
Single Layer Optical-scan Voting with Fully Distributed Trust?

Aleksander Essex1, Christian Henrich2, and Urs Hengartner1

1 Cheriton School of Computer Science
University of Waterloo

Waterloo, ON, Canada N2L 2G1
{aessex,uhengart}@cs.uwaterloo.ca
2 Institut für Kryptographie and Sicherheit/EISS

Kahrlsruhe Institute of Technology
76128 Karlsruhe, Germany

christian.henrich@kit.edu

Abstract

We present a new approach for cryptographic end-to-end verifiable optical-scan voting. Ours is the first that does not
rely on a single point of trust to protect ballot secrecy while simultaneously offering a conventional single layer ballot
form and unencrypted paper trail. We present two systems following this approach. The first system uses ballots with
randomized confirmation codes and a physical in-person dispute resolution procedure. The second system improves
upon the first by offering an informational dispute resolution procedure and a public paper audit trail through the use
of self-blanking invisible ink confirmation codes. We then present a security analysis of the improved system.

1 Introduction

Research into cryptographically “end-to-end” verifiable optical-scan voting systems has come a long way toward
practicality. This progress has not come easily: academics and election administrators often struggle to agree on a
vast and often orthogonal set of core system properties. Similar in spirit to Benaloh [2], we advocate the coexistence
of modern cryptographic proofs of correctness and conventional, lower-tech, methods for auditing elections. In this
paper we tackle a long standing trade-off of properties in the voting literature: distributed trust versus a conventional
optical-scan paper ballot form.

Typically cryptographic voting schemes allow the voter to construct a receipt of their vote enabling each voter to
confirm the inclusion of their ballot in the election tally. In order to protect ballot secrecy, the association between a
receipt and the corresponding (clear-text) vote must be kept hidden at all times. Many proposals have relied on trusted
entities or hardware to enforce this, especially with regards to ballot printing. Other proposals distribute trust among
multiple entities through the use of specialized multi layer ballot forms.

Our Proposal We consider a list of requirements for end-to-end verifiable optical scan voting that factors a diverse
set of stakeholders (i.e., cryptographers, election officials, legislators, democracy groups, etc). This list is by no means
exhaustive and does not encompass challenges faced by other voting methods (e.g., internet, mail-in, etc). Our list is
as follows:

1. Distributed trust: No single party, including the ballot printer(s), gains an advantage in deducing how a voter
voted or in linking a receipt to its corresponding clear-text vote. This is a vital requirement of any secret ballot
election employing the receipt paradigm.

2. Single layer ballot form: A ballot is a single sheet of paper with a fixed order candidate list3 and the voter
marks the optical scan ovals directly beside their chosen candidate. Multi layer ballots are an artifact of crypto-
graphic voting, requiring voters to re-learn how to cast a ballot. Our experience in running real-world cryptographic

? An extended abstract of this paper appeared at the 3rd international conference on E-voting and Identity (VoteID 2011).
3 There are also potential advantages to using ballots with randomized candidate lists. Our system can accomodate this approach

with minor protocol changes.

elections—both with single layer and with multi layer ballot forms—has indicated to us that multi layer ballots
are more cumbersome for voters and more difficult to administer for election officials [15, 5, 44].

3. Human-readable paper audit trail: Pursuant to the legal requirements of many jurisdictions voting, voting intent
remains plainly evident on cast ballot forms. Such an audit trail also allows for recoverability in the event of lost
or forgotten cryptographic keys or other unforeseen errors.

4. Public paper audit trail: The collection of cast ballot forms (i.e., the paper audit trail) can be made public without
revealing the link between receipt and clear-text vote. A public audit paper trail may also be a legal requirement
and is critical in protecting ballot secrecy during a manual recount.

In this paper we propose two novel end-to-end verifiable optical scan voting systems that meet all four of these
requirements. Some of these properties have been examined in the literature, but no proposal has achieved all of
them. Scantegrity achieves 2 and 3 [9, 7]. Prêt à Voter and Scratch & Vote achieve 2 and 4 [11, 40, 1, 45], two
Punchscan variants achieve only 4 [20, 24], and each of Split-Ballot Voting, ClearVote and Kusters et al. achieve 1
and 4 [31, 37, 25]. A proposal due to Benaloh [2] achieves 2, 3, and 4. See the section on related work for additional
discussion.

Contributions We present two novel systems for single layer optical-scan voting with distributed trust based respec-
tively on the ballot styles used by Scantegrity [9] and Scantegrity II [7].

Basic System: We propose a basic two-party system for creating ballot forms with randomized confirmation codes
that meets properties 1, 2, and 3. It relies on a private paper audit trail and an in-person physical dispute-resolution
procedure.

Improved System: We then propose an improved two-party system that uses ‘self-blanking’ invisible ink confirma-
tion codes. It improves on the basic system by allowing the paper audit trail to be made public, thereby achieving
all four properties. In addition it offers an informational dispute-resolution procedure allowing disputes to be
resolved based on knowledge of a confirmation code (as opposed to physical possession of a receipt).

2 Preliminaries

2.1 Physical Primitives

End-to-end verifiable ballots often employ physical security methods as part of the receipt creation process. The use of
physical security mechanisms can be contentious due to inherent questions regarding their cost, feasibility, and real-
world security properties. However, there is precedent for protocols built around ideal physical security mechanisms
(c.f. [19, 30]). Throughout the rest of this paper we assume that all physical security mechanisms function ideally.
Broadly speaking the ballot secrecy properties of our systems reduce to those of Scantegrity’s when the physical
security mechanism fail.

Physical Security Mechanisms We briefly summarize the physical security mechanisms employed by our systems.

Invisible ink as its name implies is initially invisible when printed and becomes visible only after activation. It was
proposed for use in the Scantegrity II system [7], and has been implemented and fielded in a live municipal
election in the United States [5]. For the improved system presented in Section 5 we additionally make use of a
‘slow’ developing ink,

Scratch-off coating is a convenient, cost-effective and widely available method for concealing (and subsequently
revealing) printed information. It has been employed in several voting schemes (cf. [1, 42]) to protect ballot
secrecy,

Visual cryptography [32] is a well known technique for visually implementing a logical exclusive disjunction (i.e.,
an xor) built from a physical medium acting as a logical disjunction (i.e., an or). A message or graphical image can
be split into two or more information-theoretically secure shares. When the shares are combined (i.e., overlayed)
the message becomes visually perceptible.

2

Physical Security Sub-protocols We briefly summarize the physical security sub-protocols used by our systems.

Document Authenticity: We require a method for determining a document’s authenticity. Classical methods for anti-
counterfeiting (e.g., watermarks, holographic foil, embedded magnetic strips, etc) can be cost-prohibitive. Paper
fibre analysis (cf. [13]) using commercial-grade scanners is possible4. For the sake of our description we assume
that there exists an efficient physical scheme for determining a ballot’s authenticity,

Private Printing: we make use of private printing techniques to pick and print human-readable confirmation codes
on ballots without either printer individually knowing which codes were printed. A proposal for two-party private
printing was made in [16]. Private printing is used in the improved system.

2.2 Cryptographic Primitives

We briefly outline the main cryptographic primitives used by our systems. We note that these primitives are standard
across the cryptographic voting literature.

Homomorphic Encryption Let 〈DKG,Enc,DDec〉 be a distributed public-key encryption scheme. Without loss of
generality, DKG generates two private key shares x1 and x2 for parties P1 and P2 respectively and a joint public
key Y . Encryption JmK = EncY (m, r) is semantically secure and homomorphic in at least one operation. Decryp-
tion m = DDec(x1, x2)(JmK) requires both key shares. Specifically we will make use of exponential Elgamal [14]
with distributed decryption [36]. For simplicity we will omit the public-key when implied. We additionally require a
partially-homomorphic xor operation ⊕̃ such that, for a pair of messages m1,m2 ∈ {0, 1}, Jm1K⊕̃m2 produces a ci-
phertext that encrypts the bitwise xor of the associated plaintext bits, i.e., Jm1⊕m2K. We now present a bit encryption
scheme based on exponential Elgamal though there is more than one way to accomplish this (cf. [22, 33]).

