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GF (2n) redundant representation

using matrix embedding

Yongjia Wang, Xi Xiong and Haining Fan

Abstract

By embedding a Toeplitz matrix-vector product (MVP) of dimensionn into a circulant MVP of

dimensionN = 2n+δ−1, whereδ can be any nonnegative integer, we present aGF (2n) multiplication

algorithm. This algorithm leads to a new redundant representation, and it has two merits: 1. The flexible

choices ofδ make it possible to select a properN such that the multiplication operation in ring

GF (2)[x]/(xN +1) can be performed using some asymptotically faster algorithms, e.g. the Fast Fourier

Transformation (FFT)-based multiplication algorithm; 2.The redundant degrees, which are defined as

N/n, are smaller than those of most previousGF (2n) redundant representations, and in fact they are

approximately equal to 2 for all applicable cases.

Index Terms

Finite fields, redundant representation, matrix-vector product, shifted polynomial basis, FFT.

I. INTRODUCTION

WhenGF (2n) is viewed as ann-dimensional vector space, field elements can be represented

as n-bit vectors in a basis ofGF (2n) over GF (2). Types of bases are various, for example,

polynomial bases, normal bases, dual bases and shifted polynomial bases (SPB) and so on.

Besides these representations, redundant representations become attractive when the value ofn

is large.
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Most previous redundant representations can be classified as two groups: one is originated from

polynomial bases and the other from normal bases. In 1995, Gao et al. presented a multiplication

algorithm in normal bases generated by Gauss periods [1] [2]. After converting the representation

from normal bases to some polynomials, they embedded a field into a larger cyclotomic ring,

and then performed ring multiplication using some asymptotically faster multiplication algorithm,

e.g., Fast Fourier Transform (FFT)-based multiplication algorithm. Especially, they embedded

GF (2n) into cyclotomic ringGF (2)[x]/(x2n+1+1) when a type II optimal normal basis exists. In

2007, this approach was improved by Gathen et al.. They used afast transformation between type

II optimal normal bases and suitable polynomial representations, whose complexity isO(n log2 n)

bit operations for the general case [3]. In 2010, Bernstein and Lange improved the results of

[3] in several ways [4]. They reduced the size of the suitablepolynomial fromn + 1 to n, and

they also reduced the transformation cost. These works mainly focus on type II optimal normal

bases. Another redundant representations originated fromgeneral normal bases is [5], where the

ordered set{1, γ, γ2, γ22 , . . . , γ2n−1

} was used to designGF (2n) quadratic parallel multipliers.

Especially, they discussed the case that rank of{γ, γ2, γ22 , . . . , γ2n−1

} is n− 1.

Compared to normal bases-based redundant representations, most previous works on redun-

dant representations follow the polynomial approach, namely, they embedGF (2n) into a finite

quotient ringGF (2)[x]/(xN + 1), and therefore map aGF (2n) multiplication operation into a

GF (2)[x]/(xN +1) multiplication. The later can be performed using some asymptotically faster

multiplication algorithm.

Redundant representations first appeared in finite fieldGF (2n) := GF (2)[x]/(f(x)) generated

by all-one-polynomialf(x) =
∑n

i=0 x
i. In 1984, Itoh and Tsujii applied the simplicity of multi-

plication in quotient ringGF (2)[x]/(xN + 1) (whereN = n+ 1) to theGF (2n) multiplication

[6]. In this case, then-bit vector of aGF (2n) element is mapped to the(n + 1)-bit vector of

a GF (2)[x]/(xN + 1) element. Therefore, the redundant degree, which is defined as N/n, is

(n+1)/n ≈ 1 for these specialGF (2n)s. Besides multiplication, Silverman also analyzed other

operations in these fields [7]. Combining Karatsuba’s algorithm and redundant representation,

Chang, Hong and Cho presented a low complexity bit-parallelmultiplier in 2005 [8]. In 2008,

Namin, Wu and Ahmadi designed a novel serial-in parallel-out multiplier in these fields [9].

