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Abstract. When secure arithmetic is required, computation based on secure multiplication (MULT) is
much more efficient than computation based on secure boolean circuits. However, a typical application
can also require other building blocks, such as comparison, exponentiation and the modulo (MOD)
operation. Secure solutions for these functions proposed in the literature rely on bit-decomposition or
other bit-oriented methods, which require O(`) MULTs for `-bit inputs. In the absence of a known
bit-length independent solution, the complexity of the whole computation is often dominated by these
non-arithmetic functions.
To resolve the above problem, we start with a general modular conversion, which converts secret
shares over distinct moduli. For this, we proposed a probabilistically correct protocol for this with a
complexity that is independent of `. Then, we show that when these non-arithmetic functions are based
on secure modular conversions, they can be computed in constant rounds and O(k) MULTs, where k is
a parameter for an error rate of 2−Ω(k). To promote our protocols to be actively secure, we apply O(k)
basic zero-knowledge proofs, which cost at most O(k) exponentiation computation, O(1) rounds and
O(k(` + κ)) communication bits, where κ is the security parameter used in the commitment scheme.

Keywords. secure arithmetic, randomized algorithm, modular conversion, comparison, zero test, modulo
reduction, modular exponentiation

1 Introduction

Secure two-party computation allows two parties, Alice and Bob, to jointly compute a function
f(xA, xB) without revealing anything about their inputs, where xA and xB are secret vectors
held by Alice and Bob respectively. Solutions based on boolean circuits [30, 17, 3, 8] provide general
feasibility results, while solutions based on secure arithmetic computation, e.g., using homomorphic
encryption or oblivious transfer [19, 13, 31], are efficient for addition and multiplication. Specifically,
in arithmetic applications, such as data mining, statistical learning and distributed generation of
cryptographic keys [20, 6, 4, 21, 11], the second choice is usually considered more practically efficient.

Besides addition and multiplication, several non-arithmetic functions involving integer com-
parison, zero test, the modulo (MOD) operation and exponentiation also play important roles in
many arithmetic applications. To get the best of both worlds, several recent works have used secure
arithmetic computation and considered how to compute the non-arithmetic functions efficiently [9,
28, 24, 19]. However, the complexity of the non-arithmetic computation in these works is still much
larger than that of secure multiplication. Therefore, even though the arithmetic functions can be
computed efficiently, the computation of these non-arithmetic functions may dominate the com-
plexity in many applications. For instance, from the existing results, we can use bit-decomposition,
which converts a secret number into a secret binary set [9, 28, 24], as a generic solution to compute
non-arithmetic functions in a bit-oriented manner; or we can use more efficient solutions tailored for
specific problems, such as integer comparison [26], MOD operation [24, 18] and modular exponen-
tiation [31]. Unfortunately, the complexity of these solutions is still at least O(`) secure multiplica-
tions1, where ` is the bit-length of the inputs. Hence, there follow two interesting questions. First, it
1 Using the method in [31], integer exponentiation takes O(1) secure multiplications, but modular exponentiation

requires an additional comparison and zero test. Thus, the complexity is still bounded by O(`) for general cases.



is open whether there are constant-rounds and probabilistically correct solutions to these problems
such that the complexity only depends on a correctness parameter k and has an exponentially
low error rate of 2Ω(k). From a theoretical view, such solutions serve as evidences of complexity
breakthrough regarding non-arithmetic computation using arithmetic operations and are in accord
with the direction of a recent study [29], regarding sub-linear secure comparison (whose complexity
is O(

√
`(k + log `)) secure multiplications and constant rounds). From a practical view, such solu-

tions provide a trade-off between the efficiency and the error rate. Second, in order to construct
solutions that are independent of bit length, we would require some undiscovered schemes which
are not bit-oriented, and in particular, we ask whether there is a unified framework, better than
bit-decomposition, for integer comparison, zero test, MOD operation and modular exponentiation.

1.1 Problem Statement

We study secure two-party computation of several non-arithmetic functions that involve zero test
(equality test), integer comparison, the MOD operation, and modular exponentiation based on the
modular conversion protocol. The objective is to find bit-length independent solutions, where the
complexity counts the number of secure multiplication.

Instead of using bit-decomposition as the bridge between the arithmetic functions and the non-
arithmetic functions, we use modular conversion, which converts the shares in ZQ into shares in
ZP . The setting of modular conversion is as the follows. Let Q,P ≥ 2 be two distinct integers, and
let x be a secret in ZQ.2 In addition, let xA and xB be additive shares of x in ZQ, i.e., x = xA +xB

mod Q, held by Alice and Bob respectively. Modular conversion converts xA and xB into zA and
zB such that x = zA + zB mod P .

On one hand, modular conversion can serve a general purpose. First, modular conversion is re-
lated to the MOD operation, which computes the remainder of x divided by an integer P , while the
input and the output are both shares in ZQ. Second, let ` be the bit-length of Q. Bit-decomposition
can be reduced to ` − 1 parallel MOD operations, computing x mod 2`−1, ..., x mod 2 and some
linear combinations. This implies the general use of modular conversion for binary functions. More-
over, because the MOD operation is reducible to modular conversion (discussed in Section 3.7), but
not vice versa, modular conversion serves as a more general functionality.

On the other hand, for many well used functions like zero test (equality test), integer comparison,
the MOD operation, and modular exponentiation, it may be not necessary to perform full bit-
decomposition, as the solutions can be constructed directly by modular conversion.

1.2 Contributions

We propose a new secure two-party modular conversion scheme for general moduli. That is, the
input and the output are secret shares in ZQ and ZP respectively, where Q and P are arbitrary
integers greater than or equal to 2. Then, using modular conversion, we derive efficient solutions to
several non-arithmetic functions.

Our framework for the general modular conversion protocol is based on a statistically correct
computation which relies on the manipulation of secret shares. When the secret shares of an input
are generated uniformly, the error rate of the computation is constant. Then, using uniformly
random re-sharing k times, we construct a solution with an error rate of 2−Ω(k).

To obtain solutions that would defeat a malicious adversary, we use Multiplicative to Additive
Sharing Conversion (or secure multiplication) to construct the protocols of these functions in the
2 In this paper, without specification, x ∈ ZQ simply means x ∈ {0, ..., Q − 1}, and y = x mod Q means y ∈
{0, ..., Q− 1}.



passive security model. Then we show that these protocols can be promoted to be actively secure
by efficient arithmetic zero-knowledge proofs.

In the passive security model, we achieve the following results.

– A general modular conversion protocol that uses O(k) (about 7k + 30) secure multiplications
and O(1) (about 8) rounds, with an error rate of 2−Ω(k) (at most (7/10)k for all k ≥ 20).

– A randomized zero-test protocol whose cost is O(k) (about k) secure multiplications and O(1)
(about 8) rounds with an error rate of 2−k at most.

– Solutions to the sign function, integer comparison, the MOD operation and modular exponen-
tiation based on the modular conversion and zero test are described. The complexity of all the
solutions is all O(k) secure multiplications and O(1) rounds, with an error rate of 2−Ω(k).

In the active security model, we promote our passively secure protocols via specific arithmetic
zero-knowledge proofs, which involve at most O(k) basic proofs. The later show the knowledge of a
committed value and the knowledge of a multiplicative relationship. The additional costs are at most
O(1) rounds of communication, O(k) exponentiation computations and O(k(`+κ)) communication
bits, where κ is the security parameter used in the commitment scheme.

1.3 Related Works

Share Conversion is usually regarded as a tool for bridging different kinds of computation. In
[9], Damg̊ard, et al. proposed a constant-rounds protocol of bit-decomposition to support integer
comparison, zero test, the MOD operation and exponentiation in arithmetic circuits. The commu-
nication complexity of the bit-decomposition protocol in [9] is O(` log `) (secure multiplications).
Subsequently, it was improved to O(` log∗ `) in [28]. A statistically secure conversion between in-
teger shares and ZQ shares was proposed in [1], and a deterministic conversion from a prime field
ZQ to ZQ−1 is presented in [31]. Both solutions are efficient compared to secure multiplications;
however the former requires the secret x < Q

16 · 2−ρ

n , where ρ is a security parameter, and the
latter requires x < Q

2 . Although the solutions do not work for general cases, they motivate the
direction of our work. Moreover, in [31], efficient protocols for the transformation between additive
and multiplicative shares are proposed to take care the private exponentiation in a non-bit-oriented
manner.

Integer Comparison is an important functionality in many arithmetic applications. Besides using
bit-decomposition [9, 1], a protocol for secure comparison without bit-decomposition is described
in [26]. Recently, Toft [29] proposed a sub-linear protocol for secure two-party comparison (or an
extension for two non-colluding parties known in multi-parties.) Their constant-rounds protocol
involves

√
` equality tests (in parallel), each of which can be performed by O(k) for a 2−k error rate

using a similar scheme to that in [26]. Hence, the total complexity of the protocol is O(
√

`(k+log `)).
MOD Operation. In [24], a protocol that uses constant rounds and O(`) secure multiplications

is proposed for secure MOD operations without using bit-decomposition. Recently, Guajardo et al.
[18] introduce a statistically secure solution for modulo reduction. It requires at most O(n2κ`a)
secure multiplications where n is the number of parties, κ is a security parameter, and `a is the
bit length of a (public) modulus. However, for general cases, such as a = Q − 1 or a = Q/2, this
solution still requires O(`) secure multiplications.