A Partially Homomorphic bitwise XOR with Exponential Elgamal For two bits m1,m2 ∈ {0, 1} and their as-
sociated encryptions, we describe a method based on exponential Elgamal to implement a partially homomorphic
operation ⊕̃ for which Jm1K⊕̃m2 produces a ciphertext that encrypts the bitwise xor of the associated plaintext bits,
i.e., Jm1 ⊕m2K.

The first party constructs a ciphertext c = 〈c1, c2〉 = 〈gr, gmyr〉 form ∈ {0, 1} and transmits c to the second party.
The second party will select their bit m′ ∈ {0, 1} and compute the partially-homomorphic xor, c ⊕̃m′ = PHX(c,m′)
where,

PHX(c,m) =

{
ReRand(c) m = 0
ReRand(〈c−11 , g1c−12 〉) m = 1

.

This scheme is essentially the same the inversion scheme used by Neff in [33]. Importantly, this approach alone
only provides security against passive adversaries: the first party could construct a malformed ciphertext, while the
second party could throw away the first party’s contribution all together. The simplest way to provide integrity would
be to run a cut-and-choose protocol whereby both parties output numerous instances of 〈c1, c2〉 = PHX(c1,m2)
and conduct a coin-toss protocol to select some instances to challenge. Parties would open the challenged instances
(revealing their respective message bits and random factors), and retain the unopened ones for further use.

Mixnets Mixnets have long been a fixture in cryptographic voting. We make use of a simple re-encryption mixnet
(cf. [34]) structure to create our proofs (we do not utilize a separate proof of correct mixing, as it is provided by
other parts of our system). Re-randomization (a.k.a., re-encryption) of a ciphertext c is accomplished by computing
c′ = ReRand(c, r) = c · Enc(0, r)5. By rerandomizing and shuffling a batch of ciphertexts we implement a simple
reencryption mixnet, Mix. In this paper, when applying Mix to a matrix of ciphertexts, we describe mixing as occurring
on tuples of ciphertexts grouped by columns and shuffled by rows.

4 In general there are privacy threats due to fingerprinting documents however this is not a threat to ballot secrecy assuming
non-collusion.

5 Replace 0 with the identity element for other groups.

3

Commitments We use a cryptographic commitment scheme to commit to permutations as part of a cut-and-choose
proof of shuffle. The dispute resolution procedure in the improved system requires the prover to either unveil (i.e., de-
commit to) the code, or alternatively to issue a non-interactive proof of plaintext inequality. A commitment inherent
to IND-CPA secure encryption fits this dual role. Here a sender commits to a message m by posting its encryption
JmK = Enc(m, r). Later the commitment can be unveiled when the sender reveals an m′, r′, allowing anyone to verify
Enc(m′, r′) = JmK, and hence m′ = m. This approach is commonly used in several voting schemes (e.g., [3, 1, 43]).

Non-interactive Challenges As part of our cut-and-choose correctness proof we require a method for fairly generating
random challenge bits. Loosely speaking, fairness, requires that no one is able to predict, or controllably influence the
output with non-negligible advantage. Furthermore, the fairness of the method should be convincing to voters. Both
the heuristic due to Fiat and Shamir [18], and the notion of a random beacon (cf. [39, 12]) are possibilities.

2.3 Participants

There are several entities that participate in the election.

– A set of voters with the authority to cast a ballot in the election, optionally construct a privacy-preserving receipt
of their vote, and optionally participate in an election audit,

– An election operations commission C with the capability and authority to organize and run an election, operate
a polling place, optically scan ballots, report results, act as a custodian of the cast ballot record, and participate in
an in-person dispute resolution procedure,

– Two independent ballot printers P1,P2 who possess the capability and authority to print documents in the un-
trusted printing model and participate in a secure (cryptographic) two-party computation,

– An election scrutineer S with the authority to audit the correctness of printed ballots relative to their cryptographic
representation. Additionally S acts as a proxy for voters during disputes with C to protect their identity. In practice
there might be any number of election auditors, representing the candidates or other democracy groups.

As a fundamental requirement of our security model, we assume that neither printer nor election commission collude
with one another.

3 The Basic System

The basic system produces a public and universally verifiable cryptographic proof attesting to the correctness of the
election’s outcome. This correctness proof is based on standard cut-and-choose techniques (cf. [9, 7, 8]). Without
loss of generality we consider a single-contest election involving n ballots6 and m candidates. The basic system
involves several protocols. The protocols generateBallots, preElectionPrep, postElectionPrep encompass the prepa-
ration for the public election audits. Note that each of these protocols taken individually is only secure in an honest-but-
curious setting. To make them robust against an active adversary we make use of a set of audit protocols proveScan,
proveReceipt, provePrinting and resolveDispute. A summary of notations used is presented in Table 1.

The Ballot The basic optical-scan paper ballot form has a pre-printed, fixed-order candidate list L = {l1 . . . lm}.
Adjacent to each candidate is an optical scan oval with a mark state µ ∈ {0, 1} corresponding respectively to whether
the oval was unmarked or marked. The ballot form is separated into two regions by a perforation. The top constitutes
the ballot portion, and the bottom is the receipt portion. An alphabet Σ of m confirmation codes is defined. Each
optical scan oval (and hence each candidate) is associated with a confirmation code drawn independently at random,
and without replacement, fromΣ. A ballot-id b is a d-bit7 vector printed on the ballot portion. An independent receipt-
id r is printed on the receipt portion. The first printer prints the receipt-ids under a scratch-off coating and the second

6 The number of ballots printed is the total number of voters times a heuristically chosen expansion factor to account for audited
and spoiled ballots.

7 Since in the basic scheme ballot-ids are the xor of random bit vectors, d is chosen to be large enough so as to make duplicate
ballot-ids highly unlikely.

4

n Number of ballots to print T List of all ballot-tuples
m Number of candidates BallotTable Table of ballot information
d Bit-length of ballot-id ReceiptTable Table of receipt information
L List of candidate names MP1/MP2 Printer 1/2’s master permutation
Σ Confirmation code alphabet π/ρ Random perm’ns composing to MP1

α Soundness parameter σ/τ Random perm’ns composing to MP2

b/B Ballot-id/list of ... MidMarks Intermediate mark state list
r/R Receipt-id/list of ... MidMarksP1 P1’s intermediate mark state list
c/C Confirmation code/list of ... MidMarksP2 P2’s intermediate mark state list
µ Mark-state of opscan oval eid Election-unique identifier

Table 1: Notations

prints the confirmation codes. Both printers will jointly print the ballot-id in invisible ink. Printing of the ballot- and
receipt-ids is done such that each printer only knows what it prints (and not what its counterpart prints). The basic
ballot is depicted in Figure 1(a).

Alice

Bob

Carol

Y

Z

X

For office use only

1

(a) Unmarked ballot form.

Alice

Bob

Carol

Y

Z

X

For office use only

#1573My confirmation code is Z

1

(b) Top: Cast ballot portion with activated
ballot-id. Bottom: Completed receipt portion
with revealed receipt-id.

Fig. 1: Basic ballot: Optical-scan ballot form with ballot portion (top) and tear-off receipt portion (bottom) depicting
a randomized confirmation code list, a unique ballot-id printed in invisible ink visual-crypto and a unique receipt-id
beneath a scratch-off coating. Ballot printing is distributed between two printers such that neither can match receipts
with cast ballots.

Ballot tuple A ballot is fully specified by the tuple {b, r, c}, which denotes the association between a unique ballot-id
bit vector b ∈ {0, 1}d, a unique receipt-id r ∈ {1 . . . n}, and a random permutation of confirmation codes c = π(Σ)
for a permutation π drawn independently and uniformly at random from the set of possible permutations of Σ.

3.1 Election Preparation

The election is initialized as follows: election commission C initializes a public bulletin board BB8 and a unique
election identifier eid. Printers P1 and P2 jointly run DKG. They post the public key Y to public bulletin board BB and
retain their respective private key shares x1, x2. This list of public parameters pubParam = {n,m, d, L,Σ, α, eid, Y }
is posted to BB. All functions/protocols accept pubParam as input.

