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Abstract

We show that the widely deployed RSA-OAEP encryption scheme of Bellare and Rogaway
(Eurocrypt 1994), which combines RSA with two rounds of an underlying Feistel network whose
hash (i.e., round) functions are modeled as random oracles, meets indistinguishability under chosen-
plaintext attack (IND-CPA) in the standard model based on simple, non-interactive, and non-
interdependent assumptions on RSA and the hash functions. To prove this, we first give a result
on a more general notion called “padding-based” encryption, saying that such a scheme is IND-
CPA if (1) its underlying padding transform satisfies a “fooling” condition against small-range
distinguishers on a class of high-entropy input distributions, and (2) its trapdoor permutation is
sufficiently lossy as defined by Peikert and Waters (STOC 2008). We then show that the first round
of OAEP satifies condition (1) if its hash function is t-wise independent for appopriate t and that
RSA satisfies condition (2) under the Φ-Hiding Assumption of Cachin et al. (Eurocrypt 1999).

This appears to be the first non-trivial positive result about the instantiability of RSA-OAEP. In
particular, it increases our confidence that chosen-plaintext attacks are unlikely to be found against
the scheme. In contrast, RSA-OAEP’s predecessor in PKCS #1 v1.5 was shown to be vulnerable
to such attacks by Coron et al. (Eurocrypt 2000).
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1 Introduction

The RSA-OAEP encryption scheme was designed by Bellare and Rogaway [7] as a drop-in replacement
for RSA PKCS #1 v1.5 [1] with provable security guarantees. In particular, it follows the same
paradigm as RSA PKCS #1 v1.5 in that it encrypts a message of less than k bits to a k-bit ciphertext
(where k is the modulus size) by first applying a fast, randomized, and invertible “padding transform”
to the message before applying RSA. In the case of RSA-OAEP, the underlying padding transform
(which is itself called ‘OAEP’1) embeds a message m and random coins r as s‖(H(s)⊕ r) where ‘‖’
denotes concatenation, s = (m‖0k1)⊕G(r) for some parameter k1, and G and H are hash functions
(see Figure 2 on p. 11). In contrast, PKCS #1 v1.5 essentially just concatenates m with r.

RSA-OAEP was designed using the random oracle (RO) methodology [6]. This means that, for
the security analysis, its hash functions are modeled as truly random functions, available to all parties
only via oracle access. When the scheme is implemented in practice, these oracles are heuristically
“instantiated” in certain ways using a cryptographic hash function like SHA1. A cryptographic hash
function (or a function built from one) is certainly not random nor computable only via an oracle
(it has a short, public description), but schemes designed using this methodology are hoped to be
secure. Unfortunately, a series of works, starting with the seminal paper of Canetti et al. [20] showed
that there are schemes secure in the RO model that are insecure under every instantiation of its
oracles; such RO model schemes are called uninstantiable. Thus, to gain confidence in an RO model
scheme, we should show that it is not uninstantiable, i.e., that its oracles admit a secure instantiation
by efficiently computable functions under well-defined assumptions. Then, when we instantiate the
scheme, we know that our goal is at least plausible. We feel this is especially important for a scheme
such as RSA-OAEP, which is by now widely standardized and deployed.

Yet, while RO model schemes continue to be proposed, relatively few have been shown to be in-
stantiable. In particular, we are not aware of any result showing instantiability of RSA-OAEP, even
under a relatively modest security model. In fact, the scheme has come under criticism lately due
to several works (discussed in Section 1.2) showing the impossibility of certain types of instantiations
under chosen-ciphertext attack (IND-CCA). Fortunately, we bring some good news: We give reason-
able assumptions under which RSA-OAEP is secure against chosen-plaintext attack (IND-CPA). We
believe this is an important step towards a better understanding of the scheme’s security.

1.1 Our Contributions

Our result on the instantiability of RSA-OAEP is obtained via three steps or other results. (These
other results may also be of independent interest.) First, we show a general result on the instantia-
bility of “padding-based encryption,” of which f -OAEP is a special case, under the assumption that
the underlying padding transform is what we call a fooling extractor and the trapdoor permutation
is lossy [45]. We then show that OAEP and RSA satisfy the respective conditions under suitable
assumptions.

Padding-based encryption without ROs. Our first result is a general theorem about padding-
based encryption (PBE), a notion formalized recently by Kiltz and Pietrzak [37].2 PBE generalizes
the design methology of PKCS #1 and RSA-OAEP we already mentioned. Namely, we start with
a k-bit to k-bit trapdoor permutation (TDP) that satisfies a weak security notion like one-wayness.

1We often use the same terminology for ‘f -OAEP,’ which refers to OAEP using an abstract TDP f , with the meaning
hopefully clear from context.

2Such schemes were called “simple embedding schemes” by Bellare and Rogaway [7], who discussed them only on an
intuitive level.
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To “upgrade” the TDP to an encryption scheme satisfying a strong security notion like IND-CPA,
we design an invertible “padding transform” which embeds a plaintext and random coins into a k-bit
string, to which we then apply the TDP. This methodology is quite natural and has long been prevalent
in practice, motivating the design of OAEP and later schemes such as SAEP [14] and PSS-E [24]. The
latter were all designed and analyzed in the RO model.

We show that the RO model is unnecessary in the design and analysis of IND-CPA secure PBE.
To do so, we formulate a connection between PBE and a new notion we call “fooling extractor for
small-range distinguishers” or just “fooling extractor.” Intuitively, a fooling extractor is a kind of
randomness extractor that transforms a high-entropy source into something that looks random to any
function (or distinguisher) with a small range.3 Our result says that if the padding transform of a
PBE scheme is an “adaptive” fooling extractor for sources of the form (m,R) — where m is a plaintext
and R is the random coins (which we call “encryption sources”) — and its TDP is sufficiently lossy
(the logarithm of its range size should be slightly less than the length of R) as defined by Peikert and
Waters [45], then the PBE scheme is IND-CPA. Here “adaptive” means that m may depend on the
choice of the extractor seed. We call such padding transforms “encryption-compatible.”

OAEP fools small-range distinguishers. Our second result says that the OAEP padding trans-
form is encryption-compatible if the hash function G is t-wise independent for appropriate t (roughly,
proportional to the allowed message length). Note that no restriction is put on hash function H;
in particular, neither hash function is modeled as an RO. The inspiration for our proof comes from
the “Crooked” Leftover Hash Lemma (LHL) of Dodis and Smith [27], especially its application to
deterministic encryption by Boldyreva et al [11] (who also gave a simpler proof). Qualitatively, the
Crooked LHL says that (K, f(Π(K,X))) looks like (K, f(U)) for any small-range function f , pairwise-
independent function Π keyed by K, and high-entropy source X; in our terminology, this says that a
pairwise-independent function is a fooling extractor for such X. In our application, we might näıvely
view Π as the OAEP. There are two problems with this. First, OAEP is not pairwise independent, even
in the RO model. Second, showing that OAEP is encryption-compatible entails showing adaptivity
(as defined above), whereas in the lemma K is independent of X.

To solve the first problem, we show that the Crooked LHL can be strengthened to say that
K, f(X,Π(K,X)) looks like K, f(X,U); i.e., that Π(K,X) looks random to f even given X. The
proof is an extension of the proof of the Crooked LHL in [11]. Then, by viewing X as the random
coins in OAEP and Π as the hash function G, we can conclude that OAEP is a fooling extractor for
any fixed encryption source (m,R), where m is independent of K (note that our analysis does not use
any properties of H—the only fact we use about the second Feistel round is that it is invertible).

To solve the second problem, we extend an idea of Trevisan and Vadhan [50] to our setting and
show that if G is t-wise independent for large enough t, the error probability for a particular encryption
source is so small that we can take a union bound over all possible m and conclude that OAEP is in
fact adaptive, meaning it is indeed encryption-compatible. Interestingly, we obtain better parameters
in the case that f is regular, meaning every preimage set has the same size. However, our analysis
still goes through assuming that every preimage set is sufficiently large, which we show can always be
assumed with some loss in parameters.

