An Improved Trace Driven Instruction Cache Timing
Attack on RSA

Chen Cai-Sen ", Wang Tao*, Chen Xiao-Cen? and Zhou Ping*

! Department of Computer Engineering, Ordnance Engineering College, China
2 Department of Optical and Electrical Engineering, Ordnance Engineering College, China
cai senchen@63. com

Abstract. The previous I-cache timing attacks on RSA which exploit the in-
struction path of a cipher were mostly proof-of-concept, and it is harder to put
them into practice than D-cache timing attacks. We propose a new trace driven
timing attack model based on spying on the whole I-cache. An improved analy-
sis algorithm of the exponent using the characteristic of the size of the window
is advanced, which could further reduce the search space of the bits of the key
than the former and provide an error detection mechanism to detect some erro-
neous decisions of the operation sequence. We implemented an attack on RSA
of OpenSSL under a practical environment, proving that the feasibility and ef-
fectiveness of 1-Cache timing attack could be improved.

Keywords. Instruction cache-timing attacks, side channel attack, RSA crypto-
graphic algorithm, Trace-driven.

1 Introduction

Side channel attacks are based on information that is gained from the physical im-
plementation of the system, which were firstly proposed by Kocher in 1996 [1]. The
channel information can be power consumption, timings, electromagnetic radiation
and so on. MicroArchitectural Attack (MA) is one kind of the side channel attacks,
which exploits the microarchitectural behavior of the modern systems, was first pro-
posed by Aciicmez in 2007. There are currently three different types of MA that had
been identified so far: D-Cache, Branch Prediction, and I-Cache Analysis.

In this paper, our focus is trace driven I-Cache attack on RSA. The idea of using
the nonuniform memory access timings to launch attacks on crypto systems was
firstly proposed by Kelsey et. al.[2]. The side channel information is gained by meas-
uring cache access times. All cache attacks can be categorized into three classes [3]:
cache trace attacks, cache access attacks, and cache timing attacks. We mainly con-
sider the trace attacks which require detailed profiling of cache access patterns during
the encryption or decryption and are first used to Cache attack on AES [3, 4]. Com-

Supported by the National Natural Science Foundation of China under Grant No0.60772082;
the Natural Science Foundation of Hebei Province under Grant No.08M010

pare with D-Cache attacks which reveal the data-access patterns of cryptosystems, the
I-Cache analysis reveals the instruction flow of cryptosystems. The cryptosystem
implementations with fixed instruction flow, which is usually the case for block ci-
phers like AES, are not vulnerable to I-cache and Branch prediction analysis whilst
D-cache attacks can exploit the table lookups of such ciphers. It is also possible to
determine the execution flow of a cipher (e.g. RSA) by analyzing the data access
patterns as done in [5]. I-cache analysis mainly compromises the implementations of
which the execution flow remains key-dependent, such as RSA, which has been
proved by Aciicmez [6].

The goal of this paper is to improve the feasibility and effectiveness of current I-
cache attacks on RSA, especially Aciicmez’s I-cache attack (Aciicmez’s attack in
short) [6, 7]. We analyze the complications in Aciicmez’s attack in practical attack,
there are some reasons show that it is hard to put into practice. For example, the spy
routine requires the knowledge of logical address space of the multiplication function
instructions (target instructions in short), but it is hard to get it in real attack; Even if
we could get these logical addresses of the target instructions, the spy routine could
not always spy on the access state of the I-cache set which maps to the target instruc-
tions, because the spy routine instructions may be mapped to different cache line of
the same I-cache sets with the target instructions; Finally, the number of bits evolved
by the former analysis algorithm is too limited to break RSA in polynomial time. The
detailed analysis will be described as follows.

Our Contributions.

The first contribution of our work is to propose a new trace drive I-cache timing
attack model on RSA, which utilized a spy routine to spy on the access state of the
whole L1 I-cache, instead of the special instruction cache to which the target in-
structions mapped;

The main contribution is that we advance an improved analysis algorithm of the
exponent based on the characteristic of the size of the window in Sliding Window
Exponentiation Algorithm (SWE), which can infer more bits of the exponent and
further reduce the search space of the bits of the key than the former. It is possible
for I-cache timing attack to break RSA in polynomial time with this improvement;
In our improved analysis algorithm, an error detection mechanism is provided to
detect the erroneous decision when recovering the sequence of operations, and re-
duce the number of the erroneous bits which are analyzed from the sequence of op-
erations, therefore the veracity of decision could be improved. And our experimen-
tal results may be the first results of I-cache timing running under a dual-core proc-
essor, which can prove that the dual-core processor is also vulnerable to I-cache
timing attack.

