
Improved Attacks on Full GOST

Itai Dinur1, Orr Dunkelman1,2 and Adi Shamir1

1 Computer Science department, The Weizmann Institute, Rehovot, Israel
2 Computer Science Department, University of Haifa, Israel

Abstract. GOST is a well known block cipher which was developed in
the Soviet Union during the 1970’s as an alternative to the US-developed
DES. In spite of considerable cryptanalytic effort, until very recently
there were no published single key attacks against its full 32-round ver-
sion which were faster than the 2256 time complexity of exhaustive search.
In February 2011, Isobe used in a novel way the previously discovered
reflection property in order to develop the first such attack, which re-
quires 232 data, 264 memory and 2224 time. Shortly afterwards, Courtois
and Misztal used a different technique to attack the full GOST using 264

data, 264 memory and 2226 time. In this paper we introduce a new fixed
point property and a better way to attack 8-round GOST in order to
find improved attacks on full GOST: Given 232 data we can reduce the
memory complexity from an impractical 264 to a practical 236 without
changing the 2224 time complexity, and given 264 data we can simulta-
neously reduce the time complexity to 2192 and the memory complexity
to 236.
Keywords: Block cipher, cryptanalysis, GOST, reflection property, fixed
point property, 2D meet in the middle attack

1 Introduction

During the 1970’s, the US decided to publicly develop the Data Encryption
Standard (DES), which was the first standardized block cipher intended for
civilian applications. At roughly the same time, the Soviet Union decided to
secretly develop GOST [10], which was also supposed to be used in civilian
applications but in a more controlled way. The general design of GOST was
finally published in 1994, but even today some of the crucial elements (such as
the choice of Sboxes) do not appear in the public description, and a different
choice can be made for each application.

The overall design of GOST is similar to that of DES: Both of them are
Feistel structures over 64-bit blocks, in which we repeatedly process the right
half of the block, XOR the result to the left half, and swap the two halves. In
the case of GOST, the processing consists of adding (modulo 232) a 32-bit round
key to the right half of the block, and then applying the function f described
in Figure 1. This function has an Sbox layer consisting of eight different 4 × 4
Sboxes, followed by a rotation of the 32-bit result by 11 bits to the left using the
little-endian format (i.e. the LSB of the 32-bit word enters the rightmost entry
of the first Sbox).

Full GOST has 32 rounds, and its key schedule is extremely simple: the 256-
bit key is divided into eight 32-bit words (K1,K2,K3,K4,K5,K6,K7,K8). Each
round of GOST uses one of these words as a round key in the following order:
in the first 24 rounds, the keys are used in their cyclic order (i.e. K1 in rounds
1,9,17, K2 in rounds 2,10,18, and so forth). In the final 8 rounds (25–32), the
round keys are used in reverse order (K8 in round 25, K7 in round 26, and so
forth).

Li Ri

Li�1 Ri�1

�
Ki

S1

S2

S3

S4

S5

S6

S7

S8

≪ 11
À

1

Fig. 1. One round of GOST

A major difference between the design philosophies of DES and GOST was
that the publicly available DES was intentionally chosen with marginal parame-
ters (16 rounds, 56 bit keys), whereas the secretive GOST used larger parameters
(32 rounds, 256 bit keys) which seemed to offer an extra margin of security. As a
result, DES was broken theoretically (by using differential and linear techniques)
and practically (by using special purpose hardware) about 20 years ago, whereas
all the single key attacks [1, 7, 13] published before 2011 were only applicable to
reduced-round versions of the cipher. 1

The first single key attack on the full 32-round version of GOST was published
by Takanori Isobe at FSE’11 [6]. It exploited a surprising reflection property
which was first pointed out by Kara [7] in 2008: Whenever the left and right
halves of the state after 24 rounds are equal (which happens with probability
2−32), the last 16 rounds become the identity mapping, and thus the effective
number of rounds is reduced from 32 to 16. Isobe developed a new key-extraction
algorithm for the remaining 16 rounds of GOST which required 2192 time and 264

memory, and used it 232 times for different plaintext/ciphertext pairs in order
to get the full 256 bit key using a total of 232 data, 264 memory, and 2224 time.

1 Attacks on full GOST in the stronger related-key model are known for about a
decade, see [5, 8, 9, 12, 13].

This is much faster than exhaustive search, but neither the time complexity nor
the memory complexity are even close to being practical.

Shortly afterwards, Courtois [3] published on ePrint a new attack on the full
GOST. It used a very different algebraic approach, but had an inferior complexity
of 264 data, 264 memory, and 2248 time. Later, Courtois and Misztal [4] described
a differential attack which again used 264 data and memory, but reduced the time
complexity to 2226.

In this paper we improve several aspects of these previously published at-
tacks. We describe a new fixed point property, and show how to use either the
previous reflection property or the new fixed point property in order to reduce
the general cryptanalytic problem of attacking the full 32-round GOST into an
attack on 8-round GOST with two known input-output pairs. We then develop
a new way to extract all the 2128 possible values of the full 256 bit key given
only two known 64-bit input-output pairs of 8-round GOST, which requires 2128

time and 236 memory 2 (all the previously published attacks on 8-round GOST
have an impractical memory complexity of at least 264). By combining these
improved elements, we can get the best known attacks on GOST for the two
previously considered data complexities of 232 and 264. A comparison between
all the previously published single key attacks on the full GOST and our new
attacks is given in Table 1.

Reference Data Memory Time Self-Similarity 8-Round Attack Sboxes

(KP)†† Property

[6] 232 264 2224 Reflection - Bijective

[3] 264 264 2248 Other (unnamed) Algebraic Russian
Banks [11]

[4] 264 264 2226 Differential (not based - Russian
on self-similarity) Banks [11]

This paper 264 236 2192† fixed point 2DMITM any

This paper 264 219 2204† fixed point low-memory any

This paper 232 236 2224† Reflection 2DMITM any

This paper 232 219 2236† Reflection low-memory any
† The time complexity can be slightly reduced by exploiting GOST’s complementa-

tion properties (as described in Appendix A)
†† Known plaintext

Table 1. Single-key Attacks on the Full GOST

2 We can reduce the memory complexity by another factor of 217 (to 219) if we are
willing to increase the time by a factor of 212 (to 2140). This may seem like an
unattractive tradeoff since the 236 memory complexity is already practical, but one
can argue that 219 words will fit into the cache whereas 236 will not, which can result
in a big performance penalty.

An important observation about Isobe’s attack is that it uses in an essential
way the assumption that the Sboxes are invertible. Since the GOST standard
does not specify the Sboxes, and there is no need to make them invertible in
a Feistel structure, Isobe’s attack might not be applicable to some valid incar-
nations of this standard. A similar problem occurs in Courtois’ attacks, since
he only estimates their time complexity for one particular choice of Sboxes de-
scribed in [11] which is used in the Russian banking system, and it is possible
that for other choices of Sboxes the complexities will be different. The new at-
tacks described in this paper do not suffer from these limitations, since they can
be applied with the same complexity to any given set of Sboxes, regardless of
whether they are invertible or not and regardless of their differential properties.

2 Overview of Our New Attacks on the Full GOST

The 32 encryption rounds of GOST can be fully described using only two closely
related 8-round encryption functions. Let GKi1

,...,Kij
be j rounds of GOST under

the subkeys Ki1 , ...,Kij (where i1, ..., ij ∈ {1, 2, ..., 8}), and let (PL, PR) be a 64-
bit plaintext, such its right half, PR, enters the first round. Then
GOST (PL, PR) = GK8,...,K1

GK1,...,K8
GK1,...,K8

GK1,...,K8
(PL, PR)

Our new attacks on the full GOST exploit its high degree of self-similarity
using a general framework which is shared by other attacks: the algorithm of
each attack consists of an outer loop which iterates over the given 32-round
plaintext-ciphertext pairs, and uses each one of them to obtain suggestions for
two input-output pairs for GK1,...,K8

. For each suggestion of the 8-round input-
output pairs, we apply an 8-round attack which gives suggestions for the 256-
bit GOST key. We then verify the key suggestions by using some of the other
plaintext-ciphertext pairs. The self-similarity properties of GOST ensure that the
8-round attack needs to be applied a relatively small number of times, leading
to attacks which are much faster than exhaustive search.