Lossiness of RSA. To instantiate RSA-OAEP, it remains to show lossiness of RSA. Our final result
is that RSA is indeed lossy under reasonable assumptions. Intuitively, lossiness [45] means that there
is an alternative, “lossy” key generation algorithm that outputs a public key indistinguishable from a
normal one, but which induces a small-range (uninvertible) function. We first show lossiness of RSA

3In the formal defintion we actually consider an “external” distinguisher who gets the extractor seed; see Section 3
for details.
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under the Φ-Hiding Assumption (ΦA) of Cachin, Micali, and Stadler [17]. ΦA has been used as the
basis for a number of efficient protocols, e.g., [17, 16, 29, 31]. ΦA states roughly that given an RSA
modulus N = pq, it is hard to distinguish primes that divide φ(N) = (p− 1)(q− 1) from those that do
not. Normal RSA parameters (N, e) are such that gcd(e, φ(N) = 1. Under ΦA, we may alternatively
choose (N ′, e) such that e divides p − 1. The range of the RSA function is then reduced by a factor
1/e. To resist known attacks, we can take the bit-length of e up to almost 1/4 that of N , giving RSA
lossiness of almost k/4 bits, where k is the modulus length.4

In practice, however, e is usually chosen to be small for efficiency reasons. We observe that in
this case more lossiness can be achieved by considering multi-prime RSA where N = p1 · · · pm for
m ≥ 2 (for a fixed modulus length), and in the lossy case choosing (N ′, e) such that e divides pi for
all 1 ≤ i ≤ m− 1; the range of the RSA function is then reduced by a factor 1/em−1. The maximum
bit-length of e in this case to avoid our best attack is roughly k(1/m− 2/m2) where k is the modulus
length — this was recently improved to k(2/3m2/3) by Herrmann [] — so for a fixed modulus size we
gain in lossiness only for small e. If we assume such multi-prime RSA moduli are indistinguishable
from two-prime ones, we can achieve such lossiness in the case of standard (two-prime) RSA as well.

Implications for RSA-OAEP. Combining the above results gives that RSA-OAEP is IND-CPA
in the standard model under (rather surprisingly, at least to us) simple, non-interactive, and non-
interdependent assumptions on RSA and the hash functions. The parameters for RSA-OAEP sup-
ported by our proofs are discussed in Section 6. While they are considerably worse than what is
expected in practice, we view the upshot of our results not as the concrete parameters they support,
but rather that they increase the theoretical backing for the scheme’s security at a more qualitative
level, showing it can be instantiated at least for larger parameters. In particular, our results give us
greater confidence that chosen-plaintext attacks are unlikely to be found against the scheme; such at-
tacks are known against the predecessor of RSA-OAEP in PKCS #1 v1.5 [23]. That said, we strongly
encourage further research to try to improve the concrete parameters.

Moreover, our analysis brings to light to some simple modifications that may increase the scheme’s
security. The first is to key the hash function G. Although our results have some interpretation
in the case that G is a fixed function (see below), it may be preferable for G to have an explicit,
randomly selected key. It is in an interesting open question whether our proof can be extended to
function families that use shorter keys. The second possible modification is to increase the length
of the randomness versus that of the redundancy in the message when encrypting short messages
under RSA-OAEP. Of course, we suggest these modifications only in cases where they do not impact
efficiency too severely.

Using unkeyed hash functions. Formally, our results assume G is randomly chosen from a large
family (i.e., it is a keyed hash function). However, our analysis actually shows that almost every
function (i.e., all but a negligible fraction) from the family yields a secure instantiation; we just do not
know an explicit member that works. In other words, it is not strictly necessary that G be randomly
chosen. When G is instantiated in practice using a cryptographic hash function, it is plausible that
the resulting instantiation is secure.

On chosen-ciphertext security. Any extension of our results to security under chosen-ciphertext
attack (IND-CCA) must get around the recent negative results of Kiltz and Pietrzak [37] (which we
discuss in more detail in Section 1.2). We suggest two possible approaches.

The first is based on the fact that, by the results of Bellare and Palacio [5], the notion of plaintext
awareness (PA) + IND-CPA implies IND-CCA. Thus, in order to show IND-CCA security of RSA-

4We remark that the recent attacks on ΦA [48] are for moduli of a special form that does not include RSA.
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OAEP in the standard model it suffices, by our results, to show PA (which is an orthogonal property
to privacy). To show the latter one could try to use non-black-box assumptions on H along the lines
of [19]. We leave a detailed investigation to future work.

The second is to make stronger assumptions on the TDP. For example, although it does not hold for
RSA, we can show IND-CCA security of OAEP by assuming the TDP satisfies a notion of “adaptive
lossiness,” a strengthening to the notion of adaptivity for TDFs studied in [35]. Informally, we say
F is adaptive lossy (cf. the definition of lossiness in Section 2) if the function gc(x) := f(x) where
(f, f−1) ← F(x;Coins) is lossy for any Coins (here F ′ takes an auxilliary input x), and moreover
(f, x) where (f, f−1)

$←F(x∗) is indistinguishable for any x∗ even oracle access to f−1. In the case
of TDFs, we can show that the construction of adaptive TDF in [35] from lossy+ABO TDFs satisfies
this strengthening (but we do not know a construction of adaptive lossy TDP).

1.2 Related Work

Security of OAEP in the RO model. In their original paper [7], Bellare and Rogaway showed
that OAEP is IND-CPA assuming the TDP is one-way. They further showed it achieves a notion they
called “plaintext awareness.” Subsequently, Shoup [49] observed that the latter notion is too weak to
imply security against chosen-ciphertext attacks, and in fact there is no black-box proof of IND-CCA
security of OAEP based on one-wayness of the TDP. Fortunately, Fujisaki et al. [28] proved that OAEP
is nevertheless IND-CCA assuming so-called “partial-domain” one-wayness, and that partial-domain
one-wayness and (standard) one-wayness of RSA are equivalent.

Security of OAEP without ROs. Results on instantiability of OAEP have so far mainly been
negative. Boldyreva and Fischlin [12] showed that (contrary to a conjecture of Canetti [18]) one
cannot securely instantiate even one of the two hash functions (while still modeling the other as an
RO) of OAEP under IND-CCA by a “perfectly one-way” hash function [18, 21] if one assumes only
that f is partial-domain one-way. Brown [15] and Paillier and Villar [43] later showed that there
are no “key-preserving” black-box proofs of IND-CCA security of RSA-OAEP based on one-wayness
of RSA. Recently, Kiltz and Pietrzak [37] (building on the earlier work of Dodis et al. [25] in the
signature context) generalized these results and showed that there is no black-box proof of IND-CCA
(or even NM-CPA) security of OAEP based on any property of the TDP satisfied by an ideal (truly
random) permutation.5 In fact, their result can be extended to rule out a black-box proof of NM-CPA
security of OAEP assuming the TDP is lossy [34], so our results are in some sense optimal given our
assumptions.

Instantiations of related schemes. A positive instantiation result about a variant of OAEP
called OAEP++ [38] (where part of the transform is output in the clear) was obtained by Boldyreva and
Fischlin in [13]. They showed an instantiation that achieves (some weak form of) non-malleability un-
der chosen-plaintext attacks (NM-CPA) for random messages, assuming the existence of non-malleable
pseudorandom generators (NM-PRGs).6 We note that the approach of trying to obtain positive re-
sults for instantiations under security notions weaker than IND-CCA originates from their work, and
the authors explicitly ask whether OAEP can be shown IND-CPA in the standard model based on
reasonable assumptions on the TDP and hash functions.

5Note, however, that their result does not rule out such a proof based on other properties of the TDP, non-black-box
assumptions on the hash functions, or in the case of a specific TDP like RSA.

6In particular, their security notion does not imply IND-CPA since they consider random messages. We also point
out that it remains an open question whether NM-PRGs can be constructed.
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Another line of work has looked at instantiating other RO model schemes related at least in
spirit to OAEP. Canetti [18] showed that the IND-CPA scheme in [6] can be instantiated using (a
strong form of) perfectly-one way probabilistic hash functions. More recently, the works of Canetti
and Dakdouk [19], Pandey et al. [44], and Boldyreva et al. [10] obtained (partial) instantiations of
the earlier IND-CCA scheme of [6]. Hofheinz and Kiltz [33] recently showed an IND-CCA secure
instantiation of a variant of the DHIES scheme of [2].

2 Preliminaries

Notation and conventions. For a probabilistic algorithm A, by y
$←A(x) we mean that A is

executed on input x and the output is assigned to y, whereas if S is a finite set then by s
$← S we

mean that s is assigned a uniformly random element of S. We sometimes use y ← A(x;Coins) to
make A’s random coins explicit. We denote by Pr

[

A(x)⇒ y : . . . ] the probability that A outputs
y on input x when x is sampled according to the elided experiment. Unless otherwise specified, an
algorithm may be probabilistic and its running-time includes that of any overlying experiment. We
denote by 1k the unary encoding of the security parameter k. We sometimes surpress dependence on
k for readability. For i ∈ N we denote by {0, 1}i the set of all binary strings of length i. If s is a
string then |s| denotes its length in bits, whereas if S is a set then |S| denotes its cardinality. By ‘‖’
we denote string concatenation. All logarithms are base 2.

