
An Improved Trace Driven Instruction Cache Timing 

Attack on RSA 

Chen Cai-Sen 1*, Wang Tao1, Chen  Xiao-Cen2 and Zhou Ping1 

1 Department of Computer Engineering, Ordnance Engineering College, China 
2 Department of Optical and Electrical Engineering, Ordnance Engineering College, China 

caisenchen@163.com 

Abstract. The previous I-cache timing attacks on RSA which exploit the in-
struction path of a cipher were mostly proof-of-concept, and it is harder to put 
them into practice than D-cache timing attacks. We propose a new trace driven 
timing attack model based on spying on the whole I-cache. An improved analy-
sis algorithm of the exponent using the characteristic of the size of the window 
is advanced, which could further reduce the search space of the bits of the key 
than the former and provide an error detection mechanism to detect some erro-
neous decisions of the operation sequence. We implemented an attack on RSA 
of OpenSSL under a practical environment, proving that the feasibility and ef-
fectiveness of I-Cache timing attack could be improved. 

Keywords. Instruction cache-timing attacks, side channel attack, RSA crypto-
graphic algorithm, Trace-driven. 

1 Introduction 

Side channel attacks are based on information that is gained from the physical im-
plementation of the system, which were firstly proposed by Kocher in 1996 [1]. The 
channel information can be power consumption, timings, electromagnetic radiation 
and so on. MicroArchitectural Attack (MA) is one kind of the side channel attacks, 
which exploits the microarchitectural behavior of the modern systems, was first pro-

posed by Aciicmez in 2007. There are currently three different types of MA that had 
been identified so far: D-Cache, Branch Prediction, and I-Cache Analysis. 

In this paper, our focus is trace driven I-Cache attack on RSA. The idea of using 
the nonuniform memory access timings to launch attacks on crypto systems was 
firstly proposed by Kelsey et. al.[2]. The side channel information is gained by meas-
uring cache access times. All cache attacks can be categorized into three classes [3]: 
cache trace attacks, cache access attacks, and cache timing attacks. We mainly con-
sider the trace attacks which require detailed profiling of cache access patterns during 
the encryption or decryption and are first used to Cache attack on AES [3, 4]. Com-
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pare with D-Cache attacks which reveal the data-access patterns of cryptosystems, the 
I-Cache analysis reveals the instruction flow of cryptosystems. The cryptosystem 
implementations with fixed instruction flow, which is usually the case for block ci-
phers like AES, are not vulnerable to I-cache and Branch prediction analysis whilst 
D-cache attacks can exploit the table lookups of such ciphers. It is also possible to 
determine the execution flow of a cipher (e.g. RSA) by analyzing the data access 
patterns as done in [5]. I-cache analysis mainly compromises the implementations of 
which the execution flow remains key-dependent, such as RSA, which has been 
proved by Aciicmez [6].  

The goal of this paper is to improve the feasibility and effectiveness of current I-
cache attacks on RSA, especially Aciicmez’s I-cache attack (Aciicmez’s attack in 
short) [6, 7]. We analyze the complications in Aciicmez’s attack in practical attack, 
there are some reasons show that it is hard to put into practice. For example, the spy 
routine requires the knowledge of logical address space of the multiplication function 
instructions (target instructions in short), but it is hard to get it in real attack; Even if 
we could get these logical addresses of the target instructions, the spy routine could 
not always spy on the access state of the I-cache set which maps to the target instruc-
tions, because the spy routine instructions may be mapped to different cache line of 
the same I-cache sets with the target instructions; Finally, the number of bits evolved 
by the former analysis algorithm is too limited to break RSA in polynomial time. The 
detailed analysis will be described as follows. 

Our Contributions.  

• The first contribution of our work is to propose a new trace drive I-cache timing 
attack model on RSA, which utilized a spy routine to spy on the access state of the 
whole L1 I-cache, instead of the special instruction cache to which the target in-
structions mapped; 

• The main contribution is that we advance an improved analysis algorithm of the 
exponent based on the characteristic of the size of the window in Sliding Window 
Exponentiation Algorithm (SWE), which can infer more bits of the exponent and 
further reduce the search space of the bits of the key than the former. It is possible 
for I-cache timing attack to break RSA in polynomial time with this improvement; 

• In our improved analysis algorithm, an error detection mechanism is provided to 
detect the erroneous decision when recovering the sequence of operations, and re-
duce the number of the erroneous bits which are analyzed from the sequence of op-
erations, therefore the veracity of decision could be improved. And our experimen-
tal results may be the first results of I-cache timing running under a dual-core proc-
essor, which can prove that the dual-core processor is also vulnerable to I-cache 
timing attack. 

