
A Domain-Specific Language for Computing on

Encrypted Data

Alex Bain, John Mitchell, Rahul Sharma, Deian Stefan and Joe Zimmerman

Stanford University, Stanford, CA

Abstract

In cloud computing, a client may request computation on confidential data that is sent to untrusted

servers. While homomorphic encryption and secure multiparty computation provide building blocks

for secure computation, software must be properly structured to preserve confidentiality. Using a gen-

eral definition of secure execution platform, we propose a single Haskell-based domain-specific language

for cryptographic cloud computing and prove correctness and confidentiality for two representative and

distinctly different implementations of the same programming language. The secret sharing execution

platform provides information-theoretic security against colluding servers. The homomorphic encryption

execution platform requires only one server, but has limited efficiency, and provides secrecy against a

computationally-bounded adversary. Experiments with our implementation suggest promising computa-

tional feasibility, as cryptography improves, and show how code can be developed uniformly for a variety

of secure cloud platforms, without explicitly programming separate clients and servers.
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1 Introduction

Recent advances in secure multiparty computation and homomorphic encryption promise a wide

range of new applications. In particular, it is cryptographically possible to protect data in the cloud

from the servers manipulating it, subject to varying threat models. However, the practical widespread

use of these cryptographic techniques requires a suitable software development, testing, and deploy-

ment infrastructure.

In this paper, we present the design, foundational analysis, implementation, and performance

benchmarks for an initial embedded domain-specific language (EDSL) that allows programmers to

develop code that can be run on different secure execution platforms with different security guaran-

tees. Figure 1 shows how our separation of programming environment from cryptographically secure

execution platforms can be used to delay deployment decisions or run the same code on different

platforms.

While homomorphic encryption and secure multiparty computation are based on different cryp-

tographic insights and constructions, there is a surprising structural similarity among them that we

express in our definition of secure execution platform. This definition allows us to develop a single

set of additional definitions, theorems, and proofs that are applicable to many platforms. In particu-

lar, we prove functional correctness and confidentiality, for an honest-but-curious adversary, across

relevant platforms. We then show that fully homomorphic encryption satisfies our definition, as

does a specific secret-sharing scheme, subject to assumptions on the number of potentially colluding

servers. Moreover, our definition of secure execution platform is parameterized over the set of prim-

itive operations on secret values, so that our language and our theoretical guarantees are applicable

to partially homomorphic schemes, when they support the operations actually used in the program

code. Our correctness theorems show equivalence with a reference implementation and therefore

imply output equivalence for alternative secure execution platforms.
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Figure 1 Multiple deployment options using different runtime systems (RTS)

Our embedded domain-specific language is implemented as a Haskell library, rather than as

a completely new language, so that developers can use existing and carefully engineered Haskell

development tools, compilers, and run-time systems. Programmers also have the benefit of sophis-

ticated type-checking and general programming features of Haskell because we rely only on the

Haskell type discipline, not ad hoc code restrictions. Further, we use the Haskell type system to im-

pose an information-flow discipline that is critical to preserving confidentiality against cloud servers

that could otherwise leak information through control-flow analysis or other forms of program moni-

toring. Our Haskell implementation also provides flexible data structures, since our information-flow

constraints make secrecy-preserving operations on such such structures possible.
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Figure 2 Generalized Millionaires’ Problem

As a working example, we consider the

Generalized Millionaires’ Problem: given

a number of millionaires, request their net

worth, identify the richest millionaire, and, fi-

nally, notify each one of their status without

revealing their net worth. Figure 2 shows an

example implementation, that highlights sev-

eral key aspects of our Haskell EDSL. First,

our language provides various primitives such

as ✇✐t❤❯s❡rs, ✉❘❡❛❞, and r❡✈❡❛❧ that are

respectively used to apply a function (e.g.,

r❡❛❞❲♦rt❤) to each connected user, read a

secret input from the user, and reveal (de-

crypt) a secret value. Second, the DSL em-

bedding allows the programmer to use ex-

isting Haskell features including higher-order

functions, abstract data types, general recur-

sion, etc. An example use of recursion in our example is ❢♦❧❞❧▼✶ which, with ♠❛①❲♦rt❤, is used

to find the richest millionaire. Finally, compared to languages with similar goals (e.g., SMCL [24]),

where a programmer is required to write separate client and server code, using our EDSL, a program-

mer need only write a single program; we eliminate the client/server code separation by providing a

simple runtime system that directs all parties.

We describe a Haskell implementation of secure execution platforms based on both secret sharing

and fully homomorphic encryption, both using SSL network communication between clients and any

number of servers. Our implementation effort produced 2500 lines of Haskell and 650 lines of C/C++

code. We developed sample applications and measured performance on benchmarks, as reported

in Section 4.3. Because our implementation is packaged in the form of Haskell libraries, other

researchers could use our libraries to implement other programming paradigms over the same forms

of cryptographic primitives. Conversely, we could target our language to other run-time systems

such as SMCR [24], for programmers only interested in that execution paradigm.
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The contributions of this work include:

We leverage the similarity between secure multiparty computation and homomorphic encryption,

as captured in a precise definition of secure execution platform.

We design, implement, and test an embedded DSL that allows programmers to develop code

that runs on any secure execution platform supporting the operations used in the code. We avoid

ad hoc language restrictions by relying only on the Haskell type system for information flow

properties and other constraints.

We prove general functional correctness and security theorems, beyond previous work on re-

lated languages for secure multiparty computation (SMC [27], Fairplay [22], SIMAP [4, 24] and

VIFF [8]).

We develop and evaluate distributed secret sharing and homomorphic encryption execution plat-

forms, using SSL network communication, implemented in Haskell.

Although we develop our results using the commonly used honest-but-curious adversary model,

there are established methods for assuring integrity, using commitments and zero-knowledge tech-

niques [16]. Moreover, since these add communication and computation overhead, we can also

consider the possibility of using techniques from [23] in future work. These methods employ com-

putational commitment and proofs of knowledge to provide computations on ciphertexts with ver-

ifiable integrity and smaller overhead. While we focus on data confidentiality, we can also protect

confidential algorithms by considering code as input data to an interpreter (or “universal Turing

machine”).

2 Background

We propose a domain-specific programming language (DSL) embedded in Haskell, drawing on pre-

vious languages (e.g., Cryptol), use of monads for cryptographic computation, and other works on

programmable secure multiparty computation (e.g., Fairplay [22], SIMAP [4, 24]). In this section,

we introduce Haskell, and review secure multiparty computation and homomorphic encryption.

Haskell and EDLs Haskell is a widely used host language for EDSLs [17]. The language offers

a strong, static type system that includes parametric and ad-hoc polymorphism (via type classes);

first-class monads, with convenient syntactic sugar; and, the IO monad, strictly separating pure from

impure computations. Haskell’s type classes, lazy evaluation strategy (i.e., expressions are evaluated

only when their values are needed), and support for monads makes it easy to define new data struc-

tures, syntactic extensions, and control structures—features commonly desired when embedding

DSLs.

❝❧❛ss ▼♦♥❛❞ M ✇❤❡r❡

r❡t✉r♥ :: α→Mα
✭>>=✮ :: Mα→ (α→Mβ)→Mβ

Figure 3 Monad operations

The main Haskell constructs used in embedding our

DSL are monads and type classes. A monad M provides

a type constructor and related operations that obey several

laws. Specifically, if M is a monad and α is an arbitrary

type, then Mα is a type with operations r❡t✉r♥, and >>=

(pronounced “bind”), whose types are shown in Figure 3.

