
Private-key Symbolic Encryption Schemes

Naveed Ahmed1 Christian D. Jensen1 Erik Zenner2

1DTU-Informatics, 2DTU-Mathematics
Technical University of Denmark, Copenhagen

1{naah,Christian.Jensen}@imm.dtu.dk
2
E.Zenner@mat.dtu.dk

Abstract. Symbolic encryption, in the style of Dolev-Yao models, is
ubiquitous in formal security analysis aiming at the automated verifica-
tion of network protocols. The näıve use of symbolic encryption, however,
may unnecessarily require an expensive construction: an arbitrary-length
encryption scheme that is private and non-malleable in an adaptive CCA-
CPA setting. Most of the time, such assumptions remain hidden and
rather symbolic encryption is instantiated with a seemingly “good” cryp-
tographic encryption, such as AES in the CBC configuration.
As an illustration of this problem, we first report new attacks on ECB
and CBC based implementations of the well-known Needham-Schroeder
and Denning-Sacco protocols. We then present a few symbolic encryption
schemes along with their cryptographic semantics, and prove the hierar-
chical relations between the proposed schemes from both cryptographic
and formal perspectives. These symbolic schemes can be seamlessly used
in many existing formal security models.

Keywords: Encryption, Hidden Assumptions, Formal Security Model

Common Terminology

A protocol message is denoted by a list without square brackets, so, M1, M2 Ó=
M2, M1. Two messages (lists) can be concatenated using a comma. Encryption
of a message M1, M2 using a key KAB shared between A and B is denoted
by {M1, M2}KAB

or {M1, M2}AB . A hat on the top of a symbol represents
its binary encoding, e.g., the symbol M1 in a formal model is encoded as a
bit string M̂1 of length |M̂1| in a cryptographic model. An adversary (or his
strategy) is denoted by I (intruder). Exclusive-or (⊕) is abbreviated as Xor in
the text. We distinguish between symbolic encryption, which is used in formal
security models [16, 9], and cryptographic encryption as used in the traditional
complexity-theoretic cryptography [29, 30]. A random string v ∈ {0, 1}s refers
to a value of a random variable Uv

s on the uniform distribution of size s.

1 Introduction

A private-key encryption scheme enables two honest parties that share a key
to privately communicate over a network, in such a way that a dishonest man-
in-middle, the adversary, is unable to gain any non-trivial information about

2 Ahmed, Jensen, Zenner

the communication. The standard security notions for cryptographic encryption
include left-right indistinguishability (IND) and non-malleability (NM), which
can be characterized in different attack settings [30].

In cryptography, the primitive objects on which functions operate and cryp-
tographic schemes are built are binary strings. The question whether certain
security properties hold for a cryptographic scheme is usually answered by a
polynomial-time reduction of the scheme to generally accepted cryptographic
assumptions, such as the existence of a pseudorandom-number generator. A
(uniform) adversary in this model is assumed to be able to compute any feasi-
ble (BPP) function. At the protocol level, the simulation paradigm [33] is more
common; in which one constructs an ideal model using an idealized functionality
with an aim to capture the non-security requirements of a protocol; then, the
security of the protocol is proved by showing the equivalence between the ideal
model and the actual protocol model.

Most of the cryptographic analysis is done by hand, and the support of
automation [35] is quite limited. Unlike cryptographic schemes, the model of any
reasonably sized protocol is often complex. Due to the painstaking work involved
in concrete security analysis, only a handful of network protocols have been
analyzed, e.g., only a small fraction of roughly 200 protocols listed in 2003 [27]
are accompanied by such security analysis. Even so, history shows that many
incorrect “proofs of security”, although done with honest intentions, find their
way into the literature, and it often takes many years to locate the errors [20].

Over the years, many abstractions of cryptography have been proposed to
enable automated security analysis. The most popular abstractions are in the
forms of Dolev-Yao model [6] and its derivatives [15]. In these formal models,
two types of simplifications are introduced. Firstly, binary strings and functions
are replaced by symbolic terms and derivation rules. In particular, this results
in idealized encryption functions—either an adversary can decrypt a symbolic
ciphertext (e.g., if he can derive the key) or the adversary gets absolutely no
information about the plaintext (cf. indistinguishabilty goal [29]).

The second simplification is related to the capabilities of an adversary, namely
the adversary is modeled as a non-deterministic strategy that is limited to se-
lecting its actions from a small set of (pre-defined) logic rules. This can be
compared to a computational adversary which is assumed to be able to compute
any polynomial-time function besides being able to access certain oracles, e.g.,
a decryption oracle in a chosen ciphertext attack. The security models that use
these two abstractions are commonly referred to as symbolic/formal security
models.

Needless to say, a symbolic model is usually simpler than its cryptographic
counterpart and provides a type of handle to a system designer who may not be
an expert in computational cryptography. A security proof in a symbolic model
is relatively short, because security issues in a symbolic model are decision prob-
lems, with a yes/no answer compared to probabilistic results of cryptographic
analysis. More importantly, computers can do the tedious job of proving (and
similarly verifying) the proofs of security. An impressive number of protocols of

Private-key Symbolic Encryption 3

practical relevance have been analyzed in this line of work (Lowe’s work [14] is
a classic example).

The simplicity of the symbolic models, however, comes at a price: any security
assurance in a symbolic model does not automatically translate to the underlying
computational cryptography. This is due to a huge gap between cryptographic
assumptions and the assumptions behind the symbolic abstractions. Not long
ago, many research efforts spurred to address this obvious gap between symbolic
and computational cryptography, most notably, Abadi and Rogaway [5], and
Backes, et al. [11] independently published interesting initial results.

In our work, we address one particular aspect of this problem, namely the
safe relaxation of some of the assumptions behind the abstraction of symbolic
encryption. In any implementation of symbolic encryption, one has to make cer-
tain security critical decisions, e.g., mode of encryption, block alignment, and
message authentication. Many attacks targeting the implementation of symbolic
encryption are known [17, 19, 18]. One brute-force approach to address such is-
sues is to rely on the most stringent cryptographic interpretation [30]—use an
encryption scheme that is private and non-malleable against an adversary that
has adaptive access to encryption and decryption oracles. Another approach is
to use symbolic cryptography in such a way that it can be instantiated with a
relaxed variant of cryptographic encryption; our work pertains to this second
approach.

In this paper, we first present new attacks on the ECB and CBC implemen-
tations of the Needham-Schroeder symmetric-key (NSSK) protocol [2]. Although
cryptographically such implementations are not considered strong, they are not
artificial nevertheless, and in fact ECB and CBC do not violate the assumed
properties of encryption function by their authors. The NSSK protocol can be
broken in another way if an adversary has access to an old key and the rele-
vant encrypted message [4], however, our attack does not rely on any of these
assumptions. These attacks also work with the seven-round version of the NSSK
protocol [3], which is an improved version of the original NSSK protocol after the
flaw [4] was discovered. Further, we report new attacks on two implementations
of the Denning-Sacco symmetric-key (DSSK) protocol [4], which is another im-
proved version of the NSSK protocol, and which does not suffer any attacks to
the best of our knowledge.

To prevent the type of vulnerabilities exploited by the reported attacks, we
advocate better ways of using symbolic encryption function, by proposing four
symbolic encryption schemes. These schemes have natural correspondence to
standard cryptographic constructions. Many state of the art protocol analysis
tools (e.g., OFMC [16], LYSA [9]) can accept these refined specifications. In
practice, the proposed schemes correspond to different resource requirements,
and therefore a level of safe optimization can be achieved while still working at
the abstract level.

The rest of the paper is arranged as follows. In § 2, we briefly examine
the prior art. Next, in § 3 and § 4, we present new attacks, which serve as a
motivation for improving the way symbolic encryption is used. In § 5, we present

4 Ahmed, Jensen, Zenner

a few symbolic encryption schemes and prove their cryptographic separation, and
then in § 6 we show that these schemes also provide different levels of security
in a formal security model. In § 7, we discuss our contribution in a broader
perspective, and finally, in § 8, we conclude our work.

2 Related Work

Dolev-Yao style symbolic cryptography [6] is the basis of most formal security
models, e.g., BAN logic, process calculi [8, 9] and model-checking [16]; Mead-
ows presents an extensive survey [15]. We here do not discuss symbolic security
analysis as such and only focus on the cryptographic perspective of symbolic
encryption.

Moore [22] was probably the first to highlight the security problems that
may occur in implementing symbolic encryption, in particular, in the use of
DES for providing message authentication. Boyd [17] describes a few attacks on
the NSSK protocol that exploit the implementation of the encryption function,
however, the presentation does not come close to the attacks described in this
paper. In fact, the adversary gain, in our case, is higher than the previously
known attacks [4, 17]. Mao and Boyd [19] discuss some general vulnerabilities
that may occur when using cipher-block-chaining mode for implementing en-
cryption. Bellovin [28] reported vulnerabilities in the earlier versions of IP-sec
by exploiting CBC-mode encryption.

Stubblebine et al. [18] investigates modes of encryption for discovering known
pairs and chosen texts, using the NRL protocol analyzer. Our attack makes use
of chosen texts, in which a party can be used as an encryption oracle; this is
then exploited by an adversary who obtains the ciphertext against a plaintext. In
the same line of work, Kremer and Ryan [21] model ECB and CBC mode using
Blanchet’s protocol verifier. Interestingly, they use the NSSK protocol as a case
study but stop after indicating the existence of chosen texts in the protocol.
Nevertheless, the existence of chosen texts is quite common in cryptographic
protocols and often does not lead to insecure encryption.