Outline. In Section 2 we firstly recall the MicroArchitectural Analysis and analyze
the complications in the previous I-cache timing attack on RSA, then propose a new
attack model. In Section 3, we advance an improved analysis algorithm of the expo-
nent in Section 4. The experimental results and discussion are shown in Section 5. We
conclude our paper in the last section.

2 A New I-Cache Timing Attack Model on RSA

2.1 MicroArchitectural Attacks and I-Cache Attack Concept

MicroArchitectural Attacks which exploit the microarchitectural components of a
processor to reveal cryptographic keys is a newly evolving area of side channel crypt-
analysis [6]. The functionality of some processor components generates data depend-
ent variations in the execution time and power consumption during the execution of
cryptosystems. This channel information either directly gives the key value out during
a single cipher execution [8] or leaks information which can be gathered during many
executions and analyzed to compromise the system [3, 4, 9]. There are currently three
types of MA in the literature [10]: D-cache, Branch Prediction, and I-cache Analysis
(BPA).

The cache attacks exploit the cache behavior of a cryptosystem by obtaining the
execution time or power consumption variations generated via cache hits and misses.
The cache attacks are firstly data-path attacks, exploiting the data access patterns of a
cipher, especially S-box based ciphers like DES and AES [3, 4]. The D-cache attack
on RSA was proposed by Percival in 2005 [5]. BPA and SBPA have been introduced
by Aciicmez et. al [8, 11], who indicated that a carefully written spy-process running
simultaneously with a RSA-process, was able to collect almost all of the secret key
bits during one single RSA signature execution.

I-cache analysis relies on the fact that instruction cache misses increase the execu-
tion time of software applications. Each I-cache miss mandates an access to a higher
level memory, i.e., a higher level cache or main memory, and thus results in addi-
tional execution time delays. It is also aimed to reveal the instruction flow of crypto-
systems just like SBPA. This attack mainly compromises the implementations of
which the execution flow remains key-dependent, such as RSA [6] and ECDSA [12].
The cryptosystem implementations with fixed instruction flow, which is usually the
case for block ciphers like AES, are not vulnerable to I-cache and Branch Prediction
Analysis.

In I-cache analysis, an adversary needs to execute a spy process, which keeps track
of the changes in the state of I-cache, i.e., metadata, during the execution of a cipher
process. The first I-cache attack on RSA took advantage of the fact that OpenSSL
employs SWE Exponentiation which generates a key dependent sequence of modular
operations in RSA, such as modular multiplications and square operations [6]. It was
shown that if an adversary can run a spy routine and evict either one of these func-
tions, he can easily determine the operation sequence of RSA. Another approach was
proposed to detect the occurrences of extra reduction steps, by creating conflicts be-
tween the spy routine and the instruction executed during extra reduction step[7]. As
the latter approach is similar to the former, we just consider the first approach in our
paper. These attack schemes have been demonstrated in theory. However there are
still some complications during practical attack.

2.2 Complications in the Previous I-Cache Timing Attack on RSA

Although the cache vulnerability of computer system has been known for a long
time [1, 3], and Aciicmez et. al have shown that they could realize actual realistic and

practical cache attacks [6, 7]; there are still some complications in a real I-cache tim-
ing attack on RSA. In this paper, we mainly consider Aciicmez’s attack as the previ-
ous correlative researches, as they are the most remarkable in the research field of I-
cache timing on RSA.

Firstly, the hypotheses of Aciicmez’s attack is too unpractical. During the attack,
these dummy instructions of the spy process have to map to the same I-cache location
with the instruction of multiplication function, to create conflicts between the spy
routine and the instruction of multiplication function. This hypotheses requests the
adversary to disassemble the executable file, to determine the logical addresses of
target function in practical attack. However, it is hard for the adversary to get the
executable file, because of the measure of protection in the target systems.