Modular Exponentiation. The first constant-rounds solution proposed by Damg̊ard et al. [9] is
based on bit-decomposition, which dominated the complexity. More recently, Yu et al. [31] developed
a constant-rounds protocol for secure two-party exponentiation using O(`) secure multiplications.
Furthermore, the protocol’s complexity is dominated by modular reduction, which we will improve
to derive a better result.



For these non-arithmetic problems for secure two or multi-party computation, there is no known
arithmetic solution whose communication complexity is independent of ` (counting the number of
secure multiplications). This motivates the study of this paper.

2 Preliminaries

2.1 Passive Security and Secure Arithmetic Computation for Two Parties

We assume the computation involves two non-colluding parties, Alice and Bob, communicating over
a public channel. First, we informally define passive security for generic two-party computation.

Passive Security. For a functionality f(·, ·), a protocol is said to be passively secure or semi-honest
secure if, for any honest-but-curious adversary A who corrupts Alice, there exists a probabilistic
polynomial time simulator S that, given the inputs and the randomness of A, can produce a view
of A which is (statistically/computationally) indistinguishable from the real interaction with Bob.
A similar rationale should hold if Bob is corrupted. For a standard formal definition, readers may
refer to [16].

Instead of using generic boolean circuits, we construct protocols based on arithmetic operations,
i.e., additions and multiplications of (sufficiently large) finite fields/rings. This setting is particularly
suitable for arithmetic applications, where most computation involves arithmetic operations, such
as the computation of integers or finite field/ring elements. In addition, for a modular design, we
assume that all the inputs and outputs of the protocols are secret shares.

Secret Shares. To protect a secret, such as a private value, a widely used method hides the secret
in secret shares. In two-party computation, secret shares are usually expressed as an additive form.
For example, let x be a secret in ZQ. If Alice and Bob hold xA and xB respectively such that
x = xA + xB mod Q, Alice’s (resp. Bob’s) view on xA (resp. xB) should be indistinguishable from
a uniform random value in ZQ, so that Alice (resp. Bob) cannot learn anything about x from
xA (resp. xB). In this scenario, x is called a shared secret. To formulate the computation based
on secret shares, all the inputs and outputs of a protocol are expressed as shared secrets, e.g,
(yA, yB) ← f(A(xA), B(xB)), where the superscript A (resp. B) of xA (resp. xB) denotes Alice’s
(resp. Bob’s) share of x.

Because of the additive sharing form, the addition of two shared secrets can be computed locally,
as can any linear combination of secrets. On the other hand, the multiplication of two secrets
would involve communication in this setting. Furthermore, in secure two-party computation, as
well as secure multiplication, a closely related and more elementary protocol, namely computing
the additive shares of the multiplication of two private values held by Alice and Bob respectively,
is often used, as described below.

Multiplicative to Additive Sharing (M2A). M2A is a basic functionality in secure two-party compu-
tation. Let xA and xB be the secret inputs of Alice and Bob respectively. An M2A protocol outputs
yA and yB, held by Alice and Bob respectively, such that yA +yB = xA ·xB mod Q. We formulate
this procedure as (yA, yB) ← M2AQ(A(xA), B(xB)).

Secure Multiplication (MULT). MULT is a functionality that securely computes the multiplication
of two shared secrets. For example, Alice and Bob have xA, yA and xB, yB respectively as inputs,
where x = xA + xB mod Q and y = yA + yB mod Q; and they get zA and zB respectively as
outputs such that zA+zB = x·y mod Q = (xA+xB)·(yA+yB) mod Q. Since xAyA and xByB can
be computed locally by Alice and Bob respectively, the procedure involves two invocations of M2A
for xAyB and xByA. We formulate the procedure as (zA, zB) ← MULTQ(A(xA, yA), B(xB, yB)).



Multiplication Oracle. There are several ways to implement M2A and MULTbased on distinct
primitive assumptions. For example, M2A can be implemented by homomorphic encryption systems
or oblivious transfers, using only a few ciphertexts [19, 13, 31], and the computational assumption
should follow the primitives. In addition, for simplicity, as well as consistency and ease of comparison
with previous works, we assume M2A and MULT are secure and take them as the cost units. We
regard the computation of one MULT or M2A as one communication round; however concrete
schemes may require a few rounds and a few ciphertexts.

2.2 Active Security

The active security model in this paper follows the standard definition of security against a malicious
adversary given in [16]. In this model, the corrupted party (Alice or Bob) can deviate arbitrarily
from the prescribed protocol. For two-party computation, secret shares alone cannot guarantee the
active security, since a corrupted party may falsify his shares. Hence, we also utilize an integer
commitment scheme.

Commitment. A commitment scheme allows the sender to send a commitment, an encrypted value,
to the receiver without revealing the specific value (called the hiding property). When the sender
subsequently decommits/opens the value, the scheme should ensure that the value committed
previously is the only one that the receiver can validate from the commitment (called the binding
property). Let x be a secret, and denote a commitment of x as C(x, r), where r is an independent
random number sampled according to concrete commitment schemes, such as [12, 10, 15], and also
as C(x) for short.

To formulate the computation based on the commitments, we assume that input shares and out-
put shares are accompanied by their commitments, e.g., (yA, C(yA), yB, C(yB)) ← f(A(xA, C(xB)), B(xB, C(xA))).
The private random numbers, messages, and inputs of the sub-protocols should also be committed.

Then, to convert a passively secure protocol to an actively secure one, we ”compile” the protocol
into zero-knowledge proofs/protocols. That is, Alice and Bob should prove to each other that they
are running the protocol honestly to each other.

Zero-Knowledge Proof. Zero-knowledge proofs allow each party to prove a statement without re-
vealing anything other than the veracity of the statement. Moreover, if the statement is true, the
honest verifier will be convinced; and if the statement is false, the cheating party will not be able
to convinced the verifier that it is true. Zero-knowledge proofs are then based on the operations
of the commitments. In this paper, we count on arithmetic/integer based proofs. We describe the
details in Section 4.

2.3 Some Primitives.

Random Invertible Secret. In [2], Bar-Ilan and Beaver propose a method that allows the parties to
share a random, unknown, invertible field element. However, the method is mainly applicable to the
multiparty and information-theoretical security model. For the two-party case, further commitments
and zero-knowledge proofs should be appended. Alternatively, the following simple implementation
can be used for the two-party case. To generate a random invertible secret in a prime field ZQ in
the two-party case, Alice and Bob pick uniformly random values aA and aB respectively in Z∗Q.
Then, they invoke an M2AQ to compute rA + rB = aA · aB mod Q. In the active security model,
Alice and Bob need to prove that aA and aB are non-zero elements. To this end, they first generate
aA, aB, bA, bB ∈R Z∗Q accompanied by the commitments C(aA), C(aB), C(bA), C(bB). Then, they



open and prove tA = aA · bA and tB = aB · bB respectively. If tA or tB is zero, the procedure
terminates; otherwise they invoke M2AQ once to compute rA and rB such that rA + rB = aA · aB

mod Q. In addition, when aA or aB is picked uniformly in Z∗Q, r = rA + rB mod Q is a uniformly
random value in Z∗Q. The cost of the whole procedure is less than that of one (actively secure)
MULTQ. We regard it as 1 round in the same way as MULT.

Moreover, let sA = (aA)−1 mod Q and sB = (aB)−1 mod Q. Alice and Bob can compute r′A

and r′B such that r′A + r′B = sA · sB = r−1 mod Q by one additional invocation of M2AQ. In the
active security model, a knowledge proof of sA · aA = 1 and sB · aB = 1 is appended. The total cost
of generating the secret shares of r and r−1 is at most 2 MULTQ’s (in parallel).

Polynomial Function Evaluation (POLY). Given a non-zero shared secret x = xA + xB mod Q as
the input, we use the following method to compute a polynomial function f(x) =

∑k
i=1 cix

i, where
c1, ..., ck are public constants. First, Alice and Bob generate random invertible secrets sA and
sB respectively and compute (sA)−1, ..., (sA)−k, (sB)−1, ..., (sB)−k respectively (along with their
commitments in the active security model). For i = 1, ..., k, Alice and Bob compute (tAi , tBi ) ←
M2AQ(A((sA)−i), B((sB)−i)). Then, using two M2A (in parallel), they compute and reveal a =
sA ·sB ·(xA+xB) mod Q = (sAxA)·sB+sA ·(sBxB). Finally, they locally compute zA =

∑k
i=1 cia

itAi
and zB

i =
∑k

i=1 cia
itBi respectively as the outputs. The total cost is less than the cost of k+4 M2AQ’s

in 3 rounds. We formulate it as (zA, zB) ← POLYQ(f(x), A(xA), B(xB)). Note that POLY is only
used in the cases where the input secret x is non-zero.

