCE BETWEEN CIRCULANT MVP AND GF(2)[z]/(x" + 1) MULTIPLICATION
Given two GF(2)[z]/(zV + 1) elementsp = SN 'paat and ¢ = SV g, let P =
(po,p1,---,pn—1)" be the coordinate column vector @fand@ is defined similarly. The product
r=pg=SN."ratinring GF(2)[z]/(zN + 1) can be computed in three steps.

We first compute the conventional polynomial productpadnd ¢:

2N -2
T =Dpqg= Z rtxt:l+l+’
t=0
N -1 2N -2
wherel = > rat, Iy = > rat and
t=0 t=N
t
> Dii—i 0<t<N-1;
e = Z biq; = N
it+j=t > pigi—i N <t<2N -2
0<4,j<N i=t+1-N

Then we reducé, using equation:’ = z~", where N < i < 2N — 2, and obtain

2N -2 N-2

I, mod (2 +1) = Z rer’ mod (2N 4 1) = Z TNt

t=N t=0



Finally, we get the product of p andq in GF(2)[z]/(z" + 1):
N—-1

ro= Zrixi:(l+l+)mod(xN+1)

—0

~

N-1 N—2
= > rat ) N’
t=0 t=0
N—2 ¢ N-1 N-1
= ( Pig—; + Z piQt—i—N—i) '+ (Z piQN—l—i) a7
t=0 i=0 i=t+1 i=0
q0 gN-1 4gN-—2 - (1 Do
q1 q0 gN-1 ' (2 b1
N—
= (Lz,2% ..., 2V ) G G - q D2
gN-1 gN-2 4dN-3 - 4o PN-1

= (L,z,2% ... 2V"HTP.

Clearly, theN x N matrix T in the above equation is a circulant matrix and the resulhef t
circulant MVPT P is just the coordinate column vect&r= (rq,71,...,7y_1)T of r. Especially,

the first row of T is

Tay = (qo, qn-1,qN—-2,-- -, Q1) 1)

In the next section, we will use this well-known fact to derivew redundant representations.

[Il. NEW GF(2") SPBMULTIPLICATION ALGORITHM

In this part we introduce the main idea of our multiplicatialyorithm using the shifted
polynomial basis (SPB) of:F'(2") over GF'(2). We first introduce the definition of the SPB.

If f(x) =2"+2F +1 (n > 2) is an irreducible trinomial ove& F(2), then all elements of
GF(2") can be represented using a polynomial ba&is= {z/|0 < i < n — 1}. Let v be an
integer, the ordered set™*W = {27%| 0 < i < n — 1} is called the SPB of7F'(2") over
GF(2) with respect toV. It was shown that the best values«wtre k or k£ — 1 when the SPB
is used to design parallel multipliers [19]. In this articlee selectv = k. However, we note
that the proposed embedding method can be similarly usethéocaser = k — 1.

Given two GF(2") elementsa = x~° 3" a2’ andb = 2= > bz’ represented in the

above SPB, the proposed algorithm can be divided into fapsstThe first two steps also appear



in designing Toeplitz MVP-based subquadraii€'(2") multipliers, and detailed descriptions can
be found in [20]. The following part presents these resulisfly.

Step 1. Representing the product afandb as a Mastrovito MVP.

The SPB Mastrovito multiplier was introduced in [19]. Lét= (ag, a1, ...,a,-1)" be the
coordinate column vector of the field element 2z~ Z?:_()l a;x", B andC are defined similarly.
The coordinate column vectdr' of ¢ = ab can be represented & = Z A in the following

equation:

= (27,2 ", a7 thb, L T A
= (z7v, 27t " ZA

The n x n matrix Z = (2 )o<i j<n—1, Which depends on only3 and f(x), is called the
Mastrovito matrix, and”' = Z A is the Mastrovito MVP formula to compute the productof
andb in GF(2").

Step 2: Transforming the Mastrovito MV’ = Z A into a Toeplitz MVP.