In 1998, Drolet generalized this idea and introducedGF (2n) redundant representations sys-

tematically [10]. His results were corrected and improved later by Geiselmann, Muller-Quade
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and Steinwandt [11]. Similarly, Wu, Hasan, Blake and Gao presented simple and highly regular

architectures for finite field multipliers using a redundantrepresentation, and their architectures

can provide area-time trade-offs [12] [13]. In 2001, Geiselmann and Lukhaub showed that

GF (2n) arithmetic, especially exponentiation, in redundant representation is perfectly suited

for low power computing [14]. In 2003, Katti and Brennan generalized the idea of quotient ring

GF (2)[x]/(xN +1) to quotient ringsGF (2)[x]/(xN +xk+1) andGF (2)[x]/(xN +xk1+xk2+1)

[15], and in the same year, Geiselmann and Steinwandt generalized redundant representations

to finite fields of arbitrary characteristic [16].

The major disadvantage of the above redundant representations is that redundant degrees are

often large, for example, the average redundant degree for151 ≤ n ≤ 250 is about 4.58 [13].

Recently, Akleylek and Ozbudak presented a modified redundant representation [17]. Their results

improved some of the previous complexity values significantly, or more precisely, redundant

degrees are decreased to about 1 or 2 for someGF (2n)s. But for some other values ofn’s, no

improvement on redundant degrees is reported in their paper, for example, cases thatn’s are

prime.

Besides the disadvantage of large redundant degree, all these polynomial-based methods suffer

another disadvantage: for a fixedGF (2n), there is only one choice of a smallerN . Because of

this limitation, it might be hard to select a proper fast algorithm to perform multiplication in

GF (2)[x]/(xN + 1), for example, FFT does not help whenN is a prime [7].

In this article, a different embedding method is used to overcome the above two disadvantages.

Instead of following the polynomial approach, we apply the matrix approach to perform the

embedding step. We map aGF (2n) multiplication operation into a multiplication in the quotient

ringGF (2)[x]/(xN+1), whereN = 2n+δ−1 andδ can be any non-negative integer. The flexible

choices ofδ make it possible to select a properN such that the multiplication operation in ring

GF (2)[x]/(xN + 1) can be performed using some asymptotically fast algorithms. Furthermore,

our redundant degrees (N/n ≈ 2) are smaller than those of most previousGF (2n) redundant

representations for all applicable values ofn’s. As a comparison, reference [17] provided only 54

composite values ofn’s such that15 ≤ n ≤ 1956 and their redundant degrees are approximately

equal to 1 or 2. But for over50% (composite and prime) values ofn’s in this range, or even

a larger range1 ≤ n ≤ 10, 001, redundant degrees of our method are approximately equal to2

[18]. Even though, we must note that among these 54 values ofn’s in [17], there are 34 values
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of n’s such that their redundant degrees are slightly greater than 1.

This paper is organized as follows: The equivalence betweencirculant Matrix-Vector Product

(MVP) and GF (2)[x]/(xN + 1) multiplication is introduced in Section 2. In Section 3, the

new 4-stepGF (2n) SPB multiplication algorithm is described. Explicit formulae of the new

SPB redundant representation are given in Section 4, and an example is presented in Section 5.

Considerations for other bases are included in section 6. Finally, a few concluding remarks are

made in Section 7.

II. EQUIVALENCE BETWEEN CIRCULANT MVP AND GF (2)[x]/(xN + 1) MULTIPLICATION

Given two GF (2)[x]/(xN + 1) elementsp =
∑N−1

i=0 pix
i and q =

∑N−1
i=0 qix

i, let P =

(p0, p1, . . . , pN−1)
T be the coordinate column vector ofp, andQ is defined similarly. The product

r = pq =
∑N−1

i=0 rix
i in ring GF (2)[x]/(xN + 1) can be computed in three steps.

We first compute the conventional polynomial product ofp andq:

r = pq =

2N−2∑

t=0

rtx
t = l + l+,

wherel =
N −1∑

t=0

rtx
t, l+ =

2N−2∑

t=N

rtx
t and

rt =
∑

i+j=t
0≤i,j<N

piqj =







t∑

i=0

piqt−i 0 ≤ t ≤ N − 1;

N−1∑

i=t+1−N

piqt−i N ≤ t ≤ 2N − 2.

