
On the sparse subset sum problem from
Gentry-Halevi’s implementation of fully

homomorphic encryption

Moon Sung Lee

National Institute for Mathematical Sciences, Daejeon, KOREA 151-742
mslee@nims.re.kr

Abstract. In Gentry’s fully homoomrphic cryptosystem, a sparse sub-
set sum problem is used and a big set is included in the public key. In
the implementation of a variant of Gentry’s scheme, to reduce the size
of the public key, Gentry and Halevi used a specific form of a sparse
subset sum problem with geometric progressions. In this note, we show
that their sparse subset sum challenges are rather easy given the aggres-
sive choice of parameters. Our experiment shows that even their large
instance of a sparse subset sum problem could be solved within two days
with probability of about 44%. A more conservative parameter choice
can easily avoid our attack.

Keywords: sparse subset sum, lattice reduction, dimension reduction
method, geometric progression, homomorphic encryption

1 Introduction

In 2009, Gentry described a fully homomorphic cryptosystem based on ideal
lattices [2]. Following Gentry’s framework, several variants and optimizations
of Gentry’s fully homomorphic encryption were introduced [13, 11, 4, 3, 12]. In
Gentry’s scheme, he first constructed a “somewhat homomorphic” scheme that
supports evaluating low-degree polynomials on the encrypted data, squashing
the decryption procedure to a low-degree polynomial that is supported by the
scheme. In this procedure, he used a sparse subset sum and assumed that given
big set of integers and a target sum, it would be difficult to find a sparse subset
that sums up to a target.

Recently, a variant of Gentry’s scheme was implemented [4, 3]. In [3], Gentry
and Halevi showed several optimizations that allow them to implement all as-
pects of the scheme, providing concrete parameter sets with Internet challenges
which consist of main challenges and underlying sparse subset sum challenges.
One of the optimizations used to reduce the public key size in [3] was to con-
struct a specific form of the sparse subset sum. Their sparse subset sum consists
of big sets defined as geometric progressions such that sum of elements in each
big set equals the secret key.

In this paper, we study this specific form of the sparse subset sum problem
(SSSP), showing that it is relatively easy to solve these SSSP challenges due to



2 Moon Sung Lee

the specific form and aggressive parameter choice made in the [3]. Our analysis
and experiments show that even the large SSSP challenge is solvable within two
days with a high probability.

We present two methods with which to attack this problem. The first is
a dimension reduction method which was used in previous research [9, 7]. The
second is a probabilistic method which is more efficient. Both methods use lattice
reduction algorithms with slightly different lattices from those considered in [3].

The rest of the paper is organized as follows. We first review lattices and the
sparse subset sum problem in the next section. In Section 3, we review a specific
form of a sparse subset sum problem and the lattice-based attack considered in
[3] . Our attacks and experimental results are shown in Section 4, after which
we discuss the secure parameter briefly in Section 5. We conclude the paper in
Section 6.

2 Background

2.1 Lattices

A full-rank n-dimensional lattice is a discrete subgroup of Rn, represented as the
set of all integer combinations of some basis matrix B whose rows are linearly
independent vectors b1, . . . ,bn in Rn. This lattice is denoted as L = L(B). The
determinant of a lattice L is denoted as det(L) = |det(B)|.

Short vectors and Lattice basis reduction. The length of the shortest nonzero
vector in a lattice L is denoted λ1(L). Minkowski’s theorem says that we have
λ1(L) <

√
ndet(L)1/n for any n-dimensional lattice L. Heuristically, for random

lattices we do not expect to find any vectors of length l if l� det(L)1/n. However,
for l� det(L)1/n, we expect exponentially many vectors of length l.

Short vectors can be found using lattice basis reduction algorithms, for exam-
ple, the LLL [8] and BKZ [10] algorithms. In small dimensions, the first vector
of the output basis of the LLL algorithm is often shortest nonzero vector in a
lattice.

2.2 Sparse Subset Sum Problem

Given a big set of integers A = {a1, a2, . . . , an}, t and M in Z, a sparse subset
sum problem requires a very sparse subset of a big set which sums up to t modulo
M . In general, a sparse subset sum problem is considered to be hard, and lattice
reduction algorithms do not seem to apply when n is quite large. For efficiency
reasons, Gentry and Halevi used geometric progressions in the big set. Details of
the construction and lattice-based attack considered in [3] are explained in the
next section.



On the sparse subset sum problem from Gentry-Halevi’s implementation 3

3 The Sparse Subset Sum Construction

In [3], instances of a sparse subset sum problem consist of s big sets B1, . . . ,Bs,
each with S elements in Zd such that the sum of the elements in each Bk equals
the secret key w modulo d. The public key includes s big sets, namely s · S
elements from Zd. To reduce the size of this public key, big sets are defined
as geometric progressions in Zd: the k’th big set Bk consists of the elements
x(k, i) = 〈xk ·Ri〉d for i = 0, 1, . . . , S− 1, where R is some public parameter and
〈z〉d represents a reduction of z modulo d. Thus, there is a single secret index ik
in every big set such that∑

k

x(k, ik) =
∑
k

xk ·Rik = w (mod d). (1)

At this point, this specific form of SSSP requests these secret indexes.