Basic Definitions. Writing PX(x) for the probability that a random variable X puts on x, the
statistical distance between random variables X and Y with the same range is given by ∆(X,Y ) =
1
2

∑

x |PX(x) − PY (x)|. If ∆(X,Y ) is at most ε then we say X,Y are ε-close and write X ≈ε Y .
The min-entropy of X is H∞(X) = − log(maxx PX(x)). A random variable X over {0, 1}n is called a
(n, ℓ)-source if H∞(X) ≥ ℓ. Let f : A → B be a function. We denote by R(f) the range of f , i.e.,
{b ∈ B | ∃a ∈ A, f(a) = b}. We call |R(f)| the range-size of f . We call f regular if each pre-image set
is the same size, i.e., |{x ∈ D | f(x) = y}| is the same for all y ∈ R.

Public-key encryption and its security. A public-key encryption scheme with message-space
MsgSp is a triple of algorithms AE = (K, E ,D). The key-generation algorithm K returns a public key
pk and matching secret key sk. The encryption algorithm E takes pk and a plaintext m to return a
ciphertext. The deterministic decryption algorithm D takes sk and a ciphertext c to return a plaintext.
We require that for all messages m ∈ MsgSp

Pr
[

D(sk, E(pk,m)) 6= m : (pk, sk)
$←K

]

is negligible.
To an encryption scheme Π = (K, E ,D) and an adversary A = (A1, A2) we associate a chosen-

plaintext attack experiment,

Experiment Expind-cpa
Π,A (k)

b
$← {0, 1} ; (pk, sk) $←K(1k)

(m0,m1, state)
$←A1(pk)

c
$←E(pk,mb)

d
$←B2(pk, c, state)

If d = b then return 1 else return 0
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where we require A’s output to satisfy |m0| = |m1|. Define the ind-cpa advantage of A against Π as

Advind-cpa
Π,A (k) = 2 · Pr

[

Expind-cpa
Π,A (k)⇒ 1

]

− 1 .

Lossy trapdoor permutations. A lossy trapdoor permutation (LTDP) generator [45]7 is a pair
LTDP = (F ,F ′) of algorithms. Algorithm F is a usual trapdoor permutation (TDP) generator, namely
it outputs a pair (f, f−1) where f is a (description of a) permutation on {0, 1}k and f−1 its inverse.
Algorithm F ′ outputs a (description of a) function f ′ on {0, 1}k . We call F the “injective mode” and
F ′ the “lossy mode” of LTDP respectively, and we call F “lossy” if it is the first component of some
lossy TDP. For a distinguisher D, define its ltdp-advantage against LTDP as

Advltdp
LTDP,D(k) = Pr

[

D(f)⇒ 1 : (f, f−1)
$←F

]

− Pr
[

D(f ′)⇒ 1 : f ′
$←F ′

]

.

We say LTDP has residual leakage s if for all f ′ output by F ′ we have |R(f ′)| ≤ 2s. The lossiness of
LTDP is ℓ = k − s.

t-wise independent hashing. Let H : K × D → R be a hash function. We say that H is t-wise
independent if for all distinct x1, . . . , xt ∈ D and all y1, . . . , yt ∈ R

Pr
[

H(K,x1) = y1 ∧ . . . ∧ H(K,xt) = yt : K
$←K

]

=
1

|R|t .

In other words, H(K,x1), . . . ,H(K,xt) are all uniformly and independently random. The standard
construction of a t-wise independent hash function uses polynomial evaluation over a finite field and
has key length t log |D|.

3 Padding-Based Encryption from Lossy TDP + Fooling Extractor

In this section, we show a general result on how to build IND-CPA secure padding-based encryption
(PBE) without using random oracles, by combining a lossy TDP with a “fooling extractor” for small-
range distinguishers.

3.1 Background and Tools

We first provide the definitions relevant to our result.

Padding-based encryption. The idea behind padding-based encryption (PBE) is as follows: We
start with a k-bit to k-bit trapdoor permutation (e.g., RSA) and wish to build a secure encryption
scheme. As in [7], we are interested in encrypting messages of less than k bits to ciphertexts of length
k. It is well-known that we cannot simply encrypt messages under the TDP directly to achieve strong
security. So, in a PBE scheme we “upgrade” the TDP by first applying a randomized and invertible
“padding transform” to a message prior to encryption.

Our definition of PBE largely follows the recent formalization in [37]. Let k, µ, ρ be three integers
such that µ + ρ ≤ k. A padding transform (π, π̂) consists of two mappings π : {0, 1}µ+ρ → {0, 1}k
and π̂ : {0, 1}k → {0, 1}µ ∪ {⊥} such that π is injective and the following consistency requirement is
fulfilled:

∀m ∈ {0, 1}µ, r ∈ {0, 1}ρ : π̂(π(m ‖ r)) = m .

A padding transform generator is an algorithm Π that on input 1k outputs a (description of a) padding
transform (π, π̂). Let F be a k-bit trapdoor permutation generator and Π be a padding transform

7We note that [45] actually defines lossy trapdoor functions, but the extension to permutations is straightforward.
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generator. Define the associated padding-based encryption scheme AEΠ[F ] = (K, E ,D) with message-
space {0, 1}µ by

Alg K(1k)
(π, π̂)

$←Π(1k)
π ← (π, π̂)

(f, f−1)
$←F(1k)

Return ((π, f), (π, f−1))

Alg E((π, f),m)

r
$←{0, 1}ρ ; x← π(m‖r)

y ← f(x)
Return y

Alg D((π, f−1), y)
x← f−1(y)
m← π̂(x)
Return m

Padding-based encryption schemes have long been prevalent in practice, for example PKCS #1 [1].
While OAEP [7] is the best-known, the notion also captures later schemes such as SAEP [14] and PSS-
E [24].

Fooling extractors. We define a new notion that we call “fooling extractor for small-range
distinguishers” or just “fooling extractor.” Intuitively, fooling extractors are a type of randomness
extractor that “fools” distinguishers with small-range output. We give some more intuition after the
formal definition.

Definition 3.1 Let FExt : {0, 1}c × {0, 1}n → {0, 1}k be a function and let X = {X1, . . . ,Xq} be a
class of n-bit sources. We say that FExt fools range-2s distinguishers on X with probability 1 − ε (or
is an (s, ε)-fooling extractor for X ) if for all functions f on {0, 1}k with range-size at most 2s and all
1 ≤ i ≤ q:

(K, f(FExt(K,Xi)) ≈ε (K, f(U)) ,

where K is uniform on {0, 1}c and U is uniform and independent on {0, 1}n. We call K the key or
seed of FExt. Note that K is independent of i above.

We say that FExt adaptively fools range-2s distinguishers on X with probability 1 − ε (or is an
adaptive (s, ε)-fooling extractor for X ) if for all functions f on {0, 1}k with range-size at most 2s:

E
k

$
← {0,1}c

[

max
1≤i≤q

∆
(

f(FExt(k,Xi)) , f(U)
)

]

≤ ε .

Since ∆(K, f(FExt(K,Xi)), (K, f(U))) = Ek ∆(k, f(FExt(k,Xi)), (k, f(U))), the above implies that
(K, f(FExt(K,Xi)) ≈ε (K, f(U)) for i depending on K (or, put differently, (K, f(FExt(K,Xi)) ≈ε

(K, f(U)) holds for every i over the same choice of K).
As a useful special case, we say that FExt fools range-2s regular distinguishers on X with probability

1− ε (or is a regular (s, ε)-fooling extractor for X ) if we quantify only over regular f in the definition.
An adaptive regular (s, ε)-fooling extractor for X is defined analogously.

We note that while the intuition given prior to the definition describes fooling the function
f , it actually requires fooling an “implicit” or “external” distinguisher that sees both the output
f(FExt(K,Xi)) of f and the extractor seed K. This crucial for the definition to be meaningful. In-
deed, just asking that f(FExt(K,Xi)) be indistinguishable from f(U) for all small-range functions f
is equivalent to asking only that FExt(K,Xi) be indistinguishable from U . This latter requirement is
trivial to achieve (if one is not concerned with key length)–for example, by using K as a one-time pad.