We describe several attacks on the full GOST which belong to this common
framework but differ according to the property and the type of 8-round attack
we use. The two self-similarity properties are:

1. The reflection property which was first described in [7], where it was used
to attack 30 rounds of GOST (and 2224 weak keys of the full GOST). This
property was later exploited in [6] to attack the full GOST for all keys. We
describe this property again in Section 3.1 for the sake of completeness.

2. A new fixed point property which is described in Section 3.2.

The two properties differ according to the amount of data required to satisfy
them, and thus offer different points on a time/data tradeoff curve.

Given two 8-round input-output pairs, we describe in this paper several pos-
sible attacks of increasing sophistication:

1. A very basic meet-in-the-middle (MITM) attack [2], which is described in
Section 4.1.

2. An improved MITM attack, described in Section 4.2, which uses the idea of
equivalent keys (first described by Isobe in [6]).

3. A low-memory attack, described in Section 5.
4. A 2-dimensional meet-in-the-middle (2DMITM) attack, described in Sec-

tion 6.

In order to attack the full GOST, we select one of the two self-similarity
properties of Sections 3.1 and 3.2 to use in the outer loop of the attack according
to the amount of available data. We then select one of the two 8-round attacks
of Sections 5 and 6 according to the amount of available memory. The total
time complexity of our attacks is calculated by multiplying the complexity of
the 8-round attack by the expected number of times we have to try the self-
similarity property. Altogether, we obtain four new attacks on the full GOST.
In three out of the four cases, we obtain better combinations of complexities
than in all the previously published attacks. In the remaining case, we use the
reflection property and the low-memory 8-round attack to significantly reduce
the memory requirements of Isobe’s attack [6], at the expense of a small time
complexity penalty. We note that the computation required by each one of our
attacks can be easily parallelized, and thus using x CPUs reduces the expected
running time of the attack by a factor of x.

As described in Appendix A, the time complexity of all these attacks can be
slightly reduced by exploiting GOST’s complementation properties. However,
in some of these improved attacks we have to use chosen rather than known
plaintexts, which reduces their attractiveness.

3 Obtaining 8-Round Input-Output Pairs for GOST

In this section, we describe the two self-similarity properties of GOST which we
exploit in order to obtain two 8-round input-output pairs: the previously known
reflection property and the new fixed point property.

The fixed point property suggests two correct 8-round input-output pairs
with probability of about 2−64 and requires about 264 known plaintext-ciphertext
pairs to succeed with high probability. The reflection property suggests two
correct 8-round input-output pairs with a much smaller probability of about
2−96, but requires only 232 known plaintext-ciphertext pairs to succeed with high
probability. This implies that when about 264 known plaintext-ciphertext pairs
are available, it is preferable to use the fixed point property, and when about
232 known plaintext-ciphertext pairs are available, we should use the reflection
property.

3.1 The Reflection Property

Assume that the encryption of a plaintext P after 24 rounds of GOST gives a
64-bit value Y , such that the 32-bit right and left halves of Y are equal (i.e.
YR = YL). Thus, exchanging the two halves of Y at the end of round 24 does

not change the intermediate encryption value. In rounds 25–32, the round keys
K1–K8 are applied in the reverse order, and Y undergoes the same operations as
in rounds 17–24, but in the reverse order. As a result, the encryption of P after
32 rounds, which is the ciphertext C, is equal to its encryption after 16 rounds
(see Figure 2). By guessing the state of the encryption of P after 8 rounds,
denoted by the 64-bit value X, we obtain two 8-round input-output pairs (P,X)
and (X,C). For an arbitrary key, the probability that a random plaintext gives
such a symmetric value Y after 24 rounds is about 2−32, implying that we have
to try about 232 known plaintexts (in addition to guessing X) in order to obtain
the two pairs. Note that the reflection property actually gives us another “half
pair” (Ĉ, Y), where the 64-bit word Ĉ is obtained from C by exchanging the
right and left 32-bit halves of C, and the 32-bit right and left halves of Y are
equal.3 However, it is not clear how to exploit this additional knowledge in order
to significantly improve the running time of our attacks on the full GOST which
are based on the reflection property.

P Rounds 1–8

K1,K2, ...,K8
X

Rounds 9–16

K1,K2, ...,K8
C

Rounds 17–24

K1,K2, ...,K8
Y � pYL, YRq

YL � YR
Rounds 25–32

K8,K7, ...,K1
C

P Rounds 1–8

K1,K2, ...,K8
P

Rounds 9–16

K1,K2, ...,K8
P

Rounds 17–24

K1,K2, ...,K8
P

Rounds 25–32

K8,K7, ...,K1
C

1

Fig. 2. The Reflection Property of GOST

3.2 The Fixed Point Property

Assume that when we encrypt a 64-bit plaintext P , we obtain P again after
8 encryption rounds. Since rounds 9–16 and 17–24 are identical to rounds 1–8,
we obtain P after 16 and 24 rounds as well. In rounds 25–32, the round keys
K1–K8 are applied in the reverse order, and we obtain some arbitrary ciphertext
C (see Figure 3). The knowledge of P and C immediately gives us the 8-round

input-output pairs (P, P) and (Ĉ, P̂) (in which the right and left 32-bit halves
of P and C are exchanged).

For an arbitrary key, the probability that a random plaintext is a fixed point
is about 2−64, implying that we need about 264 known plaintexts to have a
single fixed point, from which we obtain the two input-output pairs needed in

3 In our attacks, we use 8-round input-output pairs whose encryption starts with K1

and thus need to apply the Feistel structure in the reverse order (starting from round
32) for input-output pairs obtained for rounds 25–32. Since in Feistel structures the
right and left halves of the block are exchanged at the end (rather than at the
beginning) of the round function, we exchange the right and left sides of the input

and the output of the input-output pairs obtained for rounds 25–32. We call (Ĉ, Y)
a “half pair” since we have to guess only 32 additional bits in order to find it, once
(P,C) is known.

our attack. If we have only c ·264 known plaintexts for some fraction c, we expect
this fixed point to occur among the given plaintexts with probability c, and thus
the time complexity, the data complexity, and the success probability are all
reduced by the same linear factor c. Consequently, it makes sense to try the
fixed point based attack even when we are given only a small fraction of the
entire code book of GOST. Such a graceful degradation when we are given fewer
plaintexts should be contrasted with other attacks such as slide attacks, in which
we have to wait for some random birthday phenomenon to occur among the given
data points. Since the existence of birthdays has a much sharper threshold, the
probability of finding an appropriate pair of points goes down quadratically
rather than linearly in c, and thus they are much more likely to fail in such
situations.

P Rounds 1–8

K1,K2, ...,K8
X

Rounds 9–16

K1,K2, ...,K8
C

Rounds 17–24

K1,K2, ...,K8
Y � pYL, YRq

YL � YR
Rounds 25–32

K8,K7, ...,K1
C

P Rounds 1–8

K1,K2, ...,K8
P

Rounds 9–16

K1,K2, ...,K8
P

Rounds 17–24

K1,K2, ...,K8
P

Rounds 25–32

K8,K7, ...,K1
C

1

Fig. 3. The fixed point property of GOST

4 Simple Meet-in-the-middle Attacks on 8 Rounds of
GOST

Meet-in-the-middle (MITM) attacks can be efficiently applied to block ciphers
in which some intermediate encryption variables (bits, or combinations of bits)
depend only on a subset of key bits from the encryption side and on another
subset of key bits from the decryption side: the attacker guesses the relevant key
bits from the encryption and decryption sides independently, and tries only keys
in which the values suggested by the computed intermediate variables match
up. While the full 32-round GOST seems to resist such attacks, GOST with 8
encryption rounds uses completely unrelated round keys. Thus, the full 64-bit
value after 4 encryption rounds depends only on round keys K1–K4 from the
encryption side and on round keys K5–K8 from the decryption side.

4.1 The Basic Meet-in-the-middle Attack

We describe how to mount a simple meet-in-the-middle attack on 8 rounds of
GOST given two 8-round input-output pairs and several additional 32-round
plaintext-ciphertext pairs:

1. For each of the 2128 possible values of K1–K4, encrypt both inputs and obtain
two 64-bit intermediate encryption values after 4 rounds of GOST (i.e., 2128

intermediate values of 128 bits each). Store the intermediate values in a list,

sorted according to these 128 bits, along with the corresponding value of
K1–K4.

2. For each of the 2128 possible values of K5–K8, decrypt both outputs, obtain
two 64-bit intermediate values and search the sorted list for these two values.