3 Randomized Protocols with Passive Security

3.1 Our Framework

In this section, we explain how several non-arithmetic functions can be implemented by using secure
arithmetic computation in the passive security model.

First, we construct a protocol for modular conversion that converts shares in ZQ into shares in
ZP . Let x be a secret in ZQ, and let xA and xB be the additive shares of x in ZQ (i.e., x = xA +xB

mod Q) held by Alice and Bob respectively. Modular conversion converts xA and xB into zA and
zB such that x = zA + zB mod P .

To obtain a general modular conversion, we first build more limited protocols that only work
with the input secret in a certain range. Then, we tweak them to ensure their validity regardless of
the values of the secret shares. With a uniformly random re-sharing, we can derive a randomized
algorithm of modular conversion that is statistically correct with no constraint on the input secret.

In addition to the general modular conversion protocol, a randomized zero test protocol can
be built by using modular conversion protocols of limited validity. Using the modular protocols as
primitives, we also build several applications that involve sign test, integer comparison and MOD
operations. The applications form the centerpiece of an efficient modular exponentiation scheme,
as shown by the protocol hierarchy in Fig. 1.

3.2 Modular Conversion with Input Constraints

We first implement the modular conversion protocols with some constraints on the input secret x. If
an input satisfies the constraints, it can be assumed that partial information about the input secret
is known. Specifically, when the sign of the input (whether x < Q/2 or x ≥ Q/2) is known, the
modular conversion of x from Q to P for arbitrary Q and P can be computed efficiently. Using this
information to determine whether a wrap-around modulo Q occurs in x = xA + xB mod Q, only
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Fig. 1. Protocol hierarchy

one invocation of M2AP is required. Hence, based on this observation, we implement two function-
limited protocols: one ½modular conversion protocol for the case where x < Q/2 (½ModCNV>Q→P )
and one for the case where x ≥ Q/2 (½ModCNV⊥Q→P ), as shown in Fig. 2. Moreover, when Q is
a small constant, the modular conversion of x from Q to an arbitrary P can be computed using
O(1) MULTP ’s, deterministically and validly without input constraints. Specifically, when Q = 2,
the implementation of ModCNV2→P only requires one M2AP , as shown in Fig. 2.

Correctness. We only reason the case where x < Q/2 ( ½ModCNV>Q→P ) because the case where
x ≥ Q/2 (½ModCNV⊥Q→P ) is similar, and the correctness of ModCNV2→P is easy to follow. First,
note that xA + xB can only be x + Q or x depending on whether a wrap-around modulo Q occurs.
If xA, xB < Q/2, this can only be the latter one, i.e., x = xA + xB. If xA, xB ≥ Q/2, it is also
sure that x = xA + xB −Q. Otherwise, if xA < Q/2, xB ≥ Q/2 or xA ≥ Q/2, xB < Q/2, we have
Q/2 ≤ xA + xB < Q/2 + Q. Specifically, when x < Q/2, xA + xB can only be x + Q.Therefore,
when x < Q/2, only the case of xA, xB < Q/2 does not involve a wrap-around modulo Q. This
corresponds to the boolean test in Step 3, where z′A+z′B mod P = bAbB = (xA<Q/2)∧(xB<Q/2).
Since we have x = xA +xB +((z′A +z′B mod P )−1)Q, which implies that x mod P = (xA +z′AQ
mod P ) + (xB + (z′B − 1)Q mod P ) mod P , protocol ½ModCNV>Q→P is valid for x < Q/2.

Security and Complexity. The communication part of the above protocols only involves one invo-
cation of M2AP , so the security and efficiency follows from those of M2AP .

3.3 m-Fan-In AND

An m-fan-in AND (ANDm
Q ) operation is often applied with parallel boolean tests. That is, a series

of parallel tests are performed first and output m secret values, each of which is either 0 or 1
, shared in ZQ. Then, ANDm

Q is computed to determine whether all the m secrets are true. We
use this functionality in our construction of general modular conversion, where we apply several
randomized tests in parallel.

The functionality of ANDm
Q is similar to the unbounded fan-in multiplication in [2], which,

however, only supports non-zero inputs and the finite fields. By contrast, the inputs of ANDm
Q can

be 0, and Q can be an arbitrary integer greater than or equal to 2. Hence, instead of applying
the unbounded fan-in multiplication directly, we use polynomial function evaluation and take an



Two half valid modular conversion protocols:

– Inputs: Alice holds xA ∈ ZQ abd Bob holds xB ∈ ZQ, such that x = xA + xB mod Q. Q, P are two
public integers, Q > 2, P ≥ 2.

– Outputs: Alice obtains zA and Bob obtains zB such that zA + zB = x mod P .

Case 1: ½ModCNV>Q→P (A(xA), B(xB)), valid for x < Q
2
:

1. Alice computes a number bA locally such that bA = 1 if xA < Q
2
, otherwise 0.

2. Bob computes a number bB locally such that bB = 1 if xB < Q
2
, otherwise 0.

3. Run (z′A, z′B) ← M2AP (A(bA), B(bB)).
4. Alice computes zA = (xA + z′A ·Q) mod P , and Bob computes zB = (xB + (z′B − 1) ·Q) mod P

Case 2: ½ModCNV⊥Q→P (A(xA), B(xB)), valid for x ≥ Q
2
:

1. Alice computes a number bA locally such that bA = 1 if xA ≥ Q
2
, otherwise 0.

2. Bob computes a number bB locally such that bB = 1 if xB ≥ Q
2
, otherwise 0.

3. Run (z′A, z′B) ← M2AP (A(bA), B(bB)).
4. Alice computes zA = (xA − z′A ·Q) mod P , and Bob computes zB = (xB − z′B ·Q) mod P

ModCNV2→P (A(xA), B(xB)) modular conversion protocol for the case where x ∈ Z2:

– Inputs: Alice holds xA ∈ Z2 and Bob holds xB ∈ Z2 such that x = xA +xB mod 2. P is a public integer,
P > 2.

– Outputs: Alice obtains zA ∈ ZP and Bob obtains zB ∈ ZP such that zA + zB = x mod P .

1. Run (z′A, z′B) ← M2AP (A(xA), B(xB)).
2. Alice computes zA = (xA − 2 · z′A) mod P , and Bob computes zB = (xB − 2 · z′B) mod P .

Fig. 2. Protocol ½ModCNV>Q→P (A(xA), B(xB)), ½ModCNV⊥Q→P (A(xA), B(xB)) and ModCNV2→P (A(xA), B(xB))

m-fan-in AND operation as an (m + 1)-degree polynomial function over ZQ. In addition, in order
to support a general modulus (for all Q ≥ 2) when Q ≤ m+1 or when Q is not a prime, we should
first convert the shares in ZQ to shares in ZP for a sufficiently large prime P so that the polynomial
function can be correctly evaluated.

The protocol is shown in Fig. 3. Note that when Q > m + 1 and Q is a prime, the modular
conversion in Step 1 and 5 can be omited. The correctness of the protocol is proven by the following
theorem.

Theorem 1 (Correctness). For i = 1 to m, let xA
i and xB

i be shares of xi in ZQ, i.e., xi =
xA

i + xB
i mod Q. If xi ∈ {0, 1}, then (zA, zB) ← ANDm

Q (A(xA
1 , ..., xA

m), B(xB
1 , ..., xB

m)) form shares
of (x1 ∧ ... ∧ xm) in ZQ.

Proof.

1. In Step 1 of the protocol, when Q > 2, since x ∈ {0, 1} < Q/2, from the validity of ½ModCNV>Q→P ,
xi is successfully converted into shares in ZP (i.e., x = x′Ai +x′Bi mod P ). Similarly when Q = 2,
from the validity of ModCNV2→P , the conversion is also successful.

2. In Step 2, y = 1 +
∑k

i=1 x′i (mod P ) is a non-zero value.
3. In Step 3, since P is a prime greater than k + 1, f(x) is a (k + 1)-degree polynomial function

with (k + 1) distinct roots: 1, ..., k and (k!)−1− k− 1. Since y is in {1, ..., k + 1}, it implies that
if y = k + 1, f(y) = 1; otherwise, f(y) = 0. Because y = k + 1 if and only if x1 = ... = xk = 1,
f(y) is a valid evaluation of (x1 ∧ ... ∧ xk) in ZP .



4. In Step 4, since P is a prime, POLYP can be evaluated correctly.
5. In Step 5, since x ∈ {0, 1} < P/2, from the validity of ½ModCNV>P→Q, the protocol outputs a

pair of shares of (x1 ∧ ... ∧ xk) in ZQ. ut

Security and Complexity. The communication part of ANDm
Q involves ½ModCNV>Q→P (or ModCNV2→P

when Q = 2), POLYP and ½ModCNV>P→Q. Hence, the security of ANDm
Q follows from the security

of these sub-protocols. The total cost is about 5 rounds and m + 5 M2AP and 1 M2AQ.