One of the most interesting cases is that of encryption-only-mode of IP-
sec, for which Paterson and Yau [23] exploited CBC mode of encryption. Their
attacks work if an implementation does not follow the standard strictly, how-
ever, many implementation, including that of Linux, falls in this category. Later,
Degabriele and Paterson [24] published another attack that works only if an im-
plementation strictly follows the standard.

Chevalier et al. [7] extend the Dolev-Yao intruder with the capability to
exploit Xor operator, as used in CBC, and they show that the protocol insecurity
problem is NP-complete. Küsters and Truderung developed a verification method
that can reduce the protocol models that are Xor-linear to Xor free models,
which then can be analyzed using existing tools [25]; however, the CBC based
NSSK protocol is not Xor-linear due to the nested encryption.

In a slightly bigger picture—for establishing a theoretically sound link be-
tween symbolic cryptography and complexity-theoretic cryptography—there is

Private-key Symbolic Encryption 5

an impressive amount of research during the last decade; we only briefly sum-
marize the most notable work in the following. In our view, currently these
approaches are more focused on achieving theoretical soundness. Another recent
trend, which we do not consider here, is to develop the tool support in a semi-
automated manner for cryptographic proofs, such as in EasyCrypt [35]; the state
of the art in this direction is in a very primitive stage.

Abadi and Rogaway [5] show that indistinguishablity between the ensembles
of cryptographic encryption can be translated to the symbolic form in Dolev-Yao
model, in such a way that verification of a symbolic property corresponds to a
security guarantee in the computational world (with a high probability). Inde-
pendent from the Abadi-Rogaway work, Backes, Pfitzmann andWaidner [11] aim
at establishing soundness of symbolic cryptography in a general cryptographic
model using a general composition theorem.

Micciancio and Warinschi [10] extended the Abadi-Rogaway approach [5] to
interactive protocols and mutual authentication in presence of active adversaries.
Herzog et al. [13] put forward a new definition of plain-text aware encryption,
which can be used for the secure realization of symbolic public-key encryption;
this notion is too strong however. In the line of universal composability, Ran
Canetti and Herzog [12] show that the Dolev-Yao model can be layered on top
of the traditional universal composability framework. Currently, this approach
is limited to so-called simple protocols: the protocols that use only those cryp-
tographic schemes that have some standard symbolic counterparts.

This paper is within the scope of a larger effort for improving the soundness of
symbolic cryptography, yet the presented work is very much practice-oriented,
namely improving the way encryption is modeled to get the results that are
closer to traditional cryptographic encryption schemes. On the one hand, the
new attacks on old protocols (more than 30 years) certainly serve as a word of
caution for a developer who implements a formally verified protocol. On the other
hand, these attacks will motivate a security analyst working in the community
of formal methods to use the proposed schemes of encryption.

3 Attacks on Implementations of NSSK protocol

The NSSK protocol [2] is a key establishment protocol, based on symmetric
encryption and the notion of a trusted third-party (TTP). The protocol was
proposed in 1978, at the very start of the era of modern cryptography. It is con-
sidered as one of the benchmarks for protocol analysis tools because it contains
a subtle flaw: if an adversary gets hold of an old session key then he can mas-
querade as another entity [4]. In this paper, the reader may assume that when a
session expires then the session key is safely discarded. The protocol narrations
are listed in the following.

(1) A −→ S : A, B, NA

(2) S −→ A : {NA, B, KAB , {KAB , A}SB}SA

(3) A −→ B : {KAB , A}SB

(4) B −→ A : {NB}AB

(5) A −→ B : {NB − 1}AB

6 Ahmed, Jensen, Zenner

Here A and B represent the initiator and the responder role that parties
can take during an execution of the protocol; S is the role of the trusted third-
party (TTP). It is assumed that S knows the identities of all legitimate entities
(principals), and shares a long-term secret key with each of them, namely, S
shares KSA and KSB with A and B respectively. The term KAB denotes a
session key.

The first message is a request from A to the TTP that A wishes to estab-
lish a key with B, by sending its identity, the identity of the peer entity and a
nonce. On receiving the request the TTP generates a random session key KAB .
The TTP replies with a message encrypted with A’s long-term key. Most im-
portantly, this message includes the session key KAB , and another encrypted
message containing the same session key but encrypted with B’s long term key,
which A sends to B in the next step.

When B receives the message, it decrypts it using KSB , then verifies that
it contains B’s identity, and if successful, then B considers KAB as a valid
session key. To verify the freshness of the session key, B sends a nonce, NB , to A
encrypted using the session key. On receiving the message in Step 4, A decrypts
it and sends NB − 1 to B encrypted using the same session key. This completes
the protocol. If both parties terminate without generating any error then A and
B assume that KAB is a valid session key for the subsequent communication.

In the following we describe two version of the attack against two different
implementations of encryption function. These attacks are also applicable on the
seven-round version of the NSSK protocol [3], which does not suffer from the
old-session-key attack [4].

ECB-version

The electronic code book (ECB) mode of encryption is the most obvious and
inexpensive way of applying a block cipher to a plaintext that is longer than its
block length. It does not provide the strong version of privacy, namely the se-
mantic security [29], but in many places semantic security is not strictly required
for the protocol security (see § 6).

For the simplicity of exposition, we assume that each term of the protocol
is encoded in a separate block (e.g., {N1, N2}AB = {N1}AB , {N2}AB), and the
attacker is an insider, i.e., I is a legitimate network entity and shared KSI with
the TTP. An attacker I in the role of A is denoted by I(A). If blocks are not
encoded with this perfect alignment then a less efficient version of the attack
may exist that requires more computation and communication on the part of
the adversary1. The attack is listed in Fig. 1.
The attack consists of three setup-phases, in which I obtains certain terms

that are used in the actual attack. As shown, I uses S as an oracle. First, he
obtains the term {K1}SB in Setup-(a). Then, he uses this term as a nonce in
Setup-(b), to obtain the term {{K1}SB}SA. In Setup-(c), he uses K1, whose
value he knows from Setup-(a), as a nonce to obtain {K1}SA. As shown in the

1 E.g., see the attack on IP-sec [24], which succeeds after a large amount of queries.

Private-key Symbolic Encryption 7

Steps Messages

Setup-(a)
(1) I −→ S : I, B, NI

(2) S −→ I : {NI}SI , {B}SI , {K1}SI , {{K1}SB}SI , {{I}SB}SI

Setup-(b)
(1) I(A) −→ S : A, B, {K1}SB

(2) S −→ I(A) : {{K1}SB}SA, {B}SA, {K2}SA, {{K2}SB}SA,

{{A}SB}SA

Setup-(c)
(1) I(A) −→ S : A, B, K1

(2) S −→ I(A) : {K1}SA, {B}SA, {K3}SA, {{K3}SB}SA, {{A}SB}SA

Attack
(1) A −→ S : A, B, NA

(2a) S −→ I(A) : {NA}SA, {B}SA, {K4}SA, {{K4}SB}SA, {{A}SB}SA

(2b) I(S) −→ A : {NA}SA, {B}SA, {K1}SA, {{K1}SB}SA, {{A}SB}SA

(3) A −→ B : {K1}SB , {A}SB

(4) B −→ A : {NB}K1

(5) A −→ B : {NB − 1}K1

Fig. 1. Attack on ECB-version of NSSK protocol

Attack, these two terms, {{K1}SB}SA and {K1}SA, are enough to deceive A
and B, in accepting K1 as a new session key.
At the end of the attack, the adversary gain is the compromised key K1

as a new session key. Thus, adversary can simply play the man-in-middle role
to listen to all subsequent traffic of the session. Moreover, at any time, he can
masquerade as A to B or masquerade as B to A, to send and receive legitimate
requests for data. In this attack, the new session key is a server generated key,
which can also be generated by the adversary locally.

CBC-version

The same attack can be extended, although not trivially, to the case where en-
cryption is implemented using CBC mode of operation, which provides semantic
security against CPA. Note that this privacy guarantee is valid independent
of the block alignments in a plaintext. Our CPA limited adversary, therefore,
manifests that NSSK protocol requires more than semantic security from its
encryption function.
As per the standard cryptographic assumption, the initializing vectors (iv)

in CBC mode are public values; the superscripts in ivo, iv∗ and ivx are labels
used to easily distinguish between initialization vectors in Setup-(a), Setup-(b)
and Setup-(c) respectively; a subscript, such as ‘1’ in iv1, is used to distinguish
different values of initialization vectors. The notation ‘=’ is used to introduce
intermediate terms to simplify the description of the attack.

In Setup-(a), I obtains the term {ivo
2

⊕ K1}SB , which he sends as a nonce in
Setup-(b) to obtain c∗

1
. In Setup-(c), I obtains the term cx

1
by sending K1 as a

8 Ahmed, Jensen, Zenner

nonce. In the main phase of the attack, I replays these two terms, c∗

1
and cx

1
, in

step (2b). Later in step (3b), I replays {ivo
2

⊕ K1}SB , so that B believes in K1

as a new session key shared with a party whose identity is c6 ⊕ ivo
2

⊕ K1. At this
stage, I has successfully deceived both A and B into accepting the session keys
that he knows. There are two different session keys, namely, A’s session key is
c2 ⊕ ivx

1
⊕ K1 and B’s session key is K1. Since both of these keys are known to

I, he can play a man-in-middle role in any subsequent communication, in the
same style as he plays man-in-middle in the steps (3a)-(5b).