Then we reducel+ using equationxi = xi−N , whereN ≤ i ≤ 2N − 2, and obtain

l+ mod (xN + 1) =
2N−2∑

t=N

rtx
t mod (xN + 1) =

N−2∑

t=0

rt+Nx
t.
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Finally, we get the productr of p andq in GF (2)[x]/(xN + 1):

r =
N−1∑

i=0

rix
i = (l + l+) mod (xN + 1)

=

N−1∑

t=0

rtx
t +

N−2∑

t=0

rt+Nx
t

=
N−2∑

t=0

(
t∑

i=0

piqt−i +
N−1∑

i=t+1

piqt+N−i

)

xt +

(
N−1∑

i=0

piqN−1−i

)

xN−1

= (1, x, x2, . . . , xN−1)













q0 qN−1 qN−2 · · · q1

q1 q0 qN−1 · · · q2

q2 q1 q0 · · · q3
...

...
...

. . .
...

qN−1 qN−2 qN−3 · · · q0

























p0

p1

p2
...

pN−1













= (1, x, x2, . . . , xN−1)TP.

Clearly, theN ×N matrix T in the above equation is a circulant matrix and the result of the

circulant MVPTP is just the coordinate column vectorR = (r0, r1, . . . , rN−1)
T of r. Especially,

the first row ofT is

T (1) = (q0, qN−1, qN−2, . . . , q1). (1)

In the next section, we will use this well-known fact to derive new redundant representations.

III. N EW GF (2n) SPBMULTIPLICATION ALGORITHM

In this part we introduce the main idea of our multiplicationalgorithm using the shifted

polynomial basis (SPB) ofGF (2n) overGF (2). We first introduce the definition of the SPB.

If f(x) = xn + xk + 1 (n > 2) is an irreducible trinomial overGF (2), then all elements of

GF (2n) can be represented using a polynomial basisW = {xi|0 ≤ i ≤ n − 1}. Let v be an

integer, the ordered setx−vW = {xi−v| 0 ≤ i ≤ n − 1} is called the SPB ofGF (2n) over

GF (2) with respect toW . It was shown that the best values ofv arek or k − 1 when the SPB

is used to design parallel multipliers [19]. In this article, we selectv = k. However, we note

that the proposed embedding method can be similarly used forthe casev = k − 1.

Given twoGF (2n) elementsa = x−v
∑n−1

i=0 aix
i and b = x−v

∑n−1
i=0 bix

i represented in the

above SPB, the proposed algorithm can be divided into four steps. The first two steps also appear
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in designing Toeplitz MVP-based subquadraticGF (2n) multipliers, and detailed descriptions can

be found in [20]. The following part presents these results briefly.

Step 1: Representing the product ofa and b as a Mastrovito MVP.

The SPB Mastrovito multiplier was introduced in [19]. LetA = (a0, a1, . . . , an−1)
T be the

coordinate column vector of the field elementa = x−v
∑n−1

i=0 aix
i , B andC are defined similarly.

The coordinate column vectorC of c = ab can be represented asC = ZA in the following

equation:

c = x−v

n−1∑

i=0

cix
i = ab =

(
n−1∑

i=0

aix
i−v

)

b

= (x−vb, x−v+1b, . . . , x−1b, b, . . . , xn−v−1b)A

= (x−v, x−v+1, . . . , xn−v−1)ZA.

The n × n matrix Z = (zi,j)0≤i,j≤n−1, which depends on onlyB and f(x), is called the

Mastrovito matrix, andC = ZA is the Mastrovito MVP formula to compute the product ofa

and b in GF (2n).

Step 2: Transforming the Mastrovito MVPC = ZA into a Toeplitz MVP.

Using the transformation matrixU of [20] , the above Mastrovito MVPC = ZA can be

transformed into Toeplitz MVPD = TA, whereT is a Toeplitz matrix, or more precisely,

C = ZA = U−1UZA = U−1TA = U−1D, (2)

whereU =




0 I(n−v)×(n−v)

Iv×v 0



, Iv×v is thev× v identity matrix andT = UZ is ann× n

Toeplitz matrix.

Step 3: Embedding the Toeplitz MVPD = TA into a circulant MVP.

