
A Group Testing Approach to Improved Corruption

Localizing Hashing

Annalisa De Bonis1 and Giovanni Di Crescenzo2
1 Università di Salerno, Fisciano, Salerno, Italy. E-mail: debonis@dia.unisa.it

2 Telcordia Technologies, Piscataway, NJ, USA. E-mail: giovanni@research.telcordia.com

Abstract. Efficient detection of integrity violations is crucial for the reliabil-
ity of both data at rest and data in transit. While ideally one would want to al-
ways find all changes in the input data, in practice this capability may be ex-
pensive, and one may be content with localizing or finding a superset of any
changes. Corruption-localizing hashing [5] is a cryptographic primitive that en-
hances collision-intractable hash functions thus improving the detection property
of these functions into a suitable localization property. Corruption localizing hash
schemes obtain some superset of the changes location, where the accuracy of this
superset with respect to the actual changes is a metric of special interest, called
localization factor. In this paper we consider the problem of designing corruption
localizing hash schemes with reduced localization factor. In [2], combinatorial
group testing techniques have been exploited to construct the first corruption-
localizing hash scheme with constant localization factor and sublinear storage
and time complexity. In this paper we continue the approach of [2] and present
schemes that improve on previous constructions in that they achieve an arbitrarily
small localization factor while insuring the same time and storage complexity of
the schemes in [2].

Keywords: Algorithms, Cryptography, Corruption Localizing Hashing, Group Testing,
Superimposed Codes.

1 Introduction

Efficient detection of integrity violations is crucial for the reliability of both data at rest
and data in transit. Data integrity may be compromised by several factors including un-
intended memory or hardware faults, or malicious intrusions by an attacker interested in
performing unauthorized modifications to the data. Practical scenarios where maintain-
ing data integrity is of special interest include: sensitive data stored on various types of
computer memories or backed up in storage facilities, and data or software downloaded
from the Internet web sites. In these scenarios, it would be very desirable to have the
capability of obtaining information about the location of corrupted data blocks. For in-
stance, in the case of file download from a web site, localizing the corruptions would
avoid to repeat the entire download procedure since only part of the data would need
to be retransmitted. Similarly, in the case of corruption of stored information, the cost
of data recovery could be highly reduced if the virus diagnostic procedure, typically
launched after the data is detected to be corrupted, could concentrate on a small area
of infected data. Just as collision-intractable hash functions allow to detect undesired
changes in the stored or transmitted data, corruption-localizing hash schemes target the
localization (i.e., obtaining information about the actual location) of the corruption, via
hashing techniques.

1.1 Previous work and related areas

In [5, 6] it has been shown that collision-intractable hash functions can be used not only
to detect unexpected modifications in data but also to localize the corrupted area in the
modified data. To this aim, the authors of [6] have introduced virus-localizing schemes
based on cryptographic hashing. In their model, virus-localizing schemes work under
the hypothesis that all corrupted blocks occur within a single segment of the given data.
The ideas put forward in [6] have been further developed by the authors of [5] who
have formally defined corruption-localizing hash schemes as an extension of collision
intractable hash schemes, and generalized the concept of virus-localization to the case
of an arbitrary number of corrupted segments. In [12] a similar problem of localiza-
tion via randomized techniques was studied in conjunction with popular data structures
and associated space restrictions. In all three mentioned papers, there is an extensive
discussion of the differences of these problems with related but distinct research areas,
including coding theory, digital watermarking, software download, program checking,
memory correctness checking, combinatorial group testing and authenticated data struc-
tures. These papers also discuss the conceptual relationships between the notion of lo-
calization, with respect to the notions of detection and correction.

The paper [2] continued the research approach of [5, 6, 12]. In particular, that paper
addresses the problem of localizing multiple corruptions by only paying a very small
performance price, and obtain a scheme with a constant localization factor and stor-
age and time complexity proportional to O(v(log v) log n+ v(log β) log(n/v)), where
n is the length of the input message, v is an upper bound on the number of corrup-
tions, and β is an upper bound on length of the longest corrupted segment. The closest
previous results include: [6], presenting a scheme based on conventional (non-keyed)
hash functions that localizes a single corrupted segment with constant localization fac-
tor and storage and time complexity proportional to O(log n), and [5], presenting a
scheme based on conventional hash functions that, when v is constant (as a function of
n), achieves O(nd) localization factor and storage and time complexity proportional to
O(log2 n), for any 0 < d < 1. The paper [5] also presents a scheme based on keyed
hash functions that achieves O(v3) localization factor and storage and time complexity
proportional to O(v2(log1+� n) logv n), for any � > 0.

1.2 Summary of Results

Our schemes are based on a notion of localizing codes recently introduced in [2].
Localizing codes are used in conjunction with collision-intractable hashing to obtain
corruption-localizing hashing. We present constructions of localizing codes based on
efficient solutions for a variant of group testing, targeting the localization (rather than
exact determination) of multiple arbitrary-length (rather than length-1) corruptions.

The analysis of corruption-localizing hash schemes is based on two conflicting met-
rics: the localization factor that measures the accuracy of localization, and the tag length
that captures the efficiency of the scheme in terms of storage and time complexity. Our
goal is to design localizing codes that achieve the smallest possible localization factor
and tag length, while keeping an arbitrary β = O(n) and an unbounded v.

In Section 5 we present a construction that results in a localizing-corruption hash
scheme that can be instantiated to achieve a localization factor arbitrarily close to
β and storage and time complexity O(v2 log(n/(βv))). This localizing code is used

in Section 6 as a building block to design an improved localizing code with local-
ization factor arbitrarily close to 1, and storage and time complexity proportional to
O(v(log v) log n+ v(log β) log(n/v)). We remark that we assume that the exact num-
ber of corruptions as well as the maximum length of corruptions is not given, in that v
and β are only upper bounds on the number and length of corruptions.

Our scheme is the first scheme with sublinear storage and time complexity that
achieves a localization factor arbitrarily close to 1. Previous efficient schemes with con-
stant localization include the scheme in [2] that achieves a constant localization factor
larger than 6. Other than this, previously known schemes achieve constant localization
factor only under the following model restrictions: in the case β = 1 and v = O(1) [4],
in the case β = 1 and v bounded by some polynomial in n [12], in the case v = 1 by
[6], and when v = O(1) [5].

2 Model and Preliminaries

In this section we review formal notions and definitions of interest in the rest of the
paper; specifically: collision-intractable hashing, corruption-localizing hashing, combi-
natorial group testing and superimposed codes.

2.1 Collision-intractable Hashing.

Informally speaking, a family of collision-intractable hash functions is a family of func-
tions that satisfy the following properties: there exists an efficient algorithm sampling
a function from the family; there exists an efficient algorithm computing the output of
each function sampled from the family; and no efficient algorithm can find two preim-
ages that are mapped to the same image by any function sampled from the family,
unless with small probability. Interestingly, this latter property, also called collision-
intractability, holds even when inputs are much longer than (typically, constant-size)
outputs. We now proceed more formally.