Steps Messages

Setup-(a)
(1) I −→ S : I, B, NI

(2) S −→ I : ivo
1 , ivo

2 , co
1 = {ivo

1⊕NI}SI , co
2 = {co

1⊕B}SI , co
3 = {co

2⊕K1}SI ,

co
4 = {co

3 ⊕ {ivo
2 ⊕ K1}SB}SI , co

5 = {co
4 ⊕ {{ivo

2 ⊕ K1}SB ⊕ I}SB}SI

Setup-(b)
(1) I(A) −→ S : A, B, {ivo

2 ⊕ K1}SB

(2) S −→ I(A) : iv∗
1 , iv∗

2 , c∗
1 = {iv∗

1 ⊕ {ivo
2 ⊕ K1}SB}SA, c∗

2 = {c∗
1 ⊕

B}SA, c∗
3 = {c∗

2 ⊕ K2}SA, c∗
4 = {c∗

3 ⊕ {iv∗
2 ⊕ K2}SB}SA, c∗

5 = {c∗
4 ⊕

{{iv∗
2 ⊕ K2}SB ⊕ A}SB}SA

Setup-(c)
(1) I(A) −→ S : A, B, K1

(2) S −→ A : ivx
1 , ivx

2 , cx
1 = {ivx

1 ⊕ K1}SA, cx
2 = {cx

1 ⊕ B}SA, cx
3 = {cx

2 ⊕
K3}SA, cx

4 = {cx
3 ⊕ {ivx

2 ⊕ K3}SB}SA, cx
5 = {cx

4 ⊕ {{ivx
2 ⊕ K3}SB ⊕

A}SB}SA

Attack
(1) A −→ S : A, B, NA

(2a) S −→ I(A) : iv1, iv2, c1 = {iv1 ⊕ NA}SA, c2 = {c1 ⊕ B}SA, c3 = {c2 ⊕
K4}SA, c4 = {c3 ⊕ {iv2 ⊕ K4}SB}SA, c5 = {c4 ⊕ {{iv2 ⊕ K4}SB ⊕
A}SB}SA

(2b) I(S) −→ A : iv1, iv2, c1 = {iv1 ⊕ NA}SA, c2 = {c1 ⊕ B}SA, cx
1 = {ivx

1 ⊕
K1}SA, c∗

1 = {iv∗
1 ⊕ {ivo

2 ⊕ K1}SB}SA, c∗
1 = {iv∗

1 ⊕ {ivo
2 ⊕ K1}SB}SA

(3a) A −→ I(B) : cx
1 ⊕ iv∗

1 ⊕ {ivo
2 ⊕ K1}SB , c∗

1 ⊕ iv∗
1 ⊕ {ivo

2 ⊕ K1}SB

(3b) I(A′ = c6 ⊕ ivo
2 ⊕ K1) −→ B : ivo

2 , c6 = {ivo
2 ⊕ K1}SB , {ivo

2 ⊕ K1}SB

(4a) B −→ I(A′) : {NB}K1

(4b) I(B) −→ A : {NB}c2⊕ivx

1
⊕K1

(5a) A −→ I(B) : {NB − 1}c2⊕ivx

1
⊕K1

(5b) I(A′) −→ B : {NB − 1}K1

Fig. 2. Attack on CBC-version of NSSK Protocol

4 Attacks on Implementations of DSSK protocol

As mentioned earlier, Denning and Sacco [4] spotted the original problem in
the NSSK protocol. In the same paper, they improved the protocol using time-
stamps; the modified protocol is as follows.

Private-key Symbolic Encryption 9

(1) A −→ S : A, B
(2) S −→ A : {B, KAB , T, {A, KAB , T}SB}SA

(3) A −→ B : {A, KAB , T}SB

The protocols works essentially in the same way as the NSSK protocol; the
new term T represents a time stamp, and obviously the assumption is that there
is a loosely synchronized clock in the network. Chevalier and Vigneron [26] re-
ported a possible type flaw in the Denning-Sacco (DSSK) protocol based on
a somewhat dubious assumption: if {T} ≡ {T, {B, KAB , T}SA}. Even if this
assumption holds then the only gain of the adversary is to convince B, for a mo-
ment, that it is sharing a key with A, but, after that, no further communication
is possible, because neither A nor the attacker knows the key. Other than that,
to the best of our knowledge, there are no known attacks against this protocol.

ECB-version

This attack is very similar to the ECB-version of the NSSK protocol and is listed
in Appendix A.

CBC-version

Steps Messages

Setup
(1) I −→ S : I, A

(2) S −→ I : ivo
1 , ivo

2 , co
1 = {A ⊕ ivo

1}SI , co
2 = {K1 ⊕ co

1}SI , co
3 = {T1 ⊕

co
2}SI , co

4 = {(c̄o
4 = {I ⊕ ivo

2}SA) ⊕ co
3}SI , co

5 = {(c̄o
5 = {K1 ⊕ c̄o

4}SA) ⊕
co

4}SI , co
6 = {(c̄o

6 = {T1 ⊕ c̄o
5}SA) ⊕ co

5}SI

Attack
(1) A −→ S : A, B

(2a) S −→ I(A) : iv1, iv2, c1 = {B ⊕ iv1}SA, c2 = {K2 ⊕ c1}SA, c3 = {T2 ⊕
c2}SA, c4 = {{A ⊕ iv2}SB ⊕ c3}SA, c5 = {{K2 ⊕ {A ⊕ iv2}SB}SB ⊕
c4}SA, c6 = {{T2 ⊕ {K2 ⊕ {A ⊕ iv2}SB}SB}SB ⊕ c5}SA

(2b) I(S) −→ A : iv1, iv2, c1 = {B ⊕ iv1}SA, c̄o
5, c̄o

6, c4, c5, c6

(3) A −→ I(B) : random data

Fig. 3. Attack on CBC-version of DSSK Protocol

This attack is listed in Fig 3 and is different from the CBC-version of the
NSSK protocol. Here, the adversary succeeds in impersonating B to A, i.e, at
the end of the attack I in the role of B has a shared key with A. In the setup
phase, I sends a request to S for establishing a connection with A, and as a
result, I receives c̄o

5
and c̄o

6
that are later replayed in the actual attack.

In the main phase of the attack, I intercepts the reply from S and replace

c2 and c3 with c̄o
5
and c̄o

6
respectively. Consequently, the last three messages will

10 Ahmed, Jensen, Zenner

decrypt to some random data when A later sends them to B, however, I can
pretend to be B. The session key for A and I(B) is K1 ⊕ c̄o

4
⊕ c1. Clearly, this

term is computable by I because K1, c̄o
4
and c1 are known to I.

The term c̄o
6
is decrypted to T1. The Setup phase of the attack needs to

be in real-time (in a loose sense) so that the difference between T1 and T2 is
tolerable. As per the authors of the protocol, the definition of real-time is quite
relaxed, namely a delay up to △t1 + △t2 is tolerable, where △t1 is the interval
representing normal time-shift between A’s local clock and the server clock, and
△t2 is the expected network delay. This value is typically equal to a few seconds
for most of the networks, such as the Internet.

5 Symbolic Encryption Schemes

None of the above attacks manifest themselves in a formal security model if sym-
bolic encryption is näıvely used by specifying the encryption as one monolithic
ciphertext, with an implicit assumption that the encryption will be implemented
with an “appropriate” cryptographic encryption scheme. Historically, this overly
strong assumption was introduced to simplify the formal model in order to avoid
the state explosion problem. Recent advances in model-checking and static anal-
ysis, however, make it practical to weaken this strong assumption; in particular,
symbolic encryption deserves to be specified using the abstraction of a block-
cipher, finite pseudo random function (PRF) [31].
We start with the definition of a minimal symbolic encryption system, to present
our claims in a simple but precise manner.

Definition 1 (Symbolic Encryption System). On the set of all base terms
V, with a security parameter s = log2(|V|), we define a private-key symbolic
encryption system SE as follows.

– M ::= M, M | V | {M}K | {C}−1

K
| φ

– V ::= x ∈ V
– K ::= M (Syntactic sugar to indicate that the term K is being used as a key)
– C ::= {M}K (Syntactic sugar to indicate that the term is a ciphertext)
– Cancellation Rule : M = {{M}K}−1

K = {{M}−1

K }K

– Encryption Rule : If an agent knows K and M then the agent knows {M}K .
– Decryption Rule : If an agent knows K and C then the agent knows {C}−1

K .

Here M, K, C and V are the formal expression; while M , K and C are the corre-
sponding meta-variables.

Note that we do not include the Xor operator in SE , which although is
required by many standard cryptographic schemes (such as CBC). This exclusion
is because properly incorporating the Xor operator in formal security analysis is
a long-standing open problem [7, 25], e.g., Xor is not supported by OFMC [16],
LySa [9], and Spi-calculus [8]. The essence of this paper is about the “smart” use
of symbolic encryption from a cryptographic perspective, while working within
the scope of existing theories of formal security models and without proposing
any extension in the models themselves.