8 Typically modelled as an append-only broadcast channel with state (cf. [4]).

5

Ballot Tuple Creation The printers now jointly generate encrypted ballot tuples by running generateBallots. This
protocol is given in Algorithm 1.

Algorithm 1: generateBallots
Participants: Printers P1,P2

Printer P1 should:1
for i ∈ {1 . . . n} do2

Encrypt vectors of random bits:3
B′(i)← (Enc(randBit), . . . ,Enc(randBit))4
Post a non-malleable commitment to each randBit along with the random factor used to encrypt it.5

Encrypt and shuffle receipt-ids:6
R← Shuffle(Enc(1) . . .Enc(n))7

end8

Printer P2 should:9
for i ∈ {1 . . . n} do10

Randomly shuffle and encrypt code confirmation codes:11
C(i)← Shuffle(Enc(Σ(1)) . . .Enc(Σ(m)))12

end13

Both Printers should:14
Simultaneously and respectively output B′, R and C to BB.15

end16
Printer P2 should:17

for i ∈ {1 . . . n}; j ∈ {1 . . . d} do18
Homomorphically xor random bits:19
b′1 . . . b

′
d ← B′(i)20

B(i)← (b′1⊕̃ randBit, . . . , b′d⊕̃ randBit)21
Post a non-malleable commitment to each randBit along with the random factor used in computing the xor.22

Output B to P123

end24
//Remark: Shuffle(X) applies a permutation to a list X , drawn independently and uniformly randomly from the set of

permutations of size |X|. randBit returns a single bit drawn independently and uniformly at random. It is possible that
P2 might attempt to maliciously select its bits as a function of P1’s. However P2 will not know (beyond a guess) what to
print on the ballot, and will be caught in ProvePrinting with statistical certainty.

Ballot Printing The n ballot forms are printed in three steps. For each ballot-tuple a paper ballot is prepared in the
following order:

– Static background: directions, candidate names, etc, printed in black ink,
– P1’s share: the receipt-id is printed and concealed under scratch-off coating, P1’s share of the ballot-id printed in

invisible ink visual-crypto,
– P1’s share: the confirmation codes are printed in regular ink, P2’s share of the ballot-id printed in invisible ink

visual-crypto over P1’s share.

The completed ballot forms are then randomly shuffled and delivered into the custody of the election commission C.
Throughout the ballot printing and voting phases the printers will conduct random audits of ballot forms to ensure their
authenticity and to look for signs of tampering (e.g, to catch if someone reveals the secret information then replaces the
ballot with a replica). Note that if either printer prints something other than their contribution in generateBallots (e.g.,
if a printer prints an all-black VC pixel), this will be caught in provePrinting with statistical confidedence dependent
on the number of audited ballots.

6

Pre-Election Proof Preparation The printers initialize the public audit dataset and cut-and-choose correctness proofs
by running preElectionPrep. This protocol is given in Algorithm 2.

Voting and Receipt Creation An individual wishing to vote shall attend the polling place and authenticate themselves
to C. All qualified and authenticated individuals (i.e., voters) are then eligible to receive a ballot. The voter selects a
ballot form at random from a stack of unmarked ballot forms and takes it, a regular (black) marking pen, and a
privacy sleeve into a private voting booth. The voter marks the oval next to their preferred candidate li on the ballot
portion. Then, if they so choose, the voter creates a receipt of their vote by noting the code letter ci and writes it in
the appropriate space on the receipt portion. The voter then places the marked ballot form into the privacy sleeve and
returns it to the poll worker. The poll worker confirms the receipt-id’s scratch-off coating is still intact and the ballot-id
has not been activated (rejecting the ballot in such a case), then detaches the receipt portion and places it on a table in
view of the voter. The ballot portion is then fed into the optical scanner. If the ballot is accepted the receipt portion is
retained by the poll worker. If the ballot portion is successfully cast, the receipt portion is returned to the voter and the
voting process is complete. A diagram showing completed ballot and receipt portions is depicted in Figure 1(b).

A Note about Timing Attacks In some jurisdictions, poll workers keep a poll book of voter identities in the order
they voted. If the scanner were to likewise maintain the order of cast ballots it, taken along with the poll book, would
compromise ballot secrecy. Since in our case the ballot is drawn at random from the pile, and the poll worker does not
see the ballot- or receipt-ids, this threat can be mitigated by having voters cast ballots into a ballot box at the polling
place and then scanning them later at a central location.

Post-Election Proof Preparation After the election C populates the BallotTable with the mark state information
collected by the optical scanners. With this data the printers and can now finalize the cut-and-choose correctness proof
by running postElectionPrep. This protocol is given in Algorithm 3.

4 Verifying the election

4.1 Election Audits

There are three simultaneous properties that must be proven in order for the overall results to be proven correct. These
audits include,

– Proving correct mark-state reporting by C: Using their receipt, a voter V checks whether C correctly registered
their vote by running proveScan,

– Proving mark-state propagation by P1,P2: The printers prove to any interested party that they honestly applied
their master permutations to mark state information in BallotTable by running proveReceipt,

– Proving printed ballot forms match BB: A scrutineer S9 runs provePrinting with the printers to verify that the
ballot tuple information conveyed by the paper ballot forms matches the ballot tuple representation in BB. Audited
ballots are spoiled and not counted.

The audit protocols proveScan, provePrinting and proveReceipt employed by the basic scheme are below in listed
in Algorithms 4, 5 and 6 respectively.

4.2 Dispute Resolution

Because the receipt generation process is unsupervised, a number of possibilities for disputes may arise between the
bulletin board and the voters. A simple dispute resolution procedure was proposed for Scantegrity I in [9]. Briefly, this
involved a two-stage physical protocol using special privacy sleeves.

9 A scrutineer is not strictly necessary. Voters themselves may choose to initiate this audit, although in our experience they rarely
do!

7

Algorithm 2: preElectionPrep
Participants: Printers P1,P2

Public Input: Candidate list L
Private Input: Lists of encrypted ballot-ids B, receipt-ids R, and code shuffles C

Both Printers should:1
//Expand the n ballot tuples into a table of mn rows (one for every candidate on every ballot):
for i ∈ {0 . . . n− 1} do2

c1 . . . cm ← C(i)3
for 0 ≤ j ≤ m− 1 do4

T (1,mi+ j)← B(i)5
T (2,mi+ j)← Enc(L(j + 1))6
T (3,mi+ j)← R(i)7
T (4,mi+ j)← cj8

//P1 followed by P2 using master permutations MP1 and MP2 respectively:
T ′ ← Mix(T)9
//Create ballot and receipt tables:
BallotTable← DDec(T ′(1 . . . 2, :))10
ReceiptTable← DDec(Mix(T ′(3 . . . 4, :))11
Post BallotTable,ReceiptTable to BB12

end13
//Prepare cut-and-choose proof of correspondence between elements in the ballot and receipt tables:
Printer P1 should:14

for i ∈ {1 . . . α} do15
Choose πi ∈R Πmn16
Set ρi such that ρi ◦ πi = MP117
Post Commit(πi),Commit(ρi) to BB18

end19
Printer P2 should:20

for i ∈ {1 . . . α} do21
Choose σi ∈R Πmn22
Set τi such that τi ◦ σi = MP223
Post Commit(σi),Commit(τi) to BB24

end25
//Remark: Let x ∈r Πy denote a permutation function x drawn independently and uniformly at random from the set of

permutations of list of y elements. Let MP1,MP2 ∈R Πmn. Then for i ∈ {1 . . . α}, we have
τi ◦ σi ◦ ρi ◦ πi = MP2 ◦MP1.