We give a small example to illustrate the idea of this embedding. The following Toeplitz MVP

of dimension 3 






c0

c1

c2








=








t0 t−1 t−2

t1 t0 t−1

t2 t1 t0















a0

a1

a2







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can be embedded into either the following circulant MVP of dimension 6















c0

c1

c2

r3

r4

r5
















=
















t0 t−1 t−2 0 t2 t1

t1 t0 t−1 t−2 0 t2

t2 t1 t0 t−1 t−2 0

0 t2 t1 t0 t−1 t−2

t−2 0 t2 t1 t0 t−1

t−1 t−2 0 t2 t1 t0































a0

a1

a2

0

0

0
















or the following circulant MVP of dimension 5












c0

c1

c2

s3

s4













=













t0 t−1 t−2 t2 t1

t1 t0 t−1 t−2 t2

t2 t1 t0 t−1 t−2

t−2 t2 t1 t0 t−1

t−1 t−2 t2 t1 t0

























a0

a1

a2

0

0













.

Generally, given ann× n Toeplitz matrix

T =













t0 t−1 t−2 · · · t−(n−1)

t1 t0 t−1 · · · t−(n−2)

t2 t1 t0 · · · t−(n−3)

...
...

...
. . .

...

tn−1 tn−2 tn−3 · · · t0













,

T can be embedded into a(2n−1+δ)×(2n−1+δ) circulant matrixT (see, for example, [21]),

whereδ is an arbitrary nonnegative integer. As a circulant matrix,T can be uniquely determined

by its first rowT (1):

T (1) = (t0, t−1, t−2, . . . , t−(n−2), t−(n−1), 0, . . . , 0
︸ ︷︷ ︸

δ

, tn−1, tn−2, . . . , t2, t1).

The rest rows ofT are the cyclic right shift by one bit of the previous one. To simplify the

explanation, we letδ = 0 in this article, i.e.,

T (1) = (t0, t−1, t−2, . . . , t−(n−2), t−(n−1), tn−1, tn−2, . . . , t2, t1). (3)
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In order to embed the Toeplitz MVPD = TA into a circulant MVP of dimensionN = 2n−1,

which is denoted byR, then-bit column vectorA should also be extended to anN-bit column

vectorP by adding(N − n) = (n− 1) extra 0’s toA:

P = (p0, p1, . . . , p2n−1)
T = (a0, a1, . . . , an−1, 0, . . . , 0

︸ ︷︷ ︸

n−1

)T . (4)

Due to the property of the above embedding and the definition of P in equation (4), it is clear

that the firstn bits of the resulting circulant MVPR = (r0, r1, . . . , r2n−2)
T = TP are just the

n-bit Toeplitz MVPD = TA = (cv, cv+1, . . . , cn−1, c0, c1, . . . , cv−1). Therefore, we have

R = (r0, r1, . . . , r2n−2)
T = (cv, cv+1, . . . , cn−1, c0, c1, . . . , cv−1, rn, rn+1, . . . , r2n−2

︸ ︷︷ ︸

n−1

)T . (5)

After this step, we have embedded a Toeplitz MVP of dimensionn, which corresponds to a

GF (2n) multiplication operation, into a circulant MVP of dimension N = 2n − 1. Because of

the equivalence between the circulant MVP of dimensionN and the multiplication operation

in quotient ringGF (2)[x]/(xN + 1), we can also rewrite the circulant MVPR = TP as a

multiplication in the quotient ringGF (2)[x]/(xN +1). After obtaining theN-bit product vector

R in equation (5) using some asymptotically faster multiplication algorithm, we reach the final

step.

Step 4: Inversive coordinate transformation fromD to C.

We have shown that the firstn bits of the circulant MVPR in equation (5) are just the

n-bit Toeplitz MVPD = TA = (cv, cv+1, . . . , cn−1, c0, c1, . . . , cv−1)
T . Therefore, the coordinate

column vectorC of c = ab in equation (2) can be obtained by first extracting the firstn bits of

R, i.e., then-bit vectorD, and then applying the following inversive coordinate transformation

to D :

C = U−1D = U−1(cv, cv+1, . . . , cn−1, c0, c1, . . . , cv−1)
T = (c0, c1, . . . , cn−2, cn−1)

T .

Compared to previous polynomial-based embedding methods,the proposed method is much

more flexible since parameterδ in N = 2n−1+ δ can be any nonnegative integer. Furthermore,

the redundant degreeN/n is approximately equal to 2 for all cases ifδ is small.