Outline. In Section 2 we firstly recall the MicroArchitectural Analysis and analyze 
the complications in the previous I-cache timing attack on RSA, then propose a new 
attack model. In Section 3, we advance an improved analysis algorithm of the expo-
nent in Section 4. The experimental results and discussion are shown in Section 5. We 
conclude our paper in the last section. 



2 A New I-Cache Timing Attack Model on RSA 

2.1 MicroArchitectural Attacks and I-Cache Attack Concept 

MicroArchitectural Attacks which exploit the microarchitectural components of a 
processor to reveal cryptographic keys is a newly evolving area of side channel crypt-
analysis [6]. The functionality of some processor components generates data depend-
ent variations in the execution time and power consumption during the execution of 
cryptosystems. This channel information either directly gives the key value out during 
a single cipher execution [8] or leaks information which can be gathered during many 
executions and analyzed to compromise the system [3, 4, 9]. There are currently three 
types of MA in the literature [10]: D-cache, Branch Prediction, and I-cache Analysis 
(BPA). 

The cache attacks exploit the cache behavior of a cryptosystem by obtaining the 
execution time or power consumption variations generated via cache hits and misses. 
The cache attacks are firstly data-path attacks, exploiting the data access patterns of a 
cipher, especially S-box based ciphers like DES and AES [3, 4]. The D-cache attack 
on RSA was proposed by Percival in 2005 [5]. BPA and SBPA have been introduced 
by Aciicmez et. al [8, 11], who indicated that a carefully written spy-process running 
simultaneously with a RSA-process, was able to collect almost all of the secret key 
bits during one single RSA signature execution. 

I-cache analysis relies on the fact that instruction cache misses increase the execu-
tion time of software applications. Each I-cache miss mandates an access to a higher 
level memory, i.e., a higher level cache or main memory, and thus results in addi-
tional execution time delays. It is also aimed to reveal the instruction flow of crypto-
systems just like SBPA. This attack mainly compromises the implementations of 
which the execution flow remains key-dependent, such as RSA [6] and ECDSA [12]. 
The cryptosystem implementations with fixed instruction flow, which is usually the 
case for block ciphers like AES, are not vulnerable to I-cache and Branch Prediction 
Analysis. 

In I-cache analysis, an adversary needs to execute a spy process, which keeps track 
of the changes in the state of I-cache, i.e., metadata, during the execution of a cipher 
process. The first I-cache attack on RSA took advantage of the fact that OpenSSL 
employs SWE Exponentiation which generates a key dependent sequence of modular 
operations in RSA, such as modular multiplications and square operations [6]. It was 
shown that if an adversary can run a spy routine and evict either one of these func-
tions, he can easily determine the operation sequence of RSA. Another approach was 
proposed to detect the occurrences of extra reduction steps, by creating conflicts be-
tween the spy routine and the instruction executed during extra reduction step[7]. As 
the latter approach is similar to the former, we just consider the first approach in our 
paper. These attack schemes have been demonstrated in theory. However there are 
still some complications during practical attack. 
2.2 Complications in the Previous I-Cache Timing Attack on RSA 

Although the cache vulnerability of computer system has been known for a long 
time [1, 3], and Aciicmez et. al have shown that they could realize actual realistic and 



practical cache attacks [6, 7]; there are still some complications in a real I-cache tim-
ing attack on RSA. In this paper, we mainly consider Aciicmez’s attack as the previ-
ous correlative researches, as they are the most remarkable in the research field of I-
cache timing on RSA. 

Firstly, the hypotheses of Aciicmez’s attack is too unpractical. During the attack, 
these dummy instructions of the spy process have to map to the same I-cache location 
with the instruction of multiplication function, to create conflicts between the spy 
routine and the instruction of multiplication function. This hypotheses requests the 
adversary to disassemble the executable file, to determine the logical addresses of 
target function in practical attack. However, it is hard for the adversary to get the 
executable file, because of the measure of protection in the target systems. 