Using the transformation matrik’ of [20] , the above Mastrovito MVR' = ZA can be

transformed into Toeplitz MVRD = T'A, whereT is a Toeplitz matrix, or more precisely,
C=ZA=U'"WZA=U'TA=U"'D, (2)

0 ](n—v)x(n—v)

]’UXU 0
Toeplitz matrix.

Step 3: Embedding the Toeplitz MVRED = T'A into a circulant MVP.
We give a small example to illustrate the idea of this embagldThe following Toeplitz MVP

whereU = , Ixo 1S thev x v identity matrix andl’ = UZ is ann x n

of dimension 3
Co to t-1 T2 ag

C1 - tl to t_l aq

Co ta 1 o as



can be embedded into either the following circulant MVP ahension 6

Co to t_y t_y O t ao
c1 t1 to t_1 t_o to ai
Co tay t1 tog t_1 t—o O as
T3 0 to t1 ty t_q1 t.o 0
T4 to 0 to t1 ty t_1 0
rs t_1 t_o to to 0
or the following circulant MVP of dimension 5
Co to t_1 t_o 1o 1 ap
c1 t1 to t_1 t_o 1o aq
Co to 11 to t_1 t_o )
S3 t_o to 11 to Tt 0
54 t1 to to t1 i 0
Generally, given am x n Toeplitz matrix
to  tg too t_(n-1)
131 ot t-(n-2)
T = ty t1 to -3 |>
th1 tn_o tns -+ 1o

T can be embedded into(an — 1+ ) x (2n—1+6) circulant matrixI" (see, for example, [21]),
whered is an arbitrary nonnegative integer. As a circulant maffixgan be uniquely determined

by its first rowT';):

Ty = (to,t_1,t—9, . s t_meo),t—(ne1),0, ..., 0, tp_1, tn s, ..., ta, t1).
1) = (to,t=1,t—2 (n—2)s t—(n—1) 1 tn—2 2,11)

é
The rest rows ofl" are the cyclic right shift by one bit of the previous one. Tmgiify the

explanation, we let = 0 in this article, i.e.,

T(l) - (to, t_l, t_g, ‘e ,t_(n_g), t—(n—l); tn—l; tn_g, ce e ,tQ, t1> (3)



In order to embed the Toeplitz MVP = T'A into a circulant MVP of dimensiotV = 2n—1,
which is denoted byR, the n-bit column vectorA should also be extended to &hbit column
vector P by adding(N —n) = (n — 1) extra 0’'s toA:

P = (p07p17 cee 7p2n—1)T - (G/Oaalu B -7an—1707 .. '7O>T' (4)
——

n—1

Due to the property of the above embedding and the definitiaR im equation (4), it is clear
that the firstn bits of the resulting circulant MVRR = (7o, 71, ...,79,_2)T = TP are just the

n-bit Toeplitz MVP D =TA = (¢, cys1,-- -, Cn-1,C0,C1,---,Co_1). Therefore, we have

R = (T07 T, ... 7r2n—2)T - (Cv7 Cyt1y-+-3Cn=1,C0,C1, -+ Cyp—1,Tns 'p+1, - - - 7T2n—%)T' (5)

n—1

After this step, we have embedded a Toeplitz MVP of dimensipwhich corresponds to a

GF(2") multiplication operation, into a circulant MVP of dimensi&v = 2n — 1. Because of
the equivalence between the circulant MVP of dimensidorand the multiplication operation
in quotient ring GF(2)[x]/(zY + 1), we can also rewrite the circulant MVR = TP as a
multiplication in the quotient ring7F'(2)[z]/(z™¥ + 1). After obtaining theN-bit product vector
R in equation (5) using some asymptotically faster multigiicn algorithm, we reach the final
step.

Step 4: Inversive coordinate transformation from to C'.