As shown in the figure, Haskell provides support for monads through the ▼♦♥❛❞ type class. Type

classes provide a method of associating a collection of operations with a type or type constructor.

Programmers, then, declare instances of a given type class by naming the type or type constructor

and providing implementations of all required operations. As explained later, type classes are also

useful in ‘overloading’ arithmetic operations over secret and public data.
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Homomorphic encryption A homomorphic encryption scheme 〈KeyGen, Enc, Dec, Eval〉 con-

sists of a key generation algorithm, encryption and decryption algorithms, and an evaluation function

that evaluates a function f ∈ F on one encrypted value to produce another. More specifically, if

c = Enc(pk, m) then Eval(pk, c, f) = Enc
(

pk, f(m)
)

for every f ∈ F , where F ⊆ (Plaintext →

Plaintext) is some set of functions on plaintexts. As stated here, F is a set of unary functions;

however, we consider the more general case where each function has a specific arity and type. We

say that the scheme is homomorphic with respect to the set F of functions.

While some homomorphic encryption schemes [6, 15, 20] are homomorphic with respect to a re-

stricted class of functions, such as the set of quadratic multivariate polynomials or the set of shallow

branching programs, recent research has produced an encryption scheme that is fully homomorphic,

i.e., homomorphic with respect to all functions of polynomial complexity [11, 12, 28, 29]. Since this

work has generated substantial interest, there is a rapidly growing set of fully homomorphic con-

structions. However, for efficiency reasons we remain interested in partially homomorphic schemes

as well. Moreover, for any given program, it is only necessary to use a form of homomorphic en-

cryption that is sufficient for the functions used by that program.

Secure multiparty computation Another approach to computing on ciphertexts makes use

of generic 2-party or multi-party secure computation [30, 21, 2, 18, 7, 23, 19, 9, 1], in which the

client, who has the plaintext x, communicates through some protocol with the server(s), who have

the function f to be computed on x. The standard conditions for secure multiparty computation

guarantee that the client only learns f(x) and the server learns nothing about x.

In Shamir secret sharing and the multi-party computation algorithm based on it (see [10]), a

client C shares a secret value a0 from a finite field F among N other parties that we will refer to as

servers. In an (N, k) secret sharing scheme, N servers can jointly perform computations on a0 and

other shared secrets, such that at least k of the N servers must cooperate to learn anything about a0.

The client C shares a secret value a0 by choosing values a1, . . . , ak−1 uniformly at random

from F , and forms the polynomial p(x) =
∑k−1

i=0 aix
i. Then, C computes and distributes the secret

shares s1 = p(1), . . . , sN = p(N) to the servers S1, . . . , SN , respectively.

Addition is easy for the servers to compute, since they can simply add their shares of two values

pointwise: if the values si form a sharing of a0 via p, and ti form a sharing of b0 via q, then si + ti

form a sharing of a0 + b0 via p + q. Similarly, if the values si form a sharing of a0 via p, then,

for a constant c, c · si form a sharing of c · a0 via c · p. Multiplication of two secret values is more

complicated, because multiplication of polynomials increases their degree. The solution involves

computing and communicating a new sharing, which increases the cost because the servers must

communicate.

3 Language design for Secure Cloud Computing (SCC)

For the purpose of analysis, we present a functional language whose definition is parameterized by a

set of given operations over some given type of encryptable values. This language, λ→
P,S, is a form of

simply-typed lambda calculus, with labeled types as used in information flow languages (see, e.g.,

[26]). Our implementation, described in Section 4, embeds an extension of this language in Haskell,

and provides specific operations over encryptable integer values. From the programmer’s standpoint,

different cryptographic backends that support the same operations provide the same programming

experience. However, our analysis of security and correctness depends on the number of servers, the

form of cryptography used, and the form and extent of communication between servers.

In order to provide a uniform analysis encompassing a range of cryptographic alternatives, we

formulate both a standard reference semantics for λ→
P,S and a distributed semantics that allows an
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arbitrary number of servers to communicate with the client and with each other in order to complete

a computation. Correctness of each distributed cryptographic semantics is proved by showing an

equivalence with the reference semantics. Security properties are proved by analyzing the informa-

tion available to each server at every point in the program execution.

Before presenting the definition of λ→
P,S, we summarize the semantic structure used in our analy-

sis. As shown below, our semantic structure is sufficient to prove correctness and security theorems

for λ→
P,S, and general enough to encompass secret sharing, homomorphic encryption, and other plat-

forms.

Reference semantics primitives In the reference semantics, the private values used in compu-

tation are interpreted using a set Y of base values, together with primitive operations op1, . . . , opr :

Y × Y → Y . For simplicity, we consider only binary operators over a single set of base values. The

generalization to arbitrary typed operations over several types of base values is straightforward. We

note that this parameterization allows our language (and its Haskell implementation) to easily en-

compass a variety of platforms, including cryptosystems that are only additively or multiplicatively

(rather than fully) homomorphic.

Randomness Because cryptographic primitives used by each of N servers in the distributed

semantics may require randomness, we assume a set R of tuples of sequences, where each R =

(RC , RS1
, . . . , RSN

) ∈ R provides N + 1 infinite sequences of elements of some finite set Z

(such as Z = {0, 1}). As the notation suggests, if there are N + 1 parties, the sequence RP is

assumed available to the party P ∈ {C, S1, . . . , SN }. Since security relies on correct random

sequences, we let UR be a uniform randomness source: UR = ((UR)C , (UR)S1
, . . . , (UR)SN

) =

(Uω
Z , Uω

Z , . . . , Uω
Z ), where Uω

Z denotes an infinite sequence of uniform random variables over Z.

Distributed computing infrastructure We assume N servers, S1, . . . , SN , execute the secure

computation on behalf of one client, C; the extension to multiple clients is straightforward. (In many

natural cases, such as homomorphic encryption, N = 1). The (N + 1) parties will communicate by

sending messages via secure party-to-party channels; we denote by M the set of possible message

values that may be sent. A communication round is a set {(P
(i)
1 , P

(i)
2 , m(i))}1≤i≤r of triples, each

indicating a sending party, a receiving party, and a message m ∈ M . A communication trace is a

sequence of communication rounds, possibly empty, and T is the set of communication traces.

If A ⊆ {S1, . . . , SN } is any subset of the servers, the projection of trace T onto A, written

ΠA(T ), is the portion of the trace visible to the servers in A, i.e., ΠA(ε) = ε and:

ΠA({(S
(i)
1 , S

(i)
2 , m(i))}‖T ) = {(S

(i)
1 , S

(i)
2 , m(i)) | {S

(i)
1 , S

(i)
2 } ∩ A 6= ∅}‖ΠA(T )

General form of cryptographic primitives We work with a two-element security lattice,

S = {P, S} (with P ⊑ S), representing (respectively) “public” values, which are transmitted in

the clear and may be revealed to any party; and “secret” values, which are encrypted or otherwise

hidden, and must remain completely unknown to the adversary. We assume a set ES(Y ), holding

“secret equivalents” of base values in Y ; for notational uniformity, we also define EP(Y ) = Y ,

signifying that the “public equivalent” of a value is just the value itself.