8

Algorithm 3: postElectionPrep
Participants: Election Commission C, Printers P1,P2

Private Input: Secret Master permutations MP1,MP2, Scanned Cast Ballots

//Populate BallotTable with scanner data
Election commission C should:1

foreach {b, s, µ} recorded by scanner do2
Find i for which ballotTable(1, i) = b3
and ballotTable(2, i) = s4
ballotTable(3, i)← µ5

Post ballotTable(3, :) to BB.6

end7
//Propagate marks from BallotTable to ReceiptTable
Printer P1 should:8

MidMarks← MP1(BallotTable(3, :))9
Post MidMarks to BB for i ∈ {1 . . . α} do10

MidMarksP1i ← πi(BallotTable(3, :))11
Post MidMarksP1i to BB12

end13
Printer P2 should:14

ReceiptTable(3, :)← MP2(MidMarks)15
Post ReceiptTable(3, :) to BB. for i ∈ {1 . . . α} do16

MidMarksP2i ← σi(MidMarks)17
Post MidMarksP2i to BB18

end19

Background Initially the election commission C demonstrates to the voter that their ballot portion is present in a set
of ballot portions as follows:

– C retrieves the voter’s ballot portion and gathers additional ballot portions such that they all show a mark beside
an oval showing the voter’s asserted code, but each in a different position. The voter checks that all the ballot
portions indicate a mark for the same code letter therefore suggesting what the ballot’s entry in the receipt table
should be—if one of those ballot portions matches the receipt portion. Because the ballot portions each register a
vote for different candidates, any other entity present for this procedure will not know how the voter voted.

– C places each of these ballot portions into a separate privacy sleeve that hides everything except the bottom
perforation line. The ballots are shuffled. C then demonstrates to the voter that the paper fibre pattern of the receipt
physically matches one of the ballot portions in the set. This proves that the ballot portion the voter cast is present
in the group.

The two steps taken together prove which code the voter marked. The downside of this approach, of course, is that
C must know the association between the receipt portion and ballot portion (and therefore between receipt and vote)
in order to perform dispute resolution.

The procedure We now describe the dispute resolution procedure for the basic scheme presented in Section 3. In
order to conceal the identity of the voter from C (who has their ballot) we assume there exists a scrutineer S that will
function as a proxy for the voter during the procedure. Note that the voter will have to trust the S to honestly follow
the protocol.

Note however S does not learn how the voter voted. The dispute resolution procedure for the basic scheme is as
follows:

1. The a scrutineer S, acting on behalf of a voter, transmits the voter’s receipt-id rv to P1,

9

2. P1 finds the row in R that contains the encryption r and transmits this index i to P2,
3. P1 and P2 each (privately) send to C the bit vectors they used to construct B(i),
4. C computes the bitwise xor of the received bit vectors and locates the ballot portion with the resultant ballot-id,
5. S places their receipt portion in a privacy sleeve that hides the receipt-id,
6. S and C continue with the Scantegrity dispute resolution procedure as defined in [9].

A possible dilemma In many cases the voter will be found to have made a transcription error. However a major
dilemma arises from this procedure when it is that case that C has misreported the code: the voter must give up ballot
secrecy to prove to the public that C is in error.

One of our fundamental requirements for ballot secrecy is that no one be permitted to know the association between
ballot-id and receipt-id. If the voter wrote down their code incorrectly, this is not a problem: C can prove it without
needing to know the receipt-id. However if C reported the code incorrectly, then the receipt-id would need to be made
public to prove the discrepancy between the physical and electronic records. This violates ballot secrecy as we have
defined it. Still, in the case that the ballot-id/receipt-id association needs to be revealed, it may still suffice if the
association between voter identity and receipt-id is suppressed. This however would essentially require the voter to
never show their receipt to anyone. We leave solving this dilemma to future work, noting that it is mooted by the use of
an informational dispute resolution process. We now present an improved system with such an informational dispute
resolution procedure.

5 Improved System

In this section we present a system that improves upon the basic system in two ways: First, it replaces the physical
dispute resolution procedure with an informational dispute procedure. Second, the collection of cast ballots (i.e., the
paper audit trail) can be viewed publicly without compromising ballot secrecy.

Informational Dispute Resolution The dispute resolution procedure of the basic system is inefficient and time con-
suming. Chaum et al. proposed the notion of invisible ink confirmation codes in Scantegrity II [7] as an informational
means of resolving dispute. Under this approach, codes are printed in invisible ink, and only revealed to the voter if
marked. Assuming the code space is sufficiently large so as to make successful random guess unlikely, then knowl-
edge of any valid code can be taken as evidence that a voter correctly created their receipt. Any discrepancy found
between a receipt and the ReceiptTable can then be attributed to C (assuming the other correctness proofs are valid).
In the improved system, we create and print the codes using a private printing protocol. Thus the role of invisible ink
is twofold: it restricts the voter’s knowledge of unmarked codes and it prevents the printers from linking receipts to
votes.

Algorithm 4: proveScan
Participants: Any voter V who created a receipt
Public Input: ReceiptTable, V’s receipt {r, cv}
//Check receipt against ReceiptTable:
Voter V should:1

Find row i for which ReceiptTable(1, i) = r2
and ReceiptTable(2, i) = cv3
if ReceiptTable(3, i) = 1 then4

ACCEPT5

else6
Run resolveDispute7

end8

10

Algorithm 5: proveReceipt
Participants: Printers P1,P2 and any interested party
Public Input: A vector Challenge of α challenge bits.

Both Printers should:1
for i ∈ {1 . . . α} do2

if Challenge(i) = 0 then3
P1 unveils commitment to πi4
P2 unveils commitment to σi5

if Challenge(i) = 1 then6
P1 unveils commitment to ρi7
P2 unveils commitment to τi8

All decommitment information is posted to BB.9

end10
Anyone can:11

Run verifyCommit on all of the unveiled commitments12
for i ∈ {1 . . . α} do13

if Challenge(i) = 0 then14
Check: πi(BallotTable(3, :)) = MidMarksP1i15
Check: σi(MidMarksP2i) = ReceiptTable(3, :)16

if Challenge(i) = 1 then17
Check: ρi(MidMarksP1i) = MidMarks18
Check: τi(MidMarks) = MidMarksP2i19

end20
//Remark: Challenge is generated by a public coin toss, or the Fiat-Shamir heuristic when appropriate (e.g., for α > 80.)

Public Paper Trail Invisible ink confirmation codes require a code space that makes random guessing statistically
unlikely. For example Scantegrity II proposes a 3-digit code (making a random guess successful 0.1% of the time on
average). However in the presence of unique (or semi-unique) codes, access to cast ballots coupled with the public
audit dataset is sufficient (or nearly sufficient) to allow any observer to link receipts to clear-text votes. This not only
means that the paper ballot record must be kept secret, but further that the custodian of the ballot record (i.e., C) is
trusted with knowledge of how voters voted. This is one of the major limitations of Scantegrity II. To address this
privacy weak-spot, we require a method for not only privately printing a confirmation code, but for displaying it only
while the voter is in the booth. In the presence of “disappearing” codes, not only can we offer distributed trust with
respect to P1,P2 and C, but we can also make the paper ballot record public.

Self-blanking Confirmation Codes We propose a method for printing of confirmation codes that is self-blanking
(i.e., the message is only temporarily visible). The standard invisible ink described by Scantegrity II activates in-
stantaneously. That is to say, the chemical reaction responsible for the ink’s pigmentation completes on the order of
milliseconds. It was suggested in [7] that a slower reacting ink might by the addition of an anti-catalyst. This sub-
stance, if present, can slow down pigmentation by seconds or minutes (depending on design needs). Combining the
technique of visual cryptography with such a ‘slow’ invisible ink, we can construct a self-blanking pixel (see Table 2).
Finally, combining self-blanking pixels with the private printing protocol of [16], we can print confirmation codes that
are both distributed between two-parties and self-blanking.

The Improved Ballot The improved ballot differs from the basic ballot in that it makes use of self-blanking invisible
ink confirmation codes. The codes are printed inside the optical scan ovals in self-blanking invisible ink. When the
voter marks an oval using the specially provided activator pen, the confirmation code is revealed allowing the voter
(finite) opportunity to write down the code on their receipt. Eventually the oval darkens completely indicating that the
oval was chosen by the voter, but not what the confirmation code was (see Figure 2).