– Inputs: Alice holds xA
1 , ..., xA

m ∈ ZQ and Bob holds xB
1 , ..., xB

m ∈ ZQ such that xi = xA
i + xB

i

mod Q, xi ∈ {0, 1},∀i = 1, ...m. Q is a public number.
– Outputs: Alice obtains zA ∈ ZQ and Bob obtains zB ∈ ZQ such that zA + zB = ∧m

i=1xi mod Q.

Let P be the smallest prime > m + 1.

1. For i = 1, ..., m, Alice and Bob compute (x′Ai , x′Bi ) ← ModCNV2→P (A(xA
i ), B(xB

i )) when Q = 2, else
(x′Ai , x′Bi ) ← ½ModCNV>Q→P (A(xA

i ), B(xB
i )).

2. For i = 1, ..., m, Alice computes yA = 1 +
∑m

i=1 x′Ai , and Bob computes yB =
∑m

i=1 x′Bi . Note that the
shared secret y = yA + yB mod P is non-zero.

3. Set a polynomial function f(x) =
∑m

i=1 cix
i = (x + (m!)−1 − m − 1) · ∏m

i=1(x − i) mod P , where
c1, ..., cm are public constants.

4. Alice and Bob compute (z′A, z′B) ← POLYP (f(yA + yB), A(yA), B(yB)).
5. Alice and Bob compute (zA, zB) ← ½ModCNV>P→Q(A(z′A), B(z′B)).

Fig. 3. m-fan-in AND protocol: ANDm
Q (A(xA

1 , ...xA
m), B(xB

1 , ..., xB
m))

3.4 General Modular Conversion

Next we describe a protocol for general modular conversion based on the protocols for modular
conversion with input constraints and the protocol for the m-fan-in AND operation. We focus on
the case where Q is an odd number. The extension regarding an arbitrary Q (Q ≥ 2) is discussed
in Appendix A.

Recall that, while ModCNV2→Q is always valid, the validity of ½ModCNV>Q→2 is only guaranteed
when x < Q/2. When x ≥ Q/2, the validity of ½ModCNV>Q→P depends on the value of the shares.
Thus, we have the following lemma.

Lemma 1. Let Q > 2, P ≥ 2, where P - Q. Assume that Q
2 ≤ x < Q and let xA and xB be a pair

of shares of x. If xA is a random number sampled according to the uniform distribution in ZQ, then
the error rate of ½ModCNV>Q→P (A(xA), B(xB)) would be 2(x−b(Q−1)/2c)

Q .

Proof. For all x in a ring ZQ, there are Q distinct pairs of (xA, xB): (0, x), ..., (Q − 1, x − Q +
1 mod Q). Moreover, for all x between Q−1

2 and Q − 1, there are 2(x − b(Q− 1)/2c) distinct
pairs of (xA, xB) such that (xA < Q

2 , xB ≥ Q
2 ) or (xA ≥ Q

2 , xB < Q
2 ), which are cases where

½ModCNV>Q→P (A(xA), B(xB)) fails. If Q
2 ≤ x < Q, the output of ½ModCNV>Q→P would vary from

the correct output by (−Q mod P ). Hence, for all Q
2 ≤ x < Q, if xA is a uniformly random

number in {0, ..., Q − 1}, and if P - Q, the error rate of ½ModCNV>Q→P (A(xA), B(xB)) would be
2
Q

(
x−

⌊
Q−1

2

⌋)
. ut

Specifically, when Q is an odd number, for all Q
2 ≤ x < Q, there always exists at least one pair of

shares (xA, xB) such that (xA < Q
2 , xB ≥ Q

2 ) or (xA ≥ Q
2 , xB < Q

2 ); and there always exists at least



one pair of shares such that (xA < Q
2 , xB < Q

2 ). The former case results in a fault in ½ModCNV>Q→P ,
and the latter works properly in ½ModCNV>Q→P . This implies that ½ModCNV>Q→P can serve as a
randomized test. Therefore, we then use uniformly random re-sharing to generate several pairs of
shares of x. If x < Q/2, ½ModCNV>Q→P would return the same result for all derived pairs of shares;
otherwise, with a non-negligible probability, at least one pair of shares would have a different result
from the others. However, if x is close to Q/2 (resp. Q− 1), since the error rate of ½ModCNV>Q→P

is close to 0 (resp. 1) , all the k tests of ½ModCNV>Q→P would be all correct (resp. wrong) with a
high probability. On the other hand, if x is close to 3Q/4, the error rate of ½ModCNV>Q→P would be
close to 1/2; and, with high probability, at least one of the k pairs of shares would have a different
result. Hence, we test x + iQ/σ mod Q for i = 0, ..., σ − 1 in parallel. Because at least one of
x, x + Q/σ..., x + (σ − 1)Q/σ mod Q is close to 3Q/4, there is a high probability that we can
identify it successfully (in a private way). Thus, we have the following lemma.

Lemma 2. Let Q > 2, P ≥ 2, where P - Q, and let x ∈ ZQ. For i = 0, ..., σ − 1, let xi =

x +
⌊
i · Q

σ

⌋
; and let (xA

i,1, x
B
i,1), ..., (x

A
i,k, x

B
i,k) be k pairs of shares of xi, where for all j, xA

i,j is a

uniformly and independently random number in ZQ. In addition, let (yA
i,j , y

B
i,j) be the outputs of

½ModCNV>Q→P (A(xA
i,j), B(xB

i,j)) and yi,j = yA
i,j + yB

i,j mod Q. Then, the possibility that yi,1 = ... =

yi,k for all i = 0, ..., σ − 1 is at most
(

1
2 + 1

σ

)k.

Proof. Note that there always exists x∗ ∈ {x0, ..., xσ−1} such that 3Q
4 − Q

2σ ≤ x∗ ≤ 3Q
4 + Q

2σ . For
j = 1, ..., k, let (y∗Aj , y∗Bj ) be the outputs of ½ModCNV>Q→P (A(x∗Aj ), B(x∗Bj )), and let y∗j = y∗Aj +y∗Bj

mod Q. From Lemma 1, if x∗Aj is a uniformly random value in ZQ, the error rate of ½ModCNV>Q→P

would be between 1
2 − 1

σ and 1
2 + 1

σ . Hence, we have the probability that y∗1 = ... = y∗k is at most(
1
2 + 1

σ

)k. ut

As a result, at least one of x, x + bQ/σc , ..., x + b(σ − 1)Q/σc mod Q can be identified to
be greater than or equal to Q/2 with high probability (in a private way). Then, by utilizing
½ModCNV⊥Q→P , which is valid in this interval, we can derive a valid modular conversion of x from
modulo Q to P with high probability. Our general modular conversion protocol is shown in Fig. 4.
We describe the correctness of this randomized protocol in the following theorem.

Theorem 2 (Correctness). Let Q > 2 and P ≥ 2 be two numbers, where Q is odd; and let
xA, xB ∈ ZQ be the secret shares of x in ZQ i.e., x = xA+xB mod Q. (zA, zB) ← ModCNVQ→P (A(xA), B(xB), k)
form shares of x in ZP with an error rate at most

(
1
2 + 1

σ

)k, where σ is the optimum parameter in
ModCNVQ→P .

Proof.

1. Note xA + xB = x or x + Q. If P |Q, x + Q mod P = x mod P . Hence, we have x mod P =
(xA + xB) mod P = (xA mod P ) + (xB mod P ) mod P , and the output is valid.

2. In Step 2(b) of the protocol, because rj is generated uniformly and independently, xA
i,j = xA

i −rj

will also be a uniformly random number in ZQ.
3. In Step 2(c), let yi,j = yA

i,j + yB
i,j mod 2. Since 2 - Q, by Lemma 2, the probability that

yi,1 = ... = yi,k for all i = 0, ...σ − 1 is at most
(

1
2 + 1

σ

)k.
4. In Steps 3 and 4, let ai = aA

i + aB
i mod 2. Since AND∗

2 is valid (by Lemma 1), the probability
that at least one of a0, ..., aσ−1 is equal to 1 is at least 1− (

1
2 + 1

σ

)k.
5. In Step 5, since ModCNV2→P is always valid, we have bA

i + bB
i mod P = ai.



6. In Step 6, we compute ½ModCNV⊥Q→P for xi, i = 0 to σ− 1. Specifically, if bA
i + bB

i mod P = 1,
then xi ≥ Q/2 and (w′Ai , w′Bi ) ← ½ModCNV⊥Q→P (A(xA

i ), B(xB
i )) is valid.

7. In Step 7, note that, if xA+
⌊
i · Q

σ

⌋
< Q, no wrap-around modulo Q occurs when xA

i is computed.

Therefore, xA mod P = (xA +
⌊
i · Q

σ

⌋
mod P ) − (

⌊
i · Q

σ

⌋
mod P ) = xA

i −
⌊
i · Q

σ

⌋
mod P .