Private-key Symbolic Encryption 11

Definition 2 (Cryptographic Semantics). The cryptographic semantics of
the symbolic encryption system in Def. 1 are as follows.

– V
def

= V̂
rnd

∈ {0, 1}s (Each base term is encoded as a uniformly distributed
random bit string of a fixed length s = |V|)

– M1, M2

def

= M̂1, M̂2 (Concatenation of two bit strings)

– {M}K
def

= UV-PRF
K̂
(M̂) (also denoted by {M̂}

K̂
for brevity)

Here UV-PRF
K̂
(M̂) is the length-preserving K̂th variadic pseudorandom

function in a family of UV-PRF.

– {C}−1

K

def

= If C is in the output table of UV-PRF
K̂
(M̂) then output corre-

sponding M ; otherwise, select a random M , s.t., |M | = |C| and M is not in

the output table, and write (M, C) pair in the output table of UV-PRF
K̂
(M̂).

The prefix UV in the idealized notion UV-PRF denotes an Unbounded family
of Variadic PRFs. The term unbounded implies that the family contains an
infinite number of functions, which are addressable by the arbitrary size key K.
A variadic PRF [1] can take input M̂ of an arbitrary size, as in our case M may
consist of potentially infinite number of base terms. The notion of UV-PRF can
be compared to the classic notion of a PRF family [31, 32], in which the input
domain is finite and the individual functions are addressable by a fixed size key.

Definition 3 (Security). Let K̂ to be a secret. We define the following three
security properties for SE in uniform complexity.

WP-security (Weak Privacy Against Passive Attack)
def

= It is infeasible for an

adversary I to compute Ĉ for a known M̂ , s.t., C = {M}K . Further, it is also

infeasible for I to compute M̂ for a known Ĉ, s.t., M = {C}−1

K .
NM-security (Non-malleability Against Chosen Plaintext/Ciphertext Attack)

def

= It is infeasible for I to compute Ĉ ′ for a known Ĉ, s.t., a symbolic relation
R(M, M ′) holds, where M = {C}−1

K and M ′ = {C ′}−1

K .
IND-security (Indistinguishability Against Adaptive Chosen Plaintext Attack)

def

= It is infeasible for I to distinguish the two probability distributions: PDF({M̂}
K̂
)

and PDF({M̂ ′}
K̂
), where PDF(.) is the discrete probability distribution function.

Alternatively, I can only succeeds in the indistinguishability experiment (IND-
P2-C0) [30] with a negligible probability.

Clearly, WP-security is implied by IND-security, because if an adversary can
recover the plaintext from a ciphertext then he can always win in the indistin-
guishability experiment.

Proposition 1 (Soundness of SE). The symbolic encryption function in SE
is WP,NM-secure.

Proof (sketch). This proposition holds by the definition of UV-PRF, i.e., the

mapping between M̂ and {M̂}
K̂
is random and K̂ is assigned from a uniform

distribution. Encryption and decryption oracles can only help in an exhaustive
search and passive adversary can only make a random guess for M̂ . The formal
proof is trivial (but tedious) and is left out. ⊓⊔

12 Ahmed, Jensen, Zenner

In the following, we introduce four symbolic encryption schemes.

Definition 4 (Symbolic Encryption Schemes). Let M1, ..., Mi, ..., MN be

the parsing of a polynomial size plaintext M , such that each |M̂i| = s. Assume
the existence of a block-cipher (e.g., AES) with the block size s (say 128) and the

key size |K̂| ≥ s (say 128 and 256). The following symbolic encryption schemes
are defined in SE.

1. SEecb(M) (ECB Symbolic Encryption):
def

= {M1}K , ..., {Mi}K , ..., {MN }K

2. SEbk(M) (Bulk Symbolic Encryption):
def

= {M1, ..., Mi, ..., MN }K

3. The following three schemes are equivalent (see Lemma. 6).
(a) SErn(M) (Randomized Symbolic Encryption):

def

= V1, {M1}K,V1
, ..., Vi, {Mi}K,Vi

, ..., VN , {MN }K,VN

(b) (a) SEcbc∗(M) (Equivalent CBC Symbolic Encryption):
def

= C0, {M1}K,C0
, ..., {Mi}K,Ci−1

, ..., {MN }K,CN−1

where Ci = {Mi}K,Ci−1
, and C0 = V1 is a base term.

(c) SEcbc(M) (CBC Symbolic Encryption):
def

= C0, {C0 ⊕ M1}K , ..., {Ci−1 ⊕ Mi}K , ..., {CN−1 ⊕ MN }K

where Ci = {Ci−1 ⊕ Mi}K , and C0 = V1 is a base term.
4. SErnb(M) (Randomized Bulk Symbolic Encryption):

def

= V, {M1, ..., Mi, ..., MN }K,V

Note that the terms V and Vi appear as free variables, therefore these vari-
ables are assumed to be instantiated with unique values in each instance of a
protocol, such as done in formal analysis tools [16, 9]. Cryptographically, these
free variables represent random variables on the uniform distribution of size s,
as per Def. 2.
The main motivation for the above division is that we can directly write

all of these specifications in many formal security models, where each of these
specifications provides a different type of security guarantee in these formal
models (§ 6). As the reader may have noted that SEcbc is an extra-logical scheme,
because it uses Xor operator and cannot be in SE , but we later show that SEcbc

is equivalent to SEcbc∗. In the following we present a few results regarding the
correspondence between symbolic encryption and cryptographic encryption.

Corollary 1. In SEecb, SErn, SEcbc∗, and SEcbc, each symbolic encryption term
represents a bounded family (i.e., a fixed number of elements) of finite PRFs [31,
32]. In SEbk and SErnb, each symbolic encryption term is a bounded family of
variadic PRFs (with polynomial size input) [1].

Proof. Each symbolic encryption expression ({M}K) in SE is a UV-PRF. Further,
in Def. 4, the key size |K| is fixed, therefore, in all symbolic encryption schemes
considered here, each encryption term represents a bounded family of PRFs. In
SEecb, SErn, SEcbc∗, and SEcbc, there is only one term of size s, therefore, these

Private-key Symbolic Encryption 13

schemes represent finite PRFs. In SEbk and SErnb, the number of terms N is
polynomially bounded, therefore the (idealized) PRFs in these schemes can take
any polynomial sized input. ⊓⊔

Corollary 2. The schemes SEecb and SEcbc∗ can be instantiated with ECB
mode and CBC mode of cryptographic encryption respectively.

Proof. Using Corollary 1 and assuming a block-cipher to be a bounded family
of finite PRFs, SEecb case is trivial. As per Lemma 6, the security of SEcbc∗

implies the security of SEcbc, and SEcbc represents the CBC mode of encryption.
Therefore, SEcbc∗ can be instantiated with the CBC mode of encryption. ⊓⊔

Let SEa sem

⇒ SEb be an implication with respect to cryptographic semantics,
namely, a cryptographic encryption scheme meeting the requirements of SEb

also meets the security requirements of SEa. The intuition behind the direction
of the arrow is that if a symbolic protocol using SEa is secure in a formal model
then the protocol will remain secure if we replace SEa with SEb. The equivalence
sem

≡ is a two-way implication.

Lemma 1. SEecb sem
⇒ SErn; and SErn Ó

sem
⇒ SEecb

Proof. SEecb: First we consider SEecb(M): {M1}K , ..., {Mi}K , ..., {MN }K . Each
encrypted term {Mi}K in this scheme is a UV-PRF and is therefore WP,NM-
secure (Proposition 1). Our aim is to derive the security properties of SEecb(M).
As shown by the following attack, SEecb(M) is not NM-secure. In an attack

on NM-security, an adversary simply permutes the individual encrypted terms.
For example, given {M1}K , {M2}K , the adversary can produce another valid
ciphertext {M2}K , {M1}K that has a related plaintext to the plaintext of the
first ciphertext.
To show SEecb(M) is WP-secure, we construct a compiler that can trans-

late an attack I1 on SEecb(M) to the attack I2 on UV-PRF. The compiler for
WP-security is as follows: as soon as I1 outputs the plaintext M , I2 parses
this plaintext to compute the plaintext of each individual encrypted term Mi.
The compiler also works in the similar manner to derive ciphertexts. Since the
encrypted terms are UV-PRF and are assumed to be WP-secure, the scheme
SEecb(M) is WP-secure.

SErn: Next we consider SErn(M):
V1, {M1}K,V1

, ..., Vi, {Mi}K,Vi
, ..., VN , {MN }K,VN

. This scheme is clearly not NM-

secure because the same permutation attack of SEecb(M) is also valid here. The
scheme SErn(M) is WP-secure using the same type of reduction as we did for
proving the WP-security of SEecb(M).
The scheme SErn(M), however, is IND-secure. For this purpose, we can cal-

culate the probability distribution on the plaintexts corresponding to a given
ciphertext. The size of each encrypted term in SErn(M) is s, as per Def. 4.
Since in our model the sizes of a plaintext and its ciphertext are equal, therefore
there are 2s plausible plaintexts, on which we need to compute the probability
distribution. For all Vi used in SErn(M), |Vi| ≥ s and V̂i is assigned from a uni-
form distribution. This means there are 2s equally probable plaintexts for a given

14 Ahmed, Jensen, Zenner

ciphertext in a domain of size 2s. Being Vi a free variable, each call to SErn uses
fresh coin tosses. Therefore, no strategy can succeeds in the indistinguishability
experiment even in a statistical sense. Hence, SErn is WP,IND-secure but is not
NM-secure. Combining this result with that of SEecb completes the proof. ⊓⊔

Lemma 2. SEbk sem
⇒ SErnb; SErnb Ó

sem
⇒ SEbk;

Proof. SEbk: First we consider SEbk(M): {M1, ..., Mi, ..., MN }K . Clearly this
scheme represents one big UV-PRF and is therefore WP,NM-secure (Proposi-
tion 1). Since the scheme is deterministic, therefore it can not be IND-secure [29].