11

Algorithm 6: provePrinting
Participants: Printers P1,P2, Scruitineer S
Public Input: A printed ballot chosen at random by S
Scrutineer S should:1

Activate/scratch-off hidden areas on ballot form to reveal ballot tuple2
Post ballot tuple {b, L, r, c} to BB3

end4
Printer P1 should:5

foreach BallotTable(1, i) = b do6
Unveil the commitments to P1’s share of b (i.e., ballot id bits and associated random factors).7
foreach j ∈ {1 . . . α} do8

Post iπj ← πj(i)9
Post iρj ← ρj(iπj)10

end11
Printer P2 should:12

foreach iρj do13
Unveil the commitments to P2’s share of b (i.e., ballot id bits and associated random factors used to compute the14
xor with P1’s share).
foreach j ∈ {1 . . . α} do15

Post iσj ← σj(iρj)16
Post iτj ← τj(iσj)17

end18
Anyone can:19

Run verifyCommit on all of the unveiled commitments,20
Recompute ballot-id b using the unveiled id bits and associated random factors and ensure it matches both the electronic21
and printed versions,
foreach BallotTable(1, i) = b do22

foreach j ∈ {1 . . . α} do23
Output an error and exit if the following does not hold:,24
BallotTable(3, i) = MidMarksP1j(iπj) = MidMarks(iρj) = MidMarksP2j(iρj) = ReceiptTable(3, iτj)25

Output 126

end27

Result when activated
a b VC(a) VC(b) t = 0 t > 0 t >> 0

0 0 ∅ ∅
0 1 ∅ ∅
1 0 ∅ ∅
1 1 ∅ ∅

Table 2: Self-blanking VC Pixel. Two sub-pixels contain invisible ink. Each party applies an anti-catalyst (cyan) to
one sub-pixel. Sub-pixels containing this substance darken more slowly than those without (t = 0 is the moment of
activation). Eventually all sub-pixels darken “blanking” the pixel’s value.

Changes to the protocols The addition of self-blanking invisible-ink confirmation codes induces some changes the
protocols presented in Section 3 which is summarized as follows:

– Ballot tuples: P2 generates ballot-ids. Both printers run a private printing protocol to select a confirmation code
and distribute it to VC shares,

12

1

(a) t = 0

1

(b) t > 0

1

(c) t >> 0

Fig. 2: Optical-scan oval with self-blanking confirmation code after being marked with an activator pen (t = 0 is
the moment of activation).

– Ballot printing: P2 prints ballot-ids in invisible ink. Both printers print their shares of the confirmation codes
using self-blanking visual crypto pixels,

– Informational dispute resolution: As in Scantegrity II, the printers only publish the confirmation code corre-
sponding to the voted candidate. In the case of a dispute, the printers jointly issue a non-interactive proof of
plaintext inequality between all remaining (unencrypted) codes on the disputed ballot.

5.1 Changes to generateBallots

The generateBallots algorithm of the basic system is adjusted as follows: P1 is still responsible for generating and
printing a list of unique receipt-ids R. P2 now solely generates and prints the ballot-ids B. Both printers collaborate
to privately generate and print the confirmation codes C. This is accomplished by a private printing protocol to select
a confirmation code and distribute it to visual crypto shares.

For each confirmation code, the printers engage in the following pre-protocol. We briefly sketch how this is accom-
plished, referring the reader to [16] for a concrete example. First the printers run a two-party (dealerless) protocol to
privately select a single message (i.e., confirmation code) from a set of valid messages, distribute the message to visual
crypto shares, and privately output each share to the respective printer. Using these resultant bit-vectors as private input
to generateBallots, they homomorphically xor their shares together, repeating for each candidate across each ballot to
create confirmation code list C. To make the protocol more efficient, the confirmation code digits can be represented
by a 7-segment display, allowing each digit to be represented by 7-bits (and hence 7 ciphertexts).

5.2 Changes to ballot printing

As in the basic ballot, P1 prints the receipt-ids R(i) and conceals them under scratch-off coating. For each optical-
scan bubble, P1 applies a solid background of invisible ink and overlays its visual crypto share using the inhibitor
substance. Maintaining the ordering, P1 transfers the ballots to P2, who prints the ballot-idsB(i) in invisible ink (n.b.,
without visual crypto). It then applies its VC shares to the corresponding optical-scan bubbles. Printing self-blanking
confirmation codes is depicted in Table 3.

Changes to preElectionPrep For the most part, the improved system has the same overall structure in terms of
the cut-and-choose proof. The preElectionPrep is executed in the same way, obviously with the minor difference that
the elements of ballot-id list B are now single ciphertexts (as opposed lists of d encrypted bits), and the elements
of receipt-id list R are now encrypted as bit-vectors. When ReceiptTable is generated, the receipt-ids are decoded
from their 7-segement bit-vector representation into a single integer. However before ReceiptTable is posted to BB,
the printers will encrypt each of the confirmation codes (now in integer form) to facilitate the informational dispute
resolution procedure. They will save the random factors used in these encryptions for later use.

Changes to proveScan After the election is complete and the mark state information has been updated, the printers
will decrypt and post every code ReceiptTable(2, i), for which ReceiptTable(3, i) = 1. They will additionally post
each associated random factor as proof of decryption.

13

Invisible ink background Background Mask

a0

a1

a2

a3

a4

a5

a6

a = {0, 1, 1, 1, 0, 1, 0}
P1’s share

b0

b1

b2

b3

b4

b5

b6

b = {0, 0, 1, 0, 1, 1, 1}
P2’s share

a⊕ b = {0, 1, 0, 1, 1, 0, 1}
Result when activated

Table 3: Printing a self-blanking invisible ink confirmation code: P1 and P2 run a two-party protocol to select a
code and distribute it to VC shares (a, b respectively). They respectively apply an anti-catalyst (cyan) over a solid
invisible ink background. When activated the code becomes temporally visible (eventually darkening to all black).

Changes to provePrinting When A audits the printing of a ballot, the codes will only be temporarily visible after
activation. This is problematic should A need to use the ballot as evidence in the event of provePrinting fails. There
are several ways this might be addressed. One way would be for A to take a photograph or video of the activated
codes however this may not constitute strong enough evidence. Another way would be to require multiple independent
auditors to be present when revealing codes. The evidence then would be the testimony of (honest) auditors which
may be problematic if a dispute arises over which codes were observed. Finally, we could conjecture the existence
of a “fixer” chemical that could halt (or slow) the reaction. This could potentially be accomplished by applying high
concentrations of the anti-catalyst substance immediately after activation.

Changes to the dispute resolution procedure The voter can file a dispute by submitting their receipt-id r and the
confirmation code cv they claimed to have seen. Recall in Scantegrity II, C responds by unveiling all the commitments
to confirmation codes on the dispute ballot ballot. This is acceptable within their security assumptions since C is
trusted to protect ballot secrecy. However since in our system C is untrusted, the printers must prove in zero-knowledge
that the disputed code is not equal to any of the encrypted codes in ReceiptTable, and nothing more. If cv is a valid
confirmation code of receipt-id r, the printers prove the decryption of the associated code in ReceiptTable. If cv is
not a valid confirmation code, for each row i for which ReceiptTable(1, :) = r, the printers (jointly acting as a single
prover) issue a non-interactive proof of plaintext inequality between ReceiptTable(2, i) and cv . An algorithm for a
proof of plaintext inequality, plaintextInequalityProof, is given in Algorithm 7.

6 Security Analysis of the Improved System

To briefly summarize our results, owing to the similarities between systems, we reduce the correctness of the improved
system to that of Scantegrity II [7]. Although Scantegrity has been peer reviewed and used in a real election we are not
aware of a formal proof of the correctness. A formal security proof for the improved system would include a formal
security proof for Scantegrity II and is out of the scope for this paper. A proof of correctness of Eperio, a related
system, does offer some insight into how such a proof would proceed [17]. With respect to secrecy we present an
argument that the improved system protects voter privacy even when one printer is corrupted. Assumptions regarding
the physical primitives can be found there as well.

6.1 Assumptions

For the security analysis we have to consider the properties of several physical components employed by the improved
system of Section 5.