Secondly, even if the hypothesis was reasonable, we could not assure that there 
would be conflicts between the spy code and the target instructions. Although the 
adversary could make the dummy instructions of spy precisely mapped to the same I-
cache set with the instructions of multiplication function, according to the principle of 
cache mapping, the spy code and the target instruction may be mapped to different 
cache line in the same cache set [16]. The spy process would be failed to spy on the 
trace of the target function sometimes. 

Finally, Aciicmez’s attack on RSA which using SWE algorithm for modular expo-
nentiation, could only infer about 200 “scattered” bits of the exponent for a 512-bit 
exponent in theory. It is not clear today whether the knowledge of 200 bits scattered 

over 512-bit exponent is sufficient to break RSA [6]. In other words, we do not know 
any methods that can directly leverage this information to factorize the public 
modulus. That will lead to the fail of Aciicmez’s attack. 

The cache timing attacks need high-accuracy timing, and it is easy to be disturbed 
by the noise, so there may be some erroneous decisions during the analysis process. 
How to get the high-accuracy timing of accessing each cache set is a universal prob-
lem for all cache timing attacks. 
2.3 A New Trace Driven Timing Attack Model Based on the Whole I-Cache 

In order to improve the feasibility of Aciicmez’s attack, we propose a new trace 
driven timing attack model which utilizes a spy routine to spy on the access state of 
the whole instruction L1 I-cache, instead of the special instruction cache to which the 
target function mapped. The spy’s dummy instructions fill not only the special cache 
but also other cache, on the assumption that we don’t know the logical addresses of 
the target instructions. The new attack model is described in Fig.1. 
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Fig. 1. The trace driven timing attack model based on the whole I-cache 

The structure of memory and cache has been simplified as described in Fig.1. The 
spy process and the cipher process are denoted by SP and CP in short respectively. 
The SP mostly uses the NOP instructions to fill the whole L1 I-cache (Fig.1 (a)). The 
attack flow is similar to the flow of Aciicmez’s attack. The difference is that the SP in 
the new model measures to fill each I-cache set, while Aciicmez’s SP only measures 
to fill a particular I-cache set. The main attack steps are as follow: 

1. The CP is running simultaneously with the SP on the same physical core of a si-
multaneous-multithreading (SMT) processor while the spy is executing its loop. 
The SP startups before the CP and fills the whole cache firstly (Fig.1 (b)), then re-
peats to fill each cache set and measure the time for each set. 

2. The instructions executed by the CP will alter the I-cache state and cause evictions 
of spy’s dummy instructions. When the SP measures the time to fill each I-cache 
set and if some cache sets have been evicted out by the CP since the previous itera-
tion of the spy, the measurement result will be higher because the evicted dummy 
instruction(s) needs to be fetched from a high level memory. Thus, the SP can de-
tect the states of which I-cache sets are changed by the CP between consecutive 
spy iterations (Fig.1 (c-f)). 

3. The SP stops after when the CP ends, so it can get the whole execution trace of the 
instruction of CP (Fig.1 (g)). For the whole execution trace, we can select the spe-
cial trace corresponding to the target instructions, according to the character of the 
sequence of operations, for example there should not be two or more continuous 
multiplication operations in SWE Exponentiation. Finally, we can get the execu-
tion flow (Fig.1 (h)), infer the bits of the exponent and break the RSA key. 

3 An Improved Analysis Algorithm of Exponent 

3.1 Inferring More Bits from the Sequence of Operations 

Based on the proposed attack model, we can get the operation sequence in RSA 
signature/decryption, by collecting the I-cache timing data using a spy process run-



ning with the cipher process in parallel. For RSA realized by the square and multipli-
cation algorithm, we can directly give the key value out during a single cipher execu-
tion, according to the fact that: If the bit of d is 1, there is one more multiplication 
operation than the situation that the bit of d is 0. While the OpenSSL implements 
RSA algorithm with Chinese Remainder Theorem (CRT) to improve the speed of 
execution [14], the private key d is changed into dp and dq. If the dp and dq are gotten, 
we are able to factorize the public modulus. The bits of dp and dq are inferred with the 

same approach, so we only focus how to get the bits of dp exponent in pd
m  using I-

cache timing attack. 
The analysis algorithm of Aciicmez’s attack could get some bits of dp based on the 