We have shown that the first bits of the circulant MVPR in equation (5) are just the
n-bit Toeplitz MVP D = TA = (¢y, Cog1,--+»Cn_1,C0,C1, - - -, Co_1)" . Therefore, the coordinate
column vectorC' of ¢ = ab in equation (2) can be obtained by first extracting the firgtits of
R, i.e., then-bit vector D, and then applying the following inversive coordinate sfanmation
to D :

—1 -1 T T
C=U"D=U (Cv70v+17---7Cn—17007017---70v—1) = (007017---7%—2,%—1) .

Compared to previous polynomial-based embedding mettibdsproposed method is much
more flexible since parametérin N = 2n — 1+ can be any nonnegative integer. Furthermore,
the redundant degre¥/n is approximately equal to 2 for all casesdifis small.

In this section, we have introduced the proposed idea atixriairel. In order to apply this
idea to practical implementations, we need explicit formeubf elements in matri¥’ and vector

P. So, we present a detailed description of step 2 and 3 in tkieseetion.



[V. EXPLICIT FORMULAE OF SPBREDUNDANT REPRESENTATIONS FOR IRREDUCIBLE

TRINOMIALS

The key point of the redundant representation is to perforiF&2") multiplication operation
using aGF(2)[z]/(z" + 1) multiplication module. Therefore, we must map the t@#é'(2")
elementsa and b into two GF(2)[z]/(z"Y + 1) elementsp and ¢ first (or map the twon-bit
coordinate column vectot and B to two N-bit coordinate column vectaP and() respectively).
The mapping from: to p is simple: adding N —n) = (n — 1) extra 0’s to then-bit vector A,
and it is given in equation (4). We now derive the explicitnfada that map$ to ¢ (or B to Q).

In step 1, we have introduced the Mastrovito MVP equatiba: Z A, where then x n matrix
Z = (z;)o<ij<n—1 depends on only3 and f. Since explicit expressions of ; are different
according to the form of the trinomial” + 2 + 1, we only discuss the case:“ 1 < 2v and
v < n — 2" in this work. In this case, the following explicit expresss of z,,, can be found
in [19]:

boy—nit—i 0<i<2v—n+t,
Ryt = boyii—i 20—-nm+t+1<i<v—+t,
byinit—i + by v+t+1<i<n—1,
where0) <t <n—v—2.

After step 2 (transforming the Mastrovito MVE = Z A into the Toeplitz MVPD = T A),

row v of matrix Z, i.e., Z,, will become the first row off’, i.e., T(;). By the above equation,

we get explicit expressions of this row:

Z(v) = T(l) = <§2v—n7 b2v—n—17 R bg, bn—l; bn—27 ceey bm
21):;,-{-1 ntv
én—l + bv—la bn—? + bv—27 BRI bv+1 + b2v—n+1/)~
n—‘v,—l

In step 3, we want to embed the Toeplitz MMP = T'A into the circulant MVPR = TP.
Therefore, we also need explicit expressions of the firatrool of 7' to form the right half of
the first row of T (see equation (3)). These explicit expressions can bermutgrom the first
column of Z, which are also listed in [19]:

Z(l) = (bO + bv? bl + bv+17 R bn—v—l + bn—17

n—uv

bO + bn—v; bl + bn—v—i—lu ey b2v—n—1 + bv—17§2v—n7 b2v—n+17 CIEEI) bv—l)T-

2u—n n—uv
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After multiplying U to Z in step 2, we obtain the first column @f.