Let H = {Hλ}λ∈N , with Hλ being a set of functions hλ : {0, 1}p(λ) → {0, 1}σ ,
where λ is a security parameter, p is a polynomial and σ is constant with respect to
λ. A family of hash functions H, is a family of polynomial-time (in λ) samplable and
computable functions hλ that take a p(λ)-bit message as input and return a σ-bit tag.
We denote as tn(H) the running time of hash functions in Hλ on inputs of length n.
We now recall the formal definition of collision intractability.
Definition 1. Let H = {Hλ}λ∈N be a family of hash functions. For any t, � > 0, we

say that H is (t, �)-collision-intractable if for any algorithm A running in time t,

Prob[hλ ← Hλ; (x1, x2) ← A(1λ, hλ) : x1 �= x2 ∧ hλ(x1) = hλ(x2)] ≤ �,

where the notation ← denotes a random process (e.g., randomly choosing from a fixed

set, or from the set of outputs of an algorithm on a given input).

Collision-intractable hashing is used in several real-life applications, to detect whether
an input message was modified or not. Constructions in the literature are based on either
the computational intractability of number-theoretic problems (see, e.g., [1]), or more
general complexity-theoretic assumptions (see, e.g., [14]), or heuristic finite functions
with very high efficiency but only conjectured collision intractability.

2.2 Corruption-Localizing Hashing.

Informally speaking, a corruption-localizing hash scheme is a pair of algorithms, a
hashing algorithm and a localizer that satisfy the following properties: both algorithms
run in deterministic polynomial time; the hashing algorithm can be seen as a collision-
intractable hash function; the localizer, when given as input the hash tag for the original
input string, the corrupted input and the tolerated number of errors, returns a superset
of these errors that is larger than the number of errors by a given multiplicative fac-
tor, called the localization factor, unless with small probability. We now proceed more
formally, building on the model from [6, 5].

Data model. Let x denote an n-bit message (extending our results to messages con-
sisting of n blocks of multiple bits as atomic components is immediate). For any two
block indices i, j ∈ {1 . . . , n} with i ≤ j, we denote by x[i] the i-th block of x and
by x[i, j] the sequence of consecutive bits x[i], x[i + 1], . . . , x[j − 1], x[j] with in-
dices in the interval [i, j]. A sequence of consecutive bits of a message x will be re-
ferred to as a segment of x. A sequence of segments {[xi1 , xj1], . . . [xik , xjk]}, with
i1 ≤ j1 ≤ i2 ≤ j2, . . . ≤ ik ≤ jk, will be referred to as segment list.

Adversary model. Given two n-bit messages x and x�, we measure their difference using
function Diffv[x, x�] = min

�v
r=1 |Sr|, where each Sr, for r = 1, . . . , v, is an interval

in [0, n − 1], and the minimum is taken over all S1, . . . , Sv such that x[
�v

r=1 Sr] =

x�[
�v

r=1 Sr]3. Notice that Sr might be empty for some r ∈ {1, . . . , v}. If S1, . . . , Sv

are v intervals in [0, n − 1] such that Diffv[x, x�] =
�v

r=1 |Sr| and x[
�v

r=1 Sr] =

x�[
�v

r=1 Sr] then we say that S1, . . . , Sv achieve Diffv[x, x�]. Intuitively, Diffv[x, x�]
represents the minimum total size of up to v segments that an adversary has to modify
in order to change x into x�. We say that an n-bit vector e is a (β, v)-corruption vector

if there exists |Si| ≤ β, for i = 1, . . . , v, where S1, . . . , Sv achieve Diffv[0n, e]. Note
that Diffv[x, x�] = Diffv[0n, e], where e = x⊕ x�, 0n denotes the n-bit zero vector and
⊕ denotes the logical XOR operation. We can then characterize the adversary’s attack
as issuing two messages x, x� such that e = x ⊕ x� is a (β, v)-corruption vector and
formally define corruption-localizing hash schemes as follows.

Definition 2. A hash scheme is a pair of algorithms HS = (clH, Loc), with the fol-

lowing syntax. On input an n-bit string x, algorithm clH returns a string tag. On input

a positive integer v, an n-bit string x�
and a string tag, algorithm Loc returns a set of

indices T ⊆ {0, · · · , n − 1}. Both algorithms are deterministic and run in time poly-

nomial in some security parameter λ. We say that the hash scheme HS is (t, �, α, β, v)-
corruption-localizing if for any algorithm A running in time t and returning distinct

x, x�
, it holds that p(Succ1(A; HS;α, v)) ≤ �, where probability p(Succ1(A; HS;α, v))

is formally defined as Pr
�
(x, x�) ← A(1λ) : clH(x) = clH(x�)

�
, and if whenever e =

x⊕x�
is a (β, v)-corruption vector, then p(Succ2(A; HS;α, v)) ≤ �, where probability

p(Succ2(A; HS;α, v)) is formally defined as

Pr
�
(x, x�) ← A(1λ);T ← Loc(v, x�, clH(x)) : (x[T] �= x�[T]) ∨

�
|T |

Diffv [x,x�]
> α

��
.

3 We note that our constructions do not require an efficient algorithm for computing Diffv[x, x�].

We note that the adversary is successful if it either finds a collision to the hashing
algorithm clH or prevents effective localization (i.e., one of the modified bits is not
included in T , and thus x[T] �= x�[T]), or forces the scheme to exceed the expected
localization factor (i.e., |T | > α · Diffv[x, x�]). We use the following metrics to design
and analyze corruption-localizing hash schemes: the hashing algorithm and localizer’s
running times; the localization factor α, defined as |T |/Diffv[x, x�]; and the tag length,
defined as the length of the output tag from algorithm clH . In [5] it was also noted
that two trivial schemes exist that achieve (1) α = n/v, or (2) α = 1 and tag length
O(n), thus moving the scheme design target to achieving α = o(n/v) and tag length
o(n). As in our schemes, the output tag from algorithm clH can be split into message-
independent components (i.e., the description of a binary code and the description of a
collision-intractable hash function) and message-dependent components (i.e., the hash
tags), we define the length of these two quantities as the off-line tag length and the
on-line tag length, respectively. Furthermore, we simplify the on-line tag length metric
by using instead the number of hash tags, defined as the number of hash tags from a
collision-intractable hash function contained in the message-dependent component of
tag. In our constructions both the hashing algorithm and localizer’s running times are
efficient, and the off-line tag length is sublinear in n; thus, the main metrics of interest
will be the localization factor and the number of hash tags.

2.3 Group Testing and Superimposed Codes

Combinatorial group testing [7] is the problem of searching the positive elements of a
given set O of n elements by posing queries of the form “Does Q contain any positive
element?”, with Q being a subset of O. Search strategies where all queries are decided
in advance are called non-adaptive strategies, as opposed to adaptive strategies where
the queried subsets can be chosen after looking at the answers to the previous queries.
Typically, non-adaptive strategies are far more costly than adaptive strategies. With re-
spect to combinatorial group testing, it is well known that the best adaptive strategies
attain the Ω(log

�n
q

�
) information theoretic lower bound, with q being an upper bound

on the number of positive items. On the other hand, the number of queries needed to
determine up to q positive elements by a non-adaptive strategy is lower bounded by
Ω(q2

log q log(n/q)). Indeed, it is well known that the cost of non-adaptive strategies for
group testing corresponds to the length of (1, q)-superimposed codes [10, 13]. In the
following, we recall a more general definition of superimposed codes.