Secondly, even if the hypothesis was reasonable, we could not assure that there
would be conflicts between the spy code and the target instructions. Although the
adversary could make the dummy instructions of spy precisely mapped to the same I-
cache set with the instructions of multiplication function, according to the principle of
cache mapping, the spy code and the target instruction may be mapped to different
cache line in the same cache set [16]. The spy process would be failed to spy on the
trace of the target function sometimes.

Finally, Aciicmez’s attack on RSA which using SWE algorithm for modular expo-
nentiation, could only infer about 200 “scattered” bits of the exponent for a 512-bit
exponent in theory. It is not clear today whether the knowledge of 200 bits scattered
over 512-bit exponent is sufficient to break RSA [6]. In other words, we do not know
any methods that can directly leverage this information to factorize the public
modulus. That will lead to the fail of Aciicmez’s attack.

The cache timing attacks need high-accuracy timing, and it is easy to be disturbed
by the noise, so there may be some erroneous decisions during the analysis process.
How to get the high-accuracy timing of accessing each cache set is a universal prob-
lem for all cache timing attacks.

2.3 A New Trace Driven Timing Attack Model Based on the Whole 1-Cache

In order to improve the feasibility of Aciicmez’s attack, we propose a new trace
driven timing attack model which utilizes a spy routine to spy on the access state of
the whole instruction L1 I-cache, instead of the special instruction cache to which the
target function mapped. The spy’s dummy instructions fill not only the special cache
but also other cache, on the assumption that we don’t know the logical addresses of
the target instructions. The new attack model is described in Fig.1.

Times of loop (¢)

memory SP refills the I-Cache
H HH H H| H
CP +— d
E:“ @ The target M MMM MM
@) [v [v [m [E] MR cache set | [M MMM M|M
SP —— M| M M| M M| M
Instruction target instruction is not executed M EE M oM
Cache_ sp firstly fills all the I-Cache © M| M| M|M M| M
H MM H M[H
(b)
SP refills the I-Cache M| M M| M M| M
0)) vHlalala| ~ (ol
CP executes the target instruction The e¥ecitionTiace of
© [4i] the target instruction
e Ve
EE v v v vy s -]

t: t F .
D ins:::lgc?jon B instr(illzﬁon D instrsulztjun n Hit % Miss Hit Time Miss Time f,;? Hit label MMlss label

Fig. 1. The trace driven timing attack model based on the whole I-cache

The structure of memory and cache has been simplified as described in Fig.1. The
spy process and the cipher process are denoted by SP and CP in short respectively.
The SP mostly uses the NOP instructions to fill the whole L1 I-cache (Fig.1 (a)). The
attack flow is similar to the flow of Aciicmez’s attack. The difference is that the SP in
the new model measures to fill each I-cache set, while Aciicmez’s SP only measures
to fill a particular I-cache set. The main attack steps are as follow:

1. The CP is running simultaneously with the SP on the same physical core of a si-
multaneous-multithreading (SMT) processor while the spy is executing its loop.
The SP startups before the CP and fills the whole cache firstly (Fig.1 (b)), then re-
peats to fill each cache set and measure the time for each set.

2. The instructions executed by the CP will alter the I-cache state and cause evictions
of spy’s dummy instructions. When the SP measures the time to fill each I-cache
set and if some cache sets have been evicted out by the CP since the previous itera-
tion of the spy, the measurement result will be higher because the evicted dummy
instruction(s) needs to be fetched from a high level memory. Thus, the SP can de-
tect the states of which I-cache sets are changed by the CP between consecutive
spy iterations (Fig.1 (c-f)).

3. The SP stops after when the CP ends, so it can get the whole execution trace of the
instruction of CP (Fig.1 (g)). For the whole execution trace, we can select the spe-
cial trace corresponding to the target instructions, according to the character of the
sequence of operations, for example there should not be two or more continuous
multiplication operations in SWE Exponentiation. Finally, we can get the execu-
tion flow (Fig.1 (h)), infer the bits of the exponent and break the RSA key.