fact that the modular exponentiation is implemented using SWE Exponentiation. 
From the sequence of multiplications and squarings, they can typically obtain about 
200 bits out of each 512-bit exponent [6]: For each multiplication a “1” bit can be 
inferred, since the multipliers are all odd powers of m, and any time there are more 
than five squarings without an intervening multiplication, the presence of one or more 
“0” bits can be inferred, since the multipliers are of degree at most 31. The size of the 
window for a 512-bit exponent is win_size = 5; the detail analysis process is shown in 
Fig.2. Compare with D-cache attack, I-cache attack could not get more bits from each 
exponent using the relationship between the indexes of table and the value of the win-
dow. D-cache timing attack on RSA could get 110 more bits based on this fact [5]. 
However the 200 “scattered” bits of each 512-bit exponent are too limited for us to 
break RSA in polynomial time for Aciicmez’s attack. 

       

 

Fig. 2. Analysis the bits of the exponent from the sequence of multiplications and squarings 

As shown in Fig.2, according to the analysis algorithm of Aciicmez’s attack, four 
“1” bits can be obtained from the sequence in which there are four multiplications, 
three “0” bits can be inferred from the 8 squarings without an intervening multiplica-
tion. We propose an improved analysis algorithm based on the characteristic of the 
size of the window in SWE Exponentiation: Every time the window slides, it always 
starts from a bit of 1, sliding the size of one window, and ends at the location of “1” 
bit. As shown in Fig.2, there are 4 windows, the k1

th, k2
th, k3

th, and k4
th windows; the 

size of each window is different. According to the rule of sliding the window, we can 
conclude that if the size of the current now_size is smaller than win_size, there are 
win_size-now_size “0” bits after the current window. In Fig.2, from three continuous 



squarings “S3”, we can evolve the max size of the k2
th

 window is 3, so there are two 
“0” bits after the k2

th
 window. Based on this conclusion, we can further deduce that 

there are most three squarings in the five continuous squarings “S5” for the k3
th

 win-
dow, so two “0” bits can be also evolved after the k3

th
 window, which can be also 

inferred by the former analysis algorithm. The combination of the new and former 
analysis algorithm can get more bits from the sequence of operations. In Fig.2, at least 
2 more bits can be inferred among the 22 bits. For a 512-bit exponent, about 50 more 
bits can be inferred with the new analysis algorithm. The search space of the bits of 
the key can be further reduced. 
3.2 Algorithm with Error Detection 

In the practical attack, as the instruction of SP may be evicted from the I-cache by 
other instructions instead of the target instructions during the CP execution, or the 
cache timing data may conclude some noises from other processes in the operating 
system, affecting the precision of timing, so it is possible to make some erroneous 
decisions when determining the operation sequence. If we had got some erroneous 
sequence of operations, some erroneous bits of the exponent would be inferred also. 
The more erroneous decisions occurred, the less correct bits of the exponent would be 
inferred, and there would be more difficulty in breaking RSA. In this paper, we pro-
vide an error detection mechanism that can detect some erroneous decisions to reduce 
the number of the erroneous bits which are inferred from the sequence of operations. 

According to the rule of sliding the window in SWE Exponentiation, we can find 
some characteristics of the operation sequence: Firstly, there could not be continuous 
multiplications in one window; secondly, there could be no more than one multiplica-
tion among five suqarings. Based on this fact, if the inferred operation sequence does 
not accord with these characteristics, we can decide that an erroneous decision has 
occurred. Such as, if the sequence of operations was got as follow: MSSMSSMS, we 
can conclude that the second or third multiplication may be an erroneous decision, 
and then we can increase the sample size to reduce the noise, or enumerate two in-
stances for each of these two operations. With the error detection for the sequence of 
operation, more correct bits can be inferred. 