A binary code of size n and length N is an N × n matrix C = {C(i, j)} with
C(i, j) ∈ {0, 1}, whose columns are called codewords. Given two equal-length binary
vector x, y, we say that x is covered by y if x(i) = 1 implies y(i) = 1, for all indices i.
The following definition is due to Dyachkov and Rykov [10].

Definition 3. [10] Let d, q, n be integers > 0 with d+ q ≤ n and let M = {M(i, j)}
be a binary code of size n. We say that M is a (d, q)-superimposed code if for any d+q
codewords M(·, j1), . . . ,M(·, jd+q), there exists a row index i such that ∨d

h=1M(i, jh) =

1 and ∨d+q
k=d+1M(i, jk) = 0, where ∨ denotes boolean OR. The minimal length of a

(d, q)-superimposed code of size n is denoted by N(d, q, n).

The codes in the above definition have the property that the boolean sum of any d
columns is not covered by the boolean sum of any other q columns.

For d = 1, (d, q)-superimposed codes correspond to classical superimposed codes
[13], or equivalently to cover free families [11].

The following asymptotic lower and upper bounds [3, 10] on the minimum length
N(d, q, n) of a (d, q)-superimposed code of size n hold:

N(d, q, n) = O

�
q2

d
log

n

q

�
; N(d, q, n) =





Ω
�

q2

d log q log
n
q

�
if q ≥ 2d,

Ω(q log n
d) if q < 2d.

The best constructions for (d, q)-superimposed codes achieve the above upper bound
with the constant hidden in the big-O notation being smaller than three. We refer the
interested readers to [8] for an account on the theory of superimposed codes.

3 Using Group Testing to Perform Corruption Localization

The basic idea of corruption-localizing hash schemes is to define a collection L of
segment lists of the original string x in such a way that the output set T (recall that T is a
superset of the indices corresponding to corrupted bits) is determined by comparing the
hash tag of each segment list in L with the hash tag of the corresponding segment list of
x�, each hash tag being produced using a collision-intractable hash function. Notice that
if the hash tag of a segment list of x is equal to the hash tag of the corresponding segment
list of x� then no segment in the segment list has been corrupted (unless collisions were
found in the collision-intractable hash function), whereas if those two tags are different
then at least one segment in the segment list has been corrupted.

Testing whether a collision-resistant hash function maps two segment lists to the
same tag corresponds to posing a YES/NO query of the form “Does the tested segment
list contain at least one corrupted segment?” thus implying that the problem of deter-
mining the corrupted segments in x� by a corruption-localizing hash scheme can be
regarded as a particular instance of the group testing problem.

The authors of [5] pointed out that strategies for group testing cannot be used to
solve our problem in that those strategies search for atomic elements, whereas we are
interested in searching segments that may have lengths that are potentially > 1 and
different among each other. One approach to overcome this objection is to focus on
corrupted bits rather than corrupted segments. Hence, we state our problem as that of
searching for corrupted bits given that these bits occur in at most v segments each of
which has length at most β. Having rephrased the problem in these terms, one has to
cope with a more specific version of combinatorial group testing where some additional
information is known on how positive elements are distributed. Notice that, in order to
retrieve the original message from its corrupted version, one has to precompute the
hash tag for each segment list of x that belongs to L. In group testing this corresponds
to the situation where each query must be decided beforehand without looking at the
responses to the previous queries; in other words, a non-adaptive search strategy is
needed. The best constructions for (1, q)-superimposed codes imply an O(q2 log(n/q))
upper bound on the cost of non adaptive group testing strategies that search for up to
q positive elements. Therefore, determining the exact location of all corrupted bits by
a non-adaptive strategy for classical group testing would cost O((vβ)2 log(n/(vβ))).
While this fact alone suffices to obtain a corruption-localizing hash scheme, the bound

obtained on the tag length is not satisfactory as it can be linear or super-linear in n
whenever β = Ω(

√
n). (Note that in general β = O(n) and that our goal was to obtain

a corruption-localizing hash scheme with tag length smaller than o(n); e.g. polylog-
arithmic in n.) Alternatively, one might use a (d, vβ)-superimposed code to obtain a
superset of all corrupted bits that contains less than d bits incorrectly classified as cor-
rupted, thus obtaining a localization factor smaller than or equal to 1+(d−1)/p, where
p < vβ is the unknown exact number of corrupted bits. Since p might be as small as 1
then the localization factor might be as large as d. This localizing strategy would cost
O(((vβ)2/d) log(n/(vβ))), thus achieving a constant localization factor at the same
cost incurred by the algorithm that exactly determines all corrupted bits. To improve on
the above bound on the tag length, we have to specifically target corruption localization
(as opposed to search) and exploit the additional information that corrupted bits occur
in segments of length at most β. In Sections 5 and 6 we propose two non-trivial uses of
superimposed codes that achieve desirable combinations of efficiency and localization
properties.

4 Localizing Codes

In this section we recall the definition of localizing codes [2]. Such codes are used
in conjunction with collision-intractable hashing to obtain corruption-localizing hash
schemes. Localizing codes are formally defined as binary codes for which there exists
an efficient algorithm that, given the output of a matrix product between the code ma-
trix and a corruption vector, returns a superset of the corrupted bits, that is larger by a
bounded factor. We use matrix product in the 2-value Boolean algebra; that is, the semir-
ing ({0, 1},∨,∧), where matrix product is then a sequence of ∨’s (i.e., boolean ORs)
of ∧’s (i.e., boolean ANDs). The weight of a binary vector e, defined as the number of
nonzero vector components, is denoted as w(e).

Definition 4. Let M = {M(i, j)} be a binary code of size n and length N . We say

that M is a (β, v, α)-localizing code if there exists an efficient algorithm LM such that

for any (β, v)-corruption vector e, given as input the matrix product M · e, LM returns

a vector u such that u covers e and w(u) = αDiffv[0n, e].

Corruption Localization from Localizing Codes. The following result [2] shows that
any localizing code can be used to construct a corruption-localizing hash scheme from
a family of collision-intractable hash functions.

Theorem 1. Let H = {Hλ}λ∈N be a family of hash functions, and let M = {M(i, j)}
be a binary code of size n and length N . If H is (t, �)-collision-intractable and M is

a (β, v, α)-localizing code, then there exists a hash scheme HSM = (clHM, LocM)
that is (t�, ��, β, v, α�)-corruption-localizing, where �� = �, t� = t + O(tn(H) · N).
Moreover, HSM has localization factor α� = α, number of hash tags O(N), and

runtime complexity O(tn(H) ·N).
A sketch of the construction of the scheme HSM is as follows. The hashing algorithm
clHM runs N times function Hλ, where, for i = 1, . . . , N , the i-th execution of Hλ

takes as input the concatenation of all file entries x[j] such that M(i, j) = 1, for all j =
1, . . . , n, and returns the obtained hash tag. The localizing algorithm LocM starts by
repeating the same computation by running Hλ on the corrupted file x�, and generates

an N -bit vector z such that z[i] = 1 if and only if the hash tag computed on the i-th
execution of Hλ on x� is different from the one returned by clHM as the tag computed
by the i-the execution of Hλ on x. Finally, LocM runs the algorithm LM on vector z to
obtain vector u, and outputs this vector. The main observation in the proof of Theorem 1
is that, either collisions are found in Hλ or the vector z can be shown to be equal to the
matrix product between matrix M of the localizing code M and the (β, v)-corruption
vector e, and therefore the localization property of LM implies an analogue localization
property for LocM.