3. For each match, obtain the corresponding value of K1–K4 from the sorted
list and derive a full 256-bit key by concatenating the value of value of K1–K4

with the value of K5–K8 of the previous step. Using the full key, perform a
trial encryption of several plaintexts (at least two) and return the full key,
i.e., the one that remains after successfully testing the given 32-round pairs.

We expect to try about 2128+128−128 = 2128 full keys in step 3 of the attack,
out of which only the correct key is expected to pass the exhaustive search of step
3. Including the 2128 8-round encryptions which are performed in each of the first
two steps of the attack, the total time complexity of the attack is slightly more
than 2128 GOST encryptions. The memory complexity of the attack is about
2128 words of 256 bits. Note that it is possible obtain a time-memory tradeoff:
we partition the 2128 possible values of K1–K4 into 2x sets of size 2128−x (for
0 ≤ x ≤ 128), and run the second and third steps of the attack independently
for each set. Thus, the memory complexity decreases by a factor 2x to 2128−x,
and the time complexity increases by a factor of 2x to 2128+x.

4.2 An Improved Meet-in-the-middle Attack Using Equivalent Keys

In this section, we use a more general variant of Isobe’s equivalent keys idea
[6] to significantly improve the memory complexity of the attack. Both our and
Isobe’s MITM attacks are based on a 4-round attack that uses one input-output
pair for 4 encryption rounds to find all the 264 possible values of subkeys K1–K4

that yield this pair. However, our MITM attack is more general since we can
attack all the possible incarnations of the GOST standard, whereas Isobe can
only attack those which use bijective Sboxes. 4 Moreover, our MITM attack can
use any two input-output pairs for 8-round GOST, regardless of how they are
obtained. We can thus use the same algorithm to exploit both the reflection
and the fixed point properties. On the other hand, Isobe’s attack works on a
single input-output pair obtained for the first 16 rounds of GOST, by guessing
the intermediate values obtained after 4 and 12 rounds. Isobe’s attack can thus
efficiently exploit the 16-round input-output pair obtained from the reflection
property, but cannot be directly applied to the two input-output pairs produced
by the fixed point property.

We now describe Isobe’s 4-round attack: Denote the 4-round input (divided
into two 32-bit words) by (XL, XR) and the output by (YL, YR). Denote the
middle values (after using K2) by (ZL, ZR) (see Figure 4). We have the following
equations on 32-bit words:

ZL = XL ⊕ f(XR �K1)

4 The Feistel structure of GOST does not require bijective Sboxes and the published
standard does not discuss this issue, but all the known choices of Sboxes happen to
be bijective.

ZR = YR ⊕ f(YL �K4)

YL ⊕ ZL = f(ZR �K3)

XR ⊕ ZR = f(ZL �K2)

Isobe’s attack assumes bijective Sboxes (making f invertible), and finds the
equivalent keys as follows:5 for each value of K1,K2, compute ZL from the first
equation and ZR from the fourth equation. From the second equation we have:
K4 = f−1(ZR⊕YR)�YL and from the third equation: K3 = f−1(ZL⊕YL)�YR.

Our 8-round attack is a variant of Isobe’s MITM attack, given two 8-round
input-output pairs (I,O) and (I∗, O∗):

1. For each possible value of the 64-bit word Y = (YL, YR) obtained after 4
encryption rounds of the first pair:

(a) Apply the 4-round attack on (I, Y) to obtain 264 candidates for K1–K4.
(b) Partially encrypt I∗ using the 264 candidates and store Y ∗ = (Y ∗L , Y

∗
R)

in a list with K1–K4.
(c) Apply the 4-round attack on (Y,O) to obtain 264 candidates for K5–K8.
(d) Partially decrypt O∗ using each one of the 264 candidates and obtain

Y ∗ = (Y ∗L , Y
∗
R).

(e) Search the list obtained in step (b) for Y ∗, and test the full 256-bit keys
for which there is a match.

The expected time complexity of steps (a–d) is about 264 (regardless of the
algorithm that is used to find the equivalent keys). The time complexity of step
(e) is also about 264 since we expect to try about 264+64−64 = 264 full keys. Steps
(a–e) are performed 264 times, hence the total time complexity of the attack is
about 2128 GOST encryptions, which is similar to the first attack. However, the
memory complexity is significantly reduced from 2128 to slightly more than 264

words of 64 bits.

5 A New Attack on 8 Rounds of GOST with Lower
Memory Complexity

Simple meet-in-the-middle attacks, such as the ones described in Sections 4.1 and
4.2 are much faster than exhaustive search for the entire 256-bit key. However,
they do not fully exploit the slow diffusion of the key bits from the encryption
and decryption sides. As a result, these MITM attacks use a large amount of
memory to store the many intermediate encryption values obtained for all the
possible values of large sets of key bits. In this section, we describe an improved
attack which exploits the slow diffusion properties of 4 rounds of GOST in or-
der to reduce the memory complexity from the impractical value of 264 to the

5 In case f is not bijective, then for a random (XL, XR) and (YL, YR) there exist
an average of 264 equivalent keys which can be found using a simple preprocessing
MITM algorithm that requires about 264 time and memory.

XL XR

f
�
K1

f
�
K2

ZL ZR

f
�
K3

f
�
K4

YL YR

1

Fig. 4. Four Rounds of GOST

very practical value of 219 words of memory, with a very small time complexity
penalty.

Given the two input-output pairs for 8 rounds of GOST, we have a 128-bit
constraint on a 256-bit key. Thus, we expect about 2256−128 = 2128 keys to agree
with the pair. To efficiently enumerate these keys, we guess the values of the last
4 round keys (K5,K6,K7 and K8). For each value of the last 4 round keys, we
partially decrypt the given outputs and obtain two input-output pairs for the
first 4 rounds of GOST. Our attack retrieves all the values of the first 4 round
keys that yield these 4-round input-output pairs. We expect that only one such
value for K1–K4 exists for two arbitrary 4-round input-output pairs (note that
there are likely to be input-output pairs for which the encryptions of the inputs
does not match the outputs for any of the keys, and input-output pairs for which
the encryptions of the inputs matches the outputs for several values of K1–K4).

5.1 Overview of the “Guess and Determine” Attack on 4-Round
GOST

The attack is a typical “Guess and Determine” attack which traverses a tree of
partial guesses for the round keys K1–K4 and intermediate encryption values.
The tree is composed of layers of nodes `0, `1, ..., `k, where each layer contains
nodes which specify the potential values for a certain subset of key and inter-
mediate encryption values denoted by S0, S1, ..., Sk, respectively. The subset of
bits whose values are specified by a certain layer `i is contained in the subset of
bits whose values are specified by the next layer `i+1 (i.e. Si ⊂ Si+1). The first

layer of the tree `0 specifies values for the empty subset of bits (i.e. S0 = ∅) and
contains only the “empty guess”. In our attack, the nodes of the last layer of the
tree (`k) contain guesses for the full key. Each node in layer `i is expanded to
nodes in the next layer `i+1 which specify all the possible values for Si+1 \Si and
the same value for Si as the parent node. In addition, the expanded nodes of a
given layer need to satisfy a predicate whose value depends on the input-output
pairs and the value of the bits determined by the previous layers. Nodes which
do not satisfy the predicate are not included in the next layer and are discarded.
The predicates that we use in our attack check the consistency of intermediate
encryption values. In other words, in each layer we expand each node by guessing
the values of a small number of additional key bits and state bits that are needed
to calculate some intermediate encryption bits both from the encryption and the
decryption sides. We then calculate the bits by evaluating the Feistel structure
from both sides on a small number of bits, compare the values obtained, and
discard guesses in which the values do not match.

We traverse the partial guess tree starting from the root using DFS (which
requires only a small amount of memory). Once we reach a leaf node of the last
layer (a node that specifies a value for all the key bits), we check whether the key
is the correct key by a sufficiently large number of trial encryptions. If we reach
a leaf node which does not belong to the last layer (all of its potential children
do not satisfy the predicate), we simply discard it and continue the traversal.
The total number of operations performed during the traversal is proportional to
the total number of nodes in the tree. However, the operations performed when
expanding a single node work only on a few bits (rather than on full words). At
the same time, when expanding a full path of nodes in the tree from the root to
the last layer, we work on the full-size Feistel structure to obtain a guess for the
full key. Hence, we estimate the time complexity of expanding a full path by a
single Feistel structure evaluation on a full 64-bit input. Using this estimation, we
can upper bound the time complexity of the tree traversal (in terms of Feistel
structure evaluations) as the width of the tree, or the size of the layer which
contains the highest number of nodes. Note that when counting the number of
nodes in a layer for the time complexity analysis, we must also include the nodes
expanded in the previous layer which were discarded since they do not satisfy
the predicate.