We also assume a cryptographic protocol operation Init : R → I × R that establishes the

initial parameters of the platform (e.g., it may generate a public/private key pair for use throughout

the computation). Init is a randomized operation, taking a random source in R (and returning the

modified source after potentially consuming some values). We define ι̂ to be the random variable

over R that is derived from running Init on a uniformly random source (ι̂ = π1(Init(UR))). Further,
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we assume a projection operator from the initial parameters onto any collection of servers A ⊂

{S1, . . . , Sn}, writing ΠA(ι) to mean, intuitively, the portion of the initial parameters ι that servers

in A should receive.

The other cryptographic operations used in the distributed semantics return secret or public val-

ues, but may also consume random values (R), read from the initial parameters (I), and/or result in

communication among the parties (T ). We assume the following operations:

EncS : Y × R × I → ES(Y ) × R × T , “hiding” y ∈ Y .

DecS : ES(Y ) × R × I → Y × R × T , “unhiding”.

Encα,β(opi) : Eα(Y ) × Eβ(Y ) × R × I → Eα⊔β(Y ) × R × T (when α ⊔ β = S), evaluating

a primitive.

For notational uniformity, as above, we also define the corresponding operations in the degener-

ate case of “hiding” public values: EncP(y, R, ι) = (y, R, ε), DecP(y, R, ι) = (y, R, ε), and

EncP,P(opi)(y1, y2, R, ι) = (opi(y1, y2), R, ε).

In reasoning about the distributed semantics, we require that all of the protocol operations con-

sume randomness sources correctly, i.e., when given random sources R = (RC , RS1
, . . . , RSN

),

each operation returns a tuple R′ = (R′
C , R′

S1
, . . . , R′

SN
), where each R′

P is a suffix of RP and the

entire result of the operation depends only on the prefix consumed (and thus independent of R′
P ).

As a corollary, any operation given uniform randomness UR must return UR.

Cryptographic functional correctness We assume the usual encryption and homomorphism

conditions, augmented for cryptographic primitives that depend on explicit randomness and that

may communicate among servers to produce their result. More precisely, for every y ∈ Y , and

every choice of initial parameters ι ∈ I, we assume a family of safe sets Eα(y, ι): intuitively, any

value l ∈ Eα(y, ι) can safely serve as the “hiding” of y under the initial parameters ι (at secrecy level

α ∈ {P, S}). More precisely:

π1(Encα(y, R, ι)) ∈ Eα(y, ι)

We also require that unhiding (“decryption”) is the left-inverse of hiding (“encryption”), and hiding

commutes homomorphically with the primitive operations:

π1(Decα(π1(Encα(y, R1, ι)), R2, ι)) = y

π1(Encα,β(opi)(l1, l2), R3, ι) ∈ Eα⊔β(opi(y1, y2)) whenever l1 ∈ Eα(y1, ι) and l2 ∈ Eβ(y2, ι)

Cryptographic statistical correctness Analogous to functional correctness, for every y ∈ Y ,

and every choice of initial parameters ι ∈ I, we assume a family of safe distributions Êα(y, ι) over

the safe sets Eα(y, ι): intuitively, any distribution l ∈ Êα(y, ι) can safely serve as the “hiding” of y

under the initial parameters ι (at secrecy level α ∈ {P, S}), assuming randomness is uniform at all

stages. We require that “hiding” a base value using a uniform randomness source must yield a safe

distribution:

π1(Encα(y, UR, ι)) ∈ Êα(y, ι)

In addition, for any two base values y1 and y2, we require that evaluating a primitive operation opi

on safe distributions of these two values must yield a safe distribution of opi(y1, y2):

π1(Encα,β(opi)(l1, l2, UR, ι)) ∈ Êα⊔β(opi(y1, y2), ι) whenever l1 ∈ Êα(y, ι) and l2 ∈ Êβ(y, ι)

Indistinguishability conditions The distributed threat model may generally involve any set

of possible combinations of colluding servers. We formalize this by assuming a family A ⊆

2{S1,...,SN } of sets that we refer to as valid sets of untrusted servers. Intuitively, for any A ∈ A,

we assume the cryptographic primitives are intended to provide security even if an adversary has

access to all information possessed by servers in A.
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Since different platforms may provide different security guarantees of their primitives, we as-

sume a generic notion of indistinguishability; for the purposes of our examples, we will restrict our

attention to information-theoretic indistinguishability and computational indistinguishability (with

respect to some security parameter of the implementation), but our results easily generalize. Using

the form of indistinguishability provided by the platform in question, we assume that any two se-

quences of partial traces are indistinguishable if each pair of corresponding partial traces describes

either a primitive operation, a “hiding” operation on two safely-distributed values, or an “unhiding”

operation on two values that turn out to be equal.1 More precisely, for all T (ι) = (T1(ι), . . . , Tr(ι))

and T ′(ι) = (T ′
1(ι), . . . , T ′

r(ι)), if for each i, either:

Ti(ι) = π3(EncS(yi, UR, ι)) or

Ti(ι) = π3(Encα,β(opi)(Li,1(ι), Li,2(ι), UR, ι))

where Li,1(ι) ∈ Êα(yi,1, ι) and Li,2(ι) ∈ Êβ(yi,2, ι)

(and analogously for O′, T ′, substituting y′
i, y′

i,1, y′
i,2 for yi, yi,1, yi,2), or:

Ti(ι) = π3(DecS(Li(ι), UR, ι)) and T ′
i (ι) = π3(DecS(L′

i(ι), UR, ι))

where Li(ι), L′
i(ι) ∈ ÊS(yi, ι)

Then, defining:

O(ι) = (πA(ι), πA(T1(ι)), . . . , πA(Tk(ι)))

we assume the distributions O(ι̂) and O′(ι̂) are indistinguishable.

◮ Definition 1. We say that a platform (Z, N, M, E , Enc, A) is a secure execution platform for

(Y, (opi)) if it satisfies all of the assumptions of this section.

3.1 Framework

We introduce a simple language, λ→
P,S, based on the simply-typed lambda calculus with base val-

ues and primitive operations. In addition to standard constructs, expressions in λ→
P,S may include

variables bound at the program level by the r❡❛❞ construct, representing secret values input by the

clients before the body of the program is evaluated; these input variables are represented by capital

letters X (in contrast to lambda-bound variables, which use lowercase letters x), to emphasize the

phase distinction between input processing and evaluation of the program body. Programs in λ→
P,S

may also include r❡✈❡❛❧ operations, which specify that the value in question need not be kept secret

during the computation. Throughout this section, we assume a set Y , primitive operations (opi), and

a secure execution platform for (Y, (opi)), as specified in Section 3.

Listing 1 Syntax for expressions and programs.

e ::= x | λx.e | e1 e2 | opi(e1, e2) | y ∈ Y | X | r❡✈❡❛❧ e

p ::= r❡❛❞ X1, . . . , Xr ; e

The static semantics (Listing 2) are standard; we assume the two-element security lattice {P, S},

P ⊑ S, denoting the types of (respectively) public values, which may be revealed to any party

(including the servers); and secret values, about which the protocol may reveal no information. Note

that we include both the static semantics for expressions (Γ ⊢ e : τ ) and those for values (Γ ⊢v v : τ ).

1 These values may be either secret (S) or public (P). In the latter case, we still assume that the communication
traces are indistinguishable, since a properly implemented protocol should not need to exchange publicly-known
information between servers at each operation.
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Listing 2 Static semantics for expressions and values (“reference” semantics).