Theorem 1 unifies previous results (in particular, a result in [6] can be restated as
a (β, 1, O(1))-localizing code, and a result in [5] can be re-stated as a (β, v,O(v3))-
localizing code) and simplifies the problem of constructing efficient corruption-localizing
hash schemes to the problem of constructing efficient localizing codes.

To make the paper self-contained, we report the proof of Thorem 1 in Appendix.

4.1 Using Superimposed Codes to Construct Localizing Codes

In Section 3 we discussed the relationship between group testing and corruption local-
ization. In that section we pointed out that achieving constant localization factor by a
trivial application of group testing would cost O((vβ)2 log n) in terms of number of
tags, which is not satisfactory as it is at least linear in n whenever vβ = Ω(

�
n/ log n).

We observed that, to improve on the latter bound on the tag length, we have to specif-
ically target corruption localization (as opposed to search) and exploit the additional
information that corrupted bits occur in segments of length at most β. In the next two
sections we propose two non-trivial uses of superimposed codes to construct localizing
codes with desirable combinations of efficiency and localization properties.

Towards this goal, a crucial idea is to group the bits of x and those of its corrupted
version x� into consecutive segments of a fixed number h ≤ β of bits and to search
among these segments for those containing one or more corrupted bits. If the corrupted
bits occur in at most a certain number q of these segments, then a group testing strategy
for up to q positive elements can be used to compute a solution of size rh, where r ≤ q is
the number of segments returned by the algorithm. Accordingly, we use a superimposed
of size �n/h�, whose columns are associated with segments of length h. The main
difficulty consists in choosing the integer h so that the corrupted bits can be confined
into up to a certain number q of segments of length h, and at the same time it is possible
to prove that the total size of these segments is not too far from Diffv[x, x�]. Notice that
the upper bound β on the length of the largest corrupted segment might be very loose
and not indicative of the real length of corrupted segments.

5 A First Scheme

In this section we present a localizing code that results in a localizing-corruption hash
scheme that can be instantiated to achieve a localization factor arbitrarily close to
β and storage and time complexity O(v2 log(n/(βv))). This localizing code is used
in Section 6 as a building block to design an improved localizing code with local-
ization factor arbitrarily close to 1, and storage and time complexity proportional to
O(v(log v) log n+ v(log β) log(n/v)), for any number of corruptions and any corrup-
tion length.

An informal discussion. Intuitively, we partition the input message x into consecutive
segments of length h, for some h ≤ β, (with the eventual exception of the rightmost
segment that might have smaller length). We search among these segments for those
containing one or more corrupted bits. Accordingly, we start with a binary code C of size
�n/h�, whose columns are associated with these segments. This code is then expanded
into a binary code D of size n by replicating each row entry h times, so that the resulting
code essentially operates over bits directly. As already observed in the previous section,
it is crucial to choose the integer h so that the corruptions can be confined into up to
a certain number of segments of length h, and at the same time the total size of these
segments is not too far from Diffv[x, x�]. Towards this goal, a first difficulty is that
the lengths of corruptions, although known to be at most β, can actually vary widely
between 1 and β. We deal with this difficulty by adding a parameter b ≤ β to the
code, which intuitively denotes a close upper bound on the maximum length of all v
corruptions. Accordingly, the input message x is partitioned into segments of some
length h ≤ b. In the following, we set h = �b/��, for some � ≥ 1.
The code D and its properties. Let C = {C(i, j)} be a binary code of size �n/h�,
with h = �b/�� for some positive integer b ≤ β and an arbitrary constant � ≥ 1, and
let N denote the length of C. We define the binary code D = {D(i, j)} of size n and
length N , as the code returned by the following procedure.
1. For i = 1, . . . , N ,
2. for j = 1, . . . , �n/h�,
3. let sbj denote the interval [h(j − 1),min{hj − 1, n− 1}];
4. for all j� in interval sbj ,
5. set D(i, j�) = C(i, j).
6. Return: D = {D(i, j)}.

Code D satisfies the following theorem.

Theorem 2. Let b, n, β, v be given positive integers such that v ≤ n and 2 ≤ b ≤ β ≤
n, and let C be a binary code of size �n/�b/���, for some constant � ≥ 1. If C is a

(d, (� + 1)v)-superimposed code, for an arbitrary positive integer d ≤ n − (� + 1)v,

then D is a (b, v, α)-localizing binary code of size n, with α ≤ (d+ �)�b/��. Moreover,

the output vector u has weight w(u) ≤ �b/��((�+ 1)v + d− 1).

Proof. We formally describe an algorithm LD that localizes up to v corruptions from
the (β, v)-corruption vector e, and satisfies the stated bound on the localization factor
α. Let S1, . . . , Sv be v intervals of length ≤ β that achieve Diffv[x, x�]. In fact, we prove
the stronger inequality α ≤ �b/��((� + 1) + (d − 1)/p), where p ≤ v is the unknown
number of non-empty corrupted segments; that is, p is the number of intervals Sr �= ∅.

We define the locator algorithm LD so that, on input the matrix product z between
the code D’s matrix and a corruption vector e, it returns a set of input indices associated
with z according to a natural vector coverage notion. Then, we prove that D and LD
satisfy the definition of localizing codes with α ≤ �b/��((� + 1) + (d − 1)/p). One
important step in proving this fact consists of using the property of superimposed codes
to limit the weight of the vector returned by LD. As in the definition of code D, we
denote by h = �b/�� the length of the segments that the input message is partitioned
into.

The algorithm LD. On input the response vector z = D · e, algorithm LD goes as
follows:

1. set u = 0n

2. for j = 1, . . . , �n/h�,
3. let sbj denote the interval [h(j − 1),min{hj − 1, n− 1];
4. if column C(·, j) is covered by z then
5. set u[j�] = 1 for all j� ∈ sbj
6. return: u

We now prove that for any (b, v)-corruption vector e, it holds that w(u) ≤ αDiffv[0n, e]
for α ≤ b + b/� + (d − 1)b/(�p). In the following, we say that an interval sbj ∈
{sb1, . . . , sb�n/h�} is corrupted if it intersects one or more Sr’s.

First we show that the returned vector u has nonzero elements in correspondence of
≤ (�+1)p+d−1 intervals from {sb1, . . . , sb�n/h�}, and consequently w(u) ≤ ((�+1)p+

d − 1)h. To see this, observe that each Sr has size ≤ b, and thus each Sr intersects at
most �+1 adjacent intervals among sb1, . . . , s

b
�n/h�. Since there are p intervals Sr’s such

that Sr �= ∅, then there are at most (�+1)p corrupted intervals in {sb1, . . . , sb�n/h�}. Let
sbj1 , . . . , s

b
jm , for some m ≤ (� + 1)p, be the corrupted intervals in {sb1, . . . , sb�n/h�}.