Otherwise, if xA+
⌊
i · Q

σ

⌋
≥ Q, we also have xA mod P = (xA+

⌊
i · Q

σ

⌋
−Q mod P )−(

⌊
i · Q

σ

⌋
−

Q mod P ) = xA
i + Q−

⌊
i · Q

σ

⌋
mod P .

8. Hence, finally in Step 8, when at least one of b0, ..., bσ−1 is 1, we will obtain a valid pair of
(zA, zB), with a probability of at least 1− (

1
2 + 1

σ

)k. ut

– Inputs: Alice holds xA ∈ ZQ and Bob holds xB ∈ ZQ such that x = xA + xB mod Q. Q > 2 and
P ≥ 2 are two public numbers. Q is odd.

– Outputs: Alice obtains zA and Bob obtains zB such that zA + zB = x mod P .

If P |Q, Alice and Bob output zA = xA mod P and zB = xB mod P respectively;
else, let σ be a parameter for the optimum adjustment and k be a parameter for the error rate.

1. For i = 0, ..., σ − 1, Alice sets αi = (xA
i +

⌊
i · Q

σ

⌋ ≥ Q) and xA
i = xA +

⌊
i · Q

σ

⌋ − αiQ, and Bob sets

xB
i = xB .

2. Alice and Bob run the following procedure for j = 1, ..., k in parallel:
(a) Generate a public random number rj (uniformly and independently).
(b) For each i, Alice and Bob locally compute xA

i,j ← xA
i + rj mod Q and xB

i,j ← xB
i − rj mod Q

respectively.
(c) For each i, run (yA

i,j , y
B
i,j) ← ½ModCNV>Q→2(A(xA

i,j), B(xB
i,j)).

3. For each i, compute (uA
i , uB

i ) ← ANDk
2(A(yA

i,1, ..., y
A
i,k)), B(yB

i,1, ..., y
B
i,k))

and (vA
i , vB

i ) ← ANDk
2(A(1− yA

i,1, ..., 1− yA
i,k)), B(−yB

i,1, ...,−yB
i,k)).

4. For each i, compute (aA
i , aB

i ) ← MULT2(A(1− uA
i , 1− vA

i ), B(−uB
i ,−vB

i )).
5. For each i, run (bA

i , bB
i ) ← ModCNV2→P (aA

i , aB
i ).

6. For each i, run (w′Ai , w′Bi ) ← ½ModCNV⊥Q→P (A(xA
i ), B(xB

i )).

7. For each i, Alice sets wA
i = w′Ai − ⌊

i · Q
σ

⌋
+ αiQ mod P , and Bob sets wB = w′B .

8. Compute zA and zB such that zA + zB = b0w0 + b̄0b1w1 + ... + (b̄0...b̄σ−2bσ−1wσ−1) mod P using
(1 + σ)σ/2 MULTP (where b̄i = 1− bi, bi = bA

i + bB
i mod P and wi = wA

i + wB
i mod P ).

Fig. 4. General modular conversion protocol: ModCNVQ→P (A(xA), B(xB), k)

Security. Besides generating k public random numbers, which do not contain any information about
the secret values, the communication only takes place in the sub-protocols. Hence, the security also
follows from that of the sub-protocols.

Complexity and Parameter Optimization. Note that Step 8 can be computed by using (1 + σ)σ/2
MULTP in log2 σ parallel rounds, and Steps 5 and 6 can be computed in parallel. The communication
part of the protocol involves generating k random public numbers, kσ ½ModCNV>Q→P , σ ANDk

2, k

MULT2, k ModCNV2→P , k ½ModCNV⊥Q→P , and (1 + σ)σ/2 MULTP . For simplicity, we estimate the
cost by the number of MULTP , counting the cost of 2 M2AP as 1 MULTP , and note that the cost
of MULT2 is no more than MULTP . The total cost is at most (1 + σ)σ/2 + kσ + 2k + 3σ MULTP

and 5 + dlog2 σe rounds. Since σ is a constant, the complexity is O(k) MULTP and O(1) rounds.
Furthermore, σ ( and k) can be chosen to optimize the cost. Suppose we expect that the protocol

to have an error rate of at most 2−c, c > 0. According to Theorem 2,



(
1
2

+
1
σ

)k

≤ 2−c =⇒ k ≥ −c

log2(
1
2 + 1

σ )
,

so the total cost would be at most

(7 + σ)σ
2

+
−c(σ + 2)

log2(
1
2 + 1

σ )
MULTP ’s.

Hence, for optimization purpose, we choose σ = 3 for 0 < c ≤ 1, σ = 4 for 2 ≤ c ≤ 9 and σ = 5 for
all c ≥ 10. We summarize the complexity with this optimization strategy in the following lemma.

Lemma 3. The optimum parameter σ in ModCNVQ→P is always less than or equal to 5; and the
cost of ModCNVQ→P is at most 7k + 30 MULTP ’s and 8 rounds with an error rate

(
7
10

)k at most
when k ≥ 20.

3.5 Zero Test

Nishide and Ohta [26] proposed a non-bitwise zero test by calculating Legendre symbol multiple
times. Given an odd prime Q, the solution is based on the observation that if a = 0, ”

(
a+r
Q

)
=

(
r
Q

)
”

is always true; and if a 6= 0, it is valid with a probability of about 1/2 for a random value r uniformly
sampled from ZQ. The method requires 12k MULTQ with an error rate of

(
1
2

)k. Instead of comparing
the Legendre symbol, we provide an even more lightweight solution for two-party computation based
on ½ModCNV>Q→2. Here, we consider the case where Q is a prime. An extension for an arbitrary
modulus is described in Appendix A.

First, note that the validity of ½ModCNV>Q→2 is only guaranteed when the input secret is less
than Q/2. In addition, by Lemma 1, the error rate increases linearly with x when x ≥ Q/2 (when the
shares of x are sampled uniformly from ZQ). However, because the counts of odd and even numbers
in [Q/2, Q − 1] are the same, when x is sampled uniformly from ZQ (or Z∗Q), ½ModCNV>Q→2 has
approximately the same probability of returning 1 or returning 0. The following lemma states the
condition more accurately.

Lemma 4. Let Q be an odd number (Q > 2), r be a random number uniformly sampled from
Z∗Q, rA be a random number uniformly sampled from ZQ, and rB = r − rA mod Q. In addition,
let (zA, zB) be an output of ½ModCNV>Q→2(A(rA), B(rB)) and z = zA + zB mod 2. Then, when

Q = 4a + 1, Pr[z = 1] = Q+1
2Q ; otherwise, (when Q = 4a− 1), Pr[z = 1] = Q2+1

2Q(Q−1) .

Proof. For either Q = 4a+1 or Q = 4a− 1, the count of odd numbers less than Q/2 and the count
of odd numbers greater than Q/2 are both a. For all r < Q/2, ½ModCNV>Q→2(A(rA), B(rB)) always
returns a valid result; however, for all r ≥ Q/2, since rA is uniformly sampled from ZQ, by Lemma

1, the error rate of ½ModCNV>Q→2(A(rA), B(rB)) is 2
Q

(
r −

⌊
Q−1

2

⌋)
.

Hence, when Q = 4a + 1, we have

Pr[z = 1] =
1

Q− 1

(
a +

Q− 2
Q

+
4
Q

+
Q− 6

Q
+ ... +

3
Q

+
Q− 1

Q

)

=
1

(Q− 1)Q

(
(Q− 1)Q

4
+ (4 + 8 + ... + Q− 1) + (3 + 7 + ... + Q− 2)

)
=

Q + 1
2Q

.



Otherwise, when Q = 4a− 1, we have

Pr[z = 1] =
1

Q− 1

(
a +

2
Q

+
Q− 4

Q
+

6
Q

+ ... +
3
Q

+
Q− 1

Q

)

=
1

(Q− 1)Q

(
(Q + 1)Q

4
+ (2 + 6 + ... + Q− 1) + (3 + 7 + ... + Q− 4)

)
=

Q2 + 1
2Q(Q− 1)

.

ut

Combining this with the fact that because Q is a prime, f(r) = rx : Z∗Q → Z∗Q is isomorphic.
Therefore, we provide an efficient randomized protocol through random re-sharing, as shown in
Fig. 5. Note that when Q = 2, (x=0) is simply 1− x mod 2. Otherwise, when Q is an odd prime,
the correctness of ZeroTestQ is proved by the following theorem.

Theorem 3 (Correctness). Let Q be an odd prime, and let (xA, xB) be a pair of shares of x in
ZQ. Then, (zA, zB) ← ZeroTestQ(A(xA), B(xB), k) forms a pair of shares of (x=0) with an error
rate less than (1

2)k.

Proof. In Step 1 of the protocol, let xi = xA
i + xB

i mod Q and wi = wA
i + wB

i mod Q.