Γ ⊢ y : (Y, P)

Γ ⊢ e : (Y, S)

Γ ⊢ r❡✈❡❛❧ e : (Y, P)

Γ[x 7→ τ1] ⊢ e : τ2

Γ ⊢ λx.e : τ1 → τ2

Γ ⊢ x : Γ(x)

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

Γ ⊢ e1 : (Y, α) Γ ⊢ e2 : (Y, β)

Γ ⊢ opi(e1, e2) : (Y, α ⊔ β)

y ∈ Y

Γ ⊢v (y, α) : (Y, α)

Γ ⊢ λx.e : τ1 → τ2

Γ ⊢v λx.e : τ1 → τ2

We give a standard dynamic semantics for λ→
P,S (Listing 3), based on the usual evaluation rules

for lambda calculus with primitive operations; to simplify notation, we overload the symbol ↓ to

represent the evaluation judgments for programs, (κ, p) ↓ (v, O), as well as those for expressions,

e ↓ (v, O). The environment κ represents the initial (secret) values supplied by the client. Opera-

tionally, the r❡❛❞ construct is a no-op, but for clarity we retain it in the syntax, since in the imple-

mentation semantics (Listing 5) it will represent the “hiding” and initial transmission of the values

from the client to the servers. The r❡✈❡❛❧ construct acts as a cast from S to P, and may therefore

have side effects in an implementation of λ→
P,S (as discussed below), but these effects are guaranteed

to be benign with respect to functional correctness, since they do not change the first component of

the resulting value in the dynamic semantics (Listing 3). We also track a list of “observations”, O,

throughout the evaluation, holding all values ever supplied to r❡✈❡❛❧; this is important in proving

security properties (Theorem 6), as we will show that an appropriately constrained adversary learns

nothing except what is entailed by these observations.

Listing 3 “Reference” dynamic semantics for λ→
P,S.

y ↓ ((y, P), ε) λx.e ↓ (λx.e, ε)

e ↓ ((y, α), O)

(r❡✈❡❛❧ e) ↓ ((y, P), O‖y)

e1 ↓ (λx.e, O1) e2 ↓ (v2, O2) e[v2/x] ↓ (v, O3)

e1 e2 ↓ (v, O1‖O2‖O3)

e1 ↓ ((y1, α), O1) e2 ↓ ((y2, β), O2)

opi(e1, e2)) ↓ ((opi(y1, y2), α ⊔ β), O1‖O2)

e[κ(X1)/X1, . . . , κ(Xr)/Xr] ↓ (v, O)

(κ, r❡❛❞ X1, . . . , Xr; e) ↓ (v, O)

We have the usual type safety theorem (encompassing both progress and preservation):2

◮ Theorem 2 (Soundness for Reference Semantics). If ∅ ⊢ e : τ , p = r❡❛❞ X1, . . . , Xr; e,

FV(e) ⊆ {X1, . . . , Xr}, and for each 1 ≤ k ≤ r, κ(Xk) = (yk, S) for some yk ∈ Y , then there

exists a value v and an observation sequence O such that (κ, p) ↓ (v, O) and ∅ ⊢v v : τ .

In order to address correctness and security of implementations, we augment the language λ→
P,S

so that there is an additional case for result values, l ∈ ES(Y, I), representing hidden values; we

denote this augmented language by λ̂→
P,S. We give a dynamic semantics for λ̂→

P,S in Listing 5. In

contrast to the first, “reference”, dynamic semantics for λ→
P,S, the “distributed” semantics for λ̂→

P,S

2 For space reasons, we omit the proofs of theorems in this section.
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reflects the steps taken by an actual implementation. We again have the usual type safety theorem

for λ̂→
P,S under the distributed semantics:

◮ Theorem 3 (Soundness for Distributed Semantics). If ∅ ⊢ e : τ , p = r❡❛❞(X1, . . . , Xr); e,

FV(e) ⊆ {X1, . . . , Xr}, and κ maps each Xi to an element of Y , then for all ι ∈ I, randomness

sources R ∈ R, there exists a value w, a trace T , and a randomness source R′ ∈ R such that

(κ, R, p) ⇓ (w, R′, T ) and ∅ ⊢tv w : τ .

Listing 4 Static semantics for expressions and values (“distributed” semantics; selected rules).

Γ ⊢t y : (Y, P)

Γ[x 7→ τ1] ⊢t e : τ2

Γ ⊢t λx.e : τ1 → τ2

y ∈ Y l ∈ Eα(y)

Γ ⊢tv (l, α) : (Y, α)

Γ ⊢t λx.e : τ1 → τ2

Γ ⊢tv λx.e : τ1 → τ2

Listing 5 “Distributed” dynamic semantics for λ̂→
P,S.

(ι, R, y) ⇓ (ε, R, (y, P), ε) (ι, R, λx.e) ⇓ (ε, R, λx.e, ε)

(ι, R, e) ⇓ (T1, R1, (l, S), O1) (y, R2, T2) = DecS(l, R1, ι)

(ι, R, r❡✈❡❛❧ e) ⇓ (T1‖T2, R2, (y, P), O1‖y)

(ι, R, e1) ⇓ (T1, R1, λx.e, O1)

(ι, R1, e2) ⇓ (T2, R2, v2, O2) (ι, R2, e[v2/x]) ⇓ (T3, R3, v, O3)

(ι, R, e1e2) ⇓ (T1‖T2‖T3, R3, v, O1‖O2‖O3)

(ι, R, e1) ⇓ (T1, R1, (l1, α), O1)

(ι, R1, e2) ⇓ (T2, R2, (l2, β), O2) (l, T3, R3) = Encα,β(opi)(l1, l2, R2, ι)

T = T1‖T2‖T3 O = O1‖O2

(ι, R, opi(e1, e2)) ⇓ (T, R3, (l, α ⊔ β), O)

(R0, ι) = Init(R) ∀i ∈ {1, . . . , N}. Ti = {(C, Si, Π{Si}(ι)}

∀j ∈ {1, . . . , r}. (lj , Rj , T ′
j) = EncS(κ(Xj), Rj−1, ι)

(ι, Rr, e[l1/X1, . . . , lr/Xr]) ⇓ (T, v, R′, O) T ′ = T1‖ . . . ‖TN ‖T ′
1‖ . . . ‖T ′

r‖T

(κ, R, r❡❛❞(X1, . . . , Xr); e) ⇓ (T ′, v, R′, O)

The reference semantics expresses the standard meaning of programs in λ→
P,S, while the dis-

tributed semantics expresses in more detail how an implementation should realize them. Evidently,

in a correct system we would expect evaluation to arrive at equivalent results in both cases; this is

guaranteed by the following theorem (where the relevant similarity relation is defined in Listing 6):

Listing 6 Similarity relations for functional and statistical correctness (selected rules).

l ∈ Eα(y, ι)

(y, α) ∼ι (l, α) x ∼ι x

e ∼ι e′

λx.e ∼ι λx.e′

e1 ∼ι e′
1 e2 ∼ι e′

2

e1 e2 ∼ι e′
1 e′

2

l ∈ Êα(y, ι)

(y, α) ≈ι (l, α) x ≈ι x

e ≈ι e′

λx.e ≈ι λx.e′

e1 ≈ι e′
1 e2 ≈ι e′

2

e1 e2 ≈ι e′
1 e′

2
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◮ Theorem 4 (Functional Correctness). If ∅ ⊢ e : τ , p = r❡❛❞(X1, . . . , Xr); e, FV(e) ⊆

{X1, . . . , Xr}, κ maps each Xi to an element of Y , and (κ, p) ↓ (v, O), then for all R ∈ R, there

exist R′ ∈ R, T , w, and ι such that (κ, R, p) ⇓ (T, R′, w, O) and v ∼ι w.