We also note that the concept of fooling extractors was implicit in the work of Dodis and Smith [27]
on error-correction without leaking partial information, whose “Crooked” Leftover Hash Lemma es-
tablishes in our language that a pairwise-independent function is a (s, ε)-fooling extractor for every
singleton (n, ℓ)-source X where s ≤ ℓ− 2 log(1/ε) + 2. This lemma was later applied in the context of
deterministic public-key encryption by Boldyreva et al. [11] (and indeed this application inspired our
work), who also gave a simpler proof.

9



3.2 The Result

To state our result, we first formalize the concept of encryption-compatible padding transforms.

Definition 3.2 Let Π be a padding transform generator whose coins are drawn from Coins. Define
the associated function hΠ : Coins× {0, 1}µ+ρ → {0, 1}k by h(c,m‖r) = π(m‖r) for all c ∈ Coins,m ∈
{0, 1}µ, r ∈ {0, 1}ρ, where (π, π̂)← Π(1k;Coins). Define the class XΠ of encryption sources associated
to Π as containing all sources of the form (m,R), where m ∈ {0, 1}µ is fixed and R ∈ {0, 1}ρ is
uniformly random. (Note that the class XΠ therefore contains 2µ distinct (µ+ ρ)-bit sources.) We say
that Π is (s, ε)-encryption-compatible if hΠ as above is an adaptive (s, ε)-fooling extractor for XΠ. A
regular (s, ε)-encryption-compatible padding transform generator is defined analogously.

Theorem 3.3 Let LTDP = (F ,F ′) be an LTDP with residual leakage s, and let Π be an (s, ε)-
encryption-compatible padding transform generator. Then for any IND-CPA adversary A against
AEΠ[F ] there is a adversary D against LTDP such that for all k ∈ N

Advind-cpa
AE,A (k) ≤ Advltdp

LTDP,D(k) + ε .

Furthermore, the running-time of D is the time to run A.

Proof: Given A = (A1, A2), we define three games, called G0, G1, G2, in Figure 1. Note that game

G0 is the experiment Expind-cpa
Π,A (k) defining IND-CPA security. We claim that for a distinguisher D

against LTDP that is simple to construct, we have

1

2
+Advind-cpa

AEΠ[F ],A
(k) = Pr [G0⇒ 1 ] (1)

≤ Pr [G1⇒ 1 ] +Advltdp
LTDP,D(k) (2)

≤ Pr [G2⇒ 1 ] +Advltdp
LTDP,D(k) + ε (3)

=
1

2
+Advltdp

LTDP,D(k) + ε , (4)

from which the theorem follows by re-arranging terms. So let us justify the above.

Equation (1) is true by the definition of IND-CPA security.

For (2) we can construct a distinguisher D as required since G0, G1 do not use f−1 in any way.

Equation (3) is true by the definition of encryption compatibility. Namely, since hΠ in the definition
is an adaptive (s, ε)-fooling extractor for XΠ, we know the expectation over π̂ of ∆(f(π̂(m,R)), f(U))
is at most ε for m depending on π̂, so in particular it holds for m = mb in game G1.

Finally, (4) uses the fact that in G2 no information about b is given to A. Note that the final two
steps in the proof are information-theoretic, meaning they do not use any assumption about A’s
running-time.

Remark 3.4 The analogous result to the above holds for regular LTDPs and regular encryption-
compatible padding transforms. That is, if the LTDP is regular (meaning F ′ is) then it suffices to use
a regular encryption-compatible padding transform to obtain the same conclusion. The latter may be
easier to design or more efficient than in the general case; indeed, we get better parameters for OAEP
in the regular case in Section 4. Furthermore, known examples of LTDPs (including RSA, as shown
in Section 5) are regular, although a technical issue about the domain of RSA versus the output range
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Game G0:

b
$←{0, 1} ; (f, f−1)

$←F
(π, π̂)

$← Π ; Π← (π, π̂)

(m0,m1, state)
$← A1(f,Π)

r← {0, 1}ρ ; x← π̂(mb‖r)
d

$← A2((f,Π), f(x), state)
If d = b then Return 1
Else Return 0

Game G1:

b
$←{0, 1} ; f

$←F ′

(π, π̂)
$← Π ; Π← (π, π̂)

(m0,m1, state)
$←A1(f,Π)

r
$←{0, 1}ρ ; x← π̂(mb‖r)

d
$← A2((f,Π), f(x), state)

If d = b then Return 1
Else Return 0

Game G2:

b
$←{0, 1} ; f $←F ′

(π, π̂)
$← Π ; Π← (π, π̂)

(m0,m1, state)
$←A1(f,Π)

x
$←{0, 1}k

d
$←A2((f,Π), f(x), state)

If d = b then Return 1
Else Return 0

Figure 1: Games for the proof of Theorem 3.3. Shaded areas indicate the differences between games.

of OAEP makes it difficult to exploit this for RSA-OAEP and raises an interesting open problem;
see Section 6.

4 OAEP as a Fooling Extractor

In this section, we show that the OAEP padding transform of Bellare and Rogaway [7] is encryption-
compatible as defined in Section 3 if its initial hash function is t-wise independent for t depending on
the message length and lossiness of the TDP.

4.1 OAEP

We recall the OAEP padding transform of Bellare and Rogaway [7], lifted to the “instantiated” setting
where hash functions may be keyed. Let G : KG × {0, 1}ρ → {0, 1}µ and H : KH × {0, 1}µ → {0, 1}ρ
be hash functions. The associated padding transform generator OAEP[G,H] on input 1k returns
(πKG,KH

, π̂KG,KG
), where KG

$←KG(1
k) and KH

$←KH(1k), defined via

Algorithm πKG,KH
(m‖r)

s← m⊕G(KG, r)
t← r ⊕H(KH , s)
x← s‖t
Return x

Algorithm π̂KG,KH
(x)

s‖t← x
r← t⊕H(KH , s)
m← s⊕G(KG, r)
Return m

See Figure 2 for a graphical illustration.

m ∈ {0, 1}µ r ∈ {0, 1}ρ

⊕ G

H ⊕

s t

m

⊕ G

H ⊕

s ∈ {0, 1}µ t ∈ {0, 1}ρ

Figure 2: Algorithms πKG,KH
(m, r) and π̂KG,KH

(s, t) for OAEP[G,H].
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Remark 4.1 Since we mainly study IND-CPA security, for simplicity we define above the “no-
redundancy” version of the OAEP, i.e., corresponding to the “basic scheme” in [7]. However, all
our results also holds for the redundant version. Additionally, as is typical in the literature we have
defined OAEP to apply the G-function to the least-significant bits of the input; in standards and
implementations it is typically the most significant bits (where the order of m and r are switched).
Again, we stress that our results hold in either case.

4.2 Analysis

The following establishes that OAEP is encryption-compatible if the hash function G is t-wise inde-
pendent for appropriate t. No restriction is put on the other hash function H. Indeed, our result also
applies to SAEP [14] (although the latter is neither standardized nor known to provide CCA security
in the RO model, except in certain cases).

Theorem 4.2 Let G : KG×{0, 1}ρ → {0, 1}µ and H : KH ×{0, 1}µ → {0, 1}ρ be hash functions, and
suppose G is t-wise independent. Let OAEP = OAEP[G,H]. Then

(1) OAEP is (s, ε)-encryption-compatible where ε = 2−u for u = t
3t+2(ρ− s− log t+ 2)− 2(µ+s)

3t+2 − 1.

(2) OAEP is regular (s, ε)-encryption-compatible where ε = 2−u for u = t
2t+2 (ρ − s − log t + 2) −

µ+s+2
t+1 − 1.

(3) When t = 2, OAEP is (s, ε)-encryption-compatible where ε = 2−u for u = (ρ− s− 2µ)/4 − 1.

Note that parts (2) and (3) capture special cases of (1) in which we get better bounds. The
techniques used in the proof were first developed in the context of the classical LHL by Trevisan
and Vadhan [50] and Dodis, Sahai and Smith [26], though the style of presentation of our theorem
statement and proof are inspired by Barak et al. [3, Lemma 1]. We mention that due to our use of
(variants of) the Crooked LHL rather than the classical one and the stucture of OAEP, some of the
technical details differ in our case and require new ideas.

Corollary 4.3 Let G : KG × {0, 1}ρ → {0, 1}µ and H : KH × {0, 1}µ → {0, 1}ρ be hash functions and
suppose that G is t-wise independent for t ≥ 3µ+s

ρ−s . Then OAEP[G,H] is (s, ε)-encryption-compatible
where ε = exp(−c(ρ− s− log t)) for a constant c > 0.