Gentry and Halevi chose the parameter R to avoid lattice-based attacks.
More specifically, the following basis is considered to set the parameter R,

B =



1 x(1, 0)
1 x(2, 0)
. . .

1 x(s, 0)
1 −w

d


=



1 x1
1 x2
. . .

1 xs
1 −w
d


. (2)

Clearly, the lattice L = L(B) contains a vector (Ri1 , Ri2 , . . . , Ris , 1, 0) which re-
veals secret indexes. To hide this vector, R was chosen such that R(s+1)(S−1) >
d ≈ 2nt. This choice ensures that the length of this secret vector is larger than
λ1(L(B)) according to Minkowski’s theorem. Thus, finding the shortest vector
in L(B) does not reveal the secret indexes. The parameters of the fully homo-
morphic scheme used for public challenges are shown in Table 1 [3, Table 3].

In the next section, we modify the above lattice basis to make the shortest
vector reveal the secret indexes.

sparse big-set big-set
Dimension n bit-size t subset-size s size S ratio R

Toy 512 380 15 512 226

Small 2048 380 15 512 2102

Medium 8192 380 15 547 2381

Large 32768 380 15 2185 2381

Table 1. Parameters of the fully homomorphic scheme



4 Moon Sung Lee

4 Solving the SSSP challenges

In this section, we modify the above lattice basis in two ways, one leads to
a deterministic method to SSSP while the other one leads to a probabilistic
method. Also, experimental results of the second method are shown since it is
faster.

Recall that R was chosen such that

RS−1 > d1/(s+1). (3)

To reverse this inequality, we increase the right-hand side in Section 4.1; while
we decrease the left-hand side in Section 4.2.

4.1 Dimension reduction method

Note that ik in equation (1) has only S possibilities. Using this fact, we use the
dimension reduction method which was used to attack NTRU [6] in [9] and later
against GGH [5] in [7]. Namely, for each possibility of i1, we find the shortest
vector in the lattice generated by the following basis matrix

B′ =


1 x2N
.. .

1 xsN
1 〈−w + x1R

i1〉dN
dN

 , (4)

for a suitable constant N which could be set to d1/s. At this stage, this lattice
L(B′) has the dimension (s+ 1); for the correct index i1, the shortest vector is
expected to reveal the secret indexes if RS−1 < d1/s, which is the case for the
parameters in [3]. Reducing the dimension of the lattice basis by one, we could
make the shortest vector of the lattice reveal the secret indexes if we know i1.
Because we do not know i1, we should try S times.

In general, we need to choose the integer k0 such that RS−1 < d1/(s+1−k0)

and try Sk0 times. In the SSSP challenges, k0 = 1 is sufficient.
This clearly shows that the SSSP challenges in [3] are rather easily solvable

by lattice-based attacks. In the next subsection, we present another method.

4.2 Probabilistic method

To decrase the left-hand side of equation (3), we first select the integer l0 such
that

RS−1−l0 < d1/(s+1). (5)

Then randomly choose non-negative integers l1, l2, . . . , ls less than or equal to
l0. Assuming the secret indexes of the SSSP are generated randomly, the secret
index ik should be distributed uniformly in the set {0, 1, . . . , S − 1}. Here, we



On the sparse subset sum problem from Gentry-Halevi’s implementation 5

can expect that with a probability of (S − l0)/S, the secret index ik is in the
interval [lk, lk + S − 1− l0]. When this situation arises, equation (1) becomes∑

k

xk ·Rik =
∑
k

xkR
lk ·Rik−lk = w (mod d), (6)

and the shifted secret vector (Ri1−l1 , Ri2−l2 , . . . , Ris−ls , 1, 0) may be the shortest
vector in the lattice generated by following basis matrix

B′′ =



1 〈x1Rl1〉dN
1 〈x2Rl2〉dN
.. .

1 〈xsRls〉dN
1 −wN

dN


, (7)

for the suitable constant N , which is set to d1/(s+1). With a probability of ((S−
l0)/S)s, the length of the shifted secret vector could be the shortest vector of
L(B′′) since

RS−1−l0 < d1/(s+1) = (dN)1/(s+2). (8)

Thus, lattice reduction algorithms would find the secret indexes with a proba-
bility of ((S − l0)/S)s.

Due to the aggressive parameter choice, a rather small l0 is sufficient. For a
small challenge, l0 = 35 satisfies equation (5) and the probability of success is
about 34%. For a large challenge, l0 = 114 is sufficient and the success probability
becomes 44%.

In the next subsection, the experimental results of this method for SSSP
challenges are shown.

4.3 Experiments

For experiments, we used small and medium challenges from the homepage1 as
well as a large challenge obtained from the authors of [4]. The integer l0 was
chosen as shown in the Table 2 such that equation (5) is satisfied. And non-
negative integers l1, . . . , ls less than l0 are randomly chosen. Then the lattice
basis B′′ is reduced using the LLL algorithm in the FPLLL library [1]. In the
results, we could find the secret indexes for all SSSP challenges.