In this section, we have introduced the proposed idea at matrix level. In order to apply this

idea to practical implementations, we need explicit formulae of elements in matrixT and vector

P . So, we present a detailed description of step 2 and 3 in the next section.
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IV. EXPLICIT FORMULAE OF SPBREDUNDANT REPRESENTATIONS FOR IRREDUCIBLE

TRINOMIALS

The key point of the redundant representation is to perform aGF (2n) multiplication operation

using aGF (2)[x]/(xN + 1) multiplication module. Therefore, we must map the twoGF (2n)

elementsa and b into two GF (2)[x]/(xN + 1) elementsp and q first (or map the twon-bit

coordinate column vectorA andB to twoN-bit coordinate column vectorP andQ respectively).

The mapping froma to p is simple: adding(N − n) = (n− 1) extra 0’s to then-bit vectorA,

and it is given in equation (4). We now derive the explicit formula that mapsb to q (or B to Q).

In step 1, we have introduced the Mastrovito MVP equationC = ZA, where then×n matrix

Z = (zi,j)0≤i,j≤n−1 depends on onlyB and f . Since explicit expressions ofzi,j are different

according to the form of the trinomialxn + xv + 1, we only discuss the case “n + 1 ≤ 2v and

v ≤ n− 2” in this work. In this case, the following explicit expressions ofzv+t,i can be found

in [19]:

zv+t,i =







b2v−n+t−i 0 ≤ i ≤ 2v − n + t,

b2v+t−i 2v − n + t+ 1 ≤ i ≤ v + t,

bv+n+t−i + b2v+t−i v + t+ 1 ≤ i ≤ n− 1,

where0 ≤ t ≤ n− v − 2.

After step 2 (transforming the Mastrovito MVPC = ZA into the Toeplitz MVPD = TA),

row v of matrix Z, i.e., Z(v), will become the first row ofT , i.e., T(1). By the above equation,

we get explicit expressions of this row:

Z(v) = T(1) = (b2v−n, b2v−n−1, . . . , b0
︸ ︷︷ ︸

2v−n+1

, bn−1, bn−2, . . . , bv
︸ ︷︷ ︸

n−v

,

bn−1 + bv−1, bn−2 + bv−2, . . . , bv+1 + b2v−n+1
︸ ︷︷ ︸

n−v−1

).

In step 3, we want to embed the Toeplitz MVPD = TA into the circulant MVPR = TP .

Therefore, we also need explicit expressions of the first column of T to form the right half of

the first row ofT (see equation (3)). These explicit expressions can be obtained from the first

column ofZ, which are also listed in [19]:

Z(1) = (b0 + bv, b1 + bv+1, . . . , bn−v−1 + bn−1
︸ ︷︷ ︸

n−v

,

b0 + bn−v, b1 + bn−v+1, . . . , b2v−n−1 + bv−1
︸ ︷︷ ︸

2v−n

, b2v−n, b2v−n+1, . . . , bv−1
︸ ︷︷ ︸

n−v

)T .
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After multiplying U to Z in step 2, we obtain the first column ofT :

T (1) = (b2v−n, b2v−n+1, . . . , bv−1
︸ ︷︷ ︸

n−v

, b0 + bv, b1 + bv+1, . . . , bn−v−1 + bn−1
︸ ︷︷ ︸

n−v

,

b0 + bn−v, b1 + bn−v+1, . . . , b2v−n−1 + bv−1
︸ ︷︷ ︸

2v−n

)T .

Now we can form the first row of theN×N circulant matrixT from the first row and column

of T :

T (1) = (b2v−n, b2v−n−1, . . . , b0
︸ ︷︷ ︸

2v−n+1

, bn−1, bn−2, . . . , bv
︸ ︷︷ ︸

n−v

,

bn−1 + bv−1, bn−2 + bv−2, . . . , bv+1 + b2v−n+1
︸ ︷︷ ︸

n−v−1

,

b2v−n−1 + bv−1, b2v−n−2 + bv−2, . . . , b0 + bn−v
︸ ︷︷ ︸

2v−n

,

bn−v−1 + bn−1, bn−v−2 + bn−2, . . . , b0 + bv
︸ ︷︷ ︸

n−v

, bv−1, . . . , b2v−n+1
︸ ︷︷ ︸

n−v−1

). (6)