In particular, c ≈ 1/2 for regular functions. For such a function, if ρ− s is at least 180 then ε is
roughly 2−80 for t = 10 and message lengths µ ≤ 215 (which for practical purposes does not restrict
the message-space). Applying Theorem 3.3, we see that if G is 10-wise independent and the number
of random bits used in OAEP is at least 180 bits larger than the residual lossiness of the TDP, then
the security of OAEP is tightly related to that of the lossy TDP.

Remark 4.4 To show security of OAEP against what we call key-independent chosen-plaintext attack,
it suffices to argue that OAEP[G,H] is a fooling extractor for any fixed encryption source X = (m,R)
where m ∈ {0, 1}µ. The latter holds for any ε > 0 and s ≤ ρ − 2 log(1/ε) + 2 assuming G is only
pairwise-independent (i.e., t = 2). See Appendix B for details.

Proof: (of Theorem 4.2) We now prove the above theorem.

Overview. We write OAEP for OAEP[G,H]. The high-level idea for all three parts of the theorem
is the same. Fix a lossy function f with range size at most 2s. We first show that for every fixed
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message m ∈ {0, 1}µ, with high probability (say 1− δ) over the choice of KG, the statistical distance
between f(OAEP(m,R)) and f(U) is small (say ε̂). This aspect of the proof changes from part to
part. We then take a union bound to show that the above holds for all messages over the same choice
of KG with probability at least 1 − 2µδ. This means that the statistical distance between the pair
(KG, f(OAEP(m,R))) and (KG, f(OAEP(U))) is at most ε = ε̂ + 2µδ for all messages over the same
choice of KG. Finally, we express δ as a function of ε̂, and select ε̂ to minimize this sum. Note that
the entire argument works for any choice of H.

We first prove part (3) of the theorem, then part (2), and finally part (1).

Proof of part (3). To prove part (3) of the theorem, we strengthen the Crooked LHL of [27] to
give the distinguisher access to the input to the fooling function as well its output.

Lemma 4.5 (Augmented Crooked LHL.) Let h : K × A → B be a pairwise-independent function
and let g : A × B → S be a function. Let X be a random variable on A such that H∞(X) ≥
lg |S|+ 2 lg(1/ε̂)− 2 for some ε̂ > 0. Then

∆((K, g(X,h(K,X)), (K, g(X,U)) ≤ ε̂ ,

where K
$←K and U is uniform and independent on B.

The proof, which extends the proof of the Crooked LHL given in [11], is in Appendix A.

We let G play the role of h in Lemma 4.5 and let {0, 1}ρ and {0, 1}µ play the roles of A and B,
respectively. Let g in the lemma be defined by g(a, b) = f(m⊕ a‖b⊕H(KH ,m⊕ a)) for arbitrary
but fixed m ∈ {0, 1}µ,KH ∈ KH . It follows that OAEP is a (s, ε̂)-fooling extractor for every fixed
encryption source X of the form (m,R). Part (3) of the theorem now follows by applying Markov’s
inequality and taking a union bound over all such sources; we omit the details.

Proof of part (2). Instead of Markov’s inequality, the proof of part (2) of the theorem uses a
stronger tail inequality for t-wise independent random variables, due to Bellare and Rompel [8] (our
application was inspired by the use of t-wise independence by Trevisan and Vadhan [50] and Dodis,
Sahai and Smith [26]).

Let f be any function on {0, 1}k to a set Y of size at most 2s. For this part of the theorem, assume
that f is regular, that is, that each preimage set has size exactly 2k−s. Let X = (m,R) be any
(µ + ρ, ρ)-source, where m ∈ {0, 1}µ is fixed and R is uniform over {0, 1}ρ. For each r ∈ {0, 1}ρ and
y ∈ Y, define the random variable

Zr,y =

{

2−ρ if f(πKG,KH
(m‖r)) = y ,

0 otherwise,

where, here and in what follows, the probability is over the random choices of KG and KH (although
the distribution on KH does not matter – we use only the fact that it is independent of m,R,KG).
Let Zy =

∑

r Zr,y. We claim that E [ Zy ] = 2−s. To see this, note that

E [ Zy ] =
∑

r

2−ρ · Pr [ f(U‖r) = y ] = Pr [ f(U‖R) = y ] = 2−s

where we use the fact that R is uniform and f is regular.
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To bound the deviation of Zy from its mean, note that for a fixed y, the variables {Zr,y}r∈{0,1}ρ are
t-wise independent (by the t-wise independence of G) and take values in [0, 2−ρ]. We can apply the
following tail bound (modified from the original to apply to random variables in [0,M ] rather than
[0, 1]).

Lemma 4.6 (Bellare and Rompel [8]) Let A1, . . . An be t-wise independent random variables taking
values in [0,M ]. Let A =

∑

iAi and δ ≤ 1. Then

Pr [ |A−E [ A ] | ≥ δ · E [ A ] ] ≤ ct

(

t ·M
δ2 ·E [A ]

)t/2

where ct < 3 and ct < 1 when t ≥ 8.

Setting δ = 2ε̂, we get that for every y ∈ Y,

Pr
[

|Zy − 2−s| ≥ 2ε̂ · 2−s
]

≤ ct

(

t

4ε̂2 · 2−s+ρ

)t/2

. (5)

By a union bound, the probability that there exists a y ∈ Y such that |Zy − 2−s| ≥ 2ε̂ · 2−s is at most

2sct

(

t

4ε̂2 · 2−s
)t/2

.

Observe that if (4.2) holds for all y ∈ Y then, letting Y denote the random variable f(πKG,KH
(m,R)),

we have

∆((KG,KH , Y ), (KG,KH , f(U)) ≤ 1

2

∑

y∈Y

|Zy − 2−s| =
∑

y∈Y

ε̂ · 2−s = ε̂ .

By another union bound, the probability that the above holds simultaneously for all 2µ possible
(µ+ ρ, ρ)-sources X = (m,R) is at least 1− δε̂, where

δε̂ = 2µ+sct

(

t

4ε̂2 · 2−s+ρ

)t/2

. (6)

Thus, OAEP is (s, ε)-encryption-compatible with ε = ε̂+ δε̂. Note that δε̂ can be written in the form
γ · ε̂−t (where γ depends on t, ρ, s, µ but not ε̂). Setting ε̂ = γ1/(t+1) yields ε ≤ 2γ1/(t+1) and part (2)
of the Theorem follows by observing that

u = − log ε ≥ − 1

t+ 1
· log γ − 1

= − 1

t+ 1
· ( t

2
(ρ− s− log t+ 2) + µ+ s+ log ct)− 1

≥ t

2t+ 2
· (ρ− s− log t+ 2)− µ+ s+ 2

t+ 1
− 1 .

Proof of part (1). We now turn to proving the lemma for general (not necessarily balanced)
functions f . We first give a proof for approximately balanced functions, in which no pre-image set is
too small; we then show that this implies a bound for arbitrary functions.
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Assume for now that miny∈Y |f−1(y)| ≥ λ · 2k−s for some real number 0 < λ ≤ 1 (note that regularity
corresponds to λ = 1). We sketch how to modify the proof of part (2) under this assumption;
essentially, we end up with an extra factor of λ in the denominator of Equation 6. We use the same
definition of Zy as in part (2). Instead of E [ Zy ] = 2−s, we now have E [ Zy ] = Pr [ f(U‖R) = y ] =
|f−1(y)|/2k. Thus, instead of Equation (5), we have

Pr
[

|Zy − |f−1(y)|/2k | ≥ 2ε̂ · |f−1(y)|/2k
]

≤ ct

(

t

4ε̂2 · |f−1(y)|/2k · 2ρ
)t/2

.

Using miny∈Y |f−1(y)| ≥ λ · 2k−s and taking a union bound, we get that the probability that there
exists y ∈ Y such that

|Zy − |f−1(y)|/2k| ≥ 2ε̂ · |f−1(y)|/2k | (7)

is at most

2sct

(

t

4ε̂2 · λ · 2−s · 2ρ
)t/2

. (8)

We can obtain a bound for arbitrary functions f by noting that every function f is “close” to a function
with no small pre-images. Specifically:

Claim 4.7 Let f : {0, 1}k → Y where |Y| ≤ 2s be a function. For any real number λ > 0, there exists
a function g : {0, 1}k → Y such that (i) miny∈Y |g−1(y)| ≥ λ · 2k−s; and (ii) the function g agrees with
f on a 1− λ fraction of its domain. In particular, ∆(f(U), g(U)) ≤ λ.