4 Experimental Results and Discussion 

4.1 Environment Configuration and Timing collection 

Just as Aciicmez’s attack, our attack is also performed against RSA in OpenSSL 
v0.9.8d with the choice of SWE Exponentiation on the commodity PC platforms. In 
our I-cache attacks, we rely on the concept of executing a spy code, which keeps track 
of the changes in the state of I-cache during the execution of a cipher process. The SP 
is written according to the structure of the L1 I-cache. The spy code can refer to the 
generic I-cache spy process in [12], but we use the movnti instruction instead of the 
movbi instruction to reduce the influence on accurate timing from the time recording 
operation. We can realize this with the I-cache as well using a spy process that is es-
sentially the I-cache analogue of Percival's D-cache spy process [5]. The fork function 



was called to ensure that the SP can run simultaneously with the CP and determine 
which instructions were executed by the cipher under the Linux operating system. The 
SP achieves this goal by spying on the cipher execution via observing the I-cache 
state transitions. We concentrate on Intel Core i3 processor featuring Intel’s Hyper-
Threading Technology (HT), and it is a dual-core processor, while the former cache 
timing attacks were running on a single-core processor, such as Atom and Intel Pen-
tium 4 [12, 13]. The detail environment configuration of our attack is shown in Ta-
ble.1: 

Table 1. Environment configuration of RSA I-cache timing attack 

Configuration Item Parameter 
Operating system Linux Fedora 8 

Simultaneous multi-
threading 

Turn on 

OpenSSL OpenSSL v.0.9.8d 
CPU Intel Core i3 2.53 GHz 

Memory 2 GB 
Cache size: 32KB associative size: 4 way 

L1 Cache 
Cache line size: 64B number of cache sets: 128 
Cache size: 256KB associative size: 8 way 

L2 Cache 
Cache line size: 64B 

The structure of the L1 I-cache of Core i3 is: 4-way associative 32 KB cache, C 
=128 cache sets, 4 cache lines in one cache set. We lay out contiguous 64-byte re-
gions of code (precisely the size of one cache line) in labels: L = {L0, L1,…, L511}. 
Denote subsets li = {Lj ∈ l: j mod C = i} in this case, where all regions map to the 
same cache set yet critically do not share the same address tag. These subsets natu-

rally partition 1

0

c

ii
l l

−

=
= U . Observe that stepping through a given li pollutes the corre-

sponding the ith cache set and repeating for all i completely pollutes the entire cache. 
The time for accessing each cache set is the CPU cycle counter, which is accessible 

via the “RDTSC” instruction that returns the 64-bit cycle count since the CPU initiali-
zation [16]. Based on the attack model, the SP measures to fill each I-cache set run-
ning simultaneously with the CP. It begins with regions that map to cache set zero: l0 
= {L0, L128, L256, L384}, stores the execution time t0, then continues with cache set one: 
l1 = {L1, L129, L257, L385}, stores the execution time t1 and so on through all 0≤ i <128. 
When the SP measures to fill the whole I-cache, one timing trace T0 is collected, and 
then the SP repeats to collect the next trace T1 and so on until the end of the CP exe-
cution. In our experiment, according to the consume time for the CP and one loop 
execution of SP, the SP repeats 2000 times to collect 2000 timing traces. 
4.2 Experimental Results and Comparison 

Determine the sequence of operations 
One timing trace is a list of items where each item component is a timing meas-

urement for a distinct cache set. We illustrate in Fig. 3, where we hand picked 32 of 
128 possible I-cache sets which are seemed to carry pertinent information. Each cell 
in the Fig. 3 indicates a cache set access time. Technically, time moves within each 
individual cell, and then from bottom to top through all the selected cache sets, then 



from left to right repeating the measurements. To manually analyze such traces and 
determine what operations are being performed, we look for (dis)similarities between 
neighboring timing trace. As shown in Fig.3, we can find there are 7 multiplications, 
with repeated squarings between each multiplication. The sequence of operations as: 
MSSSSSSSMSSSSMSSSSMSSSSSMSSSSSSSSMSSSSSM can be determined, by S 
denotes squaring and M denotes multiplication. 

 

Fig. 3. Partial I-cache timing traces in our experiment 

The experimental result has shown that even if we could not get the logical ad-
dresses of the target instructions, the operation sequence can also be determined by 
analyzing the I-cache timing data. 