14

Algorithm 7: plaintextIneqalityProof
Participants: Printers P1,P2 acting as a single prover P , Voter V
Public Input: An asserted confirmation code m′, a encrypted confirmation code c = E(m), public key 〈g, q, y = gsk〉
Prover P should:1

//Encrypt asserted code m′

Post 〈c1, c2〉 = 〈gr,myr〉2

//Blind quotient of m/m′

Select b ∈r Gq and post c′ = 〈c′1, c′2〉 = 〈(c1)b, (c2m′)
b〉3

//Prove knowledge of b
Post proof of conjunction on DDH-tuple 〈c1, c2m′ , c

′
1, c

′
2〉4

//Post decryption of c′

Post 〈rb, (m
m′)

b〉 = 〈u, v〉5

end6
Verifier V should:7

Verify proof knowledge of b in step 48
Verify decryption of c′: 〈gu, vyu〉 = 〈c′1, c′2〉9
Verify plaintext inequality of m,m′: v 6= 110
Output 0 and exit if any the above do not hold, otherwise output 1.11

end12
//Remark: This is essentially the plaintext equality test due to Jakobsson and Jules [21] adapted for a single prover. A

proof of conjunction of DDH-tuples is due to Chaum and Pedersen [10].

Tamper Evidence Although scratch-off coating and invisible ink function as a form of physical commitment scheme,
they do not offer the strong assumptions that govern the unveiling of a cryptographic commitment scheme since
anyone can open such a physical commitment. We make use of tamper evidence in the physical commitment setting
as a weaker alternative to the hiding property of a cryptographic commitment (cf. [30]). Instead of the hiding property
of cryptographic commitment, a physical commitment ideally has the property that an adversary must actively tamper
with a document to reveal its secret, which then will be evident to the intended recipient.

Scratch-Off Coating We use scratch-off coating to reversibly conceal some information printed onto a ballot. First
we assume that such coating is secure under passive attack, i.e., the message cannot be read without actively tampering
with the coating. However anyone can easily remove the coating, so instead of a hiding property we make the ideal
assumption that revealing the information under the coating can only be done in a way that it is evident. By checking
the integrity of the scratch-off coating anyone can reliably decide whether or not the physical commitment was opened
before. If the coating is intact, anyone can be convinced that the content of the commitment is still hidden. In the
presence of tamper evidence this type of physical commitment can viewed as binding in the sense that modifying the
underlying message would require tampering.

Invisible ink For the use of invisible ink we make similar ideal security assumptions as for scratch-off coating with
regards to security to passive attack and tamper evidence in the case of active attack. In contrast to scratch-off coating
however, it is possible, and actually desirable, to be able to add (but not remove) printed information.

‘Slow’ Invisible Ink The improved system employs invisible ink with delayed activation or ‘slow’ invisible ink.
In addition to our assumptions about normal invisible ink we assume that after a certain time after activation the
information printed is no longer readable and thus effectively erased.

15

6.2 Correctness

For the proof of correctness we assume both the voting authority of Scantegrity II, as well as the election commis-
sion and both printers of the improved system, are corrupted and under the complete control of an adversary A. For
simplicity we combine the election comittee C and printers P1 and P2 and denote it as C. Note that in this case C
knows everything printed in invisible ink or under a scratch-off coating and the physical assumptions only prevent
uncorrupted voters from learning information protected that way. We further assume that both voting systems use the
same commitment scheme.

Assume there exists an adversary A able to undetectably cheat in an election run using our improved system. We
show how this adversary can then be used to undetectably cheat in a Scantegrity II election by giving a translation
from A to an attack on Scantegrity II. Let E = {C,V1 . . .Vn} be an election system with election commitee C and
voters V1 . . .Vn. We say an election system is sound, if, for all adversariesA, the probability of a verifier accepting an
invalid correctness proof is negligible in the security parameter.

Technique Toward a contradiction, we will show how to use the existence ofA, which implements a correctness attack
on our system, to leverage the equivalent attack on the Scantegrity II system. We will accomplish this with rewindable
black-box access to A. At a high-level, we translate an election being run with Scantegrity II into an election being
run with our system. At each phase of the election, we receive output fromA and translate it into the equivalent output
in Scantegrity II. We are essentially generating the equivalent election in both systems in parallel. Of course, by using
A, the tally in our system is undetectably incorrect. We show how to translate this into an undetectably incorrect tally
in Scantegrity II. Since this should not be possible if Scantegrity II provides correctness, it must be the case that A
cannot exist.

Reduction We generate the public parameters of the Scantegrity II election, translate them into PubParam, and
initialize A with them. This is a direct translation. We then take the output of preElectionPrep as generated by A
and attempt to translate it back into the preelection data for Scantegrity II. This translation is possible to do directly
but for convenience we will extract, via rewinding A , the permutations π, ρ, σ and τ , which are the permutations
between BallotTable and ReceiptTable. For the extraction to work, we simulate two successful elections to request
two different openings of the cut and choose proof for the correctness of the permutation. As it is a 1-out-of-2 proof
this is enough to learn the permutations. With this knowledge we prepare the public information for the Scantegrity II
election as follows:

Employing the similarities between BallotTable in our system and the S table of Scantegrity II, we initially group
all rows in BallotTable with identical ballot-ids, then remove the ballot-id column. This corresponds to the Scant-
egrity II S table. Let this mapping be called MS . Next we map ReceiptTable to the equivalent Q table. These two
tables are identical except we relabel receipt-ids in ReceiptTable as “ballot-ids” in the Q table. Let this mapping be
MQ.

Under the assumption that both systems use the same commitment scheme, we directly transfer all commitments
as-is. From the permutations extracted from A and the mappings MQ and MS we compute the mapping that maps
each cell in table Q to one in table S.

We do this by composing {ρ, τ} and preparing Q-pointers that correspond to this resultant permutation. Similarly
we generate the S-pointers from the composition of {π, σ}. Then we publish the tables Q, R and S.

During the election phase A has access to ballot choices made by each voter and returns a confirmation code
together with the receipt-id to the voter.

After the election phase we query A for the mark positions in BallotTable and ReceiptTable. Using MQ and MS

we translate these positions to the corresponding entries in Q and S and publish them. We also publish the incorrect
tally given by A. The audit challenges are directly translated from Scantegrity II into our system. A responds to
the challenges by unveiling the corresponding sub-permutations, either {ρ, τ} or {π, σ}, which will be accepting by
definition of A. We then translate this accepting proof into Scantegrity II by unveiling the corresponding Q- or S-
pointers. At this point a verifier in Scantegrity II will accept the incorrect tally. This fact contradicts the correctness of
Scantegrity II—therefore we conclude A does not exist.

16

6.3 Voter Privacy (Sketch)

For space considerations we only sketch the properties of voter privacy. One aspect of our improved system is that
voter privacy is still guaranteed if one printer is corrupted. We claim that the additional information an adversary A
gains by corrupting one printer is insufficient to learn anything about the choice of a single voter.

A corrupts P1 When A corrupts P1 the additional information gained is the secret key x1, a share of each code
and for each i ∈ {1 . . . α} the two permutations πi and ρi. Also A learns all corresponding receipt-ids. The security
properties of the encryption scheme prevent A from decrypting any ciphertexts by only knowing x1. During the
postelection proof only one of σi or τi is ever revealed, thereforeA does not learn the master permutation of P2. Thus
no information is revealed about the permutation between BallotTable and ReceiptTable given that the commitment
scheme is hiding. Because P1 prints its share of ballot tuples first, it does not learn anything about P2’s share, which
in turn ensures A learns nothing about the association between BallotTable and ReceiptTable.

A corrupts P2 When A corrupts P2 the additional information gained is the secret key x2, a share of each code and
for each i ∈ {1 . . . α} the two permutations σi and τi. For the same reasons as above this does not giveA an advantage
in breaking voter privacy. Because P1 printed the receipt-id and covered it in scratch-off coating, and printed its share
of the confirmation codes in invisible ink, A learns nothing about the association between receipt-ids, codes, and
ballot-ids assuming the security properties of these physical primitives as stated in previous sections.