The response vector z is the bitwise OR of columns C(·, j1), . . . , C(·, jm). By def-
inition of (d, (� + 1)v)-superimposed code, one has that, for any d column indices
h1, . . . , hd /∈ {j1, . . . , jm}, the bitwise OR of columns C(·, h1), . . . , C(·, hd) is not
covered by z, and consequently, there might be at most d − 1 columns, in addition to
C(·, j1), . . . , C(·, jm), that are covered by z. Let C(·, r1), . . . , C(·, rg), for some g < d,
denote these columns. One has that u[j�] = 0 if j� ∈ sbj with j �∈ {j1, . . . , jm, r1, . . . , rg},
and u[j�] = 1 if j� ∈ sbj with j ∈ {j1, . . . , jm, r1, . . . , rg}.

Observe that Diffv[0n, e] might be as small as p since each non-empty interval Sr

might consist of a single bit. Hence, α = w(u)/Diffv[0n, e] = (m+ g)h/Diffv[x, x�] ≤
((�+ 1)p+ d− 1)�b/��. Since p ≥ 1, then α ≤ (d+ �)�b/��.

The next corollary follows from Theorems 1 and 2.
Corollary 1. Let b, n, β, v be given positive integers such that v ≤ n and 2 ≤ b ≤ β ≤
n, and let N = N(d, (�+1)v, �n�/b�), for an arbitrary constant � ≥ 1 and an arbitrary

positive integer d ≤ n−(�+1)v. If H = {Hλ}λ∈N is a (t, �)-collision-intractable fam-

ily of hash functions, then there exists a (t�, ��, b, v)-corruption-localizing hash scheme

with �� = �, t� = t+O(tn(H) ·N), localization factor α ≤ (d+ �)�b/��, and number

of tags O(N).

We minimize the localization factor by setting d = 1, and apply the upper bound on
N(1, (� + 1)v, �n�/b�) so as to obtain a hash scheme with localization factor (1 +
�)�b/�� (constant in v) and number of tags O(v2 log(n/(bv)))(sublinear when v =
o(
�
n/ log n)), where the hidden constant is smaller than 3(�+ 1)2.

6 A Localizing Code with Arbitrarily Small Localization Factor

In this section we present a localization code E that, when plugged into Theorem 1,
results in a corruption-localizing hash scheme with localization factor arbitrarily close
to 1, for any number of corruptions and any corruption length.

An informal description. The basic idea behind our construction is that we need to
learn a good estimate b of the length of the largest corrupted segment. As already ob-
served, this parameter highly affects the efficiency and localization capabilities of local-
izing codes. With respect to the scheme in Section 5, we observe that if b is chosen too
large then upper bound (d+ �)�b/�� on the localization factor achieved by the scheme
is also large. On the other hand, if the chosen value is too small then the number of cor-
rupted segments might be larger than the parameter q = (� + 1)v of the superimposed
code C, and consequently, the number of columns of C covered by the response vector
might be much larger than (�+1)v, in which case w(u) would be very large as well. In
order to learn a good estimate of the length of the largest corrupted segment, we apply
the scheme of Section 5 with decreasing values of b, ranging from β to 1.

We construct the localizing code E and the related localizing algorithm LE as fol-
lows. Let q > 1 and � ≥ 1 be arbitrarily chosen constants. For k = 0, . . . , �logq β�,
we denote by Ck a binary code of size �n/hk�, where βk = �β/qk� and hk = �βk/��.
Code Ck is expanded into a binary code Dk by replicating each row entry hk times.
Notice that code Dk corresponds to code D of Section 5 with the parameter b set equal
to βk. Intuitively, Dk obtains a good localization factor if the maximum length of a
corrupted segment ranges in the interval (�β/qk+1�, �β/qk�].

Given codes Ck and Dk, we construct a localizing algorithm Lk as in the proof
of Theorem 2, and use that theorem to conclude that the n-bit vector uk returned
by Lk satisfies the following properties: (a) uk covers the (β, v)-corruption vector
e, and (b) if all corrupted segments have length ≤ βk = �β/qk� then w(uk) ≤
�βk�−1�((� + 1)v + �v�/c� + d − 1). The idea of our localizing algorithm LE is
to run algorithms L0, . . . , Lf , where f = min{k ∈ {1, . . . , �logq β�} : w(uk) >
�βf �−1�((� + 1)v + �v�/c� + d − 1)}. A crucial difficulty consists in proving that,
by stopping at k = f , the algorithm LE achieves the desired localization factor. It is
also possible that the localizing algorithm never finds such an f , in which case it is not
possible to prove that one of vector uk’s attains the desired localization factor. In order
to achieve the desired localization factor, we exploit the fact that, in this case, the total
number of corrupted bits is at most w(u�log β�) ≤ �−1((� + 1)v + �v�/c� + d − 1),
and consequently, it is convenient to localize all corruptions by a group testing strat-
egy that directly searches for the single corrupted bits, rather than searching for cor-
rupted intervals of some maximum length. Observe that a trivial use of non-adaptive
group testing would allow to exactly detect the corrupted bits but would incur an over-
head of O((v + d)2 log(n/(v + d))). Alternatively, if we knew a good estimate of
the exact number of corrupted bits then we would be able to build a localizing code
with a small localization factor. Hence, we need to guess a good estimate of the num-
ber of corrupted bits and, to this aim, we add a parameter vr to the localizing code,
which intuitively denotes a close upper bound on the number of corrupted bits. We set
v0 = (� + 1)v + �v�/c� + d − 1, that is v0 is the known upper bound on the number
of corrupted bits, and vr = �v0/mr� for an arbitrary constant m > 1. Notice that, for
some integer r ∈ [0, �logm v0�], vr is a close upper bound on the exact number of cor-
rupted bits. For r = 0, . . . , �logm v0�, we denote by Gr a localizing code that localizes
up to vr corrupted bits. The code E is obtained by concatenating the rows of codes Dk’s
and Gr’s.

The code E and its properties. Let c > 0, � ≥ 1, q > 1, m > 1 be arbitrarily chosen
constants. For k = 0, . . . , �logq β�, let βk = �β/qk� and hk = �βk/��, and let Ck
be a binary code of size �n/hk� whose length is denoted by Nk. Moreover, for r =
0, . . . , �logm((�+1)v+ �v�/c�+ d− 1)�, let Gr denote a binary code of size n whose
length is denoted by N̂r. Code E is formally defined as follows:
1. Set h = 0
2. For k = 0, . . . , �logq β�,
3. for i = 1, . . . , Nk,
4. for j = 1, . . . , �n/βk�,
5. let sβk

j denote the interval [�βk�−1�(j − 1),min{�βk�−1�j − 1, n− 1}],
6. for all j� in interval sβk

j ,
7. set Dk(i, j�) = Ck(i, j) and E(h+ i, j�) = Dk(i, j�)
8. set h = h+Nk

9. For r = �logm((�+ 1)v + �v�/c�+ d− 1)�, . . . , 0,
10. for i = 1, . . . , N̂r,
11. for j = 1, . . . , n,
12. set E(h+ i, j) = Gr(i, j)
13. h = h+ N̂r.
14. Return: E = {E(i, j)}.