1. If x = 0, then for all ri ∈ Z∗Q, xi = rix mod Q = 0 < Q/2; therefore, wA + wB mod Q =
w′A + w′B mod 2 = 1.

2. If x 6= 0, since ri is a uniformly random number in Z∗Q, so is xi = rix mod Q. Moreover, because
si is a uniformly random number in ZQ, by Lemma 4, Pr[wi = 1] > 1

2 .
3. Hence, if x 6= 0, Pr[zA + zB mod Q = 1] = Pr[w′A + w′B mod 2 = 1] = Pr[wi − 0, ∀i =

1, ..., k] <
(

1
2

)k. ut

– Inputs: Alice holds xA ∈ ZQ and Bob holds xB ∈ ZQ, such that x = xA + xB mod Q. Q is a public
prime.

– Outputs: Alice obtains zA and Bob obtains zB such that zA + zB mod Q = 1 if x = 0, otherwise 0.

When Q = 2: output zA ← 1− xA and zB ← xB ,
else (when Q > 2):

1. Alice and Bob run the following procedure for i = 1, ..., k in parallel:
(a) Generate a public random number si (uniformly and independently).
(b) Generate a public non-zero random number ri (uniformly and independently).
(c) Alice and Bob locally compute xA

i ← rix
A + si mod Q and xB

i ← rix
B − si mod Q respectively.

(d) Run (wA
i , wB

i ) ← ½ModCNV>Q→2(A(xA
i ), B(xB

i )).
2. Run (w′A, w′B) ← ANDk

2(A(1− wA
1 , ..., 1− wA

k ), B(−wA
1 , ...,−wA

k )).
3. Run (zA, zB) ← ModCNV2→Q(A(w′A), B(w′B)).

Fig. 5. Zero test protocol: ZeroTestQ(A(xA), B(xB), k)

Security and Complexity. The communication part of the protocol involves generating k public
si ∈R ZQ and k public ri ∈R Z∗Q, k ½ModCNV>Q→2, 1 ANDk

2, and 1 ModCNV2→Q. Since no public
si or ri contain any information about the secrets, the security of the protocol follows from that of
the sub-protocols. Besides, since the cost of M2A2 is not more than that of M2AQ, and a MULTQ

involves two M2AQ’s, for simplicity, we estimate the cost by the number of MULTQ. The total cost
is approximately k MULTQ’s and 8 rounds.



– Inputs: Alice holds xA ∈ ZQ and Bob holds xB ∈ ZQ such that x = xA +xB mod Q, where Q is a public
odd number.

– Outputs: Alice obtains zA and Bob obtains zB such that zA + zB mod Q = 1 if x ≤ ⌊
Q
2

⌋
, otherwise 0.

1. Alice and Bob locally compute x′A = 2xA mod Q and x′B = 2xB mod Q respectively.
2. Run (yA, yB) ← ModCNVQ→2(A(x′A), B(x′B), k).
3. Run (zA, zB) ← ModCNV2→Q(A(1− yA), B(yB)).

Fig. 6. Sign test protocol: SIGNQ(A(xA), B(xB))

3.6 Sign Test.

Let 1, ..., bQ/2c correspond to positive numbers, and let d(Q + 1)/2e , ..., Q− 1 correspond to neg-
ative numbers (−d(Q + 1)/2e , ...,−1). For all x in ZQ, we compute the sign of x through general
modular conversion. Here, we consider the case where Q is an odd number. An extension for an
arbitrary Q is discussed in Appendix A.

A simple implementation of the protocol is described in Fig. 6. The protocol’s validity follows
that of ModCNVQ→2 and ModCNV2→Q and the fact that, for all x < Q/2, 2x (0 ≤ 2x < Q) is even;
and for all x ≥ Q/2, 2x−Q (0 ≤ 2x−Q < Q) is odd.

Security and Complexity. Since SIGNQ only involves ModCNVQ→2 and ModCNV2→Q, the security
follows from those sub-protocols. Hence, by Lemma 3, the output of SIGNQ is valid with a probability
of at least 1− (7/10)k; and the cost is about 7k + 30 MULT2’s and 1 M2AQ and 9 rounds.

3.7 Applications

In this section, we consider several applications of the modular conversion protocols and the zero
test protocol. Using our implementation of SIGNQ, the complexity of the applications is at most
O(k) MULTQ’s and O(1) rounds, with an error rate of 2−Ω(k) at most.

Integer Comparison (CMPQ). Integer comparison accesses whether (x ≤ y) or (x ≥ y), etc.
When the input secrets x and y are known to be in the interval [0, Q/2], the computation is just
SignQ(A(xA−yA mod Q), B(xB−yB mod Q)). Otherwise, if x and y are known to be in ZQ, sim-
ilar to the derivation in [26], CMPQ can be reduced to a cubic combination of SignQ(A(xA), B(xB)),
SignQ(A(yA), B(yB)) and SignQ(A(xA − yA mod Q), B(xB − yB mod Q)) by 2 rounds and 3
MULTQ’s 3. Hence, the whole computation mainly involves 3 invocations of SIGNQ.

Exponentiation (EXPQ) Yu et al. proposed [31], an efficient method for conducting secure two-
party modular exponentiation in an arithmetic way. In the scheme, the secret base is first converted
into multiplicative shares over Z∗Q and the secret exponent is converted into additive shares over
ZQ−1. Then, the computation can be expressed as (x + (x=0))(y mod Q−1) − (x=0) mod Q. In
the authors’ implementation, the scheme can be computed efficiently except zero test (x=0) and
modular conversion (converting the shares of y from Q to Q − 1) components. The cost of the
computation is estimated to be 5 rounds and 12 M2AQ’s, or equivalently about 6 MULTQ’s. Hence,
our zero test and general modular conversion solutions can complement the implementation in [31].

3 Let α = (x≤Q/2), β = (y≤Q/2) and γ = (x − y≤Q/2). We have (x≤y) = αβ + αβγ + αβγ = α(β + γ − 2βγ) +
1− β − γ + βγ



MOD Operation (MODQ,P ) Here, MOD operation is defined as the remainder of an integer division
of a secret x, shared over ZQ, with a public divisor P . In [9, 24], this function is called modulo
reduction, which. This function is related to the modular conversion. With input xA, xB ∈ ZQ,
MODQ,P is expected to output zA, zB ∈ ZQ such that zA + zB mod Q = x mod P , where x =
xA+xB mod Q. That is, the input and the output are both shares in ZQ. However, it can be reduced
to two invocations of the general modular conversion protocol, ModCNVQ→P and ModCNVP→Q.

4 Active Security

In this section, we explained how the passively secure protocols discussed in Section 3 can be made
actively secure by efficient arithmetic-based proofs. Under the active security model, Alice and Bob
run a protocol to prove that they are being honest to each other. Specifically, for each message and
each output of the protocol, as well as the inputs of the sub-protocol, they should prove that the
respective values are generated properly according to the protocol.

Notation. Let ZKP (P (pre-information),V (pre-information): statement) denotes the zero-knowledge
proof of the statement, where P (pre-information) and V (pre-information) denote the information
known by the prover and the verifier respectively.

First, we choose an integer commitment scheme with additive homomorphism, e.g., [12, 10, 15],
and use the following basic proofs as building blocks.

A1. ZKP (P (x, r1, r2), V (F1, F2) : F1 = C(x, r1), F2 = C(x, r2))
A2. ZKP (P (x1, ..., xk, a0, ..., ak, r1, ..., rk, s), V (F1, ..., Fk, G, a0, ..., ak) :

F1 = C(x1, r1), ..., Fk = C(xk, rk), G = C(a0 +
∑k

i=1 aixi, s))
A3. ZKP (P (x, y, r1, r2, r3), V (F1, F2, F3) : F1 = C(x, r1), F2 = C(y, r2), F3 = E(xy, r3))

A1 proves that two commitments hide the same secret x. A2 proves the relationship of an arbi-
trary linear combination. Note that when the commitment scheme is additively homomorphic, both
the prover and the verifier can compute G′ = C(a0 +

∑k
i=1 aixi, s

′) from F1 = C(x1, r1), ..., Fk =
C(xk, rk) locally. Hence, A2 can be reduced to A1 by showing that G′ and G hide the same secret.
A3 shows the multiplication relationship. Concrete schemes of A1 and A3 can be found in e.g., [15,
5, 7, 10]. In the schemes, each of the above proofs requires O(1) rounds, O(1) exponentiation, and
O(` + κ) communication bits, where ` is the bit-length of the secret, and κ is a security parameter
defined by the schemes.

Second, besides the above basic proofs, we require the proofs of three specific relationships:
x ≥ 0, x ∈ {a, a + 1, ..., b}, and z = x mod p. The second and third proofs are based on the first
one, for which concrete schemes can be found in [5, 22]. We provide an alternative, more lightweight
protocol, together with the protocols of the second and third proofs, as shown in Fig. 7. Each of
these protocols can be reduced to O(1) invocations of the basic proofs (A2 and A3). Since the
proofs of B2 and B3 in Figure 7 are straightforward, we only prove the validity of B1. The proof is
based on Gauss’s lemma for triangular numbers.