5.2 Notations

Assume that we have two input-output pairs for 4 encryption rounds of GOST
under the subkeys K1,K2,K3,K4. Similarly to Section 4.2, denote the input,
output and middle values (after using K2) for the first pair by (XL, XR), (YL, YR)
and (ZL, ZR), respectively. For the second pair, denote these values by (X∗L, X

∗
R),

(Y ∗L , Y
∗
R) and (Z∗L, Z

∗
R) respectively.

Since our attack analyzes 4-bit words (which are outputs of single Sboxes),
we introduce additional notations: Define the functions f0, f1, ..., f7 where each
f i takes a 4-bit word as an input, and outputs a 4-bit word by applying Sbox i
to the input. Denote by W i the i’th bit of the 32-bit word W , and by W i,j the

(j − i + 1)-bit word composed of consecutive bits of W starting from bit i and
ending in bit j. We treat W as a cyclic word, for example W 24,3 contains 12 bits
which are bits 24 to 31 and 0 to 3 of W . Let Ci for be the 32-bit carry word
produced by the addition of the round key Ki to the corresponding state word
(note that C0

i = 0 and we can ignore the last carry produced at bit 31 which
has no effect on the encryption).

5.3 The Basic Procedure of the 4-Round Attack

We now describe the particular procedure that we use in the 4-round attack to
expand a node in the tree. We calculate the 4-bit intermediate encryption words
Z4i+3,4i+6
L and Z∗4i+3,4i+6

L (where i ∈ {0, 1, ..., 7}):

1. Guess the 4 bits of K4i−8,4i−5
1 , which are added to the 4 data bits of

X4i−8,4i−5
R and X∗4i−8,4i−5R that enter the corresponding Sbox.

2. If the 4 bits guessed in step 1 are not LSBs (least significant bits) of the full
32-bit key (i.e. 4i−8 6= 0(mod 32)), guess the carry bit entering the addition
of the 4 key bits and data bits for each input-output pair (denoted by C4i−8

1

and C∗4i−81).

3. Add the value of K4i−8,4i−5
1 to X4i−8,4i−5

R and to the (possible) carry bit
C4i−8

1 (and perform the same operations for the other pair), and obtain the
4-bit inputs to the Sbox for each input-output pair.

4. For each input-output pair, apply the Sbox to the result of the previous step
and XOR the result with the corresponding input bits of X4i+3,4i+6

L and

X∗4i+3,4i+6
L (obtained after the 11-bit rotation to the left).

For each input-output pair, this simple procedure gives us 4 bits of state
after the Sbox layer of one round of encryption with a total of 4 or 6 bits
guessed (depending on whether the guessed key bits are LSBs or not). Note that
a similar procedure can be used to obtain 4 bits of state after one decryption
round. In order to calculate 4 bits of ZR after two encryption rounds for each
input-output pair, we perform the following steps:

1. Run the algorithm above and obtain Z4i+3,4i+6
L and Z∗4i+3,4i+6

L .

2. Guess Z4i+7
L and Z∗4i+7

L .

3. Given Z4i+4,4i+7
L , Z∗4i+4,4i+7

L (that enter an Sbox before the addition of K2),

use a variant of the algorithm above to obtain Z4i+15,4i+18
R and Z∗4i+15,4i+18

R .

Note that we need to guess the state bit of ZL in step 2 once for each of
the two input-output pairs available. The procedure described can be repeated
several times in order to determine 4 bits after any number of encryption (or
decryption) rounds, where the number of required guesses of key bits, carry bits
and state bits increases with the number of rounds.

5.4 Optimization Methods Used in the 4-Round Attack

Since the time complexity of the attack is determined by the widest layer of the
tree, we use several optimizations in order to obtain effective filtering conditions
while guessing the smallest possible number of bits in each layer. These opti-
mizations ensure that the expected number of children per node at a given layer
is small, and thus reduce the expected width of the next layer. As a result, we
can recover the possible keys that generate the given input-output pairs more
efficiently. The optimizations that we use are described below:

1. We optimize the basic process of expanding a node described above by using a
more direct approach which gives the same result. For example, we calculate
the values of the 4 intermediate encryption bits, Z31,2

R , from the encryption
side of the Feistel structure. The consistency predicate on these bits can now
be viewed as an equation on 4 bits of K4 (K20,23

4) from the decryption side.
In the basic approach we solve this equation by exhaustive search on the 16
possible values of K20,23

4 . Instead, we precompute and store the solutions to
the equation for all its 220 possible values, and use this small precomputed
table to directly derive the values of K20,23

4 (i.e. we expand only the nodes
that satisfy the consistency predicate in advance). This direct approach is
more efficient than the basic approach since the size of the layers of the guess
tree (including the size of the widest layer) is reduced in exchange for a small
amount of precomputation and memory.

2. Given the case of two input-output pairs, we can use differential methods in
order to simultaneously reduce the number of unknown bits and constraint
bits in our equations. As a result, the size of our precomputed tables can be
reduced. For example, for each input-output pair, we have a 4-bit equation,
whose left hand side is Z31,2

R (Z∗31,2R for the second pair). The value of Z31
R

is unknown, and Z0,2
R is obtained by subtracting a known 3-bit value from 3

bits of K3 (K0,2
3). Altogether, when we consider both input-output pairs, we

have 8 constraint bits and 5 unknown bits on the left side of the equation. By
subtracting the two 4-bit equations, K0,2

3 is eliminated, and we get a single
4-bit equation whose left hand side is (ZR �Z∗R)31,2. This equation has only
1 unknown bit ((ZR � Z∗R)31), and 3 known bits ((ZR � Z∗R)0,2). Note that
both the number of unknown bits and constraints in the equations is reduced
by 4, and thus we do not remove possible solutions or add solutions which
are not possible using the non-differential method.

3. To minimize the number of required carry and state bit guesses, we work on
consecutive chunks of bits from right to left. For example, we initially derive
key bits K20,23

4 . The corresponding data bits that are added to the key in
round 4 are known from the two input-output pairs, and we only have to
guess the two carry bits into bit 20 of the two addition operations (C20

4 and
C∗204). This allows us to derive C24

4 and C∗244 , which are required to derive
K24,27

4 . Effectively, this approach enables us to guess the carries and state
bits only initially, when working on the first chunk of bits. Afterwards, the
carries and state bits are already known since we know all the relevant less
significant bits needed to calculate them.

4. Initially, we guess values that are required to calculate the four LSBs of sev-
eral addition operations. Since there is no carry into the LSBs, this enables
us to reduce the number of required guesses of carry bits into addition oper-
ations of partial words. For example, we start by guessing K0,3

1 , which allows
us to derive Z11,14

L without guessing any carry bits.

5.5 Details and Analysis of the 4-Round Attack

Consider the equations of Section 4.2 for the first pair, and similar equations for
the second pair. From each one of these four 32-bit equations, we derive eight
equations which equate 4-bit words, and are indexed by i ∈ {0, 1, ..., 7}:
(Ei

1): Z4i+11,4i+14
L = X4i+11,4i+14

L ⊕ f i(X4i,4i+3
R �K4i,4i+3

1 � C4i
1)

(Ei
2): Z4i+11,4i+14

R = Y 4i+11,4i+14
R ⊕ f i(Y 4i,4i+3

L �K4i,4i+3
4 � C4i

4)

(Ei
3): Y 4i+11,4i+14

L ⊕ Z4i+11,4i+14
L = f i(Z4i,4i+3

R �K4i,4i+3
3 � C4i

3)

(Ei
4): X4i+11,4i+14

R ⊕ Z4i+11,4i+14
R = f i(Z4i,4i+3

L �K4i,4i+3
2 � C4i

2)
In addition to the carry words defined in Section 5.2, we define CS2 and CS3 as
the 32-bit words (ZL � Z∗L)⊕ ZL ⊕ Z∗L and (ZR � Z∗R)⊕ ZR ⊕ Z∗R respectively.

In the rest of this section we describe the algorithm for deriving the 32 bits
of K1 and the 32 bits of K4. Afterwards, deriving the values of K2 and K3 is
immediate using the third and forth equations of Section 4.2 (ZL and ZR are
known from the first and second equations).