Equation (1), namely,

T (1) = (q0, qN−1, qN−2, . . . , q1)

reveals the relationship betweenGF (2)[x]/(xN+1) elementq =
∑N

i=0 qix
i and the first rowT (1)

of circulant matrixT . Therefore, by comparing equation (1) with (6), we obtain the following

mapping relationship betweenQ = (q0, q1, . . . , qN−1)
T andB = (b0, b1, . . . , bn−1)

T :

qt =







bt+2v−n 0 ≤ t ≤ n− v − 1,

bt+v−n + bt+2v−n n− v ≤ t ≤ 2n− 2v − 1,

bt+v−n + bt+2v−2n 2n− 2v ≤ t ≤ n− 1,

bt+v−n+1 + bt+2v−2n+1 n ≤ t ≤ 2n− v − 2,

bt+2v−2n+1 2n− v − 1 ≤ t ≤ 3n− 2v − 2,

bt+2v−3n+1 3n− 2v − 1 ≤ t ≤ 2n− 2.

(7)

This transformation can be performed in parallel at a cost of2n−v−2− (n−v−1) = n−1

XOR gates at 1 XOR gate delay.

Because transformation matrixU in Step 2 and its inverseU−1 in Step 4 involve only

permutations of elements, no gate is required in these two steps. Therefore, the total complexity

of the proposed multiplication algorithm isn−1 XOR gates and 1 XOR gate delay plusM(n,N),

which denotes the complexity to multiplyn-term polynomialp andN-term polynomialq.
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V. AN EXAMPLE

We now present an example to illustrate the proposed multiplication algorithm. Let{xi−3|0 ≤

i ≤ 4} be the SPB ofGF (25) generated byf(x) = x5 + x3 + 1. Given twoGF (25) elements

a = x−3
∑4

i=0 aix
i andb = x−3

∑4
i=0 bix

i, the coordinate column vectorC = (c0, c1, c2, c3, c4)
T

of c = ab can be represented by the following Mastrovito MVP:

C = ZA =













b0 + b3 b2 b1 b0 b4

b1 + b4 b0 + b3 b2 b1 b0

b0 + b2 b1 + b4 b0 + b3 b2 b1

b1 b0 b4 b3 b4 + b2

b2 b1 b0 b4 b3

























a0

a1

a2

a3

a4













.

It is easy to see that






c0 = (b0 + b3)a0 + b2a1 + b1a2 + b0a3 + b4a4,

c1 = (b1 + b4)a0 + (b0 + b3)a1 + b2a2 + b1a3 + b0a4,

c2 = (b0 + b2)a0 + (b1 + b4)a1 + (b0 + b3)a2 + b2a3 + b1a4,

c3 = b1a0 + b0a1 + b4a2 + b3a3 + (b4 + b2)a4,

c4 = b2a0 + b1a1 + b0a2 + b4a3 + b3a4.

(8)

Now we computeC = (c0, c1, c2, c3, c4)
T using the proposed method. After multiplying

U =




0 I2×2

I3×3 0





to Z, Mastrovito matrixZ is transformed to the following Toeplitz matrix

T = UZ =













b1 b0 b4 b3 b4 + b2

b2 b1 b0 b4 b3

b0 + b3 b2 b1 b0 b4

b1 + b4 b0 + b3 b2 b1 b0

b0 + b2 b1 + b4 b0 + b3 b2 b1













.

Then Toeplitz matrixT is embedded into the9× 9 circulant matrixT whose first row is

T (1) = (b1, b0, b4, b3, b2 + b4, b0 + b2, b1 + b4, b0 + b3, b2),
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and we obtain the circulant MVPR = (c3, c4, c0, c1, c2, r5, r6, r7, r8) = TP , whereP is defined

as

P = (a0, a1, a2, a3, a4, 0, 0, 0, 0)
T (9)

The circulant MVPR = TP is equivalent to the product ofp and q in quotient ring

GF (2)[x]/(x9 + 1). The coordinate column vectorP of p = (1, x, x2, . . . , x8)P is given by

equation (9), and the coordinate column vectorQ of q = (1, x, x2, . . . , x8)Q can be determined

by equation (7) as follows:

Q = (b1, b2, b0 + b3, b1 + b4, b0 + b2, b2 + b4, b3, b4, b0)
T . (10)

After multiplying p andq in GF (2)[x]/(x9 + 1), we get

r = pq mod (x9 + 1)

= b1a0 + b0a1 + b4a2 + b3a3 + (b4 + b2)a4

+[b2a0 + b1a1 + b0a2 + b4a3 + b3a4]x

+[(b0 + b3)a0 + b2a1 + b1a2 + b0a3 + b4a4]x
2

+[(b1 + b4)a0 + (b0 + b3)a1 + b2a2 + b1a3 + b0a4]x
3

+[(b0 + b2)a0 + (b1 + b4)a1 + (b0 + b3)a2 + b2a3 + b1a4]x
4

+r5x
5 + r6x

6 + r7x
7 + r8x

8.