Lemma 5. (Gauss, 1797, See [14] for reference) Every positive number can be represented as the
sum of at most three triangular numbers.

Theorem 4. If A2 and A3 are valid, B1 is also valid.



B1. ZKP (P (x, r), V (F = C(x, r)) : x ≥ 0)

1. The prover decomposes x into three triangular numbers, 41,42,43, where 4i = 2−1(a2
i +ai), and ai ∈ Z

for i = 1, 2, 3.
2. The prover sends the commitments of 41,42,43 to the verifier, and proves the linear combination of

x = 41 +42 +43 using A2.
3. For i = 1 to 3, the prover sends the commitments of ai to the verifier and proves 4i = 2−1(a2

i + ai) using
A2 and A3.

B2. ZKP (P (x, r), V (F = C(x, r)) : x ∈ {a, a + 1, ..., b})

1. The prover proves x− a ≥ 0 and b− x ≥ 0 using two invocations of B1.

B3. ZKP (P (x, r1, z, r2, p), V (F1 = C(x, r1), F2 = C(z, r2), p) :, z = x mod p)

1. The prover proves 0 ≤ z ≤ p− 1 using B2.
2. Let x = z + pd. The prover sends the commitment of d to the verifier, and proves x = z + pd using A2

and A3.

Fig. 7. Zero-Knowledge Proofs

Proof. By Lemma 5, every integer can be decomposed into at most three triangular numbers. Note
that, for all a ∈ Z, a2 + a ≥ 0 and 2|a2 + a. Hence, for all i = 1 to 3, the proof of 4i = a2

i +ai

2
(by A2 and A3) implies that 4i is either zero or a positive integer. Consequently, we also have
41 + 42 + 43 ≥ 0. In addition, the proof of x = 41 + 42 + 43 (by A2) implies that x ≥ 0.
Therefore, when A2 and A3 are valid, B1 is also valid. ut

Furthermore, Rabin and Shallit [27] proposed a randomized algorithm that decomposes x into
at most three triangular numbers. When an empirically reasonable conjecture, which we call the
Rabin-Shallit conjecture4, is true, the expected running time of their algorithm is only O(log2 x).
Specifically, when x is decomposed into less than three triangular numbers, in B2, the prover needs
to set the remaining ai = 4i = 0.

Using the above zero-knowledge proofs, we can ”compile” our passively secure protocols in
Section 3 as actively secure ones. Here, we assume that the underlying M2AQ(A(xA), B(xB)) is an
actively secure protocol, and its inputs and outputs are accompanied by commitments. Readers
may refer to [23, 19, 13] for the details of this elementary protocol. In the following, we enumerate
the required zero-knowledge proofs of the protocols discussed in Section 3.

½ModCNV>Q→P (Fig. 2): Alice proves bA = (x≤
⌊

Q
2

⌋
) and zA = (xA + z′A · Q) mod P . The first

part of the statement can be rewritten as x = bA · bQ/2c+ a with bA ∈ {0, 1}. Hence, to prove
this statement, Alice first sends a commitment C(bA, rb) to Bob. Then Alice proves the veracity
of zA = xA + z′A · Q by one A2 and the veracity of (bA)2 = bA (which implies bA ∈ {0, 1}) by
one A3 and one A1. Finally, since a commitment of xA + z′A · Q can be computed instantly
from the commitment of xA and z′A, the second part of the statement can be proved by one
B3. Bob’s proofs are similar.

½ModCNV⊥Q→P (Fig. 2): This is similar to the case of ½ModCNV>Q→P .
ModCNV2→Q (Fig. 2): In Step 2, Alice and Bob prove zA = (xA − 2 · z′A) mod Q and zB =

(xB − 2 · z′B) mod Q respectively using B3.
ANDk

Q (Fig. 3): In Step 2, Alice and Bob can compute the commitment of yA and yB locally. The
other parts of this protocol are only comprised of the sub-protocols.

4 Every number of the form 8t + 3, t ≥ 1, can be expressed as the sum of a square and twice a prime.[27]



ModCNVQ→P (Fig. 4): In Step 1, for i = 1, ..., σ − 1, Alice sends a commitment of αi to Bob and

proves the veracity of αi = (xA
i +

⌊
i · Q

σ

⌋
≥ Q) using a similar way of proving the veracity of

bA = (x≤
⌊

Q
2

⌋
) in ½ModCNV>Q→P by one A1, one A2 and one A3. In addition, Alice proves

the veracity of xA
i = xA +

⌊
i · Q

σ

⌋
− αiQ by one A2. In Step 2(a), we use a standard method

to generate an unbiased public random number. That is, for each j, Alice and Bob generate
uniformly random rA

j and rB
j respectively and commit them to each other. Then, they decommit

these two values to compute rj = rA
j + rB

j mod Q. Because of the binding property of the
commitment scheme and since at least one party is honest, we obtain an unbiased value rj .
Then, in Step 2(b), for i = 1, ..., σ− 1, j = 1, ...k, Alice and Bob run B3 σk times to prove that
xA

i,j = xA
i + rj mod Q and xB

i,j = xB
i − rj mod Q respectively. In Step 7, for i = 1, ..., σ − 1,

Alice proves the veracity of w′Ai = wA
i −

⌊
i · Q

σ

⌋
+αiQ by one A2. Since σ is a constant less than

or equal to 5, these proofs involve O(k) basic proofs.
ZeroTestQ (Fig. 5): When Q = 2, Alice and Bob prove zA = 1 + sA − (xA)2 and zB = sB − (xB)2

respectively by using A2 and A3. When Q > 2, in Step 1(a), Alice and Bob generate public
random numbers si using the same method as that in ModCNVQ→P . In Step 1(b), to generate
a public random number in Z∗Q, Alice and Bob first sample uniform random numbers rA

i and
rB
i in Z∗Q, and commit them to each other. When they decommit the random numbers, since at

least one party is honest, at least one of rA
i and rB

i is uniformly sampled from Z∗Q. Hence, if both
rA
i and rB

i are non-zero, Alice and Bob can compute a uniform random ri = rA
i · rB

i mod Q. If
rA
i = 0, which reveals Alice’s malice, Bob can stop the protocol, or they can prescribe that the

protocol uses ri = rB
i in this case and continue. Then, in Step 1(c), for i = 1, ..., k, Alice and

Bob use B3 to prove that xA
i = rix

A + si mod Q and xB
i = rix

B − si mod Q respectively.
SIGNQ (Fig. 6): In Step 1, Alice and Bob run B3 to prove that x′A = 2xA mod Q and x′B = 2xB

mod Q respectively.

Each of the passive protocols in Section 3 involves at most O(k) statements of A2, A3, B2 and
B3. Hence, we can conclude that since each of thes protocols involves O(k) basic proofs, the cost
of their proofs is at most O(1) rounds, O(k) exponentiations and O(k(` + κ)) communication bits.
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A Protocols for An Arbitrary Modulus

We explained how to compute modular conversion, zero test and sign test when Q is a prime in
Section 3. As mentioned in Sections 3.5, 3.6 and 3.7, there are constraints on Q in the ModCNVQ→P

(Fig. 4), ZeroTestQ (Fig. 5) and SIGNQ (Fig. 6) protocols; however, with some modifications, the
constraints can be removed without increasing the complexity. In the following, we discuss the
extension of protocols for the case of an arbitrary Q ≥ 2.



Modular Conversion. In Fig. 4, Q should be odd. When Q is even, the testing of ½ModCNV>Q→2

in Step 2(c) will always return a valid result irrespective of whether x < Q/2, so the strategy of
probabilistic test will fail. Hence, for an arbitrary Q ≥ 2, we make the following modification.
1. We replace ½ModCNV>Q→2 in Step 2(c) with ½ModCNV>Q→P ′ , where P ′ is a small prime and

P ′ - Q.
2. Now each yi,j can only be xi mod P ′ or xi + Q mod P ′. The latter case only occurs when

xi ≥ Q/2. We can map this distinction back to 0 and 1 in the original scenario in Fig. 4 by
computing ti,j = (Q−2) · (yi,j − yi,j+1)2 mod P ′ privately with one MULTP ′ . Since P ′ is a
prime and P ′ - Q, Q−2 mod P ′ exists and is a non-zero number. As a result, ti,j can only
be 0 or 1, but the latter case only occurs when xi ≥ Q/2.

3. Then, similar to Step 3 in Fig. 4, we compute ANDk−1
P ′ for all ti,j and for all 1−ti,j . Moreover,

if we choose P ′ as the smallest prime > k and coprime to Q, the first and last steps of ANDk−1
P ′

in Fig. 3 can be omitted.
4. The remaining parts of the procedure are the same as in Fig. 4.
Regarding the cost, although we use ½ModCNV>Q→P ′ k times, the first and last steps of ANDk−1

P ′
in Fig. 3 are not executed in the modified scheme. Hence, the additional cost is about k MULTP ′ .
The steps are described in detail in Fig. 8.