We can now prove part (3) of the theorem from Equation (8) by choosing λ = ε̂ in the claim and then
completing the analysis as in part (2). It remains to prove the claim.

Proof (of Claim 4.7): The idea is that we will take all the small pre-image sets of f and merge
them together with some larger preimage set (e.g., if 0 had a large pre-image set, then for all elements
x such that f−1(f(x)) is small, we set f(x) = 0). How many elements can belong to small pre-image
sets? There are at most 2s pre-image sets, each of which contains at most λ · 2k−s elements. So there
are at most λ · 2k elements of the domain on which f has to be changed.

5 Lossiness of RSA

In this section, we show that the RSA trapdoor permutation is lossy under reasonable assumptions.
In particular, we show that, for large enough encryption exponent e, RSA is considerably lossy under
the Φ-Hiding Assumption of [17]. We then show that by generalizing this assumption to multi-prime
RSA we can get even more lossiness. Finally, we propose a “Two-Or-m-Primes” Assumption that,
when combined with the former, amplifies the lossiness of standard (two-prime) RSA for small e.

5.1 Background on RSA and Notation

We denote by RSAk the set of all tuples (N, p, q) such that N = pq is the product of two distinct

k/2-bit primes. Such an N is called an RSA modulus. By (N, p, q)
$←RSAk we mean that (N, p, q)
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is sampled according to the uniform distribution on RSAk. An RSA TDP generator [47] is an
algorithm F that returns (N, e), (N, d), where N is an RSA modulus and ed ≡ 1 (mod φ(N)). (Here
φ(·) denotes Euler’s totient function, so in particular φ(N) = (p− 1)(q − 1).) The tuple (N, e) defines
the permutation on Z

∗
N given by f(x) = xe mod N , and similarly (N, d) defines its inverse. We say

that a lossy TDP generator LTDP = (F ,F ′) is an RSA LTDP if F is an RSA TDP generator.
To define the Φ-Hiding Assumption and later some extensions of it, the following notation is also

useful. For i ∈ N we denote by Pi the set of all i-bit primes. Let R be a relation on p and q. By
RSAk[R] we denote the subset of RSAk for that the relation R holds on p and q. For example, let e
be a prime. Then RSAk[p = 1 mod e] is the set of all (N, p, q), where where N = pq is the product of
two distinct k/2-bit primes p, q and p = 1 mod e. That is, the relation R(p, q) is true if p = 1 mod e

and q is arbitrary. By (N, p, q)
$←RSAk[R] we mean that (N, p, q) is sampled according to the uniform

distribution on RSAk[R].

5.2 RSA Lossy TDP from Φ-Hiding

Φ-Hiding Assumption (ΦA). We recall the Φ-Hiding Assumption of [17]. For an RSA modulus N ,
we say that N φ-hides a prime e if e | φ(N). Intuitively, the assumption is that, given RSA modulus
N , it is hard to distinguish primes which are φ-hidden by N from those that are not. Formally, let
0 < c < 1/2 be a (public) constant determined later. Consider the following two distributions:

R1 = {(e,N) : e, e′
$←Pck ; (N, p, q)

$←RSAk[p = 1 mod e′]}
L1 = {(e,N) : e

$←Pck ; (N, p, q)
$←RSAk[p = 1 mod e])} .

To a distinguisher D we associate its ΦA advantage defined as

AdvΦA
c,D(k) = Pr [D(R1)⇒ 1 ]− Pr [D(L1)⇒ 1 ] .

As shown in [17], distributions R1,L1 can be sampled efficiently assuming the widely-accepted Ex-
tended Riemann Hypothesis.8

RSA LTDP from ΦA. We construct an RSA LTDP based on ΦA. In injective mode the public key
is (N, e) where e is not φ-hidden by N , whereas in lossy mode it is. Namely, define LTDP1 = (F1,F ′1)
as follows:

Algorithm F1

e, e′
$←Pck

(N, p, q)
$←RSAk[p = 1 mod e′]

If gcd(e, φ(N)) 6= 1 then return ⊥
d← e−1 mod φ(N)
Return ((N, e), (N, d))

Algorithm F ′1
e

$←Pck
(N, p, q)

$←RSAk[p = 1 mod e]
Return (N, e)

The fact that algorithm F1 has only a negligible probability of failure (returning ⊥) follows from
the fact that φ(N) can have only a constant number of prime factors of length ck and Bertrand’s
Postulate.

Proposition 5.1 Suppose there is a distinguisher D against LTDP1. Then there is a distinguisher D′

such that for all k ∈ N

Advltdp
LTDP1,D

(k) ≤ 2 ·AdvΦA
c,D′(k) .

8This is done by choosing a uniform (1/2− c)k-bit number x until p = xe+ 1 is a prime.
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Furthermore, the running-time of D′ is that of D. LTDP1 has lossiness ck.

From a practical perspective, a drawback of LTDP1 is that F1 chooses N = pq in a non-standard
way, so that it hides a prime of the same length as e. Moreover, for small values of e it returns ⊥ with
high probability. This is done for consistency with how [17] formulated ΦA. But, to address this, we
also propose what we call the Enhanced ΦA (EΦA), which says that N generated in the non-standard
way (i.e., by F1) is indistinguishable from one chosen at random subject to gcd(e, φ(N)) = 1.9 We
conjecture that EΦA holds for all values of c that ΦA does. Details follow.

Enhanced Φ-Hiding Assumption. We say that the Enhanced Φ-Hiding Assumption (EΦA) holds
for c if the following two distributions R1∗ and L1∗ are computationally indistinguishable:

R1∗ = {(e,N) : e
$←Pck ; (N, p, q)

$←RSAk}
L1∗ = {(e,N) : e

$←Pck ; (N, p, q)
$←RSAk[p = 1 mod e])} .

To a distinguisher D we associate its EΦA advantage defined as

AdvEΦA
c,D (k) = Pr [D(R1∗)⇒ 1 ]− Pr [D(L1∗)⇒ 1 ] .

As before, distributions R1∗ ,L1∗ can be sampled efficiently assuming the widely-accepted Extended
Riemann Hypothesis. We conjecture that EΦA holds for all values of Kφ, c that ΦA does.

RSA LTDP from EΦA. Now define LTDP1∗ = (F1∗ ,F ′1∗) where
Algorithm F1∗

e
$←Pck

(N, p, q)
$←RSAk

If gcd(e, φ(N)) 6= 1 then Return ⊥
Else Return (N, e), (N, d)

and F ′1∗ = F ′1 in Section 5.2. Again we have the probability that F1∗ returns ⊥ is negligible. We
stress that F1∗ , unlike F1, chooses p, q at random as is typical in practice. We have the following
proposition.

Proposition 5.2 If the Enhanced Φ-Hiding Assumption holds for c then LTDP1∗ = (F1∗ ,F ′1∗) is an
RSA LTDP with lossiness ck. In particular, suppose there is a distinguisher D against LTDP1∗ . Then
there is a distinguisher D′ such that

Advltdp
LTDP1∗ ,D

(k) ≤ 2 ·AdvEΦA
c,D′ (k) .

Furthermore, the running-time of D′ is that of D.

Parameters for LTDP1. When e is too large, ΦA can be broken by using Coppersmith’s method
for finding small roots of a univariate modulo an unknown divisor of N [22, 40]. (No other attack on
ΦA here is known.) Namely, consider the polynomial r(x) = ex + 1 mod p. Coppersmith’s method
allows us to find all roots of r smaller than N1/4, and thus factor N , in lossy mode in polynomial
time if c ≥ 1/4. (This is essentially the “factoring with high bits known” attack.) More specifically,
applying [40, Theorem 1], N can be factored in time poly(logN) and O(N ε) if c = 1/4 − ε (i.e.,
log e ≥ logN(1/4 − ε)). For example, with modulus size k = 2048 we can set ε = .04 for 80-bit
security (to enforce kε ≥ 80) and obtain 2048 · (1/4 − 0.04) = 430 bits of lossiness.

9Additionally, in practice the encryption exponent e is usually fixed. This can be addressed by parameterizing EΦA
by a fixed e instead of choosing it at random. Note that for e = 3 one should make both e | p − 1 and e | q − 1 in the
lossy case (otherwise the assumption is false; cf. [17, Remark 2, p. 6]).
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5.3 RSA Lossy TDP from Multi-Prime Φ-Hiding

Multi-prime RSA (according to [39] the earliest reference is [46]) is a generalization of RSA to moduli
N = p1 · · · pm of length k with m ≥ 2 prime factors of equal bit-length. Multi-prime RSA is of interest
to practitioners since it allows to speed up decryption and is included in RSA PKCS #1 v2.1. We
are interested in it here because for it we can show greater lossiness and even with smaller encryption
exponent e.