Finally, we apply the inverse coordinate transformation, which is described inStep 4 of Section

3, on the first five bits ofR, i.e., coefficients of1, x, x2, x3 andx4 in the above equation, and

get the coordinate column vectorC of c = ab in GF (2n). It is easy to check that coordinates

of C obtained using this new method are equal to those given in (8).

VI. CONSIDERATIONS FOR OTHER BASES OFGF (2n) OVER GF (2)

Besides SPB, the proposed matrix embedding method is also applicable to other bases of

GF (2n) overGF (2). To this end, multiplication operations in these bases mustbe transformed

into Toeplitz MVPs first. For polynomial bases ofGF (2n) generated by irreducible trinomials

f(x) = xn + xk + 1 (2k < n), two methods were presented to transform a polynomial basis

multiplication into a Toeplitz MVP in [23].
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The first method is similar with the transformation of Step2 in Section III. Given two

GF (2n) elementsa =
∑n−1

i=0 aix
i and b =

∑n−1
i=0 bix

i represented in polynomial basis. Let

c =
∑n−1

i=0 cix
i = ab mod f(x). DefineA = (a0, a1, . . . , an−1)

T be the coordinate column vector

of a, B andC are defined similarly.

In order to compute the coordinate column vectorC of c, we may first multiply polynomials

a and b:

s = ab =

2n−2∑

t=0

stx
t,

where

st =







∑t

i=0 bt−iai 0 ≤ t ≤ n− 1,
∑n−1

i=t+1−n bt−iai n ≤ t ≤ 2n− 2.
(11)

Then we perform the reduction operation:

c = s mod f(x) =
n−1∑

i=0

cix
i

=
n−1∑

t=0

stx
t +

2n−k−1∑

t=n

st(x
t−n+k + xt−n)

+
2n−2∑

t=2n−k

st(x
t−2n+2k + xt−2n+k + xt−n) (12)

=

n−1∑

t=0

stx
t +

n−1∑

t=k

st+n−kx
t +

n−k−1∑

t=0

st+nx
t

+
2k−2∑

t=k

st+2n−2kx
t +

k−2∑

t=0

st+2n−kx
t +

n−2∑

t=n−k

st+nx
t.

These two steps can be combined into a MVPC = ZA. Multiplying the transformation matrix

Uk =




0 I(n−k)×(n−k)

Ik×k 0





to Z, we obtain Toeplitz matrixUkZ.

Reference [23] presented a brief description of the second transformation. We now presented

a detailed description and proof of this transformation.

Definition 1: Let Zj
i denote the(j − i + 1) × n submatrix ofZ formed by selecting rows

i, i+ 1, . . . , j − 1, j, wherei ≤ j.
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Definition 2: Let Ji,j represent then × n elementary transformation matrix that adds rowi

to row j, andE be
∏k−2

i=0 Ji,i+k.

Proposition 1: U2k−1EZ is a Toeplitz matrix whose each element is a sum of at most two

terms.

Proof: We denoteEZ as Z̃. By definition 2, transformationE addsZk−2
0 to Z2k−2

k , and

Z̃2k−2
k is a Toeplitz matrix becauseZk−1

0 andZn−1
k are two Toeplitz matrices. Now̃Z consists

of three Toeplitz submatrices:

Z̃ =








Z̃k−1
0

Z̃2k−2
k

Z̃n−1
2k−1








=








Zk−1
0

Zk−2
0 + Z2k−2

k

Zn−1
2k−1








.