Functional correctness expresses that for any well-formed randomness source R ∈ R, regardless

of whether it was in fact generated randomly, the distributed semantics yields the correct answer. It

will also be useful to have a correctness theorem expressing the behavior of the system when given

a truly random source. In particular, if we regard the values in question as random variables, and

assume that at the beginning of the computation they satisfy appropriate safe distributions as given

by Ê{P,S}(·, ·), we can show that values remain in such distributions throughout the computation

(Theorem 5). In order to state this result, we introduce a similarity relation ≈Γ,ι
τ (Listing 6) to relate

values in the reference semantics with their safe distributions.

◮ Theorem 5 (Statistical Correctness). If ∅ ⊢ e : τ , p = r❡❛❞(X1, . . . , Xr); e, FV(e) ⊆

{X1, . . . , Xr}, κ maps each Xi to an element of Y , and (κ, p) ↓ (v, O), then there exist T and

w such that (κ, UR, p) ⇓ (T, UR, w, O) and v ≈ι̂ w (where the semantics judgments are lifted to

distributions).

For security, however, the above results are not sufficient. Rather, we now show that if, during

the evaluation of a program in λ→
P,S, an adversary is confined to observing the data visible to a valid

subset of untrusted servers A ∈ A (represented by their views of the communication trace), then

that adversary learns nothing about the initial secret client values that was not already implied by the

observations from r❡✈❡❛❧:

◮ Theorem 6 (Security). If ∅ ⊢ e : τ , p = r❡❛❞(X1, . . . , Xr); e, (κ, UR, p) ⇓ (T, UR, v, O), and

(κ′, UR, p) ⇓ (T ′, UR, v′, O), then for all valid sets of untrusted servers A ∈ A, the distributions

ΠA(T ) and ΠA(T ′) are indistinguishable (in the sense specified by the secure execution platform,

as described in Section 3).

We remark that although the conclusion of this theorem seems simple, it requires some care to set

up the proof correctly. In particular, we can proceed by showing inductively that the two evaluation

derivations take the same form, with all resulting values, observations, and traces being structurally

equal; moreover, all traces can be decomposed into secret components (which, by statistical cor-

rectness, must satisfy the hypothesis of the indistinguishability assumption), and public components

(which are identical between T and T ′, since both evaluations yield the same observations). We may

then conclude indistinguishability of the projections ΠA(T ) and ΠA(T ′).

3.2 Shamir secret sharing

We now define Shamir secret sharing in the notation of our framework (Section 3), and show that

it is a secure execution platform (Definition 1) for addition and multiplication over a finite field,

thereby concluding all of the correctness and security results of Section 3.1 as applied to λ→
P,S with

these two primitive operations. Let N be the number of servers executing the computation (i.e., we

use an (N, k) sharing). The set of base values Y is the finite field Fp, where p is a parameter of the

implementation,3 equipped with the usual operations of addition and multiplication (op1(x, y) =

(x + y) mod p, op2(x, y) = (x · y) mod p). The sets M of messages and Z of random numbers

are also defined to be Fp. We define the set of “hidden equivalents” ES(Fp) to be F
N
p ; during

3 In practice, it is more useful to have programs act on integers rather than elements of a finite field. This can be done
via a static analysis that infers the largest possible integer value that can arise during the execution, given bounds
on the input values.
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computations, we will be concerned specifically with inhabitants of ES(Fp) that represent each of the

N servers’ shares of some base value. Apart from the initial secret sharing, there is no initialization

phase, so we let I be the singleton set {()}.

The “hiding” and “unhiding” operations are defined using the standard Shamir secret shar-

ing constructions, as described in Section 2. (For brevity, we defer the formal definitions to Ap-

pendix A.) The primitive operations EncS,S(+), EncS,P(+), EncP,S(+), EncS,S(∗), EncS,P(∗),

and EncP,S(∗) are defined similarly, following Section 2; We note that each of the secret shar-

ing operations consumes randomness correctly, by definition. Further, since any base value has

only one distribution that can result from using uniform randomness (namely, the uniform dis-

tribution over all valid sharings), we define the set of safe distributions to contain only this one:

ÊS(n, ()) = {D(n)} = {EncS(n, UR, ())}. We also define A, the family of valid untrusted sub-

sets of the servers, to include exactly those subsets with cardinality less than k, and we specify that

the system should provide information-theoretic security. Assuming this specification, the required

functional correctness, statistical correctness, and indistinguishability properties of the primitives

follow from the properties of secret sharing outlined in Section 2. (Again for brevity, we omit proofs

of all of these properties, but we refer the reader to Appendix A.)

Given that the operations of Shamir secret sharing satisfy all of the required properties (as enu-

merated in Section 3), we can conclude that Shamir secret sharing is a secure execution platform for

(+, ×), and thus all of the results of Section 3.1 hold of programs in λ→
P,S when it is given the seman-

tics of Shamir secret sharing. In particular, functional correctness (Theorem 4) takes on the flavor

of a “SIMD” property, stating that the evaluation of a program on N servers results in N -tuples in

the “distributed” semantics (a share for each server) being produced in lock-step with their equiv-

alents (the shared value) in the “reference” semantics. Moreover, the security result (Theorem 6)

now guarantees the desired secrecy property for the entire language: if the adversary can observe

the data from at most k of the servers, then even with unbounded computational resources, it cannot

distinguish between any two initial secret value environments, except to the extent that they cause

different values to be provided to explicit “r❡✈❡❛❧” directives in the program.

3.3 Fully homomorphic encryption

In addition to secure multiparty computation, a variety of homomorphic encryption schemes can

also serve as secure execution platforms for standard primitive operations. In particular, we will

now show that any fully homomorphic encryption scheme, and notably Gentry’s scheme [11] (under

the appropriate cryptographic assumptions), is a secure execution platform for addition and multi-

plication over the ring Z2k , achieving security against a computationally-bounded adversary.

In fully homomorphic encryption, the number of servers, N , is 1; the client simply sends en-

crypted values to the server, and the server performs the computation homomorphically, returning

the encrypted result. Although traditionally the operations provided under fully homomorphic en-

cryption would be a complete set of circuit gates, in order to provide a better analogy with secret

sharing we define the set of base values Y to be the ring Z2k , and the operations (op1, op2) to be

addition and multiplication in the ring. The initialization step is just Init = KeyGen(λ) generating

the public/private key pair,4 where λ is the security parameter to the system.