If codes Ck’s are (d, (�+ 1)v + �v�/c�)-superimposed codes of size �n/hk� for an
arbitrary d ≤ n − (� + 1)v − �v�/c�, and codes Gr’s are (�vr/c��, vr)-superimposed
codes of size n, with vr = �((� + 1)v + �v�/c� + d − 1)/mr� and c� ≥ 1 being an
arbitrary constant, then it is possible to prove that code E achieves localization factor
α ≤ max{q(1+c+c/�+c(d−1)/(v�)),m+m/c�}. The number of tags of the related
scheme is the sum of the lengths of C0, . . . , C�log β�,G0, . . . ,G�logm((�+1)v+�v�/c�+d−1)�.
This leads to the main results of the paper .
Theorem 3. Let n, β, v be given positive integers such that β ≤ n and v ≤ n, and let

c > 0, c� ≥ 1, � ≥ 1, m > 1, q > 1 be arbitrarily chosen constants. Moreover, let

N =
��logq β�

k=0 N(d, (�+1)v+ �v�/c�, �n/�βk/���) +
��logm v0�

r=0 N(�vr/c��, vr, n),
with βk = �β/qk�, vr = �((� + 1)v + �v�/c� + d − 1)/mr�, and with d ≤ n −
(� + 1)v − �v/c� being an arbitrary positive integer. If H = {Hλ}λ∈N is a (t, �)-
collision-intractable family of hash functions then there exists a (t�, ��, β, v)-corruption-

localizing hash scheme, with �� = �, t� = t + O(tn(H) · N), localization factor α ≤
max{q(1 + c+ c/�+ c(d− 1)/(v�)),m+m/c�} and number of tags O(N).

Observe that the upper bound on the minimum length of (d, q)-superimposed codes
implies that the minimum length of a (d, (� + 1)v + �v/c�)-superimposed code of
size �n/�βk/��� is O((v2/d) log(nqk/(βv))), where the hidden constant is smaller
than 3(� + 1)2. Moreover, by the same bound, the minimum length of a (�vr/c��, vr)-
superimposed code of size n is O(vr log(n/vr), where the hidden constant is smaller
than 3c�. These bounds imply that the number of hash tags of the scheme of Theorem 3
is upper bounded by O((v+ d) log n+(v2/d)(log β) log(n/v))), with the hidden con-
stant being < max{3(�+ 1)2/ log q, 3c�(�+ 1 + �/c)/ logm}.

When setting d = v in Theorem 3, the scheme achieves localization factor α ≤
max{q(1 + c+ 2c/�),m+m/c�} and number of tags O(v log n+ v log β log(n/v)).
Therefore, we have that the following result holds.

Corollary 2. Let n, β, v be given positive integers such that β ≤ n and v ≤ n.

There exists a corruption-localizing hash scheme with number of tags O(v log n +
v log β log(n/v)) and localization factor α ≤ max{q(1+c+2c/�),m+m/c�}, where

m > 1, q > 1, c > 0 and c� ≥ 1 are arbitrary constants.

We remark that the constant c > 0, c� ≥ 1, � ≥ 1, m > 1 and q > 1 can be chosen
arbitrarily so as to obtain a localization factor arbitrarily close to 1.

Proof of Theorem 3. We formally describe an algorithm LE that localizes up to v
corruptions. We denote by e the (β, v)-corruption vector that transforms x into x�. For
k = 0, . . . , �logq β�, Ck and Dk are the binary codes used to define the first rows of
code E , and Lk denotes the algorithm obtained by replacing C with Ck and D with Dk

in the algorithm LD described in Section 4. Moreover, for r = 0, . . . , �logm((�+1)v+
�v�/c�+ d− 1)�, Gr is the binary code used to define the last rows of code E .
The algorithm LE . On input the response vector z = E · e, LE does the following:
1. Set uk = 0n, for k = 0, . . . , �logq β�.
2. For k = 0, . . . , �logq β�,
3. set uk = the vector returned by Lk,
4. if w(uk) > �βk�−1�((�+ 1)v + �v�/c�+ d− 1),
5. then return: u = uk−1,
6. set k = k + 1.
7. Set ûr = 0n, for r = 0, . . . , �logm((�+ 1)v + �v�/c�+ d− 1)�.
8. For r = �logm((�+ 1)v + �v�/c�+ d− 1)�, . . . , 0,
9. for j = 1, . . . , n,

10. if column Gr(·, j) is covered by z
11. then set ûr[j] = 1
12. if w(ûr) < vr + �vr/c��
13. then return: u = ûr

14. set r = r − 1.
It is immediate to see that the vector u returned by LE covers the corruption vector e.
To prove Theorem 3, we need to show that, by an appropriate choice of codes Ck’s and
Gr’s, the vector u achieves the claimed upper bound on α. The proof of Theorem 3
relies on the following two lemmas.

Lemma 1. Let n, β, v be given positive integers such that β ≤ n and v ≤ n, and

let c > 0, � ≥ 1, q > 1 be arbitrarily chosen constants. For k = 0, . . . , �logq β�,

let βk = �β/qk�, and let Ck be a (d, (� + 1)v + �v�/c�)-superimposed code of size

�n/�βk/���, where d ≤ n − (� + 1)v − �v�/c� is an arbitrary positive integer. If

algorithm LE terminates at line 5, then it achieves localization factor α < q(1 + c +
c/�+ c(d− 1)/(v�)).

Proof. For the sake of simplicity, we will assume that v�/c is an integer (the more
general case being proved similarly).

Algorithm LE terminates at line 5 if and only if there is an integer k ∈ [0, �logq β�]
such that w(uk) > �βk�−1�((�+1)v+v�/c+d−1). In this case algorithm LE returns
the vector uf−1, where f = min{k ∈ {1, . . . , �logq β�} : w(uk) > �βf �−1�((� +
1)v+v�/c+d−1)}. Let S1, . . . , Sv be v intervals that achieve Diffv[x, x�]. Theorem 2

implies that there exists an h ∈ {0, . . . , n− 1} such that |Sh| > βf = �βq−f�. Indeed,
any (d, (�+ 1)v + v�/c)-superimposed code is also a (d, (�+ 1)v)-superimposed code
and consequently Cf satisfies the hypothesis of Theorem 2. By that theorem, one has
that if |Sr| ≤ βf , for all r = 1, . . . , v, then w(uf) ≤ �βf �−1�((�+1)v+ d− 1). Since
we have chosen f as the smallest integer such that w(uf) > �βf �−1�((�+1)v+v�/c+
d− 1) then at least one of S1, . . . , Sv should have cardinality larger than βf .