3 An Improved Analysis Algorithm of Exponent

3.1 Inferring More Bits from the Sequence of Operations

Based on the proposed attack model, we can get the operation sequence in RSA
signature/decryption, by collecting the I-cache timing data using a spy process run-

ning with the cipher process in parallel. For RSA realized by the square and multipli-
cation algorithm, we can directly give the key value out during a single cipher execu-
tion, according to the fact that: If the bit of d is 1, there is one more multiplication
operation than the situation that the bit of d is 0. While the OpenSSL implements
RSA algorithm with Chinese Remainder Theorem (CRT) to improve the speed of
execution [14], the private key d is changed into d, and d,. If the d, and d, are gotten,
we are able to factorize the public modulus. The bits of d,, and d, are inferred with the

same approach, so we only focus how to get the bits of d, exponent in m’ using I-
cache timing attack.

The analysis algorithm of Aciicmez’s attack could get some bits of d, based on the
fact that the modular exponentiation is implemented using SWE Exponentiation.
From the sequence of multiplications and squarings, they can typically obtain about
200 bits out of each 512-bit exponent [6]: For each multiplication a “1” bit can be
inferred, since the multipliers are all odd powers of m, and any time there are more
than five squarings without an intervening multiplication, the presence of one or more
“0” bits can be inferred, since the multipliers are of degree at most 31. The size of the
window for a 512-bit exponent is win_size = 5; the detail analysis process is shown in
Fig.2. Compare with D-cache attack, I-cache attack could not get more bits from each
exponent using the relationship between the indexes of table and the value of the win-
dow. D-cache timing attack on RSA could get 110 more bits based on this fact [5].
However the 200 “scattered” bits of each 512-bit exponent are too limited for us to
break RSA in polynomial time for Aciicmez’s attack.

The bits of the exponent

® ® The k;'h window
The k"™ window The k" window| The k™ window

1‘0‘0‘1‘11‘0‘1 01‘1
Y

The corresponding
operation sequence

Y
STss[s [B [[s B SB[55555 [

7 \ e e e i Gl

S3 S5
Bits inferred by g More bits inferred Blts inferred by Squaring 7 Multiplication
former analysis ’;% by the new ana1y51s both analysis . operation “;A operation

Fig. 2. Analysis the bits of the exponent from the sequence of multiplications and squarings

(=)

1‘1‘0‘1‘1

S

S

S

As shown in Fig.2, according to the analysis algorithm of Aciicmez’s attack, four
“1” bits can be obtained from the sequence in which there are four multiplications,
three “0” bits can be inferred from the 8 squarings without an intervening multiplica-
tion. We propose an improved analysis algorithm based on the characteristic of the
size of the window in SWE Exponentiation: Every time the window slides, it always
starts from a bit of 1, sliding the size of one window, and ends at the location of “1”
bit. As shown in Fig.2, there are 4 windows, the k;", k,", k", and k,™ windows; the
size of each window is different. According to the rule of sliding the window, we can
conclude that if the size of the current now_size is smaller than win_size, there are
win_size-now_size “0” bits after the current window. In Fig.2, from three continuous

squarings “S3”, we can evolve the max size of the k," window is 3, so there are two
“0” bits after the k," window. Based on this conclusion, we can further deduce that
there are most three squarings in the five continuous squarings “S5” for the ks win-
dow, so two “0” bits can be also evolved after the k3" window, which can be also
inferred by the former analysis algorithm. The combination of the new and former
analysis algorithm can get more bits from the sequence of operations. In Fig.2, at least
2 more bits can be inferred among the 22 bits. For a 512-bit exponent, about 50 more
bits can be inferred with the new analysis algorithm. The search space of the bits of
the key can be further reduced.

3.2 Algorithm with Error Detection

In the practical attack, as the instruction of SP may be evicted from the I-cache by
other instructions instead of the target instructions during the CP execution, or the
cache timing data may conclude some noises from other processes in the operating
system, affecting the precision of timing, so it is possible to make some erroneous
decisions when determining the operation sequence. If we had got some erroneous
sequence of operations, some erroneous bits of the exponent would be inferred also.
The more erroneous decisions occurred, the less correct bits of the exponent would be
inferred, and there would be more difficulty in breaking RSA. In this paper, we pro-
vide an error detection mechanism that can detect some erroneous decisions to reduce
the number of the erroneous bits which are inferred from the sequence of operations.