To begin the computation, the client sends the public key to the server (i.e., Π{S1}(ι) here is

Π{S1}((sk, pk)) = pk), then encrypts all of the initial values one bit at a time and sends the

corresponding ciphertexts to the server (i.e., EncS(bkbk−1 · · · b1, (sk, pk)) = (Ψ, {(C, S1, Ψ)})

where Ψ = (Enc(pk, b1), . . . , Enc(pk, bk))). During the computation, the server itself performs

4 For clarity, we elide the randomness sources in this section.
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additions and multiplications on the ciphertexts by homomorphically evaluating the corresponding

circuits, producing no communication trace with the client (i.e., EncS,S(op)(Ψ1, Ψ2, (sk, pk)) =

(Eval(pk, op, Ψ1, Ψ2), ε)); when one of the operands is a public value (i.e., EncS,P, EncP,S), the

server simply “hides” it using Enc(pk, ·), and then uses EncS,S. For r❡✈❡❛❧ operations, the server

sends back to the client a tuple of ciphertexts to be decrypted, and the corresponding plaintexts (bits

of some base value) are returned to the server (i.e., DecS(Φ, (sk, pk)) = (n, {(S1, C, Φ), (C, S1, n)})

where n =
∑k

i=1 bi2
i, bi = Dec(sk, Φi)). Finally, given these operations, we note that the set ES(Y )

of possible “hidden” values should be defined as the set of k-tuples of ciphertexts, while the set M

of messages in M consists of ciphertexts, plaintexts, and k-tuples of ciphertexts.

Functional correctness of the primitives follows directly from the homomorphic properties of the

encryption scheme. For statistical correctness, we can trivially define a safe distribution to be any

distribution l ∈ ÊS(y, ι). Indistinguishability is then immediate for partial traces derived from opi,

since these operations produce empty traces. For the other partial traces (i.e., the initial encryptions

EncS), indistinguishability follows from CPA-security of the encryption scheme, since the only

values in the traces are the encryptions of each of the bits of the secret client inputs.

Thus, fully homomorphic encryption is a secure execution platform for (+, ×), and as above,

all of the results of Section 3.1 hold of programs in λ→
P,S when it is given the semantics of fully

homomorphic encryption (now obtaining security guarantees against a computationally bounded

adversary).

4 Implementation

We implemented the language of Section 3 as an EDSL in Haskell. Our implementation framework

consists of a module that defines the language interface, and SMC and FHE libraries that implement

the interface combinators. In this section we detail the EDSL and underlying libraries.

4.1 Haskell Secure Cloud Computing EDSL

Our EDSL defines a generic interface, extending the language given in Listing 1. We use the type

alias ❇❚②♣❡ to denote the base type Y , and ▲❚②♣❡ to denote the hidden, or lifted, type ES(Y ).

Additionally, we provide ❙■❖, a “secret” ■❖ monad, which is used to carry out IO operations and

thread platform state (e.g., R and T of Section 3) through a given computation.

As previously mentioned, we use Haskell type classes to overload the operators core to the EDSL

syntax. As many library functions have side effects (e.g., the SMC multiplication requires network

communication) we prefix the EDSL operators with ‘✳’, and functions with ‘s’, as to avoid name

collisions with the standard Pr❡❧✉❞❡ library that is implicitly imported by every Haskell module.

Below we detail some of the core aspects of our EDSL. However, we note that, compared to SMCL

and other, similar, DSLs, we do not provide any loop constructs—our Haskell embedding allow a

programmer to use existing high-order constructs (including general recursion) to create very pow-

erful application-specific loop constructs.

Primitive operations Secure addition, subtraction and multiplication operators are defined us-

ing the multi-parameter type class ❊❉❙▲❆r✐t❤. The use of multi-parameter type classes allows us to

define instances of the operators with operands of mixed secrecy types (e.g., addition of a public and

hidden type). In a similar fashion, we provide standard comparison operators, and a random number

generator (RNG) interface. The RNG implementation is, however, limited to SMC following [25].

We leverage Haskell’s strong type system (and ♥❡✇t②♣❡ declaration) to provide a hidden Boolean

type. Specifically, we introduce ❇♦♦❧▲❚②♣❡ as a wrapper for ▲❚②♣❡, hiding the constructor from the
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programmer (to avoid unsafe coercions). However, we provides basic Boolean arithmetic and logic

operators, including bit–and, bit–or, bit–exclusive-or, ∧, ∨, and ¬. Directly, our EDSL can be used to

enforce safety of conditionals on hidden values. Specifically, we provide the construct s✐❢ c st❤❡♥

x s❡❧s❡ y, which is implemented by safe arithmetization (i.e., c · x + (1 − c) · y, that preserves/re-

stores types). In addition to type-safety, this allows writing code using familiar syntax. For example,

we can write the max function simply as: ♠❛① ① ② ❂ s✐❢ ✭① ✳❁❂ ②✮ st❤❡♥ ② s❡❧s❡ ①.

Hiding and unhiding functions Further using type classes, we define the ❊❉❙▲❍✐❞❡ class

which declares ❤✐❞❡, a Haskell function corresponding to EncS; ❤✐❞❡ maps values to their secret

equivalent. Dually, we declare r❡✈❡❛❧ and the ❊❉❙▲❘❡✈❡❛❧ type class that implements the func-

tionality of DecS of Section 3; r❡✈❡❛❧ maps hidden, or secret, values to their public equivalent.

✇✐t❤❯s❡rs :: ✭❇❚②♣❡ → ❙■❖ α✮ → ❙■❖ ❬α❪
✇✐t❤❯s❡rs❴ :: ✭❇❚②♣❡ → ❙■❖ α✮ → ❙■❖ ✭✮

Figure 4 Iterating over users

User I/O We provide three combinators for inter-

acting with users: ✉❘❡❛❞, ✉❲r✐t❡, and ✉P✉t❙tr▲♥.

✉❘❡❛❞ is used to request a user for input; the user

responds by sending a hidden value to the server(s).

Dually, ✉❲r✐t❡ is used to send a hidden value to the

user, who then locally unhides the value. Observe, that, using this construct, a programmer can

write a program that reveals results only to clients. Finally, ✉P✉t❙tr▲♥ is used to print a string on a

user’s terminal. To execute IO actions on all the connected user clients, we provide ✇✐t❤❯s❡rs and

✇✐t❤❯s❡rs❴, shown in Figure 4. The former executes a function on all the clients, returning a list

of results, while the latter discards the results (useful, e.g., when executing ✉❲r✐t❡).

4.2 SMC & FHE Library Implementations

In this section we present our SMC and FHE libraries, which instantiate our EDSL with the secure

execution platform respectively based on Shamir secret sharing and the Gentry-Halevi FHE imple-

mentation [14, 13]. In our framework, each program, such as that of Figure 2, that is executed by

the Cloud server parties is actually an ❙■❖ action. Hence, all the configuration details (e.g., which

clients are connected, or the identity of the executing server) are transparent and abstracted into this

underlying monad and EDSL constructs. A programmer need only provide an initial configuration

that specifies the participating server and client parties, in addition to the program. The same pro-

gram and configuration is copied to all the Could servers—in the SMC case, the servers execute in

a network-SIMD fashion, while in the FHE case the server executes in a standard (network-SISD)

fashion. Clients, on the other hand, are event-based: they await instructions from the server(s) and

simply respond accordingly. Below, we detail the core base and hidden types, and library-specific

details on parties and the execution environment.

s❤❛r❡ :: ❙▼❈❙❝❤❡♠❡ → ❩♣ → ❙■❖ ❬❙❤❛r❡❪

r❡❝♦♥str✉❝t :: ❬❙❤❛r❡❪ → ❩♣

Figure 5 Shamir sharing constructs

Secure Multi-party Computation To implement

Shamir secret sharing, we define a base type ❩♣

that represents elements of Fp as a wrapper for the

Haskell’s arbitrary precision ■♥t❡❣❡r type with the

standard operators corresponding to their finite field

counterparts. Directly, we define a share, or hidden, type (❙❤❛r❡) as a record enclosing a party

number and share value, each of type ❩♣. Shamir secret sharing functions, described in Section 2,

are shown in Figure 5, where the type ❙▼❈❙❝❤❡♠❡ is used to encode the (N, k)-scheme. Here,

s❤❛r❡ breaks an element into shares, while r❡❝♦♥str✉❝t takes a list of shares and constructs the

corresponding element. We highlight that s❤❛r❡ returns an ❙■❖ action: the function requires a RNG
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(we use a cryptographically secure deterministic random bit generator) to break an element into

its shares, while r❡❝♦♥str✉❝t is pure. Further, we highlight, that, compared to the semantics of

Listing 5, the RNG in part of underlying monad and not explicitly passed to functions.