T(l) = (b2v—n7 b2v—n+17 R bv—béo + bm bl + bv+17 ) bn—v—l + bn—lj
bO + bn—m bl + bn—v—l—la ey va—n—l + bv—l)T~
21)‘:n

Now we can form the first row of th&/ x N circulant matrixI" from the first row and column
of T

Tay = (bapen,bop—p1,---, bg, én_l, bp_o, ..., bg,
20—n+1 Ay

@n—1 +by_1,bn—2 +by_2,...,byy1 + bzu—n+1j
n—v—1

boo—n—1+ by—1,b20-n—2+by_2,..., b0+ bn—ga

20-n
bp—v_1+ bp_1,bp—y—2 +by_o,...,bg+ bg, by—1,-.., b2v_n+£). (6)

e n—v—1

Equation (1), namely,
7(1) = (QO7QN—17QN—27 .- -Jh)

reveals the relationship betwe&i'(2)[z]/(zV +1) elementy = 3 | ¢z’ and the first ol
of circulant matrix7'. Therefore, by comparing equation (1) with (6), we obtaia thllowing
mapping relationship betweed = (¢, q1,...,qv-1)" and B = (by, by, ..., bp_1)T:

p

bit20—n 0<t<n—-v-—1,
bt+v—n + bt+2v—n n—v S t S 2n — 20 — 17
bt+v—n + bt+2v—2n 2n — 2v S t S n— 17
qr = (7)
bt+v—n+1 + bt+2v—2n+l n<t<2n-v-— 27
bt+2v—2n+1 2n—v—1 S t S 3n — 2v — 2,
L bt+2v—3n+1 3n—2v—1 S t S 2n — 2.

This transformation can be performed in parallel at a cowofv—-2—(n—v—1)=n—1
XOR gates at 1 XOR gate delay.

Because transformation matriX in Step 2 and its inverselU ! in Step 4 involve only
permutations of elements, no gate is required in these temssiTherefore, the total complexity
of the proposed multiplication algorithmiis-1 XOR gates and 1 XOR gate delay pl&(n, NV),

which denotes the complexity to multiph~term polynomialp and N-term polynomialg.



V. AN EXAMPLE

11

We now present an example to illustrate the proposed mighigdn algorithm. Let{z' 3|0 <
i < 4} be the SPB of7F'(2°) generated byf(z) = 2° + z* + 1. Given two GF(2°) elements

a=x35" gzt andb=235% b, the coordinate column vectet = (cy, ¢y, o, 3, ¢4)T
=0 =0 ) ) ) 9

of ¢ = ab can be represented by the following Mastrovito MVP:

bo+bs by b by
bi+bs bo+bs by b
C=ZA=| by+by bi+by by+by b
by bo b by
by by bo b

It is easy to see that

Cy = bQCLQ + blal + b0a2 + b4a3 + b3a4.

\

by

by
bo
by
+ by
bs

co = (bo + b3)ag + baay + byas + bpas + byau,
¢1 = (by + by)ag + (bo + bg)ag + baas + byag + boay,

ca = (bo + ba)ag + (by + bs)ay + (bo + bs)as + beas + bya,
c3 = brag + bpay + byas + bgas + (by + bo)ay,

Qo
[45]
a2
as

2]

(8)

Now we computeC = (co, 1, co, c3,¢4)T using the proposed method. After multiplying

0 I2><2
I3><3 0

U:

to Z, Mastrovito matrixZ is transformed to the following Toeplitz matrix

by bo by
by b bo
T=UZ= bo + bg b2 bl

bi+bs bo+bs by
bo+b2 b1—|—b4 bo+b3

bs
by
bo
by
by

by + by

bs
ba
bo
by

Then Toeplitz matrixI’ is embedded into the x 9 circulant matrix7' whose first row is

Ty = (b1, bo, ba, b3, by + ba, by + ba, by + by, by + b3, ba),
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and we obtain the circulant MV = (cs, ¢4, co, C1, C2, 75,76, 77, 73) = 1T P, where P is defined
as
P = (&0,@1,&2,&3,&4,O,O,O,O)T (9)

The circulant MVP R = TP is equivalent to the product of and ¢ in quotient ring
GF(2)[z]/(z° + 1). The coordinate column vectd? of p = (1,z,22, ...,2%)P is given by
equation (9), and the coordinate column vedfoof ¢ = (1, z,22,...,2%)Q can be determined

by equation (7) as follows:
Q = (by, ba, by + bs, by + by, by + b, by + by, bz, by, b)” . (10)
After multiplying p andq in GF(2)[z]/(z° + 1), we get
r = pgmod (2 +1)
= biag + boay + byas + bzas + (by + be)ay

+[boag + bray + boag + byas + byay]z

+[(bo + b3)ag + baay + bray + boas + byay)r?