In the practical attack, the cache timing data may conclude some noises from other 
processes in the operating system, affecting the veracity of the analysis, so it is hard to 
get the whole sequence of operations accurately. In order to reduce the noise, one 
attack can be executed repeatedly some times, and then the cache timing data are 
averaged for analyzing. We use the integrality of the operation sequence which is 
denoted by (the number of correctly determined operations) / (the total number of 
operations), as one evaluation for cache timing attack. The relationship between the 
sample size and the integrality of the operation sequence for Aciicmez’s attack and 
our attacks is illustrated in Fig.4. Our attacks are divided into the improved attack and 
the improved attack with additional error detection. 
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Fig. 4. The relationship between the sample size and the integrality of the sequence of opera-
tions 

In our experiment, the other processes have been minimized as possible as we can 
in the operating system, so the noise is minimized. From the results in Fig.4, under the 
same sample size, the integrality rate of the improved attack is 12~20% than the for-
mer. Compared with the improved attack, the additional error detection has a little 
improvement, but if there is more noise, we are sure that the error detection will play 
a big role in the attack. 

Infer the bits of the exponent 
Just the sequence of squarings and multiplications that the SWE algorithm passes 

through implies a significant amount of information about the exponent input, we 
analyze the bits of the exponent from the sequence of the operations in Fig.3. The 
former analysis algorithm of Aciicmez’s could infer the bits as follow: 
100XXXX1XXX1XXX1XXXX1000XXXX1XXXX1, by X denotes the unknown 
bit. Finally it could get total 12 bits. While the proposed algorithm can infer the bits 
as follow: 100XXXX1XXX10XX100XX1000XXXX1XXXX1, the total 15 bits are 
got. The experimental results show that: For one random RSA key of OpenSSL, there 
are 89 multiplications and 511 squarings for the 512-bit dp exponent, and 70 partial 
sequences of operations which conclude more than five squarings without an inter-
vening multiplication. The former analysis algorithm could infer 90 “1” bits (includ-
ing the highest bit of dp) and 122 “0” bits, it can infer the total 212 bits. The improved 
analysis algorithm can infer 46 more “0” bits than the former, and finally get the total 
258 bits. About 256 bits of dq can be inferred in the same way. Then the RSA can be 
broken using the lattice attack method in polynomial time [15]. 
4.3 Discussion and Future Work 

In Aciicmez’s attack, the spy routine was called inside the RSA process with a cer-
tain frequency, i.e., after each exponentiation step, so it is only as a simulation ex-



periment and it is hard to put into practice, although Neve in [9] had shown that the 
theoretical and actual results taken from such a spy process are indeed very close to 
each other. The advantage is that the SP can accurately spy on the trace of each expo-
nentiation step and the noise can be reduced, but it is difficult to realize this attack in 
practice. The new proposed attack scheme can improve the feasibility of I-cache tim-
ing attack on RSA, however in the future research, there are still some works needed 
to be considered: Firstly, how to reduce the noise effectively is a big problem. We can 
utilize some statistical tools to deal with the data; Secondly, during analyzing the 
cache timing data, it needs an automated analysis tool to analyze the vast cache-
timing data; and we will try to infer more bits of the exponent to further reduce the 
search space of the bits of the key. 

The combination of vector quantization and hidden Markov model cryptanalysis 
has been demonstrated that it is a powerful tool for automated analysis of cache-
timing data in [13]. In the future work we will also use this automated tool for analyz-
ing the I-cache timing data. At the same time, some other cryptographic algorithms, 
especially the public cryptographic will be considered as the target of I-cache timing 
analysis. 

5 Conclusion 

In this paper, we have proposed a new I-cache timing attack model on RSA, by 
concurrently running a spy process to keep track of the changes in the state of the 
whole I-cache, while the former only spy on the state of the in the I-cache mapped to 
the  target instruction. An improved analysis algorithm is provided to infer more bits 
of the exponent from the time traces, and an algorithm with error detection is ad-
vanced to detect the erroneous decisions. 

We demonstrate the effectiveness by carrying out an I-cache attack on RSA of 
OpenSSL v0.9.8d employing SWE Exponentiation. The experimental results prove 
that I-cache cryptanalysis on RSA is realistic, practical and a serious threat for soft-
ware systems. The improved analysis algorithm can infer about 50 more bits than the 
former. With this improvement, about half of the bits of dp (dq) can be got by I-cache 
timing attack, so it is possible for I-Cache timing attack to break RSA algorithm in 
polynomial time using the lattice attack method. And the error detection mechanism 
can detect some erroneous decisions to reduce the number of the erroneous bits which 
are inferred from the operation sequence. The dual-core processor is also vulnerable 
to I-cache timing attack; this result would attract more attention of the processor de-
signer to the security of cache against cache attacks. 
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