As previously mentioned, our implementation relies on the notion of party, which we real-

ize using the data type P❛rt②. A P❛rt② has an identifier, a network address (hostname, port,

SSL certificate), and two typed communication channels: an inbox and outbox. After setting up

a mutually-authenticated connection, parties can exchange message using the inbox/outbox chan-

nels. Specifically, parties can exchange messages of several forms: (i) a response (constructed with

❘❡s♣❙❤❛r❡) when sending a server party a share from either a client or another server party, (ii) a

request (❘❡q❙❤❛r❡) when requesting a client for input, (iii) a reconstruct (❘❡❝♦♥str❙❤❛r❡) when

sending a client a share, who then combines all the received shares to reconstruct the hidden value,

(iv) a print (Pr✐♥t❙tr) when writing a string message to the user’s terminal, and (v) a disconnect

(❉✐s❝♦♥♥❡❝t) when the computation has terminated, or failed. We found these message forms to

be sufficient when implementing the core Shamir secret sharing EDSL constructs.

Each server party executes an SMC computation in two steps. First, each server listens for

incoming connections from other server or client parties. Upon accepting a connection from a party

it spawns two threads: a thread that reads incoming network messages and writes them to the inbox

channel, and a thread that block-reads the outbox channel, serializes the message, and writes them to

the network. Second, when all the servers are interconnected and every client is connected to all the

servers, the server parties execute the EDSL program in lock-step, or SIMD fashion. The underlying

monad abstracts-away and manages all the configuration details, such as to which party or channel

a share should be sent. Of course, the configuration details are queried and used by constructs such

as the multiplication operator ✭✳✯✮.

Fully Homomorphic Encryption The Gentry-Halevi C++ implementation [14, 13] provides

several functions, including a public/private key pair generation function, encryption/decryption

functions, a recrypt (ciphertext refreshing) function and simple single-bit homomorphic arithmetic

operators. We extend their implementation with k-bit homomorphic addition, multiplication, com-

parison and equality testing functions. To integrate the (extended) C++ FHE library into our Haskell

framework, we further implemented C wrappers for the basic FHE operations, and various library

functions—calling foreign functions in Haskell is accomplished using the Foreign Function Interface

(FFI), which is currently best suited for interfacing with C.

Similar to the SMC case, we define a base and hidden type. Specifically, we define the base type

(❩❩) as a simple wrapper for Haskell’s ■♥t, bounding it to k-bits. The hidden, encrypted, type is a

wrapper for a C pointer (to a vector of “big integers”) that allows for simple calling of the C/C++

FHE functions from Haskell. Although this adds the additional complexity of performing garbage

collection of the C-allocated big integers, it allows us to use the optimzied C/C++ FHE functions

when implementing the EDSL combinators such as the addition operator ✭✳✰✮.

To support a practical Cloud-oriented FHE library, we require the separation of client and server

code, and we thus provide functions that serialize and deserialize encrypted values. Directly, this

allows for transmission of encrypted values over the network. From a networking perspective the

FHE setting is a special case of SMC with N = 1. Hence, the FHE notion of party is similar to that

of SMC described above, though it additionally requires associating public-private keys with a com-

putation. However, among other differences, compared to SMC, where only server communication

is necessary in unhiding, or decrypting, a value, in the FHE setting, communication with a client is

necessary. These details are, of course, abstracted into the underlying ❙■❖ monad and corresponding

EDSL constructs (e.g., r❡✈❡❛❧) and thus transparent to the programmer.
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Scheme Ideal Pragmatic Public

SMC (3, 1) 0.97 sec 3.3 ms < 1 ms

SMC (5, 2) 1.02 sec 3.3 ms < 1 ms

SMC (7, 3) 1.04 sec 3.3 ms < 1 ms

FHE λtoy 17.6 min 5.3 min < 1 ms

Table 1 Performance benchmarks for SMC and FHE, where the security parameter λtoy corresponds to a

“toy” security level (a lattice of with dimension 128). Tests with realistic parameters are currently unfeasible.

4.3 Performance Evaluation

Our SMC library, including the EDSL interface, and comparison protocol of [4], was implemented

in roughly 1300 lines of Haskell code. Our FHE library was implemented in about 1200 lines of

Haskell, and 650 lines of C/C++ code extending the Gentry-Halevi implementation. To evaluate the

performance of these implementation we also implemented various programs, including the Clock-

Auction, and mall benchmark suite of [24]. The suite consists of 3 programs that compute the sign

of a quadratic polynomial: (i) the ideal program operates solely on hidden values, (ii) the pragmatic

program operates on mixed-secrecy values—all values are secrec except for the evaluation point and

the result of the polynomial evaluation, (iii) the public program operates solely on public values.

Table 1 presents our results for various SMC configurations and a “toy” FHE configuration. The

SMC implementation uses arithmetic modulo the largest 32-bit prime, while the FHE implementa-

tion operates on 8-bit integers. Our experimental setup consisted of 7 machines, interconnected on

a local Gig-E network, each machine containing two Intel Xeon E5620 (2.4GHz) processors and

48GB of RAM. Similar to the results of SMCL [24], we observe that the SMC pragmatic version

is an order of magnitude faster than the ideal. Compared to their results, our system is significantly

faster; however, this is not a meaningful comparison because we are using newer generation of hard-

ware. More importantly, we note that the performance results of both the ideal and pragmatic SMC

benchmarks highlight the usability of our SMC implementation for real-world applications.

5 Related work

Among several projects demonstrating potential applications of secure multiparty computations,

SCET [5], with its focus on economic applications, implemented secure double auction. In Fair-

play [22], programs written in SFDL were converted to primitive operations on bits. Fairplay was

restricted to only two parties; this drawback was removed in FairplayMP. Sharemind [3] aimed at

general multiparty computation on large datasets, supporting three players and providing security

against a passive adversary.

VIFF [8] provides a basic language embedded in Python and API calls to cryptographic primi-

tives. It provides Shamir and pseudorandom secret sharing as options to the programmer. VIFF can

be seen as a system for expert programmers to build complex cryptographic protocols. Indeed, VIFF

has been used for building distributed implementations of RSA and AES. In contrast, our EDSL

is for writing applications by nonexpert programmers, and permits one to write at a substantially

higher level of abstraction than that of the cryptographic primitives. Moreover, compared to Python,

Haskell has a natural advantage as a host for EDSLs; as a functional language, Haskell allows ex-

tensive static reasoning about programs, performs a variety of optimizations, and has lightweight

multithreading capabilities. On the other hand, our EDSL can complement systems such as VIFF by

targeting it as a platform, providing a higher-level abstraction layer over its powerful and efficient
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cryptographic primitives.