According to the rule of sliding the window in SWE Exponentiation, we can find
some characteristics of the operation sequence: Firstly, there could not be continuous
multiplications in one window; secondly, there could be no more than one multiplica-
tion among five sugarings. Based on this fact, if the inferred operation sequence does
not accord with these characteristics, we can decide that an erroneous decision has
occurred. Such as, if the sequence of operations was got as follow: MSSMSSMS, we
can conclude that the second or third multiplication may be an erroneous decision,
and then we can increase the sample size to reduce the noise, or enumerate two in-
stances for each of these two operations. With the error detection for the sequence of
operation, more correct bits can be inferred.

4 Experimental Results and Discussion

4.1 Environment Configuration and Timing collection

Just as Aciicmez’s attack, our attack is also performed against RSA in OpenSSL
v0.9.8d with the choice of SWE Exponentiation on the commodity PC platforms. In
our I-cache attacks, we rely on the concept of executing a spy code, which keeps track
of the changes in the state of I-cache during the execution of a cipher process. The SP
is written according to the structure of the L1 I-cache. The spy code can refer to the
generic I-cache spy process in [12], but we use the movnti instruction instead of the
movbi instruction to reduce the influence on accurate timing from the time recording
operation. We can realize this with the I-cache as well using a spy process that is es-
sentially the I-cache analogue of Percival's D-cache spy process [5]. The fork function

was called to ensure that the SP can run simultaneously with the CP and determine
which instructions were executed by the cipher under the Linux operating system. The
SP achieves this goal by spying on the cipher execution via observing the I-cache
state transitions. We concentrate on Intel Core i3 processor featuring Intel’s Hyper-
Threading Technology (HT), and it is a dual-core processor, while the former cache
timing attacks were running on a single-core processor, such as Atom and Intel Pen-
tium 4 [12, 13]. The detail environment configuration of our attack is shown in Ta-
ble.1:

Table 1. Environment configuration of RSA I-cache timing attack

Configuration Item Parameter
Operating system Linux Fedora 8
Simultaneous multi-
- Turnon
threading
OpenSSL OpenSSL v.0.9.8d
CPU Intel Core i3 2.53 GHz
Memory 2GB
L1 Cache Cache size: 32KB associative size: 4 way
Cache line size: 64B number of cache sets: 128
Cache size: 256KB associative size: 8 way
L2 Cache

Cache line size: 64B
The structure of the L1 I-cache of Core i3 is: 4-way associative 32 KB cache, C
=128 cache sets, 4 cache lines in one cache set. We lay out contiguous 64-byte re-
gions of code (precisely the size of one cache line) in labels: L = {Lo, Ly,..., Lsi1}.
Denote subsets I; = {L; | I: j mod C =i} in this case, where all regions map to the
same cache set yet critically do not share the same address tag. These subsets natu-

rally partition | = U:L . Observe that stepping through a given [; pollutes the corre-

sponding the i" cache set and repeating for all i completely pollutes the entire cache.
The time for accessing each cache set is the CPU cycle counter, which is accessible
via the “RDTSC” instruction that returns the 64-bit cycle count since the CPU initiali-
zation [16]. Based on the attack model, the SP measures to fill each I-cache set run-
ning simultaneously with the CP. It begins with regions that map to cache set zero: I,
= {Ly, Li2s, Lose, Laga}, Stores the execution time t,, then continues with cache set one:
Iy = {L4, Lize, Los7, Lags}, stores the execution time t; and so on through all 0< i <128.
When the SP measures to fill the whole I-cache, one timing trace Ty is collected, and
then the SP repeats to collect the next trace T, and so on until the end of the CP exe-
cution. In our experiment, according to the consume time for the CP and one loop
execution of SP, the SP repeats 2000 times to collect 2000 timing traces.
4.2 Experimental Results and Comparison

Determine the sequence of operations

One timing trace is a list of items where each item component is a timing meas-
urement for a distinct cache set. We illustrate in Fig. 3, where we hand picked 32 of
128 possible I-cache sets which are seemed to carry pertinent information. Each cell
in the Fig. 3 indicates a cache set access time. Technically, time moves within each
individual cell, and then from bottom to top through all the selected cache sets, then

from left to right repeating the measurements. To manually analyze such traces and
determine what operations are being performed, we look for (dis)similarities between
neighboring timing trace. As shown in Fig.3, we can find there are 7 multiplications,
with repeated squarings between each multiplication. The sequence of operations as:
MSSSSSSSMSSSSMSSSSMSSSSSMSSSSSSSSMSSSSSM can be determined, by S

denotes squaring and M denotes multiplication.
MSSSSSSSMSSSSMSSSSMSSSSSMSSSSSSSSMSSSSSM «io
ECREEER { []]

| (W]}
| | | L]

130
Time

Fig. 3. Partial I-cache timing traces in our experiment

The experimental result has shown that even if we could not get the logical ad-
dresses of the target instructions, the operation sequence can also be determined by
analyzing the I-cache timing data.