We first prove that the(2k − 1)× n submatrix



Z̃k−1

0

Z̃2k−2
k





is a Toeplitz matrix. To this end, we only need to find out the relationship between rowk − 1

and rowk, which correspond tock−1 and c0 + ck respectively and can be obtained using (11)

and (12):

ck−1 = sk−1 + sk+n−1

=

k−1∑

i=0

bk−i−1ai +

n−1∑

i=k

bk+n−1−iai,

c0 + ck = s0 + sk + 2sn + 2s2n−k + sk+n

= s0 + sk + sk+n

= a0b0 +
k∑

i=0

bk−iai +
n−1∑

i=k+1

bk+n−iai.

A careful observation reveals that the firstn− 1 elements of rowk − 1 are equal to the last

n−1 elements of rowk. ThereforeZ̃ contains only two Toeplitz submatrices:Z̃2k−2
0 andZ̃n−1

2k−1.

Because row0 and rown− 1 of Z̃ are the same as those ofZ, U2k−1EZ is a Toeplitz matrix.

Since each element of̃Z = EZ is a sum of no more than two terms and premultiplication of

U2k−1 to Z̃ only moves the upper2k − 1 rows down below the lowern − 2k + 1 rows of Z̃,

each element of Toeplitz matrixU2k−1EZ is a sum of at most two terms.
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For GF (2n)s that Type II optimal normal bases exist, the optimal normalbasis multiplication

can be transformed into the summation of a Toeplitz MVP and a circulant MVP of dimensions

n, see for example [22]. Therefore, the proposed matrix embedding method is applicable.

Furthermore, reference [20] indicated thatGF (2n) multiplications in dual, weakly dual, and

triangular bases can also be rewritten as Toeplitz MVPs. Therefore, the proposed method works

for these bases too.

VII. CONCLUSIONS

We have presented a new redundant representation to performGF (2n) multiplication. Com-

pared to previous methods, it has low redundant degree and flexible choice ofN . In this work,

we focus on SPB and only discuss the case thatGF (2n) is generated byf(x) = xn + xv + 1

where “n+1 ≤ 2v andv ≤ n−2”. Explicit formulae that mappinga to p andb to q are derived

for this case.

One important step in this method is that theGF (2n) product formula must be rewritten

as a Toeplitz MVP. For other cases of irreducible trinomialsand the following two types of

pentanomials:xn+xk+1+xk+xk−1+1 andx4s+x3s+x2s+xs+1, their SPB product formulae

can also be transformed to Toeplitz MVPs. Detailed description of these transformation matrixes

can be found in [20, Section 3.2, 3.3 and 3.4]. Therefore, theproposed method is also applicable

to these irreducible polynomials. For all irreducible trinomials, the number of XOR gates required

to generate Mastrovito matrices can be found in [19]. Thus, we can obtain the total complexity

of the proposedGF (2n) SPB multiplication algorithm for all irreducible trinomials:






n− 1 n 6= 2v

n/2 n = 2v
XOR gates and 1 XOR gate delay plusM(n,N),

whereM(n,N) denotes the complexity to multiplyn-term polynomialp andN-term polynomial

q.

NIST has recommended fiveGF (2n)s for the ECDSA (Elliptic Curve Digital Signature Algo-

rithm) applications:GF (2163), GF (2233), GF (2283), GF (2409) andGF (2571), but no irreducible

trinomials exist for three degrees, viz., 163, 283 and 571. For each of these three fields, at least

one irreducible pentanomialsf(u) = un + uk+1 + uk + uk−1 + 1 were found in [24]. Since

complexities to generate corresponding Toeplitz matricesfor this type of pentanomials had been

presented in [20], we can also obtain the total complexity ofthe proposed SPB multiplication
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algorithm for these pentanomials: a total of3TX delays and no more thanb2.5nc XOR gates

plusM(n,N).

Finally, we briefly note that besides classical FFTs, there are some other methods to perform

multiplication in ringGF (2)[x]/(xN − 1), which is also known as the cyclic convolution. For

example, classical FFT algorithm is often based on the factorization of xN − 1 into N linear

factorsx−wi (0 ≤ i < N). A straightforward generalization is the factorization of xN − 1 into

nonlinear factors, and this approach leads to the Winograd short convolution algorithm, see,

e.g., [25]. Additionally, other algorithms to computeGF (2n) cyclic convolutions can also be

used. Furthermore, the two additive FFT algorithms presented in [26] provide different FFT-based

computational methods.
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