From a theoretical standpoint, the systems discussed above are generally concerned with imple-

menting cryptographic protocols, without proving the more comprehensive correctness and security

properties we consider. The closest work is SMCL [24], an imperative-style DSL. The papers on

SMCL contain proofs of correctness and security properties, but they do not formally define a crucial

aspect: the requirements on the side-effects produced by primitive operations so that security can be

guaranteed. Our system is also implemented as an EDSL, rather than as a standalone language, so

it can leverage the full power of Haskell and its type system. In addition, unlike SMCL, our system

easily generalizes to other cryptographic schemes. As far as we know, we are the first to formalize

and prove correctness and security properties for a unified language framework which encompasses

a wide range of cryptographic schemes for computation on encrypted data, in particular Shamir

secret sharing and fully homomorphic encryption.

6 Conclusions

We present the design, foundational analysis, implementation, and performance benchmarks for an

embedded domain-specific language that allows programmers to develop code that can be run on

different secure execution platforms with different security guarantees. We prove functional correct-

ness and confidentiality for any secure execution platform meeting our definitions and then show

that a specific secret-sharing scheme and fully homomorphic encryption both meet our definition.

Our language allows developers to produce a single program that can be executed on different secure

execution platforms, making the deployment decisions after development according to security and

performance requirements.

As a programming language, our embedded DSL, implemented as a Haskell library, allows de-

velopers to use standard Haskell software development environments. Programmers also have the

benefit of sophisticated type-checking and general programming features of Haskell because we rely

only on the Haskell type discipline to enforce information flow and other restrictions; there are no

unexpected ad hoc code restrictions. Our Haskell implementation also provides more flexible data

structures than previous work because our information-flow constraints make secrecy-preserving op-

erations on such such structures possible. In future work, we plan to improve the expressiveness of

the programming language through more sophisticated information-flow typing of recursive and iter-

ative constructs, for example. In addition, we plan to apply our framework to other secure execution

platforms that can provide stronger guarantees, such as security against active adversaries. We will

also explore the possibility of proving formally that a particular implementation realizes our secret

semantics, possibly in a mechanically-verified fashion. Finally, we plan to develop more sophis-

ticated implementation techniques, possibly leveraging Template Haskell meta-programming, such

as automatically producing code that is optimized for particular forms of partially homomorphic

encryption with better performance.
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A Secret sharing as secure execution platform

In this appendix, we present a formal treatment of some of the constructions for Shamir secret

sharing, and in particular of the proofs that they satisfy the criteria of a secure execution platform.

We define the “hiding” and “unhiding” operations as follows. If:

R = (RC , R1, . . . , Rn)

RC = (r1, . . . , rk−1, rk, rk+1, . . .)

then:

EncS(n, R, ()) = ((n1, . . . , nN ), (R′
C , R1, . . . , Rn),

{(C, Si, ni)}1≤i≤N )

where:

ni = n +
k−1
∑

j=1

rjij

R′
C = (rk, rk+1, . . .)

and:

DecS(l, R, ()) = ((V −1
N )1 · l, R, {(Si, Sj , li)}1≤i,j≤N )

(where (V −1
N )1 is the first row of the inverse Vandermonde matrix, used for polynomial inter-

polation). We assume the primitive operations EncS,S(+), EncS,P(+), EncP,S(+), EncS,S(∗),

EncS,P(∗), and EncP,S(∗) are defined analogously, following Section 2, and that the following

simple cases of statistical correctness and indistinguishability are already established:

(a) EncP,S(∗)(c, D(n), UR, ()) = D(cn) (statistical correctness for EncP,S(∗)): i.e., cD(n) =

D(cn).

(b) EncS,S(+)(D(n1), D(n2), UR, ()) = D(n1 + n2) (statistical correctness for EncS,S(+)): i.e.,

D(n1) + D(n2) = D(n1 + n2).

(c) For any valid set A = {Si1
, . . . , Sim

} ∈ A of untrusted servers, and for any n, n′ ∈ Fp,

(D(n)i1
, . . . , D(n)im

) = (D(n′)i1
, . . . , D(n′)im

), as joint random variables (indistinguishabil-

ity for D).

We now give a formal definition of EncS,S(∗) (Figure 7) and prove statistical correctness and indis-

tinguishability properties for this operator.
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Listing 7 Multiplication of shared values (EncS,S(∗)), as described in Section 2.

EncS,S(∗)((n1,1, . . . , n1,N ), (n2,1, . . . , n2,N ), R, ())

= ((d1, . . . , dn), R′, {(Si, Sj , hi,j)}1≤i,j≤N )

where

ci = n1,in2,i

RSi
= (r

(1)
i , . . . , r

(k−1)
i , r

(k)
i , r

(k+1)
i , . . .)

R′
Si

= (r
(k)
i , r

(k+1)
i , . . .)

R′
C = RC

hi,j = ci +

k−1
∑

a=1

r
(a)
i ja

dj = (V −1
N )1 · (h1,j , . . . , hN,j)

For statistical correctness, fix n1, n2 ∈ Fp. Then we have:

π1(EncS,S(∗)(D(n1), D(n2), UR, ()))

= π1(EncS,S(∗)(π1(EncS(n1, UR)), π1(EncS(n2, UR)), UR, ()))

= π1(EncS,S(∗) ((n1,1, . . . , n1,N ), (n2,1, . . . , n2,N ), UR, ()))

where nc,i = nc +

k−1
∑

a=1

U
(a)
Fp

ia

= (d1, . . . , dn)

for some trace T, where

dj = (V −1
N )1 · (D(n1,1n2,1)j , . . . , D(n1,N n2,N )j)

=
(

D((V −1
N )1 · (n1,1n2,1, . . . , n1,N n2,N ))

)

j

(by properties (a) and (b), above)

= D((V −1
N )1 · (n1,1n2,1, . . . , n1,N n2,N ))

= D(n1n2)

(by the properties of the Vandermonde matrix)

and thus EncS,S(∗) satisfies the required statistical correctness property.

For indistinguishability, fix values n1, n2, n′
1, n′

2 ∈ Fp, and A ∈ A a valid untrusted subset of

the servers. Let T be the the resulting trace (the third component of the result, as above), and let T ′

be the analogous trace for n′
1, n′

2. Then:

ΠA(T ) = {(Si, Sj , D(n1,in2,i)j)}Si∈A,1≤j≤N

∪{(Si, Sj , D(n1,in2,i)j)}1≤i≤N,Sj∈A

= I ∪ J

ΠA(T ′) = {(Si, Sj , D(n′
1,in2,i)

′
j)}Si∈A,1≤j≤N

∪{(Si, Sj , D(n′
1,in2,i)

′
j)}1≤i≤N,Sj∈A

= I ′ ∪ J ′
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By property (c) above, J = J ′ (as random variables), since A ∈ A. To show I = I ′, we define the

following function over distributions:

f((x1,i1
, . . . , x1,im

), (x2,i1
, . . . , x2,im

))

= {(Sil
, Sj , D(x1,il

x2,il
)j)}1≤l≤m,1≤j≤N

Then we note that:

I = f((D(n1)i1
, . . . , D(n1)im

), (D(n2)i1
, . . . , D(n2)im

))

= f((D(n′
1)i1

, . . . , D(n′
1)im

), (D(n′
2)i1

, . . . , D(n′
2)im

))

by property (c) above

= I ′

as desired, and thus EncS,S(∗) satisfies the required indistinguishability property.