SErnb: Next we consider SErnb(M): V, {M1, ..., Mi, ..., MN }K,V . This scheme
is also a single UV-PRF and is therefore WP,NM-secure (Proposition 1). Fur-
ther, the scheme SErnb(M) is IND-secure. For this purpose, we can calculate
the probability distribution on the plaintexts corresponding to a given cipher-
text, similar to Lemma 1. The size of the encrypted term in SErnb(M) is N.s,
therefore there are 2N.s plaintexts on which we need to compute the probability
distribution.
Since the term V̂ is assigned from the uniform distribution, there are 2s uni-

formly distributed valid plaintexts for a given ciphertext in a domain of size 2N.s.
Each call of SErnb uses fresh coin tosses for V̂ , therefore each of the plaintext
distributions (of size 2s) is independently located within the domain of size 2N.s.
Therefore, a polynomial-time (CPA) adversary that queries the encryption oracle
q times cannot distinguish between two plaintext distributions with a probabil-
ity greater than q.2−s. As q.2−s is negligible in s, SErnb is IND,NM,WP-secure.
This result along with that of SEbk complete the proof. ⊓⊔

Lemma 3. SEecb sem
⇒ SEbk; SEbk Ó

sem
⇒ SEecb

Proof. From the proof construction in Lemma 2, we know that SEbk is WP,NM-
secure but is not IND-secure. Similarly, from the proof of Lemma 1, we know
that SEecb is WP-secure but is not NM,IND-secure. Combining these results
proves this lemma. ⊓⊔

Lemma 4. SErn sem
⇒ SErnb; SErnb Ó

sem
⇒ SErn;

Proof. From the proof constructions of Lemma 2 and Lemma 1, we know that
SErn is WP,IND-secure but not NM-secure, and SErnb is WP,NM,IND-secure.
Hence the implication and non-implication hold. ⊓⊔

Lemma 5. SErn Ó
sem
⇒ SEbk; SEbk Ó

sem
⇒ SErn;

Proof. Trivial from the security properties of SErn and SEbk in Lemma 3-4. ⊓⊔

Lemma 6. ŜErn sem

≡ ̂SEcbc∗ sem

≡ ̂SEcbc

Proof. The three schemes are not NM-secure: reordering the encrypted terms in

ŜErn is trivial and the corresponding plaintext will be be a permuted version
of the original plaintext ; for the other two encryption schemes, on can simply

Private-key Symbolic Encryption 15

delete the last encrypted term and the corresponding plaintext will be a trun-
cated version of the original plaintext.
Since IND-security implies WP-security, we only show the equivalence under
IND-security. The equivalence relations hold if the three probability distribu-
tions (constructed from the cryptographic semantics and corresponding to the

symbolic encryption of a message M in ŜErn, ̂SEcbc∗, and ̂SEcbc) are computa-
tionally indistinguishable. Note that for this proof it is not necessary whether or
not a particular scheme is IND-secure, which although is implied from the proof

construction of Lemma 1, namely ŜErn is IND-secure.

First, we consider ̂SErn(M): V̂1, {M̂1}
K̂,V̂1

, ..., V̂i, {M̂i}K̂,V̂i

, ..., V̂N , {M̂N }
K̂,V̂N

.

As per Def. 2, we can replace N free variables with N uniformly distributed vari-
ables: U1

s , {M̂1}
K̂,U1

s

, ..., U i
s, {M̂i}K̂,Ui

s

, ..., UN
s , {M̂N }

K̂,UN
s

.

We have PDF({M̂1}
K̂,Ui

s

) ≡ PDF (U i′

s) due to the definition of UV-PRF (see Ap-

pendix. B). Therefore, PDF(̂SErn(M)) = PDF(U1

s , U1
′

s , U2

s , U2
′

s , ..., UN
s , UN ′

s).

Next, we consider ̂SEcbc∗(M): V̂1, {M̂1}
K̂,V̂1

, ..., {M̂i}K̂,Ĉi−1

, ..., {M̂N }
K̂,ĈN−1

.

Replacing the free variable V1 with a uniformly distributed variable, we get the
following: U1

s , {M̂1}
K̂,U1

s

, ..., {M̂i}K̂,Ĉi−1

, ..., {M̂N }
K̂,ĈN−1

.

We have PDF({M̂1}
K̂,U1

s

) ≡ PDF(U2
′′

s) due to the definition of UV-PRF (see

Appendix B). Recursively applying this relation on each term, we get

PDF(̂SEcbc∗(M)) = PDF(U1

s , U2
′′

s , ..., UN ′′

s).

In the third case, we consider ̂SEcbc(M):

V̂1, {M̂1 ⊕ V̂1}
K̂

, ..., {M̂i ⊕ Ĉi−1}
K̂

, ..., {M̂N ⊕ ĈN−1}
K̂
.

Replacing the free variable V1 with a uniform distribution, we get the following:
U1

s , {M̂1 ⊕ U1

s }
K̂

, ..., {M̂i ⊕ Ĉi−1}
K̂

, ..., {M̂N ⊕ ĈN−1}
K̂
.

We have PDF({M̂1 ⊕ U1

s }
K̂
) ≡ PDF(U2

′′′

s) due to the definition of Xor opera-
tor (PDF(Us) = PDF(Us ⊕ M)) and the definition of UV-PRF. Applying this
property to all of the terms we get the following relation:

PDF(̂SEcbc∗(M)) = PDF(U1

s , U2
′′′

s , ..., UN ′′′

s).

Clearly, in all of the three cases, the distribution of a ciphertext is on a series
of random variables on the same uniform distribution of size s. Further, we can
always make the lengths of the ciphertexts in the last two cases equal to the first
case by inserting dummy random variables. Therefore, these three schemes are
cryptographically equivalent. ⊓⊔

The results presented in this section rely on the cryptographic semantics of
symbolic encryption. Using these semantics, the assumed cryptographic proper-
ties for these schemes are easy to interpret. In reality, however, a formal security
model relies on some formal semantics (e.g., reduction semantics [9]), rather than
any cryptographic semantics, for its correctness. A formal security model is es-
sentially a logical system that supports the execution of a protocol. In practice,
it may be the case that no formal security model is able to capture the differ-

16 Ahmed, Jensen, Zenner

ence between the four symbolic encryption schemes, which are cryptographically
different.

In the next section, however, we show that there exists a formal security
model in which the four symbolic encryption schemes are non-overlapping, i.e.,
these schemes do provide different types of security guarantees when used to
model protocol executions. The formal analysis tool that we use to demonstrate
our results is OFMC [16] (Open Source Fixedpoint Model Checker), a symbolic
model checker for security protocols.

6 Separation in Practice

We use a constructive approach to show non-implications between the four no-
tions of symbolic encryption in a formal security model. In particular, we in-
vented four experimental (but not artificial) protocols and analyze their security
for unbounded (infinite) number of symbolic sessions in OFMC. The purpose is
to demonstrate that a security goal achieved by an experimental protocol de-
pends on what notion of encryption is being used. Clearly, if a protocol achieves
its goal using one type of encryption but fails if a different type of encryption
is used then the protocol construction serves as a constructive proof of non-
implication between the two types of encryption.

The tool OFMC consists of two different modules that run in parallel. For
our purpose (to show non-implications), we rely on the Fixedpoint module, which
uses abstract interpretation and over-approximation to verify protocols, by guar-
anteeing that no unsafe state is reachable no matter how many symbolic sessions
are executed in parallel. Another nice feature of the Fixedpoint module is that
it can generate security proofs for the interactive theorem prover Isabelle [34].

The four experimental protocols are listed in Fig. 4. The end-results implying
the separation are shown in Fig. 5, where non-implications as proved in the pre-
vious section are also valid in OFMC. The OFMC specifications of all referenced
protocols in this section can be found in Appendix C.

In the first protocol, a party B wants to send a confidential piece of data D
to A, using an agreed session key g(Na, Nb, K). Here, f(.) and g(.) are (public)
symbolic functions. This protocol uses SEecb and the result of the security anal-
ysis (in OFMC) shows that the protocol is secure with respects to its goal, i.e.,
confidentiality of D. This shows that there exist a secure symbolic protocol that
only relies on the weak form of privacy provided by SEecb.

The goal of the second protocol is the same as that of the first one, but it
uses a different construction. We specify this protocol in three different ways,
using SEbk, SErn and SEecb respectively, as listed in Appendix C. The analysis
results show that the protocol is secure when SEbk is used but is insecure (i.e.,
there exists an attack trace) when the other two forms of encryption are used.
Hence, SEbk implies neither SEecb nor SErn. Therefore SEbk provides a different
type of security in this symbolic model.