In the practical attack, the cache timing data may conclude some noises from other
processes in the operating system, affecting the veracity of the analysis, so it is hard to
get the whole sequence of operations accurately. In order to reduce the noise, one
attack can be executed repeatedly some times, and then the cache timing data are
averaged for analyzing. We use the integrality of the operation sequence which is
denoted by (the number of correctly determined operations) / (the total number of
operations), as one evaluation for cache timing attack. The relationship between the
sample size and the integrality of the operation sequence for Aciicmez’s attack and
our attacks is illustrated in Fig.4. Our attacks are divided into the improved attack and
the improved attack with additional error detection.

—e& -/Aciicmez's attack
—=— Inproved attack
—~— I nproved attack with error detection
138 | L ===
) =] | e a-d-4-T T
T &0 4 +)
® Y
- 70 -
> 60
5 50
S 40
€ 30
o 20
= 10
0
1 10 20 30 40 50 60 70 80 90
The sanpl e size

Fig. 4. The relationship between the sample size and the integrality of the sequence of opera-
tions

In our experiment, the other processes have been minimized as possible as we can
in the operating system, so the noise is minimized. From the results in Fig.4, under the
same sample size, the integrality rate of the improved attack is 12~20% than the for-
mer. Compared with the improved attack, the additional error detection has a little
improvement, but if there is more noise, we are sure that the error detection will play
a big role in the attack.

Infer the bits of the exponent

Just the sequence of squarings and multiplications that the SWE algorithm passes
through implies a significant amount of information about the exponent input, we
analyze the bits of the exponent from the sequence of the operations in Fig.3. The
former analysis algorithm of Aciicmez’s could infer the bits as follow:
LOOXXXXIXXXIXXXIXXXXL000XXXXIXXX X1, by X denotes the unknown
bit. Finally it could get total 12 bits. While the proposed algorithm can infer the bits
as follow: 100XXXXIXXX10XX100XX1000XXXX1IXXXX1, the total 15 bits are
got. The experimental results show that: For one random RSA key of OpenSSL, there
are 89 multiplications and 511 squarings for the 512-bit d, exponent, and 70 partial
sequences of operations which conclude more than five squarings without an inter-
vening multiplication. The former analysis algorithm could infer 90 “1” bits (includ-
ing the highest bit of d,) and 122 “0” bits, it can infer the total 212 bits. The improved
analysis algorithm can infer 46 more “0” bits than the former, and finally get the total
258 bits. About 256 bits of d, can be inferred in the same way. Then the RSA can be
broken using the lattice attack method in polynomial time [15].

4.3 Discussion and Future Work

In Aciicmez’s attack, the spy routine was called inside the RSA process with a cer-
tain frequency, i.e., after each exponentiation step, so it is only as a simulation ex-

periment and it is hard to put into practice, although Neve in [9] had shown that the
theoretical and actual results taken from such a spy process are indeed very close to
each other. The advantage is that the SP can accurately spy on the trace of each expo-
nentiation step and the noise can be reduced, but it is difficult to realize this attack in
practice. The new proposed attack scheme can improve the feasibility of I-cache tim-
ing attack on RSA, however in the future research, there are still some works needed
to be considered: Firstly, how to reduce the noise effectively is a big problem. We can
utilize some statistical tools to deal with the data; Secondly, during analyzing the
cache timing data, it needs an automated analysis tool to analyze the vast cache-
timing data; and we will try to infer more bits of the exponent to further reduce the
search space of the bits of the key.