Our tree contains 9 layers (`0, `1, ..., `8), where the procedure for expanding
the nodes of layer i ∈ {0, 1, ..., 7} uses equations Ei

1, E
i+2
1 , Ei+5

2 , Ei
3 and Ei+5

4

(the index additions are performed numerically modulo 8). The steps of the
procedure for expanding the nodes of each layer are basically the same and differ
only according to the indices of the equations that are used (which determine
the 4-bit chunks that we work on). Thus, we call the procedure for expanding
layer i ∈ {0, 1, ..., 7} an iteration.

Table 2 gives the iteration inputs and outputs calculated in each step of the
iteration algorithm for i ∈ {0, 1, ..., 7}. Note that the carry and state bits and
expressions which are outputs of the iteration i, serve as inputs to iteration i+1.

The steps of iteration i ∈ {0, 1, ..., 7} are given below.6 Note that steps 6–10
are analogous to steps 1–5, but are performed from the decryption side.

1. Given the inputs K4i,4i+3
1 , C4i

1 , C∗4i1 , use equation Ei
1 to calculate Z4i+11,4i+14

L

for both pairs.

2. Given Z4i+11,4i+14
L (from step (1)), use equation Ei

3 to calculate Z4i,4i+3
R �

K4i,4i+3
3 � C4i

3 for both pairs.

3. Subtract the expressions calculated in step (2), Z4i,4i+3
R �K4i,4i+3

3 �C4i
3 and

Z∗4i,4i+3
R � K4i,4i+3

3 � C∗4i3 , to eliminate K4i,4i+3
3 , and obtain the value of

(Z4i,4i+3
R � Z∗4i,4i+3

R) � (C4i
3 � C∗4i3 � CS4i

3).

6 For the sake of simplicity, we do not mention the carry and state output bits in the
description of the steps, and just list them in Table 2.

Step Key Carry State Key Carry State
input input input output output output

(1) K4i,4i+3
1 C4i

1 , - - C4i+4
1 , -

C∗4i1 C∗4i+4
1

(3) - - - - C4i+4
3 � (ZR � Z∗R)4i+3

C∗4i+4
3 �
CS4i+4

3

(4) - C4i
3 � (ZR � Z∗R)4i+31 - - -

C∗4i3 �
CS4i

3

(5) - C4i+20
4 , - K4i+20,4i+23

4 - -
C∗4i+20

4

(6) - C4i+20
4 , - - C4i+24

4 , -
C∗4i+20

4 C∗4i+24
4

(8) - - - - C4i+24
2 � (ZL � Z∗L)4i+23

C∗4i+24
2 �
CS4i+24

2

(9) - C4i+20
2 � (ZL � Z∗L)4i+19 - - -

C∗4i+20
2 �
CS4i+20

2

(10) - C4i+8
1 , - K4i+8,4i+11

1 C4i+12
1 , -

C∗4i+8
1 C∗4i+12

1

Steps (2) and (7) do not use any iteration input or calculate any iteration output.
Table 2. Iteration inputs used and iteration outputs calculated in each step of the
iteration algorithm for i ∈ {0, 1, ..., 7}

4. Subtract the input C4i
3 � C∗4i3 � CS4i

3 from the 3 LSBs of the expression
calculated in step (3), and concatenate the 3-bit result with the input (ZR�
Z∗R)4i+31 to obtain (ZR � Z∗R)4i+31,4i+2.

5. Given (ZR � Z∗R)4i+31,4i+2 (from step (4)) and the carries C4i+20
4 , C∗4i+20

4 ,
solve the equation obtained by subtracting right hand side of Ei+5

2 to obtain

K4i+20,4i+23
4 .

6. Given C4i+20
4 , C∗4i+20

4 , and K4i+20,4i+23
4 (derived in step (5)), use equation

Ei+5
2 to calculate Z4i+31,4i+2

R for both pairs.

7. Given Z4i+31,4i+2
R (from step (6)), use equation Ei+5

4 to calculate Z4i+20,4i+23
L �

K4i+20,4i+23
2 � C4i+20

2 for both pairs.

8. Subtract the expressions calculated in step (7), Z4i+20,4i+23
L �K4i+20,4i+23

2 �
C4i+20

2 and Z∗4i+20,4i+23
L �K4i+20,4i+23

2 �C∗4i+20
2 to eliminate K4i+20,4i+23

2 ,

and obtain the value of (Z4i+20,4i+23
L �Z∗4i+20,4i+23

L)� (C4i+20
2 �C∗4i+20

2 �
CS4i+20

2).
9. Subtract the input C4i+20

2 � C∗4i+20
2 � CS4i+20

2 from the 3 LSBs of the
expression calculated in step (8), and concatenate the 3-bit result with the
input (ZL � Z∗L)4i+19 to obtain (ZL � Z∗L)4i+19,4i+22.

10. Given (ZL � Z∗L)4i+19,4i+22 (from step (9)) and the inputs C4i+8
1 , C∗4i+8

1 ,
solve the equation obtained by subtracting right hand side of Ei+2

1 to obtain

K4i+8,4i+11
1 .

All the steps of this iteration algorithm involve simple operations on 4-bit
words (addition, subtraction, XOR and application of a 4×4 Sbox, or its inverse).
The exceptional steps are (5) and (10), where we have to solve the equations
obtained by subtracting the right hand sides of Ei+5

2 and Ei+2
1 , respectively.

Each equation adds a 4-bit constraint on 4 unknown bits of the key, and thus we
expect a single solution on average. However, it is possible that these equations
will have more than one solution (and then we have to try each one), or no
solutions at all (and then we can discard the guess at this stage). The solutions
to each equation can be derived by using the basic approach of exhaustive search
over the 24 possible values of the 4 key bits. However, we speed up the process
for each equation by precomputing and storing the solutions for each of the 24

possible values of the equation and for each of the 216 values of the 16 relevant
input or output bits that participate in the equation. A table for a single equation
has 24+16 = 220 entries, where each entry has an average of a single 4-bit solution
(222 bits, or 216 words of 64 bits in total per table), and requires a negligible
precomputation time compared to the complexity of the full attack on GOST.

The algorithm for deriving K1 and K4 expands the guess tree by running
iterations i ∈ {0, 1, ..., 7} in their natural order, guessing unknown iteration
inputs when they are required. We now analyze its expected time complexity by
calculating the width of the layers of the tree according to the expected number
of guesses required at each stage of the algorithm: In general, iteration i requires
the following input bits (as specified in Table 2): 4 bits of K1 in step (1), 6
single carry bits in steps (1),(5),(6) and (8) (note that steps (5) and (6) require
the same carry bits), 4 carry expression bits in steps (4) and (9) (note that the
value of each carry expression is either -2,-1,0 or 1) and 2 state bit expressions
in steps (4) and (9). Altogether, iteration i requires 4+6+4+2 = 16 input bits.
However, in iteration 0 (which is the first iteration performed), the carry inputs
required in step (1) and the carry expression required in step (4) are known to
be zero. Thus, iteration 0 requires only 12 unknown iteration input bits which
we have to guess, thus the expected size of the second layer is 212. Note that
the inverse Sbox computed in steps (2) and (7) is expected to provide a single
output value per input (i.e. step (2) and (7) are not expected to increase the
width of the guess tree). In addition, the equations solved in steps (5) and (10),
are expected to have a single solution, as explained above.

In iteration 1 (where we derive layer 2 of the tree), iteration inputs which are
carry and state bits are already known from the output of iteration 0. Moreover,
after step (10) of the first iteration, we know the values of C8

1 and C∗81 . This
gives us a 2-bit filtering condition on K4,7

1 (we only try values of K4,7
1 which

are consistent with the carries). In this sense, the carries guessed in step (10) of
the first iteration are “consumed” by the second iteration. Thus, after the first
two iterations, we obtain K20,27

4 and K8,15
1 from guessing 8 bits of the first key,

K0,7
1 . In addition, we have an expected number of 28−2 = 26 additional guesses

(counting the carry and state bit guesses of steps (2)–(10) of iteration 0, without
the 2-bit guess of step (10)). Thus, the expected size of layer 2 is 28+6 = 214,
which is larger than the 212 expected size of layer 1, but not by a large factor.