In the third experimental protocol, the goal is to transmit D from B to A
with both confidentially and authentication guarantees. This protocol is specified

Private-key Symbolic Encryption 17

Protocol 1
(1) A −→ B : NA

(2) B −→ A : {NA}AB , {NB}AB

(3) A −→ B : {K}AB , {f(NA, NB)}AB

(4) B −→ A : {D}g(K,NA,NB)

Goal: Confidentiality of D

Protocol 2
(1) A −→ B : NA

(2) B −→ A : {NA, NB}AB

(3) A −→ B : {f(NA, NB)}AB

(4) B −→ A : {D}f(NA,NB)

Goal: Confidentiality of D

Protocol 3
(1) A −→ B : V1, {A}KAB ,V1

, V2, {B}KAB ,V2
, V3, {V2}KAB ,V3

(2) B −→ A : {D}KAB ,V2

Goal: Authenticity and Confidentiality of D

Protocol 4
(1) A −→ S : V1, {A, B}KSA,V1

(2) S −→ B : V1, {A, B, K, {K}SA}KSB ,V1

(3) B −→ A : {K}SA, {D}K

Goal: Authenticity and Confidentiality of D

Fig. 4. Experimental Protocols for the Separation of Symbolic Encryption Schemes

in two different ways: one with SErn and the other using the SEecb. The analysis
results shows that the protocol is secure with SErn but there is an attack if the
SEecb is used. This demonstrates the non-implication from SErn to SEecb.

In the fourth experimental protocol, the goal is to transmit D from B to A us-
ing a server generated key K, with authentication and confidentiality guarantees.
The protocol is specified in three different ways, firstly, using SErnb (randomized
bulk symbolic encryption), secondly, using SErn, and thirdly, using SEbk. The
protocol is secure in the first case, but it is insecure in both of the later cases.
This demonstrates two more non-implication results.

As shown in Fig. 5, separation results implies that the four notions of en-
cryption indeed provide different types of security in a complete formal model.
In the next section, we discuss some other interesting aspects of our work.

7 Discussion

In practice, it is nonetheless dangerous to assume that a system developer will
actually discover and use the correct cryptographic scheme that meets the secu-
rity requirements of a particular use of symbolic encryption, especially when the
cryptographic semantics are not provided. That is why, the developers often use
an implementation instance that seems appropriate, e.g., in this paper, the CBC
implementations of encryption in NSSK and DSKK protocols indeed guarantee

18 Ahmed, Jensen, Zenner

Fig. 5. Separation of Different type of Encryption in Symbolic Models

privacy in a strong sense [29]; however, non-malleability of the ciphertexts, an
implicit assumption, is also required for the security of these protocols.

On the other hand, one may always choose to employ a strong encryption
scheme meeting the requirements of SErnb, however, the cost associated with
such an overly cautious approach cannot be ignored in practice. For example,
if the symbolic model of a protocol that uses SEecb is secure then this means
that the protocol can be implemented in a relatively efficient manner: a random
number generator is not required; the algorithm for message authentication code
(MAC, used to guarantee non-malleability) is not required; and communication
bandwidth is reduced because we do not need to transmit initialization vectors
and MAC codes. Moreover, parallelization of the encryption process is straight
forward, which may significantly reduce the execution time on a multi-core ar-
chitecture. In many applications, such optimizations can make a huge difference,
e.g., a hypervisor which has to process millions of requests per second. Our sepa-
ration results show that many symbolic protocols remain secure when encryption
requirements are met by a weaker symbolic encryption scheme, such as SEecb or
SEcbc; in this way a level of safe optimization can be achieved.

In our observations, most people do not use randomized encryption in formal
security models. It is evident from our work that randomness in a symbolic
encryption scheme helps to provide stronger security guarantees—a fact that is
well known in cryptography for a long time [29].

The attacks listed in § 3 and § 4 were not discovered using any tool, rather
they were discovered using an old-fashioned paper-pencil method. After their
discovery, we tried to reproduce them in OFMC. Since Xor operation (used
in CBC-mode encryption) cannot be modeled in symbolic models, we used the
equivalent form of CBC mode, SErn. The tool reported different types of attacks,
which can be found in Appendix A; we were unable to reproduce the reported
attacks because the tool stops the exhaustive search as soon as it discovers an
attack. Nevertheless, these observations indicate that the insecurity of protocols

Private-key Symbolic Encryption 19

can be detected more effectively by modeling cryptographic encryption using the
proposed encryption schemes.

It is important to remember that safely instantiating a symbolic encryption
scheme with a cryptographic encryption scheme does not mean that the resul-
tant protocol will be secure, because there are many attacks that do not rely on
encryption, e.g., Lowe’s attack [14] on public-key version of Needham-Schroeder
protocol relies on the assumption of a corrupt insider, Denning-Sacco’s attack [4]
relies on the availability of a compromised old session key. Moreover, there are
many security vulnerabilities that are outside the realm of (mathematical) cryp-
tography, e.g., buffer-overflow.

8 Conclusion

In this paper, we reported new attacks on reasonable implementations of well-
known protocols. It appears that there is no inherent limitation in symbolic mod-
els which may have prevented detecting these attacks in an automated manner.
We notice that encryption on multiple terms is traditionally specified as one
big monolithic encrypted block, which, however, is not a good way of specify-
ing it for practice-oriented security analysis. We presented four refined ways in
which encryption can be specified in a symbolic model, and we show that each
of these specifications implies a different set of cryptographic requirements. The
proposed specifications not only help to avoid many implementation vulnera-
bilities similar to the reported attacks, but they also provide a degree of safe
optimization. We hope that our work will bring symbolic encryption closer to
the secure implementation of encryption.

References

1. Bellare, M. and Rogaway, P.: On the construction of variable-input-length ciphers,
In Proc.: Fast Software Encryption, pub. Springer, pp. 231–244, 1999

2. Needham, R.M., Schroeder, M.D.: Using encryption for authentication in large
networks of computers, Communications of the ACM 21(12), pp. 993–999, 1978

3. Needham, R.M., Schroeder, M.D.: Authentication revisited, ACM SIGOPS Oper-
ating Systems Review 21(1), pub. ACM, pp. 7–7, 1987

4. Denning, D.E., Sacco, G.M.: Timestamps in key distribution protocols, Commu-
nications of the ACM 24(8), pub. ACM, pp. 533–536, 1981

5. Abadi, M., Rogaway, P.: Reconciling Two Views of Cryptography, In TCS: Ex-
ploring New Frontiers of Theoretical Informatics, pub. Springer, pp. 3–22, 2000

6. Dolev, D., Yao, A.C.: On the security of public key protocols, IEEE Transactions
on Information Theory, IT-29(12), pp. 198–208, 1983

7. Chevalier, Y., Kusters, R., Rusinowitch, M., Turuani, M.: An NP decision procedure
for protocol insecurity with XOR, In Proc.: IEEE Symp. on Logic in CS, 2003

8. Abadi, M., Gordon, A.D.: Reasoning about cryptographic protocols in the spi cal-
culus, CONCUR’97: Concurrency Theory, Springer-Verlag LNCS, 1997

9. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R.: Static validation
of security protocols, Journal of Computer Security 13(3), pp. 347–390, 2005

20 Ahmed, Jensen, Zenner

10. Micciancio, D., Warinschi, B.: Soundness of formal encryption in the presence of
active adversaries, Theory of Cryptography, pub. Springer, pp. 133–151, 2004

11. Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with
nested operations, In Proc.: ACM Conf. on Comp. and Comm. Sec., 2003

12. Canetti, R., Herzog, J.: Universally Composable Symbolic Security Analysis, Jour-
nal of cryptology 24(1), pp. 83–147, 2011

13. Herzog, J., Liskov, M., Micali, S.: Plaintext awareness via key registration, Ad-
vances in Cryptology-CRYPTO 2003, pp. 548–564, 2003

14. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR, In J.: Tools and Algo. for Constr. and Analysis of Sys., Springer, 1996

15. Meadows, C.: Formal methods for cryptographic protocol analysis: Emerging issues
and trends, In J.: Selected Areas in Communications 21(1), pub. IEEE, 2003

16. Basin, D., Mödersheim, S., Vigano, L.: OFMC: A symbolic model checker for se-
curity protocols, In J.: Int. J. of Info. Security 4(3), Springer, pp. 181–208, 2005

17. Boyd, C.: Hidden assumptions in cryptographic protocols, IEE Proceedings: Com-
puters and Digital Techniques 137(6), pp. 433–436, 1990

18. Stubblebine, S.G., Meadows, C.A.: Formal characterization & automated analysis
of known-pair & chosen-text attacks, In J.: Selected Areas in Comm., IEEE, 2000

19. W. Mao and C. Boyd, On the use of encryption in cryptographic protocols, Codes
and Cyphers, available via Citeseer, 1995

20. Shoup, V.: OAEP reconsidered, Journal of Cryptology 15(4), 2008
21. Kremer, S., Ryan, M.D.: Analysing the vulnerability of protocols to produce known-

pair and chosen-text attacks, Electronic Notes in TCS 128(5), Elsevier, 2005
22. Moore, J.H.: Protocol failures in cryptosystems, In: Proceedings of the IEEE

76(5), pp. 594–602, 1988
23. Paterson, K., Yau, A.:Cryptography in theory and practice: The case of encryption

in IPsec, Advances in Cryptology-EUROCRYPT, pp. 12–29, 2006
24. Degabriele, J.P., Paterson, K.: Attacking the IPsec standards in encryption-only

configurations, IEEE Symposium on Security and Privacy, pp. 335–349, 2007
25. Küsters, R., Truderung, T.: Reducing protocol analysis with xor to xor-free case in

horn theory based approach, In Proc.: ACM Comp. & Comm. Security, 2008
26. Chevalier, Y., Vigneron, L.: Automated unbounded verification of security protocols,

Computer Aided Verification, pub. Springer, pp. 125–171, 2002
27. Boyd, C., Mathuria, A.: Protocols for authentication and key establishment, pub.