The combination of vector quantization and hidden Markov model cryptanalysis
has been demonstrated that it is a powerful tool for automated analysis of cache-
timing data in [13]. In the future work we will also use this automated tool for analyz-
ing the I-cache timing data. At the same time, some other cryptographic algorithms,
especially the public cryptographic will be considered as the target of I-cache timing
analysis.

5 Conclusion

In this paper, we have proposed a new I-cache timing attack model on RSA, by
concurrently running a spy process to keep track of the changes in the state of the
whole I-cache, while the former only spy on the state of the in the I-cache mapped to
the target instruction. An improved analysis algorithm is provided to infer more bits
of the exponent from the time traces, and an algorithm with error detection is ad-
vanced to detect the erroneous decisions.

We demonstrate the effectiveness by carrying out an I-cache attack on RSA of
OpenSSL v0.9.8d employing SWE Exponentiation. The experimental results prove
that I-cache cryptanalysis on RSA is realistic, practical and a serious threat for soft-
ware systems. The improved analysis algorithm can infer about 50 more bits than the
former. With this improvement, about half of the bits of d, (dg) can be got by I-cache
timing attack, so it is possible for 1-Cache timing attack to break RSA algorithm in
polynomial time using the lattice attack method. And the error detection mechanism
can detect some erroneous decisions to reduce the number of the erroneous bits which
are inferred from the operation sequence. The dual-core processor is also vulnerable
to I-cache timing attack; this result would attract more attention of the processor de-
signer to the security of cache against cache attacks.

References

1. Kocher PC. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104-113. Springer,
Heidelberg (1996).

10.

11.

12.

13.

14.

15.

16.

. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side Channel Cryptanalysis of Product Ci-

phers. J. Comput. Secur. 8(23), 141-158 (2000).

Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The case of
AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1-20. Springer,
Heidelberg (2006).

Bernstein, D.J.: Cache-timing attacks on AES (2004). http://cr.yp.to/papers.html#cachetim
ing.

Percival, C.: Cache missing for fun and profit (2005), http://www.daemonology.net/papers/
cachemissing.pdf.

Aciicmez O, Gueron S, Seifert JP. Micro-Architectural cryptanalysis. IEEE Security and
Privacy 5(4), 62- 64 (2007).

Aciiicmez O and Werner Schindler. A Vulnerability in RSA Implementations Due to In-
struction Cache Analysis and Its Demonstration on OpenSSL. In: Malkin T (ed.) CT-RSA
2008. LNCS, vol. 4964, pp. 256-273. Springer, Heidelberg (2008).

Aciicmez O, Koc. C. K., Seifert. J.-P. On the power of simple branch prediction analysis.
In: Robert D, Pierangela S (eds) ASIACCS 2007, pp. 312-320. ACM Press, New York
(2007).

M. Neve and J.-P. Seifert. Advances on Access-driven Cache Attacks on AES. In: Biham
E (ed) SAC 2006, LNCS, vol. 4356, pp. 147-162. Springer, Heidelberg (2007).

Aciicmez O, Seifert J.-P. Cheap Hardware Parallelism Implies Cheap Security. In: 4"
Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC 2007), pp. 80-91.
IEEE Press, New York (2007).

Aciicmez O, Koc. C. K., Seifert. J.-P. Predicting Secret Keys via Branch Prediction. In:
Masayuki A (ed.) CT-RSA 2007, LNCS, vol. 4377, pp. 225-242. Springer, Heidelberg
(2007).

Aciicmez O, Brumley B. B, Grabher P. New Results on Instruction Cache Attacks. In:
Mangard S (ed.) CHES 2010, LNCS, vol. 6225, pp. 110-124. Springer, Heidelberg (2010).
Billy B. B, Risto M. H. Cache-Timing Template Attacks. In: Matsui. M (ed.)
ASIACRYPT 2009, LNCS, vol. 5912, pp. 667-684. Springer, Heidelberg (2009).

The OpenSSL Project: OpenSSL: The open source toolkit for SSL/TLS,
http://www.openssl.org.

Coppersmith D. Finding a small root of a bivariate integer equation: factoring with high
bits known. In: Maurer U (ed), EUROCRYPT 1996, LNCS, vol. 1070, pp. 178-189.
Springer, Heidelberg (1996).

Randal E. B, David R. O. Computer Systems: A programmer’s Perspective. Second Edi-
tion. PEARSON Press, 408-433 (2011).