In iteration 2, we derive K28,31
4 and K16,19

1 from K8,11
1 . Since K8,11

1 is already
known at this stage, we do not need to guess it again. Thus, the size of layer
3 remains the same as in layer 2, namely 214 possible solutions. This pattern
continues until the end of iteration 5, where our partial guess nodes include
the values of K0,31

1 and K20,11
4 (as shown in Table 3). In iterations 6 and 7, we

derive the remaining bits of K4 (K12,19
4) and the bits of K1 (K0,7

1) which were
already guessed, and give us additional 4-bit filtering conditions on the guesses
in each of these iterations. Thus, layer 7 of the tree in expected to contain
214−4 = 210 nodes. Iteration 7 is the final iteration, in which besides the 4-
bit filtering condition on K4,8

1 , we also obtain the remaining 6 iteration inputs
guessed in iteration 0. We thus receive additional filtering conditions of 6 bits
and expect the final layer to contain 210−4−6 = 1 node (a single value for K1

and K4, as expected when we compare the total number of key and input-output
constraint bits).

Iteration 0 1 2 3 4 5 6 7

K1 bits derived 0–3 4-7 8–11 12–15 16–19 20–23 24–27 28–31
8–11 12–15 16–19 20–23 24–27 28–31 0–3 4–7

K4 bits derived 20–23 24–27 28–31 0–3 4–7 8–11 12–15 16–19

The key bits which are already known from previous iterations are underlined.
Table 3. The key bits derived in each iteration

The expected number of nodes in the widest layer of the partial guess tree
is 214, and it is obtained at iterations 1 to 5 (which define layers 2 to 6 in the
tree). Thus, the time complexity of the algorithm is about 214 Feistel structure
evaluations for each one of the two input-output pairs, and 215 evaluations alto-
gether. Since we work on a 4-round Feistel structure which contains a fraction
of 2−3 of the 32 rounds of the full GOST, we estimate that the expected time
complexity of this attack is equivalent to about 215−3 = 212 GOST evaluations.
We apply this 4-round attack for each one of the 2128 possible values of the last
4 round keys (K5,K6,K7 and K8), and thus the time complexity of the 8-round
attack is about 2128+12 = 2140 GOST evaluations.

In terms of memory, we store precomputed tables for steps (5) and (10) in
each iteration. The equations solved in these two steps are of the same structure
for each one of the 8 iterations and differ only according to the Sbox used.
Thus, we need 8 such tables (one for each Sbox), which require 8 · 222 = 225

bits of memory. The additional memory required to store other intermediate
variables and to store our state in the DFS traversal is negligible compared to the
space consumed by the precomputed tables. Hence, the attack has a completely
practical memory complexity of 225 bits, which is equivalent to 219 64-bit words.

6 A New 2-Dimensional Meet-in-the-middle Attack on 8
Rounds of GOST

In this section, we present a new attack on 8 rounds of GOST given two input-
output pairs, which combines the ideas of the “Guess and Determine” attack and
the MITM attacks. Unlike the attack of the previous section, we do not guess
the last 4 round keys in advance. Instead, we divide the 8-round Feistel structure
horizontally by splitting it into a top part, which uses round keys K1–K4, and a
bottom part, which uses round keys K5–K8.

The main additional property of 4-round GOST that we exploit in this attack
is the slow diffusion of the input bits into the state. This allows us to divide the
4-round attack of Section 5 on the top part into two partial 4-round attacks.
Each partial 4-round attack uses part of the input and a set containing only 82
state bits (out of the 128 bits of Y and Y ∗) in order to obtain suggestions for the
values of a set containing slightly more than half of the key bits of K1–K4, and
some state material. The slow diffusion of the input bits into the state ensure
that the input bits and state bits (used in each partial 4-round attack) contain
almost all the information required to uniquely recover the corresponding key
bits, and thus each partial 4-round attack does not give many suggestions for
the partial key. We note that the full 4-round attack uses all of the 128 bits of
Y and Y ∗ to recover all of the 128 bits of K1–K4. This implies that the union of
the two sets of state bits used in the two partial 4-round attacks contains the 128
bits of Y and Y ∗, and the union of the two sets of recovered key bits contains
the 128 bits of K1–K4.

Since the value of Y and Y ∗ is unknown, we execute each partial 4-round
attack 282 times (once for each value of the 82 state bits it requires). We can
now execute a MITM attack in which we compare the values of the common
key and state material derived from the two partial 4-round attacks, and obtain
suggestions for K1–K4 with corresponding 128-bit values of Y and Y ∗. We then
use the same type of attack on the bottom part of the 8-round Feistel structure,
obtain suggestions for K5–K8 and use a final MITM attack which joins the two
parts by comparing the 128-bit values of Y and Y ∗ to obtain suggestions for the
full key.

Schematically, we split the top and bottom parts of the block cipher vertically
into two (potentially overlapping) cells, such that on each cell we execute an
independent partial attack to obtain suggestions for a part of the key. We then
join all the suggestions to obtain suggestions for the full key using three MITM
attacks. This can be visualized using a 2×2 matrix (as shown in Figure 5), where
the horizontal line separates the four first and last rounds of the 8-round block
cipher, and the dashed vertical line separates the left and right cells in each one
of the top and bottom parts.

After the MITM attacks on the top and bottom parts of the Feistel structure,
we obtain 2128 suggestions for K1–K4 and 2128 suggestions for K5–K8, each with
corresponding 128-bit values of Y and Y ∗. Note that so far we did not filter out
any possible keys, and thus the final MITM attack, which compares the 128-
bit values of Y and Y ∗ to obtain about 2128 suggestions for the full key, is

Top MITM

Intermediate
encryption bits

Bottom MITM

Joint MITM

1

Fig. 5. The general framework of the 2-dimensional meet-in-the-middle attack

essentially the basic MITM attack of Section 4.1, which would normally require
2128 memory.

To reduce the memory consumption, we guess many of the 128 bits of Y and
Y ∗ in advance (in the outer loop of the 8-round attack). For each possible value
of those bits, we execute the 2DMITM (2-dimensional MITM) attack described
above, but obtain fewer suggestions for the key which we have to store. This
increases the number of times that we execute the partial 4-round attacks and
potentially the overall time complexity of the full 8-round attack. However, this
is not the case, as the partial 4-round attacks were relatively efficient (the time
complexity of each one was at most 218) and were originally executed only 282

times. Thus, the partial 4-round attacks were not the bottleneck of the time
complexity of the attack.7

6.1 Details of the 8-Round Attack

Formally, we define the following sets which contain bits of Y and Y ∗: S1 is
the set of bits that we guess in the outer loop of the 8-round attack. S2 and
S3 are the sets of remaining bits, which are not guessed in advance (i.e. not in
S1), that are required for the execution of the partial 4-round attacks on the
left and right cells, respectively, of the top part of the 8-round Feistel structure.
Namely, S1

⋂
S2 = ∅, and S1

⋃
S2 is the minimal set that contains all the bits of

Y and Y ∗ which are required by the partial 4-round attack on the left cell of the
top part. Similarly, S1

⋂
S3 = ∅, and S1

⋃
S3 is the minimal set that contains

all the bits of Y and Y ∗ which are required by the partial 4-round attack on
the right cell of the top part. For the bottom MITM attack, we define S4 and

7 Note again that we expect about 2128 keys to fulfill the filtering conditions of the
two input-output pairs. Thus, the time required for the attack cannot be reduced
below 2128 (without exploiting additional filtering conditions).

S5 in a similar way to S2 and S3, respectively, but for the bottom part of the
8-round Feistel structure. Note that since the 4-round attacks on both the top
and bottom parts require all the 128 intermediate bits, S2

⋃
S3 = S4

⋃
S5.

The details of the 4-round attacks are given in the next section. We now refer
to them as black boxes, and give the algorithm of the full 8-round attack:

1. For each value of the bits of the set S1:
(a) Perform the 4-round attack on the top part of the Feistel structure, and

obtain a list with values of K1–K4, sorted according to the value of the
bits of S2

⋃
S3.

(b) Perform the 4-round attack on the bottom part of the Feistel structure.
For each value of S4

⋃
S5 = S2

⋃
S3 (given along with the value of K5–

K8), search the list obtained in the previous step of matches. For each
match test the full key K1–K8 with the given plaintext-ciphertext pairs.

6.2 Details of the 4-Round Attacks

We concentrate first on the top part of the 8-round Feistel structure: each one
of the two partial 4-round attacks on the top part sequentially executes a subset
of the iterations defined in Section 5, and is called an iteration batch. The first
(left) iteration batch executes iterations 0–3, and the second (right) executes
iterations 4–7.