General modular conversion Protocol (for a general Q):

– Inputs: Alice holds xA ∈ ZQ and Bob holds xB ∈ ZQ such that x = xA + xB mod Q. Q > 2 and
P ≥ 2 are two public numbers.

– Outputs: Alice obtains zA and Bob obtains zB such that zA + zB = x mod P .

If P |Q, Alice and Bob output zA ← xA mod P and zB ← xB mod P respectively;
else, let σ be a parameter for the optimum adjustment and k be a parameter for the error rate. Besides,
let P ′ be the smallest prime > k and c = Q−2 mod P ′.

1. For i = 0, ..., σ − 1, Alice sets αi = (xA
i +

⌊
i · Q

σ

⌋ ≥ Q) and xA
i = xA +

⌊
i · Q

σ

⌋ − αiQ, and Bob sets

xB
i = xB .

2. Alice and Bob run the following procedure for j = 1, ..., k in parallel:
(a) Generate a public random number rj (uniformly and independently).
(b) For each i, Alice and Bob locally compute xA

i,j ← xA
i + rj mod Q and xB

i,j ← xB
i − rj mod Q

respectively.
(c) For each i, run (yA

i,j , y
B
i,j) ← ½ModCNV>Q→P ′(A(xA

i,j), B(xB
i,j)).

3. For each i and j = 1, ..., k − 1, compute
(tA

i,j , t
B
i,j) ← MULTP ′(A(c · (yA

i,j − yA
i,j+1), y

A
i,j − yA

i,j+1), B(c · (yB
i,j − yB

i,j+1), y
B
i,j − yB

i,j+1).
4. For each i, compute (uA

i , uB
i ) ← ANDk−1

P ′ (A(tA
i,1, ..., t

A
i,k−1)), B(tB

i,1, ..., t
B
i,k−1))

and (vA
i , vB

i ) ← ANDk−1
P ′ (A(1− tA

i,1, ..., 1− tA
i,k−1)), B(−tB

i,1, ...,−tB
i,k−1)).

5. For each i, compute (aA
i , aB

i ) ← MULTP ′(A(1− uA
i , 1− vA

i ), B(−uB
i ,−vB

i )).
6. For each i, run (bA

i , bB
i ) ← ½ModCNV>P ′→P (aA

i , aB
i ).

7. For each i, run (w′Ai , w′Bi ) ← ½ModCNV⊥Q→P (A(xA
i ), B(xB

i )).

8. For each i, Alice sets wA
i = w′Ai − ⌊

i · Q
σ

⌋
+ αiQ mod P , and Bob sets wB = w′B .

9. Compute zA and zB such that zA + zB = b0w0 + b̄0b1w1 + ... + (b̄0...b̄σ−2bσ−1wσ−1) mod P using
(1 + σ)σ/2 MULTP (where b̄i = 1− bi, bi = bA

i + bB
i mod P and wi = wA

i + wB
i mod P ).

Fig. 8. Protocol ModCNVQ→P (A(xA), B(xB), k) for a general Q



Zero Test. In Fig. 5, Q should be a prime. When Q is a composite number, two issues arise:
1) rx mod Q can be zero, even if x 6= 0; and 2)for an even Q, since ½ModCNV>Q→2 is al-
ways valid, the strategy of probabilistic test fails. However, these issues are not difficult to
solve. Let P be the smallest prime > 2Q. For an arbitrary composite Q, we run (yA, yB) ←
ModCNV>Q→P (A(xA), B(xB)) first. Then, we replace (xA, xB) with (yA, yB) and Q with P in
Fig. 5, but we still run ModCNV2→Q in the last step. Note that when x = 0, ½ModCNV>Q→P is
always valid and outputs a shared 0. When x 6= 0, ½ModCNV>Q→P can output a shared x or a
shared x + Q mod P , which are both non-zero. Hence, this strategy retains the validity of the
zero test. If, for simplicity, we leave out the observation that the size of P is 1 bit longer than
Q, the additional cost is only one ½ModCNV>Q→P . The steps are described in detail in Fig. 9.

Sign Test. In Fig. 5, Q should be odd. When Q is even, because x′ = 2x mod Q is always even
irrespective of whether x < bQ/2c, and y is always 0. Hence the strategy of probabilistic test
fails. To resolve the issue, when Q is even, we run ½ModCNV>Q→Q+1 followed by the sign test
in ZQ+1. By the definition of positive and negative numbers in Section 3.6, the positive and
negative numbers in ZQ correspond to those in ZQ+1. However, when x ≥ Q/2, the result of
½ModCNV>Q→Q+1 can be wrong and the output is x − 1. The result of the sign test can only
be wrong when x = bQ/2c+ 1. Hence, we perform an additional zero test of x− bQ/2c − 1 to
exclude this case. The additional cost is one ½ModCNV>Q→Q+1 and one ZeroTestQ. The steps are
described in detail in Fig. 10.

Zero Test Protocol (for a general Q):

– Inputs: Alice holds xA ∈ ZQ and Bob holds xB ∈ ZQ such taht x = xA + xB mod Q. Q is a public
number ≥ 2.

– Outputs: Alice obtains zA and Bob obtains zB such that zA + zB mod Q = 1 if x = 0, otherwise 0.

When Q = 2: output zA ← 1− xA and zB ← xB ,
else (when Q > 2), let P be the smallest prime > 2Q:

1. Run (yA, yB) ← ½ModCNV>Q→P (A(xA), B(xB)).
2. Alice and Bob run the following procedure for i = 1, ..., k in parallel:

(a) Generate a public random number si.
(b) Generate a public non-zero random number ri.
(c) Locally Alice and Bob compute xA

i ← riy
A + si mod P and xB

i ← riy
B− si mod P respectively.

(d) Run (wA
i , wB

i ) ← ½ModCNV>P→2(A(xA
i ), B(xB

i )).
3. Run (w′A, w′B) ← ANDk

2(A(1− wA
1 , ..., 1− wA

k ), B(−wA
1 , ...,−wA

k )).
4. Run (zA, zB) ← ModCNV2→Q(A(w′A), B(w′B)).

Fig. 9. Protocol ZeroTestQ(A(xA), B(xB), k) for a general Q

B Comparison of the Protocols’ Complexities

In Table B, we summarize our results of two-party omputation of general modular convrsion, zero
test, integer comparison, modular exponentiation and modulo reduction, and compare the complex-
ity with existing solutions. All of these solutions are constructed based on a secure MULT/M2A.
Hence the multiparty protocols in [26, 25, 24] can also be applied to the two-party problems here.



Sign Test Protocol (for an even Q):

– Inputs: Alice holds xA ∈ ZQ and Bob holds xB ∈ ZQ such that x = xA +xB mod Q, where Q is a public
even number.

– Outputs: Alice obtains zA, and Bob obtains zB such that zA + zB mod Q = 1 if x ≤ ⌊
Q
2

⌋
, otherwise 0.

1. Run (sA, sB) ← ZeroTestQ(A(xA − Q
2
− 1), B(xB)).

2. Run (uA, uB) ← ½ModCNV>Q→Q+1(A(xA), B(xB)).
3. Alice and Bob locally compute x′A = 2uA mod (Q + 1) and x′B = 2uB mod (Q + 1) respectively.
4. Run (yA, yB) ← ModCNVQ+1→2(A(x′A), B(x′B), k).
5. Run (vA, vB) ← ModCNV2→Q(A(1− yA), B(yB)).
6. Run (wA, wB) ← MULTQ(A(1− sA, vA), B(−sB , vB)).
7. Alice and Bob locally compute zA = sA + wA mod Q and zB = sB + wB mod Q respectively.

Fig. 10. Protocol SIGN′Q(A(xA), B(xB)) for an even Q

Problem Solution Rounds Complexity (MULTQ) Error Rate

General Modular Conversion Section 3.4 8 7k+30 ∗ (7/10)k

Zero Test
[26] 8 81` deterministic

[26] 4 12k (1/2)k

Section 3.5 8 k (1/2)k

Integer Comparison
[26] 15 297` + 5 deterministic

[29] O(1) O(
√

`(k + log `)) (1/2)k

Section 3.7 11 21k + 96 ∗∗ (7/10)k

Modular Exponentiation
[25] 24 162` + 46

√
` + 28 deterministic

Section 3.7, based on [31] 13 8k + 36 (7/10)k

MOD (modulo reduction)
[24] 22 354` + 3 deterministic

Section 3.7 8 7k + 30 (7/10)k

Table 1. Comparison of our results and those of the protocols in [26, 25, 24, 31, 29] for computing additive shares
over ZQ. (` = log Q is the length of the elements in the field ZQ; k is the correctness parameter for exponentially low
error rates.)
∗ The cost of ModCNVQ→P is about 7k + 30 MULTP ’s.
∗∗ The cost of CMPQ is about 21k + 90 MULT2’s and 6 MULTQ’s, upper-bounded by the complexity of 21k + 96
MULTQ’s.