Notation and terminology. Let m ≥ 2 be fixed. We denote by MRSAk the set of all tuples
(N, p1, . . . , pm), where N = p1 · · · pm is the product of distinct k/m-bit primes. Such an N is called an

m-prime RSA modulus. By (N, p1, . . . , pm)
$←MRSAk we mean that (N, p1, . . . , pm) is sampled ac-

cording to the uniform distribution onMRSAk. The rest of the notation and terminology of Section 5
is extended to the multi-prime setting in the obvious way.

Multi Φ-hiding assumption. For an m-prime RSA modulus N , let us say that N mφ-hides a prime
e if e | pi − 1 for all 1 ≤ i ≤ m − 1. Intuitively, the assumption is that, given such N , it is hard to
distinguish primes which are mφ-hidden by N from those that do not divide pi− 1 for any 1 ≤ i ≤ m.
Formally, let m = m(k) ≥ 2 be a polynomial and let c = c(k) be an inverse polynomial determined
later. Consider the following two distributions:

R2 = {(e,N) : e, e′
$←Pck ; (N, p1, . . . , pt)

$←MRSAk[pi≤m−1 = 1 mod e′]}
L2 = {(e,N) : e

$←Pck ; (N, p1, . . . , pt)
$←MRSAk[pi≤m−1 = 1 mod e]} .

Above and in what follows, by pi≤m−1 = 1 mod e we mean that pi = 1 mod e for all 1 ≤ i ≤ m − 1.
To a distinguisher D we associate its MΦA advantage defined as

AdvMΦA
m,c,D(k) = Pr [D(R2)⇒ 1 ]− Pr [D(L2)⇒ 1 ] .

As before, distributions R2,L2 can be sampled efficiently assuming the widely-accepted Extended
Riemann Hypothesis.

Note that if we had required that in the lossy case N = p1 · · · pm is such that e | pi for all 1 ≤ i ≤ m,
then in this case we would always have N = 1 mod e. But in the injective case N mod e is random,
which would lead to a trivial distinguishing algorithm. This explains why we do not impose e | pm in
the lossy case above.

Multi-prime RSA LTDP from MΦA. We construct a multi-prime RSA LTDP based on MΦA
having lossiness (m− 1) log e, where in lossy mode N mφ-hides e. Namely, define LTDP2 = (F2,F ′2)
as follows:

Algorithm F2

e, e′
$←Pck

(N, p1, . . . , pm)
$←MRSAk[pi≤m−1 = 1 mod e′]

If gcd(e, φ(N)) 6= 1 then Return ⊥
d← e−1 mod φ(N)
Else return (N, e), (N, d)

Algorithm F ′2
e

$←Pck
(N, p1, . . . , pm)

$←MRSAk[pi≤m−1 = 1 mod e]
Return (N, e)

Proposition 5.3 Suppose there is a distinguisher D against LTDP2. Then there is a distinguisher D′

such that for all k ∈ N

Advltdp
LTDP2,D

(k) ≤ 2 ·AdvMΦA
m,c,D′(k) .
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Furthermore, the running-time of D′ is that of D. LTDP2 has lossiness (m− 1)ck.

Parameters for LTDP2. We use the recent cryptoanalysis of the MΦA for m ≥ 3 due to Herrmann
[32].10 Using [32, Section 3] we can break the MΦA in time poly(logN) and O(N ε) if

c ≥ 1/m− 2

3
√
m3
− ε .

(For m ≥ 3 this improves the bound with c ≥ 1/m− 1/m2− ε obtained from “factoring with high bits

known”; for m ≥ 4 this improves the bound with c ≥ 1/m − 2 (1/m)(1/(m−1)−(1/m)m/(m−1)

m(m−1) − ε from the

preliminary version [36].)
For example, with modulus size k = 2048 and m = 3 (m = 4, 5) we set ε = .04 (for about 80-bit

security) and obtain 676 (778, 822) bits of lossiness for LTDP2, according to Proposition 5.3.
We note that this may not be the best attack possible based on Coppersmith’s method (in particular

the coefficients of the polynomial we use are highly correlated). We also remark that for a fixed modulus
length, m cannot be too large since the Elliptic Curve Method for factoring can compute a factor pi
of N faster than the Number Field Sieve one if pi is significantly smaller than N1/2 [39].

5.4 Small-Exponent RSA LTDP from 2-vs-m Primes

For efficiency reasons, the public RSA exponent e is typically not chosen to be too large in practice.
(For example, researchers at UC San Diego [51] found that 99.5% of the certificates in the campus’s
TLS corpus had e = 216+1.) Therefore, we investigate the possibility of using an additional assumption
to amplify the lossiness of RSA for small e.

The high-level idea is to assume that it is hard to distinguish N = pq where p, q are primes of
length k/2 from N = p1 · · · pm for m > 2, where p1, . . . , pm are primes of length k/m (which we
call the “2-vs-m Primes” Assumption). This assumption is a generalization of the “2-vs-3 Primes”
Assumptions introduced in [9] and also used contemporaneously to our work to construct a “slightly
lossy” TDF based on modular squaring [42]. Combined with the MΦA Assumption of Section 5.3, we
obtain (m− 1) log e bits of lossiness from standard (two-prime) RSA. Let us state our assumption and
construction formally.

2-vs-m Primes Assumption. We say that the 2-vs-m primes assumption holds for m if the following
two distributions N2 and Nm are computationally indistinguishable:

N2 = {N : e
$←Pck ; (N, p, q)

$←RSAk[p = 1 mod e]}
Nm = {N : e

$←Pck ; (N, p, q)
$←MRSAk[pi≤m−1 = 1 mod e]} .

To a distinguisher D we associate its HFA-advantage defined as

Adv2vmp
m (D) = Pr [D(N2)⇒ 1 ]− Pr [D(Nm)⇒ 1 ] .

RSA LTDP from 2-vs-m Primes + MΦA. Define LTDP3 = (F3,F ′3) as follows:
10In the preliminary version of this paper we gave a weaker cryptanalysis which was subsequently improved in [32] for

the case m ≥ 4.
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Algorithm F3

e, e′
$←Pck

(N, p, q)
$←RSAk[p = 1 mod e′]

If gcd(e, φ(N)) 6= 1 then Return ⊥
Else Return (N, e), (N, d)

Algorithm F ′3
e

$←Pck
(N, p1, . . . , pm)

$←MRSAk[pi≤m−1 = 1 mod e]
Return (N, e)

Proposition 5.4 If the 2-vs-m Primes Assumption holds for m and the Multi-Prime Φ-Hiding As-
sumption holds for m, e, then LTDP3 = (F3,F ′3) is an RSA LTDP with lossiness (m − 1)ck. In
particular, suppose there is a distinguisher D against LTDP3. Then there is a distinguisher D1,D2

such that

Advltdp
LTDP3

(D) ≤ 2 · (Adv2vmp
m (D1) +AdvMΦA

m,c (D2)) .

Furthermore, the running-time of D1,D2 is that of D.

The proof is a standard hybrid argument.

Parameters for LTDP3. We note that m in the construction cannot be too large, otherwise a small
factor of N in the lossy case can be recovered by the elliptic curve factoring method due to Lenstra [39],
whose running-time is proportional to the smallest factor of N . The largest factor recovered by the
method so far was 223-bits in length [52]. Thus, for example using 2048-bit RSA with e = 216 − 1, if
we assume it is hard to recover factors larger than that we can get about 8 · 16 = 128 bits of provable
lossiness under the HFA plus MΦA where m = 9.

Enhanced HFA. As in the previous cases, to address the fact that in practice N = pq is chosen at
random and not subject to p hiding a prime of the same bit-length as e, we may define an enhanced
version of HFA. Then under the enhanced HFA + enhanced MΦA assumptions we obtain the same
amount of lossiness for standard 2-prime RSA.

6 Instantiating RSA-OAEP

By combining the results of Section 3, Section 4, and Section 5, we obtain standard model instantia-
tions of RSA-OAEP under chosen-plaintext attack.

Regularity. In particular, we would like to apply part (2) of Theorem 4.2 in this case, as it is not
hard to see that under all of the assumptions discussed in Section 5, RSA is a regular lossy TDP on
the domain Z

∗
N . Unfortunately, this domain is different from {0, 1}ρ+µ (identified as integers), the

range of OAEP. In RSA PKCS #1 v2.1, the mismatch is handled by selecting ρ+ µ = ⌊logN⌋ − 16,
and viewing OAEP’s output as an integer less than 2ρ+ms < N/216 (i.e., the most significant two bytes
of the output are zeroed out). The problem is that in the lossy case RSA may not be regular on the
subdomain {0, ..., 2ρ+µ − 16}.