Springer, 2003
28. Bellovin, S.M.: Problem areas for the IP security protocols, In: 6th Usenix UNIX

Security Symposium, 1996
29. Goldwasser, S., Micali, S.: Probabilistic encryption, In: Journal of computer and

system sciences, 28(2), pp.270–299, 1984
30. Katz, J., Yung, M.: Complete characterization of security notions for probabilistic

private-key encryption, In Proc.: ACM Symp. on Th. of Computing, 2000
31. Goldreich, O. and Goldwasser, S. and Micali, S.: How to construct random func-

tions, In J.: JACM 33(4), pub. ACM, pp.792–807, 1986
32. Bellare, M., Kilian, J. and Rogaway, P.: The security of the cipher block chaining

message authentication code, In J.: Elsevier Comp. and Sys. Sc. 61(3), 2000
33. Goldreich, O.: Foundations of Cryptography: 1 & 2, Cambridge Univ. Press, 2004
34. Nipkow, T., Paulson, L.C., and Wenzel, M.: Isabelle/HOL: a proof assistant for

higher-order logic, Springer Verlag, 2002
35. Barthe, G., Grégoire, B., Heraud, S., and Béguelin, S.Z.: Computer-Aided Security

Proofs for the Working Cryptographer?, CRYPTO, 2011

Private-key Symbolic Encryption 21

A Other Attacks on NSSK and DSSK protocols

The attack in Fig. 6 is on the ECB-version of the DSSK protocol, and it is quite
similar to the attack on the ECB-version of the NSSK protocol reported in the
paper.

Steps Messages

Setup-(a)
(1) I −→ S : I, B

(2) S −→ I : {B}SI , {K1}SI , {T1}SI , {{I}SB}SI , {{K1}SB}SI ,

{{T1}SB}SI

Setup-(b)
(1) I(A) −→ S : A, K′

1 = {K1}SB

(2) S −→ I(A) : {{K1}SB}SA, {K2}SA, {T2}SA, {{A}SK′

1

}SA,

{{K2}SK′

1

}SA, {{T2}SK′

1

}SA

Setup-(c)
(1) I(A) −→ S : A, K1

(2) S −→ I(A) : {K1}SA, {K3}SA, {T3}SA, {{A}SK1
}SA,

{{K3}SK1
}SA, {{T3}SK1

}SA

Attack
(1) A −→ S : A, B

(2a) S −→ I(A) : {B}SA, {K4}SA, {T4}SA, {{A}SB}SA,

{{K4}SB}SA, {{T4}SB}SA

(2b) I(S) −→ A : {B}SA, {K1}SA, {T4}SA, {{A}SB}SA,

{{K1}SB}SA, {{T4}SB}SA

(3) A −→ B : {{A}SB}SA, {{K1}SB}SA, {{T4}SB}SA

Fig. 6. Attack on ECB-version of DSSK Protocol

The attacks in Fig 7 and Fig. 11 are impersonation attacks, which are re-
ported in the output of OFMC analysis of the ECB-versions of NSSK and DSSK
protocols; the attack in Fig 8 was indicated in the feedback that we received ini-
tially. Interestingly, we can also attack the CBC-version of the NSSK protocol
using the same idea as listed in Fig. 9 and Fig. 10, however, the CBC-version of
the DSSK protocol cannot be attacked on the same lines.
In the ECB-version of the NSSK protocol, A shares NA as the session key

with I, while in its CBC-version the session key is iv1 ⊕ NA ⊕ c2; for the DSSK
protocol, the session key is T4.

(1) A −→ S : A, B, NA

(2a) S −→ I(A) : {NA}SA, {B}SA, {K4}SA, {{K4}SB}SA, {{A}SB}SA

(2b) I(S) −→ A : {NA}SA, {B}SA, {NA}SA, {{K4}SB}SA, {{A}SB}SA

Fig. 7. Another Attack (1) on ECB-version of NSSK Protocol

22 Ahmed, Jensen, Zenner

(1) A −→ S : A, B, NA

(2a) S −→ I(A) : {NA}SA, {B}SA, {K4}SA, {{K4}SB}SA, {{A}SB}SA

(2b) I(S) −→ A : {NA}SA, {B}SA, {K4}SA, {K4}SA, {{A}SB}SA

(3) A −→ B : K4, {{A}SB

Fig. 8. Another Attack (2) on ECB-version of NSSK Protocol

(1) A −→ S : A, B, NA

(2a) S −→ I(A) : iv1, iv2, c1 = {iv1 ⊕ NA}SA, c2 = {c1 ⊕ B}SA, c3 = {c2 ⊕
K4}SA, c4 = {c3 ⊕ {iv2 ⊕ K4}SB}SA, c5 = {c4 ⊕ {{iv2 ⊕ K4}SB ⊕
B}SB}SA

(2b) I(S) −→ A : iv1, iv2, c1 = {iv1 ⊕ NA}SA, c2 = {c1 ⊕ B}SA, c1 = {iv1 ⊕
NA}SA, c4 = {c3 ⊕ {iv2 ⊕ K4}SB}SA, c5 = {c4 ⊕ {{iv2 ⊕ K4}SB ⊕
B}SB}SA

Fig. 9. Another Attack (1) on CBC-version of NSSK Protocol

(1) A −→ S : A, B, NA

(2a) S −→ I(A) : iv1, iv2, c1 = {iv1 ⊕ NA}SA, c2 = {c1 ⊕ B}SA, c3 = {c2 ⊕
K4}SA, c4 = {c3 ⊕ {iv2 ⊕ K4}SB}SA, c5 = {c4 ⊕ {{iv2 ⊕ K4}SB ⊕
B}SB}SA

(2b) I(S) −→ A : iv1, iv2, c1 = {iv1 ⊕ NA}SA, c2 = {c1 ⊕ B}SA, c3 = {c2 ⊕
K4}SA, c3 = {c2 ⊕ K4}SA, c5 = {c4 ⊕ {{iv2 ⊕ K4}SB ⊕ B}SB}SA

(3) I(S) −→ A : c3 ⊕ c2 ⊕ K4, c3 ⊕ c4 ⊕ {{iv2 ⊕ K4}SB ⊕ B}SB

Fig. 10. Another Attack (2) on CBC-version of NSSK Protocol

(1) A −→ S : A, B

(2a) S −→ I(A) : {B}SA, {K4}SA, {T4}SA, {{A}SB}SA,

{{K4}SB}SA, {{T4}SB}SA

(2b) I(S) −→ A) : {B}SA, {T4}SA, {T4}SA, {{A}SB}SA,

{{K4}SB}SA, {{T4}SB}SA

Fig. 11. Another Attack on ECB-version of DSSK Protocol

Private-key Symbolic Encryption 23

B Computational Indistinguishability of Us and UV-PRF

First, we claim that PDF(Us) ≡ PDF({Ûs}
K̂
) for an adversary I who repeats

the following indistinguishability experiment p times and asks q queries from an
encryption oracle computing {M̂}

K̂
, on adversary’s input of M .

Experiment: The value of Us is selected from public fair coin tosses, in par-
ticular, I cannot influence the outcome but he knows the outcome. Then,
Us is forwarded to a challenger. The challenger has a hidden binary value
b chosen from a fair coin toss before the start of the game and remains the
same in all experiments involving I. If b = 0, the challenger returns another
random variable U ′

s. If b = 1, the challenger returns {Ûs}
K̂
.

The adversary wins if I has significant advantage in correctly computing
the value of b at the end of a game. The relation PDF(Us) ≡ PDF({Ûs}

K̂
)

holds if the adversary’s advantage in a game involving p above experiments is
negligible in s. By definition, UV-PRF uses internal coin tosses to compute its
output if the input is a new value. In this case, the output will be uniformly
distributed. If a UV-PRF is queried on an input that it has previously received
then the reply will be deterministic. In the first case, the adversary can not
gain any information and in the later case he may gain some information. So
we calculate the probability of the event that a UV-PRF performs internal coin
tosses, in a given experiment on input Us. This probability represents an upper
bound on adversary’s advantage: AdvI(p, q) ≤ (p + q).2−s, which is negligible
in s. Therefore I cannot win with a probability significantly greater than 0.5 (a
random guess).