Timing results for SSSP challenges are shown in the Table 2. As the table
shows, even the large challenge is solved within two days. Our experiment was
conducted in a CPU core i7 running at 3.40GHz. This clearly shows that the
parameter choice for the SSSP in [4] was too aggressive in that it did not consider
these attacks.

1 https://researcher.ibm.com/researcher/view_project.php?id=1548



6 Moon Sung Lee

sparse big-set lattice
subset-size s size S determinant d l0 reduction time

Small 15 512 log2 d ≈ 785006 35 7m
Medium 15 547 log2 d ≈ 3148249 35 1h 49m

Large 15 2185 log2 d ≈ 12625500 114 34h 22m
Table 2. Timing results for SSSP challenges

5 Discussion

To remedy our attack, it is necessary to change the parameters such that RS−1 �
d1/(s+1). One could use larger values for s and/or R. For example, as noted in
[3], using s = 30 is likely to increase the size of the key (and the running time)
by only about 5-10%. When this choice is made, our attacks become inefficient.
Our first attack, dimension reduction method needs to eliminate at least 16 rows,
implying a complexity level of at least S16. Our probabilistic method also requires
l0 ≈ S/2 implying that the probability of success is only about 2−s = 2−30. Thus,
this seems to be a reasonable choice.

Note that our result does not imply the insecurity of the fully homomor-
phic encryption in [3], as we only solved a sparse subset sum problem with the
knowledge of w, which is a secret key in practice. As is discussed in [12], the real
attacker of homomorphic encryption scheme does not know the secret key w and
would encounter what has been termed the hidden sparse subset sum problem,
which we do not know how to solve at present.

6 Conclusion

In this paper, we demonstrated how to solve a specific form of the sparse subset
sum problem given in [3] using lattice reduction algorithms. Our experiments
show that the parameter choice in [3] is too aggressive. We also note that modi-
fying the parameters easily remedies this situation. Although our attack is not a
threat to the fully homomorphic encryption in [3] in practice, it shows that one
should be careful when embedding structures into the problem, such as geometric
progressions into a sparse subset sum problem in this case.

References

1. Cadé, D., Pujol, X., Stehlé, D.: FPLLL library, version 3.1.1, http://perso.ens-
lyon.fr/damien.stehle

2. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of the 41st annual ACM symposium on Theory of computing, STOC ’09, pages
169–178, New York, NY, USA, 2009. ACM.

3. Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic en-
cryption scheme. Cryptology ePrint Archive, Report 2010/520, 2010. http:

//eprint.iacr.org/, full version of [4].



On the sparse subset sum problem from Gentry-Halevi’s implementation 7

4. Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryp-
tion scheme. In Kenneth Paterson, editor, Advances in Cryptology – EUROCRYPT
2011, volume 6632 of Lecture Notes in Computer Science, pages 129–148. Springer
Berlin / Heidelberg, 2011. 10.1007/978-3-642-20465-4 9.

5. Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems
from lattice reduction problems. In Proceedings of the 17th Annual International
Cryptology Conference on Advances in Cryptology, pages 112–131, London, UK,
1997. Springer-Verlag.

6. Jeffrey Hoffstein, Jill Pipher, and Joseph Silverman. Ntru: A ring-based public key
cryptosystem. In Joe Buhler, editor, Algorithmic Number Theory, volume 1423 of
Lecture Notes in Computer Science, pages 267–288. Springer Berlin / Heidelberg,
1998. 10.1007/BFb0054868.

7. Moon Lee and Sang Hahn. Cryptanalysis of the ggh cryptosystem. Mathematics
in Computer Science, 3:201–208, 2010. 10.1007/s11786-009-0018-5.

8. Ak Lenstra, H W Lenstra, and L Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, 261(4):515–534, 1982.

9. Alexander May and Joseph Silverman. Dimension reduction methods for convo-
lution modular lattices. In Joseph Silverman, editor, Cryptography and Lattices,
volume 2146 of Lecture Notes in Computer Science, pages 110–125. Springer Berlin
/ Heidelberg, 2001. 10.1007/3-540-44670-2 10.

10. C. P. Schnorr and M. Euchner. Lattice basis reduction: Improved practical algo-
rithms and solving subset sum problems. Mathematical Programming, 66:181–199,
1994. 10.1007/BF01581144.

11. N. Smart and F. Vercauteren. Fully homomorphic encryption with relatively small
key and ciphertext sizes. In Phong Nguyen and David Pointcheval, editors, Public
Key Cryptography – PKC 2010, volume 6056 of Lecture Notes in Computer Science,
pages 420–443. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-642-13013-7 25.

12. N.P. Smart and F. Vercauteren. Fully homomorphic simd operations. Cryptology
ePrint Archive, Report 2011/133, 2011. http://eprint.iacr.org/.

13. Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully
homomorphic encryption over the integers. In Henri Gilbert, editor, Advances
in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer
Science, pages 24–43. Springer Berlin / Heidelberg, 2010. 10.1007/978-3-642-13190-
5 2.