After performing iteration batches 0–3 and 4–7 independently, we get sug-
gestions for the values of some key bits, and for some carry and state bits. We
then discard inconsistent suggestions by comparing the values of the common
bits that are derived by both of the iteration batches. We partition these bits
into three groups:

1. G1 contains the 16 key bits which are derived by both of the iteration batches
0–3 and 4–7 (as specified in Table 4).

2. G2 contains the carry and state iteration input bits that we guess in iteration
0, not including step (10) (the bits that we guess in step (10) are already
used as filtering conditions in iteration 1). Using Table 2, we get |G2| = 6
(using the fact that the carry bits are known to be zero). Note that the bits
of G2 are also contained in the set of iteration output bits of iteration 7 (of
batch 4–7), and can thus be used to discard inconsistent suggestions made
by batches 0–3 and 4–7.

3. G3 contains the carry and state iteration input bits that we guess in iteration
4 (the first iteration of batch 4–7), not including the bits that we guess in step
(10). Using Table 2, we get that |G3| = 10 (unlike iteration 0, in iteration
4 no carry bits and expressions are known in advance). Note that the bits
of G3 are also contained in the set of iteration output bits of iteration 3 (of
batch 0–3), and can thus be used to discard inconsistent suggestions made
by batches 0–3 and 4–7.

Assume that the values of all the bits of S1 are known. We now give the
algorithm of the MITM attack performed on the top part of the 8-round Feistel
structure:

Iteration 0 1 2 3 4 5 6 7

K1 bits (0–3) (4–7) 8–11 12–15 (16–19) (20–23) 24–27 28–31
derived 8–11 12–15 (16–19) (20–23) 24–27 28–31 (0–3) (4–7)

K4 bits 20–23 24–27 28–31 0–3 4–7 8–11 12–15 16–19
derived

Bits of R[31, 2] R[3, 6] R[7, 10] R[11, 14] R[15, 18] R[19, 22] R[23, 26] R[27, 30]
Y and Y ∗ L[11, 14] L[15, 18] L[19, 22] L[23, 26] L[27, 30] L[31, 2] L[3, 6] L[7, 10]
required L[20, 23] L[24, 27] L[28, 31] L[0, 3] L[4, 7] L[8, 11] L[12, 15] L[15, 19]

Key bits which are known from previous iterations of the batch are underlined. Key
bits of G1 (derived by both of the iteration batches) appear is parenthesis. The bits
of Y and Y ∗ are denoted as follows: R[i, j] denotes Y i,j

R and Y ∗i,jR , L[i, j] denotes Y i,j
L

and Y ∗i,jL .
Table 4. The key bits derived and the intermediate encryption bits required in each
iteration of iteration batches 0–3 and 4–7

1. For each value of the bits of S2, perform the batch of iterations 0–3. Save
all the nodes of the final layer in a list. These nodes contain the values of
slightly more than half of the bits of K1–K4 (including the values of the bits
of G1), and also the values of the bits of G3. In addition to the information
obtained by each node, also save the value of the initial guess of the bits of
G2, and the value of the bits of S2 per node. Sort the list according to the
values of G1,G2 and G3.

2. For each value of the bits of S3, perform the batch of iterations 4–7. For
each node in the final layer obtain the value of the bits of G1,G2 and G3 and
search the list obtained in the first step for their value. For each match, save
the value of the full K1–K4 in a sorted list according to the value of the bits
of S2

⋃
S3.

The iteration batches of the MITM attack on the bottom part of the Feistel
structure are performed from the decryption side and are completely analogous
to the iteration batches on the top part (i.e. in iteration 0, we start by guessing
K0,3

8 , and derive K20,23
5 and K8,11

8). We also define analogous sets to G1,G2 and
G3 for the bottom part.

Before analyzing the complexities of the top and bottom MITM attacks, we
determine the sets S1–S5. We refer to Table 4, which gives the indices of the inter-
mediate encryption bits required by iterations 0–7 of the top part of the 8-round
Feistel structure. In order to calculate the indices of these bits, recall from Section
5.5 that iteration i ∈ {0, 1, ..., 7} uses equations Ei

1, E
i+2
1 , Ei+5

2 , Ei
3 and Ei+5

4 , out

of which only Ei+5
2 and Ei

3 require bits of Y and Y ∗: Ei+5
2 requires Y 4i+31,4i+2

R

and Y 4i+20,4i+23
L , and Ei

3 requires Y 4i+11,4i+14
L (note that iteration i also requires

the same indices for Y ∗). Altogether, iterations 0–3 require the 82 intermediate
bits Y 31,14

R , Y 11,3
L , Y ∗31,14R and Y ∗11,3L , and iterations 4–7 require the 82 inter-

mediate bits of Y 15,30
R , Y 27,19

L , Y ∗15,30R and Y ∗27,19L . After calculating the indices
of the intermediate encryption bits that the iteration batches of the top part

require, we can easily derive the analogous indices that the iteration batches of
the bottom part require, taking into account that the right and left 32-bit halves
of Y and Y ∗ are exchanged at the end of round 4. Thus, we need to exchange
the right and left halves of the bits calculated for the top part: for the bottom
part, iteration batch 0–3 requires the 82 intermediate encryption bit values of
Y 31,14
L ,Y 11,3

R ,Y ∗31,14L and Y ∗11,3R and the iteration batch 4–7 requires the 82 bits

of Y 15,30
L ,Y 27,19

R ,Y ∗15,30L and Y ∗27,19R .
The sets S1–S5 that we choose are given in table 5. Note that since the right

and left 32-bit halves of Y and Y ∗ are exchanged at the end of round 4, we
choose S1 so that it contains the same bit indices from both halves of Y and
Y ∗. As a result, the sets used during the iteration batches are of the same size
(|S2| = |S3| = |S4| = |S5| = 18). This implies that the iteration batches of both
the top and the bottom parts are performed the same number of times (218) for
a given value of the 92 bits of S1.

S1 Y
10,19
L , Y 23,3

L , Y 10,19
R , Y 23,3

R , Y ∗10,19
L , Y ∗23,3

L , Y ∗10,19
R , Y ∗23,3

R

S2 Y 20,22
L , Y 4,9

R , Y ∗20,22
L , Y ∗4,9

R

S3 Y 4,9
L , Y 20,22

R , Y ∗4,9
L , Y ∗20,22

R

S4 Y 20,22
R , Y 4,9

L , Y ∗20,22
R , Y ∗4,9

L

S5 Y 4,9
R , Y 20,22

L , Y ∗4,9
R , Y ∗20,22

L

Table 5. The sets S1–S5

We now analyze the complexity of the MITM attack on the top part of the
Feistel structure: as calculated in Section 5.5, when starting the iteration batch
from iteration 0, the expected maximal size of the tree is 214. It is obtained after
iteration 1, and is maintained until the end of iteration 5 (even though we do
not perform 5 consecutive iterations in this attack). The time complexity of the
first step of the attack is thus about 2|S2|+14 = 214+18 = 232, and this is also
the size of the sorted list at the end of the first step. The maximal size of the
tree of the iteration batch 4–7 is 214+4 = 218 (as described above, we have to
guess 4 more carry bits compared to iterations 0–3). Thus, the time complexity
of expanding the tree in the second step is 2|S3|+18 = 236. The time and memory
complexities of the remainder of step 2 (in which we match the iteration batches)
are 2|S2|+|S3|+14+18−(|G1|+|G2|+|G3|) = 2|S2|+|S3|+14+18−(16+6+10) = 2|S2|+|S3| =
236. Note that it is not surprising that the time and memory complexities of
the matching part of the attack reduce to 2|S2|+|S3|, since given the full 128-bit
intermediate value, we expect that only one key survives the filtering conditions.
Altogether, the memory complexity of the top MITM attack is about 236 64-
bit words. The time complexity is dominated by step 2 and is equivalent to
about 236 4-round Feistel structure evaluations, which is equivalent to about 233

evaluations of the full GOST cryptosystem. For the bottom MITM attack, we

obtain the same time and memory complexities, since the sizes of S4 and S5 are
equal to the sizes of S2 and S3, and the sets corresponding to G1, G2 and G3

are completely symmetrical.

6.3 Analysis of the 8-Round Attack on GOST

We analyze the attack of Section 6.1: The time complexities of each of the
MITM attacks on the bottom and top parts in steps (a) and (b) are equivalent
to about 236 4-round Feistel structure evaluations, as calculated above. The
number of expected matches for which we run the full cipher in step (b) is
236+36−36 = 236. Hence, the time complexity of these steps is equivalent to a bit
more than 236 full GOST evaluations. Since |S1| = 92, the total time complexity
of the attack is equivalent to about 292+36 = 2128 GOST evaluations. The total
memory complexity of the attack is about 236 64-bit words, and is dominated
by the sorted list calculated in step (a).