We can prove, in some cases, that in the lossy case RSA is approximately regular on this subdomain,
and in those cases it follows from the proof of part (1) of Theorem 4.2 that we obtain essentially the
better parameters given by part (2). However, here use just use the weaker parameters given by
part (1) of Theorem 4.2. We leave a detailed discussion of approximate regularity to future work. In
particular, understanding the regularity of RSA on subintervals of the domain is a first step towards
improving the concrete parameters we obtain.

Concrete parameters. Since the results in Section 5 have several cases and the parameter set-
tings are rather involved, we avoid stating an explicit theorem about RSA-OAEP. From part (1)
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of Theorem 4.2 one can see that for u = 80 bits security, messages of roughly µ ≈ k−s−3 ·80 bits can
be encrypted (for sufficintly large t). For concreteness, we give two example parameter settings. Using
the Multi Φ-Hiding Assumption with N = 1024 bits and 3 primes, we obtain ℓ = k − s = 291 bits
of lossiness and hence can encrypt messages of length µ = 40 bits (for t ≈ 400); using the Φ-Hiding
Assumption with N = 2048, we obtain ℓ = k−s = 430 bits of lossiness and hence can encrypt messages
of length µ = 160 bits (for t ≈ 150). We stress that while we view our results as providing important
theoretical backing for the scheme at a more qualitative level, we strongly encourage further research
to try to improve the concrete parameters.
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A Proof of Lemma 4.5

We introduce the following notation for the proof. For a random variable V with range V, we define the
collision probability of V as Col(V ) = Pr [ V = V ′ ] =

∑

v∈V PV (v)
2 where V ′ is an independent copy of

V , and for an event E we define the conditional collision probability ColE(V ) = Pr [ V = V ′ | E ]. For
random variables V,W , we define the square of the 2-distance as D(V,W ) =

∑

v

(

PV (v)− PW (v)
)2
.

Writing Ek for expectation over the choice of random k from K, we have

∆
(

(K, g(X,h(K,X))), (K, g(X,U))
)

= Ek

[

∆
(

g(X,h(k,X)), g(X,U)
)]

(9)

≤ 1

2
Ek

[

√

|S|D
(

g(X,h(k,X)), g(X,U)
)

]

≤ 1

2

√

|S|Ek

[

D
(

g(X,h(k,X)), g(X,U)
)]

(10)

where the first inequality is by Cauchy-Swartz and the second is by Jensen’s inequality. We now show

Ek

[

D
(

g(X,h(k,X)), g(X,U)
)]

≤ Col(X)

from which the theorem follows. Write (X,Yk) = (X,h(k,X)) for an arbitrary but fixed k. Then

D
(

g(X,Yk), g(X,U)
)

=
∑

s

(

Pg(X,Yk)(s)− Pg(X,U)(s)
)2

=
∑

s

Pg(X,Yk)(s)
2 − 2

∑

s

Pg(X,Yk)(s)Pg(X,U)(s) +
∑

s

Pg(X,U)(s)
2 .

Using the Kronecker delta δs,s′ which equals 1 if s = s′ and else 0 for all s, s′ ∈ S, we can write
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Pg(X,Yk)(s) =
∑

x PX(x)δg(x,h(k,x)),s, and thus

∑

s

Pg(X,Yk)(s)
2 =

∑

s

(

∑

x

PX(x)δg(x,h(k,x)),s

)(

∑

x′

PX(x′)δg(x′,h(k,x′)),s

)

=
∑

x,x′

PX(x)PX(x′)δg(h(k,x)),g(h(k,x′)) .

We use the pairwise independence of h to rewrite this in terms of collision probabilities:

Ek

[

∑

s

Pg(X,Yk)(s)
2
]

=
∑

x,x′

PX(x)PX(x′)Ek[δg(x,h(k,x)),g(x′,h(k,x′))]

= Col(X) + ColE(g(X,U))(1 − Col(X)) , (11)

where the subscript E denotes (conditioning on) the event that X 6= X ′. That is,

ColE (g(X,U)) = Pr
[

g(X,U) = g(X ′, U ′) | X 6= X ′
]

.

Similarly,

∑

s

Pg(X,Yk)(s)Pg(X,U)(s) =
∑

s

(

∑

x

PX(x)δg(x,h(k,x)),s

)(

∑

x′,u

PX(x′)PU (u)δg(x′,u),s

)

=
∑

x

∑

x′

∑

u

PX(x)PX(x′)PU (u)δg(x,h(k,x)),g(x′,u)

so that

Ek

[

∑

s

Pg(X,Yk)(s)Pg(X,U)(s)
]

=
∑

x

∑

x′

∑

u

PX(x)PX (x′)PU (u)Ek[δg(x,h(k,x)),g(x′,u)]

= Col(g(X,U)) = ColE(g(X,U))Col(X) + ColE(g(X,U))(1 −Col(X)) .

where E is defined as above. Note that the only difference between the expression above and that in
(11) is that even when X = X ′, a collision is not guaranteed.

Finally,

∑

s

Pg(X,U)(s)
2 = Col(g(X,U)) = ColE(g(X,U))Col(X) + ColE(g(X,U))(1 − Col(X))

as well. By combining the above, we have

Ek

[

D
(

g(X,Yk), f(X,U)
)]

= Col(X) + ColE(g(X,U))(1 − Col(X))

−2(ColE(g(X,U))Col(X) + ColE(g(X,U))(1 − Col(X)))

+ColE(g(X,U))Col(X) + ColE(g(X,U))(1 − Col(X))

= (1− ColE(g(X,U)))Col(X)

≤ Col(X) .
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To complete the proof, we can plug the bound above into (10):

∆
(

(K, g(X,h(K,X))), (K, g(X,U))
)

≤ 1

2

√

|S|Ek

[

D
(

g(X,h(k,X)), g(X,U)
)]

≤ 1

2

√

|S|Col(X) .

By the assumption on the min-entropy of X, the collision probability Col(X) is at most 4ε̂2/|S|. So
the statistical distance ∆

(

(K, g(X,h(K,X))), (K, g(X,U))
)

is at most ε̂, as desired.

B Security of OAEP Under Key-Independent Chosen-Plaintext At-

tack

The commonly-accepted notions of security for encryption ask for privacy with respect to messages
that may depend on the public-key. We define here a notion of privacy for messages not depending on
the public key. We mention that such a definition appears for example in the work of Micali et al. [41]
(under the name “three-pass,” versus “one-pass,” cryptosystem), in the text of Goldreich [30], and in
the context of the recent work on deterministic encryption [4].

The definition. To an encryption scheme Π = (K, E ,D) and an adversary B = (B1, B2) we associate

Experiment Expindki-cpa
Π,B (k)

b
$← {0, 1} ; (m0,m1, s)

$← B1

(pk, sk)
$←K ; c

$←E(pk,mb)

d
$←B2(pk, c, s)

If d = b then Return 1 Else Return 0

We require |m0| = |m1| above. Define the indki-cpa advantage of B against Π as

Advindki-cpa
Π,B (k) = 2 · Pr

[

Expindki-cpa
Π,B (k)⇒ 1

]

− 1 .

Remarks. While non-standard, KI security seems adequate for some applications. For example,
in [30] Goldreich points out that high-level applications that use encryption as a tool do so in a key-
oblivious manner, and Bellare et al. [4] argue that in real life public keys are abstractions hidden in our
software, so messages are unlikely to depend on them. KI security also suffices for hybrid encryption.

The result. We can show a standard model instantiation under KI security directly from Lemma 4.5,
where G is any pairwise-independent functon. This is captured by the theorem below.

Theorem B.1 Let LTDP = (F ,F ′) be an LTDP with residual leakage ℓ, and let OAEP be the
encryption scheme associated to F , hash functions G,H, and a parameter k0 < k. Suppose G is
pairwise-independent. Let ε > 0. Then for any k0 ≥ ℓ+2 log(1/ε)− 2 and any INDKI-CPA adversary
B against OAEP, there is a distinguisher D against LTDP such that

Advindki-cpa
OAEP,B (k) ≤ Advltdp

LTDP,D(k) + ε .

Furthermore, the running-time of D is the time to run B.

As we mentioned, the proof is a simple hybrid argument concluding by Lemma 4.5.
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