+[(by + ba)ag + (bo + b3)ay + baay + byas + byay)x?

+[(bo + ba)ag + (by + by)ay + (b + b3)ag + byas + byay)z*

8

+r5x5 + rﬁxﬁ + 7‘7567 + rgx”.

Finally, we apply the inverse coordinate transformatiohicl is described iBtep 4 of Section
3, on the first five bits ofR, i.e., coefficients ofi, z, 2%, 2 and z* in the above equation, and
get the coordinate column vect6r of ¢ = ab in GF(2"). It is easy to check that coordinates

of C' obtained using this new method are equal to those given in (8)

VI. CONSIDERATIONS FOR OTHER BASES OK'['(2") OVER GF'(2)

Besides SPB, the proposed matrix embedding method is algiicaple to other bases of
GF(2") over GF(2). To this end, multiplication operations in these bases rbadransformed
into Toeplitz MVPs first. For polynomial bases 6fF'(2") generated by irreducible trinomials
f(x) = 2" + 2 + 1 (2k < n), two methods were presented to transform a polynomialsbasi
multiplication into a Toeplitz MVP in [23].
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The first method is similar with the transformation of Stepn Section Ill. Given two
GF(2") elementsa = > a;z' andb = >0 bz’ represented in polynomial basis. Let
¢ =" ¢z’ = ab mod f(x). Define A = (ag, a1, ...,a, )" be the coordinate column vector
of a, B andC are defined similarly.

In order to compute the coordinate column vegtoof ¢, we may first multiply polynomials

a andb:

where
ZEZO be—ia; 0<t<n-—1,

-1
doiip imiai n <t <2n—2.

(11)

St =
Then we perform the reduction operation:

c = smodf(x):Zcixi

2n—k—1
= Zstx + Z P n-l—lc_'_l,t—n)

2n—2
+ Z St<xt—2n+2k+xt—2n+k+xt—n) (12)
t=2n—k
n—k—1

= Zstx —|—Zst+n kl’ + Z 5t+n1'

2k—2

+ E St4on— ok’ + 5 Styon— pat + 5 8t+n56

t=n—k

These two steps can be combined into a MVPE- Z A. Multiplying the transformation matrix

0 Itn—k)x(n—k)
Tioscke 0

Ui =

to Z, we obtain Toeplitz matrixy, 2.

Reference [23] presented a brief description of the secarformation. We now presented
a detailed description and proof of this transformation.

Definition 1: Let Z/ denote the(j — i + 1) x n submatrix of Z formed by selecting rows

i+ 1,. — 1,7, wherei < j.



14

Definition 2: Let J; ; represent the: x n elementary transformation matrix that adds row
to row j, and E be [['=7 Jiix-
Proposition 1: Uy, EZ is a Toeplitz matrix whose each element is a sum of at most two
terms.
Proof: We denoteEZ as Z. By definition 2, transformation® adds Zt~2 to Z2~2, and
72 is a Toeplitz matrix becausg! ' and Z'~! are two Toeplitz matrices. No& consists

of three Toeplitz submatrices:

k—1 k—1
Zo Zo
7 _ 52k —2 k—2 2k—2
Z = Zk - Zo +Zk
n—1 n—1
ZQk—l Z2k—1

is a Toeplitz matrix. To this end, we only need to find out thiatrenship between rovk — 1
and rowk, which correspond te;_; andc, + ¢, respectively and can be obtained using (11)
and (12):

Ck—1 = Sk—1+ Sk4n—1
k—1 n—1
= E bp—i—1a; + E btn—1-ii,
i=0 i=k
cot+cx = So+ Sk+ 28, + 250k + Skan