If P2 is able to read the receipt-ids (by breaking the security assumption about the scratch-off coating), or the
shares of P1 (by breaking the security assumptions about invisible ink), or is even able to replace the ballots printed by
P1 without leaving evidence, P2 learns enough to break voter privacy. In this case the privacy of the improved system
reduces to that of Scantegrity II with a corrupted printer.

A coerces V When A coerces V , we seek assurance that V cannot prove how he/she voted to A . This property is
known as coercion resistance. It has been shown by Küsters et al. that Scantegrity II achieves coercion resistance [26].
We do not attempt to prove coercion resistance for our system but given the demonstrated similarities between both
the cryptography and the ballot, we would expect a proof of coercion resistance would be easy to construct following
their result.

We have to assume that A does not have unlimited access to the public paper trail. Specifically A must not be
able to recognize any ballot, for example by making an in-depth analysis of the fibre structure as used for ensuring
document authenticity. If A is able to identify a ballot and has made a similar fibre analysis while the ballots were
in the custody of a corrupted printer A would be able to pair a receipt of a coerced voter with the retained part of
the ballot in the public paper trail. This problem is not specific to our improved system but always occurs when A
gains enough information to link a paper receipt to a plaintext ballot in the public paper trail. A simple countermeasure
would be to restrict the access to the public paper trail (not that this would have to prevent anyone from even scanning
them).

7 Related Work

We review some work related to verifiable voting systems with optical-scan paper ballots. This literature can be roughly
separated into two categories: systems using single layer ballot forms but reliant on trusted parties/hardware and
systems with distributed trust but with multi layer ballot forms.

Single layer ballot forms with trusted components The Scantegrity [9] and Scantegrity II [7, 8, 5] systems offer both
a simple single layer fixed candidate list and an unencrypted paper trail, but make extensive use of trusted components
to protect ballot secrecy including a computer for blackbox construction of the correctness proofs, the polling place
scanner, the ballot printer as well as the custodian of cast ballots. Additionally the paper record reveals the link between
receipt and clear-text vote making it unsuitable for public viewing. The Prêt-à-Voter [11, 40] system and its variants
[1, 45, 41] also offer the voter a single-layer ballot form with randomized candidate list. Although the correctness

17

proofs are usually described as a multi-party computation, ballot forms are generated by a trusted printer. Cast ballots
are generally “encrypted” though variants exist that leave a human readable paper trail [29, 17]. Benaloh [2] proposes
that receipts be generated and printed by a special-purpose device connected to the optical scanner. This has the distinct
advantage that the ballots contain no identifying information (beyond the vote). However the issue of trusted ballot
printing instead becomes a matter of trusted receipt printing.

Distributed trust with multi layer ballot forms Kubiak [24] and Carback et al. [20] propose mostly distributed
modifications of the Punchscan system [38]. The former still relies on a trusted ballot printer, the later distributes
printing but still relies on trusted hardware to generate ballot tuples. Carback and Popoveniuc [37] later propose a
three-party distributed version of Punchscan in which top- middle- and bottom-sheet permutations are each generated
by independent printing authorities. In all cases voters must use an indirect marking procedure. Moran and Naor
[31] propose an improved multi layer ballot form that does not rely on indirection and with considerably stronger,
provable, security properties. Voters are issued layers in separate sealed envelopes. Once inside the booth the voters
are directed to remove each layers from its envelope and stack the layers in a particular order. The resultant candidate
list is horizontally offset from the optical scan ovals by a randomized amount. Lundin et al. [28] propose a distributed
construction of the Prêt-à-Voter ballot based on a form of dealerless 2-party visual cryptography. The voter must be
careful to align the VC shares in the booth in order to reconstruct the candidate list. Most recently Küsters et al. [25]
present a version of Prêt-à-Voter system without a trusted printer, physically implementing a re-encryption mixnet
using scratch-off coatings. The voter receives a separate ballot for each candidate, which can be cumbersome for races
involving more than a few candidates.

Other schemes Chaum proposed the first physical receipt based voting system in [6]. It consists of two visual crypto
layers showing the name of the voted candidate. A receipt is created by separating the layers and destroying one
of them. Paul et al. [35] propose visual crypto for use in voter authentication for (non-cryptographic) remote voting
systems. Scratch & Vote [1], Scratch, Click & Vote [27] and Pretty Good Democracy [41] make use of scratch-off
coating to conceal encryption random factors and confirmation codes. Finally, Kelsey et al. [23] propose a voter-
coercion strategy involving the use of scratch-off cards to direct voter action.

8 Discussion

8.1 Technical Challenges

The formulation of invisible inks has many areas for improvement. Although Carback et al. [5] report progress in the
manufacture of invisible inks, they observed their ink chemistry led to rapid degradation in the print-heads causing
printers to eventually fail after printing only a fraction of a single precinct’s worth of ballots. It also seems possible
that codes could be passively attacked (i.e., read without activation) under laboratory-based forensic analysis. It would
be important to the credibility of invisible ink to have a sense of how costly this would be.

Proper alignment (i.e., registration) of shares has long been a limitation of visual cryptography. Assuming an
optical scan oval width of 1 cm and the visual crypto pattern depicted in Figure 2, the sub pixels would be on the
order of 0.3cm wide. Assuming a quality tolerance of >90% overlap of subpixels between shares, then the printing
alignment would require a tolerance on the order of about 3mm (in both horizontal and vertical axes). It seems plausible
current consumer printers could achieve this. Printing confirmation codes in the improved scheme would require finer
granularity. A rough estimate based on the codes in [5] suggests one VC sub-pixel per millimetre might suffice. This
would require a precision on the order of 100µm which likely exceeds the capability of consumer printing technology.
We envision a device that could simultaneously scan positional markers on the document and align the print head
relative to them in real-time. The authors are not aware of any existing implementation of this, but note it may be an
interesting avenue for future work.

8.2 Usability Questions

Sherman et al. [44] have studied some basic usability questions about invisible ink confirmation codes. There are
however several additional and potentially important usability questions that would need to be answered before self-
blanking invisible ink confirmation codes could be used in a real election.

18

Perhaps the most important question would be to understand how disappearing in might interfere with the voter
marking the ballot as intended. It is certainly possible that the voter’s mental model of marking a ballot may be affected
by the delayed darkening of the oval. Would this delay represent confusing feedback for the voter while they attempt
to confirm whether they successfully marked the ballot as they had intended to?

Another important question pertains to the potential pitfall to privacy if the voter leaves the booth too early. The
voter would need to be instructed to stay in the booth until the oval has darkened fully (and hence the code has
disappeared). The longer it takes for an oval to darken, the more likely it would be that a voter might choose to
disregard the instruction and leave the booth anyway. A naı̈ve technical solution would be to dilute the inhibiting
substance to speed up the reaction. However this comes at cost of giving the voter a smaller window of opportunity to
write down the code on their receipt. This might especially be problematic for multi contest ballots if the voter decides
to complete marking the ballot first and then records their codes later, as the codes may have disappeared by then.

8.3 Future Work: Toward a Secure Multi-party Protocol

The systems described in this paper are both two-party protocols. Ultimately however it would be desirable to be able
to distribute trust among arbitrarily many printers. With some modification the improved system presented in Section 5
could likely be extended to a secure multi-party protocol. With regard to creating the audit dataset this would be mostly
a straightforward extension of the two-party approach with each of the n > 2 printers generating their own master
permutations and issuing their own cut-and-choose proofs. Generating ballot tuples in a multi-party setting should also
be a fairly straightforward extension of the two-party setting.

The primary challenge will be to develop an effective approach to distribute the ballot printing among more than
printers. This will undoubtedly require a fundamentally different approach from the two-party private printing scheme
presented in [16] and is an interesting potential direction for future work.

Conclusion

In this paper we presented two systems for verifiable optical-scan voting with single layer ballots and without trusted
components. The basic system based on randomized confirmation codes utilizes existing techniques for invisible ink
printing. The improved system proposes a novel self-blanking invisible ink, allowing us to construct a system with
more efficient dispute resolution procedure and public paper audit trail.

