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Analysis of the Hamming Weight of the Extended
wmbNAF

Ming Li, Ali Miri Senior Member, IEEE and Daming Zhu

Abstract—Scalar multiplication is an important operation in
elliptic curve cryptosystems(ECC). The algorithms for computing
scalar multiplication are mostly based on the binary expansions of
scalars, such as the non-adjacent form (NAF) and wNAF(sliding
window method). Representing scalars using more bases can
speed up the scalar multiplication, such as mbNAF, wmbNAF
and extended wmbNAF, which was proposed by Longa and Miri
in 2008. In this paper, we give a formal analysis of the Hamming
weight of the extended wmbNAF method for scalar multiplication
on general elliptic curves over large prime fields. Then the cost
of this method is compared with NAF and other double-base
methods. The analysis shows that we obtain the most efficient
algorithm when using (2, 3, 5)NAF1,1,0, which is 9.0% faster than
the NAF method without extra storage requirement. Moreover,
the recoding algorithm of the extended wmbNAF method is just
as simple and fast as that of the NAF method.

Index Terms—elliptic curve cryptography, multibase represen-
tation, scalar multiplication.

I. INTRODUCTION

Elliptic curve cryptosystem(ECC), which was independently
proposed by Miller [2] and Koblitz [1], is based on the elliptic
curve discrete logarithm problem (ECDLP). Scalar multiplica-
tion [3], [4] is the central and most time-consuming operation
in ECC. The traditional methods for computing scalar multi-
plication are mostly based on the binary expansions of scalars,
such as double-and-add, NAF, and wNAF(sliding window)
method [3]. The Non-Adjacent Form(NAF) of the scalar helps
to speed up the computation of scalar multiplication because
of its low Hamming weight, which is equal to the number
of point additions. Some other redundant representations are
also well studied, such as the radix 4 Booth method [16].
Another approach for reducing the Hamming weight is to
represent the scalars using more bases. In 2008, Longa and
Miri [9] proposed multi-base NAF(mbNAF), w-multi-base
NAF(wmbNAF) and extended w-multi-base NAF(extended
wmbNAF), which have properties analogous to NAF, to get
some representations with much lower Hamming weight.

In this paper, we compute the average Hamming weight
of extended wmbNAF first, which is closely related to the
cost of scalar multiplication. Then we compare the average
computational cost of this method with the NAF, wNAF and
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other double-base(multi-base) methods. The analysis shows
that when we are working on prime field Fp with |p| =
160bits, the (2, 3, 5)NAF1,1,0 is the most efficient method
without extra storage requirements. If there is enough space
for extra storage, the (2, 3, 5)NAF4,1,0 method provides the
best perfromance. In the rest part of this paper, Fp denotes the
prime field with character p and |p| = n means blog2pc = n.

II. BACKGROUNDS

An elliptic curve [4] E over a field K is defined by the
equation following

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, a2, a3, a4, a6 ∈ K. Since the set E(K) of the
rational points (x, y) on the curve E and the special point
O at infinity form an abelian group, we design elliptic curve
cryptosystems on this point group.

Scalar multiplication sP plays a central role in these cryp-
tosystems, where s is an integer and P is a point on the
curve. Signed digit expansions with low Hamming weight
are important in implementing scalar multiplication, such as
NAF and wNAF. An expression s = (. . . , s2, s1, s0), where
si ∈ {−1, 0, 1}, is called the non-adjacent form (NAF) of
the integer s, if it satisfies si · si+1 = 0 for i ∈ N . The
Hamming weight of s is the number of non-zero digits in
s. The expected Hamming weight of a random integer less
than 2n − 1 is n/2. The Hamming weight is reduced to
n/3 + O(1) on average if we use NAF to represent the
integer. Then the cost of the scalar multiplication is reduced
from nD + n

2A to nD + n+1
3 A, where D and A denote

point doubling and point addition on the elliptic curve. The
wNAF uses larger signed digits set to reduce the Hamming
weight of the scalar further, but it needs precomputations
and more storage space. The wNAF is represented as s =
(. . . , s2, s1, s0) with the property that si ·si+1 · · · si+w−1 = 0,
where si ∈ {− 2w−1

2 , . . . ,−1, 0, 1, . . . , 2w−1
2 }. wNAF is also

called sliding window method [3], and the window size w
fixes the modulus in the recoding algorithm for wNAF to be
2w.