= So+ Sk + Sktn
k n—1
= apby + Z br—ia; + Z Ditn—i;.-
=0 i=k+1
A careful observation reveals that the first- 1 elements of rowk — 1 are equal to the last
n—1 elements of rowk. ThereforeZ contains only two Toeplitz submatriceg2*~2 and 73, ..
Because row) and rown — 1 of Z are the same as those &f Uy, 1 FZ is a Toeplitz matrix.
Since each element ¢f = EZ is a sum of no more than two terms and premultiplication of
Usi—1 to Z only moves the uppezk — 1 rows down below the lowen — 2k + 1 rows of Z,

each element of Toeplitz matriX,,_; £ 7 is a sum of at most two terms. [ |



15

For GF'(2")s that Type Il optimal normal bases exist, the optimal norbaalis multiplication
can be transformed into the summation of a Toeplitz MVP andaillant MVP of dimensions
n, see for example [22]. Therefore, the proposed matrix ewhbgdmethod is applicable.
Furthermore, reference [20] indicated th@#'(2") multiplications in dual, weakly dual, and
triangular bases can also be rewritten as Toeplitz MVPsrefbee, the proposed method works

for these bases too.

VIlI. CONCLUSIONS

We have presented a new redundant representation to peffét(@") multiplication. Com-
pared to previous methods, it has low redundant degree axitll@echoice of N. In this work,
we focus on SPB and only discuss the case thAY2") is generated by (z) = 2" + z¥ + 1
where n+1 < 2v andv < n —2". Explicit formulae that mapping to p andb to ¢ are derived
for this case.

One important step in this method is that thg'(2") product formula must be rewritten
as a Toeplitz MVP. For other cases of irreducible trinomeatgl the following two types of
pentanomialsz™ + 2%+ + 2% 4+ 2F~1 + 1 and2** + 2% + 2% + 2° + 1, their SPB product formulae
can also be transformed to Toeplitz MVPs. Detailed desonpif these transformation matrixes
can be found in [20, Section 3.2, 3.3 and 3.4]. Thereforeptbposed method is also applicable
to these irreducible polynomials. For all irreducible tnmials, the number of XOR gates required
to generate Mastrovito matrices can be found in [19]. Thuscan obtain the total complexity

of the proposed~F'(2") SPB multiplication algorithm for all irreducible trinom&
n—1 n#2v

XOR gates and 1 XOR gate delay plad(n, V),
n/2 n=2

whereM (n, N) denotes the complexity to multiply-term polynomiap and N-term polynomial
q.

NIST has recommended fivéF'(2")s for the ECDSA (Elliptic Curve Digital Signature Algo-
rithm) applicationsG F'(2163), GF(2233), GF(2%3), GF(21%) andGF(2°™), but no irreducible
trinomials exist for three degrees, viz., 163, 283 and 50t.gach of these three fields, at least
one irreducible pentanomialg(u) = u™ + u**! + u* + v*~! + 1 were found in [24]. Since
complexities to generate corresponding Toeplitz matrioeshis type of pentanomials had been

presented in [20], we can also obtain the total complexityhef proposed SPB multiplication
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algorithm for these pentanomials: a total 3y delays and no more thaj2.5n] XOR gates
plus M(n, N).
Finally, we briefly note that besides classical FFTs, theeesame other methods to perform

multiplication in ring GF'(2)[z]/(z" — 1), which is also known as the cyclic convolution. For

example, classical FFT algorithm is often based on the faetion of 2V — 1 into N linear

factorsz — w' (0 < i < N). A straightforward generalization is the factorizatiohzd’” — 1 into

nonlinear factors, and this approach leads to the Winograd short dotiwo algorithm, see,

e.g.,

[25]. Additionally, other algorithms to compu€éF'(2") cyclic convolutions can also be

used. Furthermore, the two additive FFT algorithms preskimt [26] provide different FFT-based

computational methods.
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