7 Conclusions and Open Problem

In this paper we introduced several new techniques such as the fixed point prop-
erty and two dimensional meet in the middle attacks, and used them to greatly
improve the best known attacks on the full 32-round GOST. In particular, we
reduced the memory complexity of the attacks from an impractical 264 to a prac-
tical 236 (and to an even more practical 219 complexity, which can fit into the
cache of modern microprocessors, with a small penalty in the running time). The
lowest time complexity of our attacks is 2192, which is 232 times better than pre-
viously published attacks but still very far from being practical. Consequently,
we are concerned about the weaknesses which were demonstrated in the design
of GOST (especially in its simplistic key schedule), but do not advocate that its
current users should stop using it right away.

The main open problems left in this paper are whether it is possible to find
faster attacks, and how to better exploit other amounts of available data (in
addition to the 232 and 264 complexities considered in this paper, which are the
natural thresholds for our techniques).

References

1. Eli Biham, Orr Dunkelman, and Nathan Keller. Improved Slide Attacks. In Alex
Biryukov, editor, FSE, volume 4593 of Lecture Notes in Computer Science, pages
153–166. Springer, 2007.

2. David Chaum and Jan-Hendfik Evertse. Cryptanalysis of DES with a Reduced
Number Of Rounds: Sequences of Linear Factors in Block Ciphers. In Advances in
Cryptology, CRYPTO 85, pages 192–211. Springer-Verlag, 1986.

3. Nicolas T. Courtois. Security Evaluation of GOST 28147-89 in View of Inter-
national Standardisation. Cryptology ePrint Archive, Report 2011/211, 2011.
http://eprint.iacr.org/.

4. Nicolas T. Courtois and Micha l Misztal. Differential Cryptanalysis of GOST. Cryp-
tology ePrint Archive, Report 2011/312, 2011. http://eprint.iacr.org/.

5. Ewan Fleischmann, Michael Gorski, Jan-Hendrik Huehne, and Stefan Lucks. Key
Recovery Attack on full GOST Block Cipher with Negligible Time and Memory.
Presented at Western European Workshop on Research in Cryptology (WEWoRC),
2009.

6. Takanori Isobe. A Single-Key Attack on the Full GOST Block Cipher. In Antoine
Joux, editor, FSE, volume 6733 of Lecture Notes in Computer Science, pages 290–
305. Springer, 2011.

7. Orhun Kara. Reflection Cryptanalysis of Some Ciphers. In Dipanwita Roy Chowd-
hury, Vincent Rijmen, and Abhijit Das, editors, INDOCRYPT, volume 5365 of
Lecture Notes in Computer Science, pages 294–307. Springer, 2008.

8. John Kelsey, Bruce Schneier, and David Wagner. Key-Schedule Cryptoanalysis
of IDEA, G-DES, GOST, SAFER, and Triple-DES. In Neal Koblitz, editor,
CRYPTO, volume 1109 of Lecture Notes in Computer Science, pages 237–251.
Springer, 1996.

9. Youngdai Ko, Seokhie Hong, Wonil Lee, Sangjin Lee, and Ju-Sung Kang. Re-
lated Key Differential Attacks on 27 Rounds of XTEA and Full-Round GOST.
In Bimal K. Roy and Willi Meier, editors, FSE, volume 3017 of Lecture Notes in
Computer Science, pages 299–316. Springer, 2004.

10. National Bureau of Standards. Federal Information Processing Standard-
Cryptographic Protection - Cryptographic Algorithm. GOST 28147-89, 1989.

11. OpenSSL. A Reference Implementation of GOST. http://www.openssl.org/

source/.
12. Vladimir Rudskoy. On Zero Practical Significance of Key Recovery Attack on Full

GOST Block Cipher with Zero Time and Memory. Cryptology ePrint Archive,
Report 2010/111, 2010. http://eprint.iacr.org/.

13. Haruki Seki and Toshinobu Kaneko. Differential Cryptanalysis of Reduced Rounds
of GOST. In Douglas R. Stinson and Stafford E. Tavares, editors, Selected Areas in
Cryptography, volume 2012 of Lecture Notes in Computer Science, pages 315–323.
Springer, 2000.

A Appendix: Exploiting GOST’s Complementation
Property

The full GOST block cipher has a well-known complementation property. If
the plaintext P = (PL, PR) is encrypted under K = (K1,K2, . . . ,K8) to the
ciphertext C = (C1, C2), then the encryption of P ∗ = (PL⊕e31, PR⊕e31) under
K = (K1 ⊕ e31,K2 ⊕ e31, . . . ,K8 ⊕ e31) is C∗ = (C1 ⊕ e31, C2 ⊕ e31) (where e31
is the 32-bit vector whose entries are all zero, except the MSB, which is one.).

At the same time, in our attacks on reduced-round GOST, we notice the
existence of two less known complementation properties: for
GK1,K2,K3,K4

(PL, PR) = (TL, TR), GK1⊕e31,K2,K3⊕e31,K4
(PL, PR⊕e31) = (TL, TR⊕

e31) and GK1,K2⊕e31,K3,K4⊕e31(PL ⊕ e31, PR) = (TL ⊕ e31, TR).
One can use these three complementation properties in all of our attacks

(even though each one of them leads to a different improvement factor). For
example, consider the meet-in-the-middle attack suggested in Section 4.2. In
this attack, we obtain two 8-round input-output pairs (I,O) and (I∗, O∗). The

attack starts by guessing Y (the partial encryption of I after four rounds). The
naive way to implement the search loop is to try any possible value of Y , and
then any value of K3,K4 to obtain the candidate values of K1,K2. However, for
each guess of Y, I,K3,K4, consider the 264 candidates for K1,K2. If we consider
the list of candidates for Y ⊕ (e31, e31), I ⊕ (e31, e31),K3⊕ e31,K4⊕ e31, it is the
same as the previous one (up to the MSBs of K1 and K2). The same is true for
the other two complementation properties.

In other words, instead of computing the three additional lists (for each
of the three complementation properties) we can perform this step only once.
As there are four 4-round steps (we need to deal with (I, Y), (Y,O), (I∗, Y ∗)
and (Y ∗, O∗)), we can save three out of the 16 4-round steps (i.e., for each I,
I ⊕ (0, e31), I ⊕ (e31, 0) and I ⊕ (e31, e31) with all the corresponding Y ’s we
compute the list only once).

We note that in the attacks based on the fix point point property, the first
input-output pair is actually (I, I), hence, one can use the complementation
property again (once for (I, I⊕ (e31, e31)) and once for (I⊕ (0, e31), I⊕ (e31, 0)).
Additionally, as O∗ is I (up to a swap), one can again save two out of the four
rounds computations. In total, this improvement results in an overall saving of
7/16 in the 8-round attack.

In the unoptimized fixed-point attack there are 2192 steps of full-GOST trial
encryptions, and 2192 executions of the 8-round attack, which result in a total
time complexity equivalent to (32 + 16) · 2192 = 48 · 2192 rounds of GOST. Using
this improvement, the total running time is reduced to (32 + 9) · 2192 = 41 · 2192
rounds of GOST, a speed up of about 14.6% in the total running time.

In the reflection-based attacks one can optimize the trial encryptions: in-
stead of performing 2224 full-GOST trial encryptions, it is possible to exploit the
additional “half pair” and obtain an additional 32-bit filtering condition by run-
ning 8 rounds of GOST. As a result, the trial encryptions require less than 2224

full-GOST evaluations, while the 8-round attacks take more than that. Thus,
unlike the fixed-point-based attacks, in the reflection-based attacks the 8-round
attacks form the bottleneck, and reducing their complexity gives a more signifi-
cant savings. We note that the complex attack procedure of Section 6 can also
be improved by changing the order of the loop. To do so, one needs to reorder
the guess of X, and Y accordingly. Therefore, using a chosen plaintext model
for the reflection-based attacks (to obtain 232 appropriate plaintext-ciphertext
pairs), it is possible to perform the analysis for three out of the four 4-round
phases only once. This reduces the running time to 7/16 of the original time
complexity. The total running time of the improved attack is thus reduced to
2222.8 applications of the 8-round attack.