Now we show that Diffv[x, x�] > βq−fv/c. Let us assume by contradiction that
Diffv[x, x�] ≤ βq−fv/c and let us consider the partition of [0, n − 1] into the inter-
vals s

βf

1 , . . . , s
βf

�n/�βf/��� of length �βf/�� (with the eventual exception of the right-

most interval that might have smaller length). For r = 1, . . . , v, we denote by I
βf
r the

set of (consecutive) corrupted intervals s
βf

j ’s that intersect Sr. Notice that for some
r < v, Iβf

r and I
βf

r+1 might intersect since the rightmost corrupted interval in I
βf
r might

be the leftmost in I
βf

r+1. Let Iβf

h1
, . . . , I

βf

hg
, for some g ≤ v, denote those sets among

I
βf

1 , . . . , I
βf
v with cardinality larger than or equal to �+ 2. We have that Diffv[x, x�] =�v

r=1 |Sr| ≥
�g

j=1 |Shj | >
�g

j=1(|I
βf

hj
| − 2)�βf �−1�. Indeed, for j = 1, . . . , g, Shj

entirely contains all intervals in I
βf

hj
, with the eventual exception of the leftmost and

rightmost segments that are not taken into account by the summation in the last term
of the above inequality. This inequality and the contradiction hypothesis imply that�g

j=1(|I
βf

hj
|−2)�βf �−1� < βfv/c from which it follows that

�g
j=1 |I

βf

hj
| < v�/c+2g.

On the other hand the number of corrupted intervals s
βf

j ’s is at most
�v

r=1 |I
βf
r | ≤

�g
j=1 |I

βf

hj
|+(�+1)(v−g), in view of the fact that |Iβf

r | ≤ �+1 for r /∈ {h1, . . . , hg}.

The last two inequalities imply that the number of corrupted intervals sβf

j ’s is at most
(� + 1)v + v�/c, and consequently, the response vector zf = Df · e is the boolean
sum of up to (� + 1)v + v�/c columns of Cf . Since Cf is a (d, (� + 1)v + v�/c) su-
perimposed code then the only columns covered by zf are those associated with the
corrupted intervals plus an additional subset of at most d − 1 columns. It follows that
w(uf) ≤ �βf �−1�((�+ 1)v + v�/c+ d− 1), from which we have a contradiction.

We are ready to show that w(uf−1)/Diffv[x, x�] < q(1+ c+ c/�+ c(d− 1)/(v�)).
To see this, observe that f is the smallest index such that w(uf) > �βf �−1�((�+1)v+
v�/c+d−1) and consequently it must hold w(uf−1) ≤ �βf−1�−1�((�+1)v+v�/c+
d− 1). On the other hand, we proved that Diffv[x, x�] > βq−fv/c from which we have
that w(uf−1)/Diffv[x, x�] < q(1 + c+ c/�+ c(d− 1)/(v�)). ��

Lemma 2. Let n, β, v be given positive integers such that β ≤ n and v ≤ n, and

let c > 0, c� ≥ 1, � ≥ 1, m > 1, q > 1 being arbitrarily chosen constants. For

k = 0, . . . , �logq β�, let βk and Ck be defined as in the statement of Lemma 1, and for

r = 0, . . . , �logm((�+1)v+�v�/c�+d−1)�, let vr = �((�+1)v+�v�/c�+d−1)/mr�
and Gr be a (�vr/c��, vr)-superimposed code of size n. If algorithm LE terminates at

line 13, then it achieves localization factor α ≤ m+m/c�.

Proof. Algorithm LE terminates at line 13 only if w(uk) ≤ �βk�−1�((�+1)v+v�/c+
d − 1), for all k = 0, . . . , �logq β�. In this case the algorithm outputs the vector ûg ,
with g = max{r ∈ {0, . . . , �logm v0�} : w(ûk) ≤ vr + �vr/c��}. We will show
that w(ûk)/Diffv[x, x�] < m(1 + 1/c�). Let p ≤ v denote the unknown number of

corrupted bits. Since p ≤ w(uk), for k = 0, . . . , �logq β�, and β�logq β� = 1, then
p ≤ (� + 1)v + v�/c + d − 1. Let us define v0 = (� + 1)v + �v�/c� + d − 1. We
denote by a the integer in {0, . . . , �logm v0�} such that v0/ma+1 < p ≤ v0/ma. Let
Ga(·, j1), . . . , Ga(·, jp) be the p columns of Ga associated with the p corrupted bits.
The response vector ẑa = Ga ·e is the bitwise OR of columns Ga(·, j1), . . . , Ga(·, jp).
By definition of (�va/c��, va)-superimposed code, one has that the bitwise OR of any
�va/c�� columns is not covered by the union of up to va other columns. Therefore,
for any �va/c�� column indices h1, . . . , h�va/c�� /∈ {j1, . . . , jp}, the bitwise OR of
columns Ga(·, h1), . . . , Ga(·, h�va/c��) is not covered by ẑ, and consequently, there
might be at most �va/c�� − 1 columns, in addition to Ga(·, j1), . . . , Ga(·, jp), that are
covered by z. This guarantees, that algorithm LE will return a vector û = ûg (for
some g ≥ a) such that w(ûg) < vg + �vg/c�� ≤ va + �va/c��, and therefore, the
algorithm achieves localization factor α = w(u)/Diffv[0n, e] < (va + �va/c��)/p.
Since p > v0/ma+1 = va/m, it follows that α < (mp+mp/c�)/p = m(1 + 1/c�).

��
Lemmas 1 and 2 imply that E is a (β, v, α)-localizing code with α ≤ max{q(1 + c +
c/�+c(d−1)/(v�)),m+m/c�}. Therefore, Theorem 3 is a consequence of Theorem 1
and of the above two lemmas.

References

1. I. Damgard, “Collision Free Hash Functions and Public Key Signature Schemes”, in Ad-

vances in Cryptology - EUROCRYPT’ 87, pages 203-216, LNCS, Springer-Verlag.
2. A. De Bonis, G. Di Crescenzo, “Combinatorial Group Testing for Corruption Localizing

Hashing”, to appear in Proceedings of The 17th Annual International Computing and Com-

binatorics Conference - COCOON’11, LNCS, Springer Verlag.
3. A. De Bonis, L. Gasieniec and U. Vaccaro, “Optimal Two-Stage Algorithms for Group Test-

ing Problems”, SIAM Journal on Computing, vol. 34, No. 5, pp. 1253-1270, 2005.
4. G. Di Crescenzo, R. Ge and G. Arce, “Design and Analysis of DBMAC: an Error-Localizing

Message Authentication Code”, Proceedings of IEEE GLOBECOM ’04.
5. G. Di Crescenzo, S. Jiang, and R. Safavi-Naini, “Corruption-localizing hashing”, Proceed-

ings of Computer Security - ESORICS 2009, LNCS 5789, Springer Verlag, 489-504, 2009.
6. G. Di Crescenzo and F. Vakil, “Cryptographic hashing for virus localization”, Proceedings

of the 2006 ACM CCS Workshop on Rapid Malcode - WORM’06, 41-48, 2006.
7. R. Dorfman, “The detection of defective members of large populations”, Ann. Math. Statist.,

14, 436–440, 1943.
8. D.Z. Du and F.K. Hwang, Pooling Designs and Nonadaptive Group Testing, World Scientific,

2006.
9. D.Z. Du and F.K. Hwang, Combinatorial Group Testing and its Applications, World Scien-

tific, 2000.
10. A.G. Dyachkov, V.V. Rykov, “A survey of superimposed code theory”, Problems Control &

Inform. Theory, 12, No. 4, 1–13, 1983.
11. P. Erdös, P. Frankl, and Z. Füredi, “Families of finite sets in which no set is covered by the

union of r others”, Israel J. of Math., 51, 75–89, 1985.
12. M. Goodrich, M. Atallah, and R. Tamassia, “Indexing information for data forensics”, Ap-

plied Cryptography and Network Security Conference (ACNS 2005), 206–221, 2005.
13. W.H. Kautz and R.R. Singleton, “Nonrandom binary superimposed codes”, IEEE Trans. on

Inform. Theory, 10, 363–377, 1964.
14. A. Russell, “Necessary and Sufficient Conditions for Collision-Free Hashing”, in Journal of

Cryptology, vol. 8, n.2, 1995.