Next, we claim that PDF(Us) ≡ PDF({Ûs}N

K̂
), where {Ûs}N

K̂
) stands for

N recursive calls to the UV-PRF, as done in the last (Nth) encrypted term
in SEcbc∗(M) and SEcbc(M). The experiment in this case is exactly same as

above, except when b = 1, the challenger returns {Ûs}N

K̂
. Clearly, the output of

a recursive call involving N UV-PRFs will be uniformly distributed if at least
one of the UV-PRF performs the internal coin tosses; this will occur with a
probability greater/equal to 1 − (p.N.2−s). Consequently, the upper bound on
adversary’s advantage is as follows: AdvI(p, q, N) ≤ (pN + q).2−s

Since N is assumed to be polynomially bounded in s, therefore the adversary’s
advantage is negligible.
Next we claim that PDF({M̂}

K̂,Us

) ≡ PDF({Ûs}
K̂
). For the input/output

size s = |M |, there are 2s.(2s!) total number of unique UV-PRFs; here, ‘!’ stands

for the factorial function. The family of UV-PRFs corresponding to {M̂}
K̂,Us

contains 22s functions, and the family of UV-PRFs corresponding to {Ûs}
K̂

contains 2s functions. Since 2s ≪ 22s ≪ 2s.(2s!), the probability that same UV-
PRF occurs more than one in a family is negligible in s, namely less than 1/(2s!).

Therefore, the two families are indistinguishable and the relation PDF({M̂}
K̂,Us

) ≡

PDF({Ûs}
K̂

) holds.

24 Ahmed, Jensen, Zenner

Finally, as a consequence of the this equivalence, we have PDF(Us) ≡ PDF({M̂}
K̂,Us

)

and PDF(Us) ≡ PDF({M̂}N

K̂,Us

) for I. ⊓⊔

C Specification and Results for Experimental Protocols

C.1 Protocol 1 (ECB Encryption)

Protocol: toy_1

Types: Agent A,B;

Number NA,NB,D,K;

Function sk,f

Knowledge: A: A,B,sk(A,B),f;

B: A,B,sk(A,B),f

Actions:

A->B: NA

B->A: {|NA|}(sk(A,B)),{|NB|}(sk(A,B))

A->B: {|K|}sk(A,B),{|f(NA,NB)|}(sk(A,B))

B->A: {|D|}(f(K,NA,NB))

Goals:

A ->* B: D

C.2 Protocol 2 (Bulk Encryption)

Protocol: toy2

Types: Agent A,B;

Number NA,NB,D,K;

Function sk,f

Knowledge: A: A,B,sk(A,B),f;

B: A,B,sk(A,B),f

Actions:

A->B: NA

B->A: {|NA,NB|}(sk(A,B))

A->B: {|f(NA,NB)|}(sk(A,B))

B->A: {|D|}(f(NA,NB))

Goals:

A ->* B: D

C.3 Protocol 2 (ECB Encryption)

Protocol: toy2n1

Types: Agent A,B;

Number NA,NB,D,K;

Function sk,f

Knowledge: A: A,B,sk(A,B),f;

B: A,B,sk(A,B),f

Private-key Symbolic Encryption 25

Actions:

A->B: NA

B->A: {|NA|}(sk(A,B)),{|NB|}(sk(A,B))

A->B: {|f(NA,NB)|}(sk(A,B))

B->A: {|D|}(f(NA,NB))

Goals:

A ->* B: D

ATTACK TRACE

(x20,1) -> i: NA(1)

i -> (x602,1): NA(1)

(x602,1) -> i: {NA(1)}_(sk(x20.x602)).{NB(2)}_(sk(x20.x602))

i -> (x20,1): {NA(1)}_(sk(x20.x602)).{NA(1)}_(sk(x20.x602))

(x20,1) -> i: {f(NA(1).NA(1))}_(sk(x20.x602))

i -> (x20,1): {x601}_(f(NA(1).NA(1)))

i -> (i,17): x601

i -> (i,17): x601

C.4 Protocol 2 (Randomized Encryption)

Protocol: toy2n3

Types: Agent A,B;

Number NA,NB,D,K,V1,V2,V3,V4;

Function sk,f

Knowledge: A: A,B,sk(A,B),f;

B: A,B,sk(A,B),f

Actions:

A->B: NA

B->A: V1,{|NA|}(sk(A,B),V1),V2,{|NB|}(sk(A,B),V2)

A->B: V3,{|f(NA,NB)|}(sk(A,B),V3)

B->A: V4,{|D|}(f(NA,NB),V4)

Goals:

A ->* B: D

ATTACK TRACE

(x20,1) -> i: NA(1)

i -> (x602,1): NA(1)

(x602,1) -> i: V1(2).{NA(1)}_(sk(x20.x602).V1(2)).V2(2).{NB(2)}_(sk(x20.x602).V2(2))

i -> (x20,1): V1(2).{NA(1)}_(sk(x20.x602).V1(2)).V1(2).{NA(1)}_(sk(x20.x602).V1(2))

(x20,1) -> i: V3(3).{f(NA(1).NA(1))}_(sk(x20.x602).V3(3))

i -> (x20,1): x510.{x511}_(f(NA(1).NA(1)).x510)

i -> (i,17): x511

i -> (i,17): x511

26 Ahmed, Jensen, Zenner

C.5 Protocol 3 (Randomized Encryption)

Protocol: Toy3

Types: Agent A,B;

Number D,V1,V2,V3;

Function sk

Knowledge: A: A,B,sk(A,B);

B: A,B,sk(A,B)

Actions:

A->B: V1,{|A|}(sk(A,B),V1),V2,{|B|}(sk(A,B),V2),V3,{|V2|}(sk(A,B),V3)

B->A: {|D|}(sk(A,B),V2)

Goals:

B *->* A: D

C.6 Protocol 3 (ECB Encryption)

Protocol: Toy3n1

Types: Agent A,B;

Number D;

Function sk

Knowledge: A: A,B,sk(A,B);

B: A,B,sk(A,B)

Actions:

A->B: {|A|}(sk(A,B)),{|B|}(sk(A,B))

B->A: {|D|}(sk(A,B))

Goals:

B *->* A: D

ATTACK TRACE (Hint: Use -classic option.)

(x702,1) -> i: {x702}_(sk(x702.x702)).{x702}_(sk(x702.x702))

(x702,2) -> i: {x702}_(sk(x702.x702)).{x702}_(sk(x702.x702))

i -> (x702,1): {x702}_(sk(x702.x702)).{x702}_(sk(x702.x702))

(x702,1) -> i: {D(3)}_(sk(x702.x702))

i -> (x702,1): {D(3)}_(sk(x702.x702))

i -> (x702,2): {D(3)}_(sk(x702.x702))

C.7 Protocol 4 (Randomized Bulk Encryption)

Protocol: Toy4

Types: Agent s,A,B;

Number D,K,V1;

Function sk

Knowledge: A: A,B,s,sk(A);

B: A,B,s,sk(B);

s: A,B,s,sk

Actions:

Private-key Symbolic Encryption 27

A->s: V1,{|A,B|}(sk(A),V1)

s->B: V1,{|A,B,K,{|K|}(sk(A))|}(sk(B),V1)

B->A: {|K|}(sk(A)),{|D|}(K)

Goals:

B *->* A: D

C.8 Protocol 4 (Randomized Encryption)

Protocol: Toy4n3

Types: Agent s,A,B;

Number D,K,V1;

Function sk

Knowledge: A: A,B,s,sk(A);

B: A,B,s,sk(B);

s: A,B,s,sk

Actions:

A->s:V1,{|A|}(sk(A),V1),{|B|}(sk(A),V1)

s->B:V1,{|A|}(sk(B),V1),{|B|}(sk(B),V1),{|K|}(sk(B),V1),{|{|K|}(sk(A))|}(sk(B),V1)

B->A:{|K|}(sk(A)),{|D|}(K)

Goals:

B *->* A: D

ATTACK TRACE

i -> (s,1): x305.{i}_(sk(i).x305).{x402}_(sk(i).x305)

(s,1) -> i: x305.{i}_(sk(x402).x305).{x402}_(sk(x402).x305).{K(1)}_(sk(x402).x305).

{{K(1)}_(sk(i))}_(sk(x402).x305)

i -> (x402,1): x305.{x402}_(sk(x402).x305).{x402}_(sk(x402).x305).{K(1)}_(sk(x402).x305).

{{K(1)}_(sk(i))}_(sk(x402).x305)

(x402,1) -> i: {K(1)}_(sk(i)).{D(2)}_K(1)

i -> (i,17): D(2)

i -> (i,17): D(2)

C.9 Protocol 4 (Bulk Encryption)

Protocol: Toy4n2

Types: Agent s,A,B;

Number D,K;

Function sk,f

Knowledge: A: A,B,s,sk(A);

B: A,B,s,sk(B);

s: A,B,s,sk

Actions:

A->s:{|A,B|}(sk(A))

s->B:{|A,B,K,{|K|}(sk(A))|}(sk(B))

B->A:{|K|}(sk(A)),{|D|}(K)

Goals:

B *->* A: D

28 Ahmed, Jensen, Zenner

ATTACK TRACE

(x601,1) -> i: {x601.x602}_(sk(x601))

(x601,2) -> i: {x601.i}_(sk(x601))

i -> (s,1): {x601.i}_(sk(x601))

(s,1) -> i: {x601.i.K(3).{K(3)}_(sk(x601))}_(sk(i))

i -> (x601,1): {K(3)}_(sk(x601)).{x506}_K(3)