Acknowledgements

The authors wish to thank Jöern Mueller-Quade and the anonymous reviewers for their helpful feedback. Special
thanks go to Jeremy Clark for many helpful discussions throughout the writing of this paper. This research is supported
in part by the Natural Sciences and Engineering Research Council of Canada (NSERC)—the first author through a
Postgraduate Scholarship and the third through a Discovery Grant. The second author was supported in part through a
foreign exchange scholarship from the Karlsruhe House of Young Scientists (KHYS).

19

Bibliography

[1] Ben Adida and Ronald L. Rivest. Scratch & vote: self-contained paper-based cryptographic voting. In ACM
WPES, pages 29–40, 2006.

[2] J. Benaloh. Administrative and public verifiability: Can we have both? In EVT, 2008.
[3] Josh Benaloh. Ballot casting assurance via voter-initiated poll station auditing. In EVT, 2007.
[4] Josh D. Benaloh (né Cohen) and Michael J. Fisher. A robust and verifiable cryptographically secure election

scheme. In SFCS, 1985.
[5] Richard T Carback, David Chaum, Jeremy Clark, John Conway, Aleksander Essex, Paul S. Hernson, Travis

Mayberry, Stefan Popoveniuc, Ronald L. Rivest, Emily Shen, Alan T Sherman, and Poorvi L. Vora. Scantegrity
II election at takoma park. In USENIX Security Symposium, 2010.

[6] David Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE Security and Privacy, 2(1):38–47,
2004.

[7] David Chaum, Richard Carback, Jeremy Clark, Aleks Essex, Stefan Popoveniuc, Ronald L. Rivest, Peter Y A
Ryan, Emily Shen, and Alan T Sherman. Scantegrity II: end-to-end verifiability for optical scan election systems
using invisible ink confirmation codes. In EVT, 2008.

[8] David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popoveniuc, Ronald L. Rivest, Peter
Y. A. Ryan, Emily Shen, Alan T. Sherman, and Poorvi L. Vora. Scantegrity ii: end-to-end verifiability by voters
of optical scan elections through confirmation codes. IEEE Transactions on Information Forensics and Security,
4(4):611–627, 2009.

[9] David Chaum, Aleksander Essex, Richard Carback, Jeremy Clark, Stefan Popoveniuc, Alan T. Sherman, and
Poorvi Vora. Scantegrity: End-to-end voter verifiable optical-scan voting. IEEE Security and Privacy, 6(3):40–
46, May/June 2008.

[10] David Chaum and Torben Pryds Pedersen. Wallet databases with observers. In CRYPTO, 1992.
[11] David Chaum, Peter Y A Ryan, and Steve Schneider. A practical voter-verifiable election scheme. In ESORICS,

2005.
[12] Jeremy Clark and Urs Hengartner. On the use of financial data as a random beacon. In EVT/WOTE, 2010.
[13] William Clarkson, T Weyrich, A Finkelstein, Nadia Heninger, J. Alex Halderman, and Edward W Felten. Fin-

gerprinting blank paper using commodity scanners. In IEEE Symposium on Security and Privacy, 2009.
[14] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and optimally efficient multi-authority

election scheme. In EUROCRYPT, 1997.
[15] Aleks Essex, Jeremy Clark, Richard T. Carback, and Stefan Popoveniuc. Punchscan in practice: an e2e election

case study. In WOTE, 2007.
[16] Aleks Essex, Jeremy Clark, Urs Hengartner, and Carlisle Adams. How to print a secret. In HotSec, 2009.
[17] Aleks Essex, Jeremy Clark, Urs Hengartner, and Carlisle Adams. Eperio: Mitigating technical complexity in

cryptographic election verification. In EVT/WOTE, 2010.
[18] Amos Fiat and Adi Shamir. How to prove yourself: practical solutions to identification and signature problems.

In CRYPTO, pages 186–194, 1986.
[19] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. One-time programs. In CRYPTO, 2008.
[20] Richard T. Carback III, Stefan Popoveniuc, Alan T. Sherman, , and David Chaum. Punchscan with independent

ballot sheets: Simplifying ballot printing and distribution with independently selected ballot halves. In WOTE,
2007.

[21] Markus Jakobsson and Ari Juels. Mix and match: Secure function evaluation via ciphertexts. In ASIACRYPT,
2000.

[22] Ayman Jarrous and Benny Pinkas. Secure hamming distance based computation and its applications. In ACNS,
2009.

[23] John Kelsey, Andrew Regenscheid, Tal Moran, and David Chaum. Attacking paper-based E2E voting systems.
In Towards Trustworthy Elections, volume 6000 of LNCS, pages 370–387. Springer, 2010.

[24] Przemyslaw Kubiak. A modification of punchscan: Trust distribution. In FEE, 2006.

[25] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Improving and simplifying a variant of prèt â voter. In
VOTE-ID, 2009.

[26] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Proving coercion-resistance of Scantegrity II. In ICICS,
2010.

[27] Miroslaw Kutylowski and Filip Zagorski. Scratch, click & vote: E2e voting over the internet. In Towards
Trustworthy Elections. Spr, 2010.

[28] D. Lundin, H. Treharne, P. Y. A. Ryan, S. Schneider, J. Heather, and Z. Xia. Tear and destroy: Chain voting and
destruction problems shared by prèt â voter and punchscan and a solution using visual encryption. In FEE, 2006.

[29] David Lundin and Peter Y. Ryan. Human readable paper verification of prt voter. In ESORICS, 2008.
[30] Tal Moran and Moni Naor. Basing cryptographic protocols on tamper-evident seals. In In Proceedings of the

32nd International Colloquium on Automata, Languages and Programming, pages 285–297, 2005.
[31] Tal Moran and Moni Naor. Split-ballot voting: Everlasting privacy with distributed trust. In ACM CCS, 2007.
[32] Moni Naor and Adi Shamir. Visual cryptography. In EUROCRYPT, 94.
[33] C. Andrew Neff. Practical high certainty intent verification for encrypted votes. Technical report, VoteHere

Whitepaper, 2004.
[34] Choonsik Park, Kazutomo Itoh, and Kaoru Kurosawa. Efficient anonymous channel and all/nothing election

scheme. In EUROCRYPT, 1993.
[35] Nathanael Paul, David Evans, Aviel D. Rubin, and Dan S. Wallach. Authentication for remote voting. In HCISS,

2003.
[36] Torben Pryds Pedersen. A threshold cryptosystem without a trusted party. In EUROCRYPT, 1991.
[37] Stefan Popoveniuc and Richard Carback. Clearvote: An end-to-end voting system that distributes privacy be-

tween printers. In WPES, 2010.
[38] Stefan Popoveniuc and Ben Hosp. An introduction to punchscan. In WOTE, 2006.
[39] Michael Rabin. Transaction protection by beacons. Journal of Computer and System Sciences, 27(2), 1983.
[40] Peter Y A Ryan and Steve A Schneider. Prèt â voter with re-encryption mixes. In ESORICS, 2006.
[41] Peter Y A Ryan and Vanessa Teague. Ballot permutations in prèt â voter. In EVT/WOTE, 2009.
[42] Peter Y A Ryan and Vanessa Teague. Pretty good democracy. In Workshop on Security Protocols, 2009.
[43] Daniel R. Sandler, Kyle Derr, and Dan S. Wallach. VoteBox: a tamper-evident, verifiable electronic voting

system. In USENIX Security Symposium, 2008.
[44] Alan T Sherman, Richard T Carback, David Chaum, Jeremy Clark, Aleksander Essex, Paul S. Hernson, Travis

Mayberry, Stefan Popoveniuc, Ronald L. Rivest, Emily Shen, Bimal Sinha, and Poorvi L. Vora. Scantegrity mock
election at takoma park. In EVOTE, 2010.

[45] Zhe Xia, Steve A Schneider, and James Heather. Analysis, improvement and simplification of prèt â voter with
paillier encryption. In EVT, 2008.

21

	Single Layer Optical-scan Voting with Fully Distributed Trust