Proof of Theorem 1

We start the proof with a formal description of scheme HSM = (clHM, LocM) and
then prove the claimed values on localization factor, number of tags and runtime com-
plexity. The formal description of scheme HSM can be found in Figure 1 (here, the
symbol | denotes string concatenation and desc(hλ) denotes the description of hλ).

Algorithm clHM(x)
1. randomly choose hλ from Hλ

2. for i ← 1 to N

3. Li ← empty string
4. for j ← 1 to n

5. if M(i, j) = 1
6. then Li ← Li |x[j]
7. tagi ← hλ(Li)
8. tag ← (tag1, . . . , tagN , desc(hλ))
9. return tag

Algorithm LocM(x�
, tag)

1. for i ← 1 to N

2. L
�
i ← empty string

3. for j ← 1 to n

4. if M(i, j) = 1
5. then Li ← Li |x[j]
6. tag

�
i ← hλ(L

�
i)

7. if tagi = tag
�
i

8. then z(i) ← 0
9. else z(i) ← 1
10. z ← (z(1), . . . , z(N))
11. u ← LM(z)
12. return u

Fig. 1: Our corruption localizing hash scheme HSM.

We observe that the storage complexity and runtime complexity of HSM claimed in
the theorem can be checked by inspection, and concentrate on proving the collision
intractability and corruption localization property, and, in particular, the values for
��, t�, α� claimed in the theorem. We start the rest of the proof by rewriting the prob-
abilities Prob[Succ1(A;HSM;α�, v) = 1] and Prob[Succ2(A;HSM;α�, v) = 1],
and then show that both quantities are smaller than �� = � by proving that (1) an adver-
sary preventing effective localization (i.e., an index of a modified block is not included
in u) can be used to violate the collision intractability of family H; (2) the adversary
cannot force the scheme to exceed the localization factor α stated in the theorem.

Let Coll(A) be the event defined as follows: “For some i ∈ {1, . . . , N}, it holds
that Li �= L�

i and hλ(Li) = hλ(L�
i), where Li, L�

i are two segment lists obtained when

running CLHM on input x, x� returned by A, respectively.” We can then write

Prob[Succ1(A;HSM;α�, v) = 1] ≤ Prob[Coll(A)], and
Prob[Succ2(A;HSM;α�, v) = 1] ≤ Prob[Coll(A)] +

Prob[Succ2(A;HSM;α�, v) = 1|Coll(A)],

and then analyze the two probabilities Prob[Coll(A)] and Prob[Succ2(A;HSM;α�, v) =
1|Coll(A)] via the following two lemmas. The first lemma also proves the value in the
theorem for the claimed t� and one term of the value for the claimed �� by computing
an upper bound on Prob[Coll(A)], as follows.

Lemma 3. If the family H of hash functions is (t, �)-collision-resistant, then for any

algorithm A running in time t�, it holds that

Prob[Coll(A)] ≤ �,

where t� = t+O(N · tn(H)).

Proof. We use algorithm A to obtain an algorithm A� such that, if event Coll(A) hap-
pens then A� violates the collision-intractability of H. On input a hash function hλ

randomly chosen from Hλ, algorithm A�, runs the following steps:
1. Let (x, x�) = A(1λ)
2. For i = 1, . . . , N ,

let Li = empty string and L�
i = empty string;

for j = 1, . . . , n,
if M(i, j) = 1 then let Li = Li |x[j] and L�

i = L�
i |x�[j];

set tagi = hλ(Li) and tag�i = hλ(L�
i);

if tagi = tag�i then return: (Li, L�
i).

3. return: ⊥.
We see that A� obtains A’s output and then runs the same steps as A on input x (resp., x�)
to obtain strings Li (resp., L�

i). Thus, we obtain that �� = � and t� = t+O(N · tn(H)),
where tn(H) is the max running time of any function Hλ on n-block inputs. ��

The second lemma proves the value claimed for α� and one term for the value claimed
for �� by proving that when he finds no collisions in Hλ, the adversary succeeds with
probability 0 for the value of α stated in the theorem.

Lemma 4. If M is a (β, v, α)-localizing code and α� = α, for any algorithm A, it

holds that

Prob[Succ2(A;HSM;α�, v) = 1|Coll(A)] = 0.

Proof. If event Coll(A) does not happen, for all i ∈ {1, . . . , N}, the condition Li �= L�
i

implies Hλ(Li) �= Hλ(L�
i), where Li, L�

i are two strings obtained when running clHM
on input x, x� returned by A, respectively. In this case algorithm LocM does not add
any block to the output u in corresponding of any equality Hλ(Li) = Hλ(L�

i). This
implies that for i = 1, . . . , w− 1, it holds that x[j] = x�[j] for all j such that u(j) = 0.

Thus, the only way that A can make Prob[Succ2(A; HS;α, v) = 1|Coll(A)] > 0 is
by forcing the locator LocM’s output u to satisfy a larger localization factor than the
α� claimed in the lemma. In the rest of the proof, we show that this is not possible for
any algorithm A; that is, the localization factor α� is equal to the parameter α of the
(β, v, α)-localizing code.

We see that algorithm LocM returns the n-bit vector u that is output by algorithm
LM on input the N -bit vector z. Then we observe that, by construction of LocM, each
component z[i] of vector z is equal to 1 if tagi �= tag�i, which always happens when
Hλ(Li) �= Hλ(L�

i) (as we are assuming that Coll(A) is false). Now, the inequality
Hλ(Li) �= Hλ(L�

i) only holds when Li �= L�
i, which implies that the j-th bit of vector

e is equal to 1 for at least one value j such that M(i, j) = 1. Thus, we have that z can
be written as M · e, this matrix product being over the semiring ({0, 1},∨,∧). We can
then apply the property of localizing code M, as from Definition 4, which implies that
w(u) ≤ αDiffv[0n, e], which proves the lemma. ��

Given these two lemmas, the theorem then follows by further observing that algorithm
LocM in HSM adds to the output T all but those blocks that appear in some segment
Li for which it holds hλ(Li) = hλ(L�

i). Therefore, if event Coll(A) does not happen
then the output T contains all corrupted blocks, which implies that if event Coll(A)
does not happen then, for i = 1, . . . , w − 1, it holds that x[T] = x�[T].