A. Double-base Chain

One way to reduce the Hamming weight of the scalar is by
representing it with more bases. The double-base chain (DB-
chain) [5], [6] is one such approach. It expresses the scalar s as∑l
i=1 si2

ai3bi , where si ∈ {−1, 1}, a1 ≥ · · · ≥ al ≥ 0, b1 ≥
· · · ≥ bl ≥ 0 and l ∈ Z. In [5], [6], an integer is recoded using
a greedy algorithm, and the analysis showed that the number
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Algorithm 1. Extended Double-base Chain Greedy Algorithm
Input: An integer s, parameters a0 and b0 and a set S.
Output: The extended double-base chain

Pl
i=1 di2

ai3bi of s.
1. i = 1; t = s; sign = 1;
2. while t > 0 do
3. find the best approximation z = di2

ai3bi of s
with di ∈ S, 0 ≤ ai ≤ ai−1 and 0 ≤ bi ≤ bi−1;

4. di = sign× di;
5. if t < z then sign = −sign;
6. t = |t− z|; i = i + 1;
7. Return (di, ai, bi);

of terms in a double-base chain is at most n
logn over Fp with

|p| = n. Then the computational cost of the double-base chain
method is less than nD+(log23)nT+ n

lognA, where T is point
tripling. It is however difficult to formally analyze the average
computational cost of this method because of the nature of the
greedy algorithm to produce the double-base chain. The cost
of the “greedy” algorithm itself is another problem, although
most of time it converges fast enough. In case the length of
the recoded double-base chain is too long, some restrictions
of the exponents can be used to limit the highest power of the
output in the recoding algorithm. These restrictions varies in
different cases. For example, the restrictions for elliptic curves
on large prime fields are different from that for elliptic curves
on binary fields. While working with different curves or fields
with different formulas, experimental results have to be used
to estimate the restrictions required.

If we use the window technique in the recoding algorithm
that produces a double-base chain, we get the extended double-
base chain [8]. Algorithm 1 is the recoding algorithm for
extended double-base chain method. The parameters a0 and
b0 are the restrictions of the highest power in the output. S is
a set of window values. If S = {−1, 1}, Algorithm 1 is the
recoding algorithm for ordinary double-base chain.

When we use three based 2, 3 and 5 in the representation
of a scalar, we have a multi-base chain [7], which is called
SMBR. The multi-base chain is also produced by a greedy
algorithm that is similar to one in Algorithm 1.

The tree-based approach is another method to get the
double-base chain [13]. The similar idea is also used for multi-
scalar multiplication [14]. The tree-based DB-chain approach
is faster than the ordinary DB-chain method when we have
enough space for algorithms, because the tree-based recoding
algorithm requires more space for the “prediction”. For exam-
ple, if we predict 4 steps in the recoding algorithm in [13],
the extra space requirement is 8×sizeof(scalar). Then the extra
storage requirement is 8×160 bits when the scalar is 160 bits,
which is equal to the storage space for 4 points.

B. extended wmbNAF

Recently, Longa and Miri proposed multi-base
non-adjacent form(mbNAF), window multi-base non-
adjacent form(wmbNAF) and extended window multi-
base non-adjacent form(extended wmbNAF) [9] to
represent the scalar using multi-bases. The digit string
s = (s(aim )

m , . . . , s
(ai2 )
2 , s

(ai1 )
1 ) is called the extended

wmbNAF of an integer if there are at least (w1 + . . . + wj)

Algorithm 2. extended wmbNAF recoding
Input: An integer s, bases A = a1, . . . , aj , where aj ∈ Z+ are primes,
the modulus a = aw1

1 · · · a
wj

j , W = {w1, . . . , wj} is the window set,
where wj ≥ 0.

Output: The (a1, . . . , aj)NAFw1,...,wj (s) = (. . . , s
(ai1 )

1 , s
(ai0 )

0 ).
1. i = 0
2. while s ≥ 0 do
2.1 if s mods a1 = 0 then s = s/a1, si = 0(a1)

2.2 elseif s mods a2 = 0 then s = s/a2, si = 0(a2)

. . .
2.3 elseif s mods aj = 0 then s = s/aj , si = 0(aj)

2.4 else si = s(mods a), s = s− si

2.4 i = i + 1

3. Return (. . . , s
(ai1 )

1 , s
(ai0 )

0 )

“0” digits between any two non-zero digits, where
sl ∈ {c|c = z mods aw1

1 · · · a
wj

j , c 6= 0, z ∈ Z}(0 ≤ l ≤ m),
with bases ail ∈ A = {a1, . . . , aj} and window set
W = {w1, . . . , wj}. When a1 = ai, where ai is one
of the bases used (for example ai = 2), w1 = 2 and
w2 = . . . = wj = 0, s is mbNAF. When a1 = ai, w1 > 2 and
w2 = . . . = wj = 0, s is wmbNAF. Therefore the mbNAF
and wmbNAF can be treated as special cases of the extended
wmbNAF. Algorithm 2 is the recoding algorithm for the
extended wmbNAF, also for mbNAF and wmbNAF.

The binary/ternary method [11], albeit generated using a
different algorithm, can be considered as a special case of
extended wmbNAF method. When a1 = 2, a2 = 3, w1 = 1
and w2 = 1, Algorithm 2 is the recoding algorithm for a
binary/ternary method.

We use (a1, a2, ...)NAFw1,w2,... to represent the extended
wmbNAF for short. For example, (2, 3)NAF1,1 means an
expansion based on 2 and 3 with the window set W = {w1 =
1, w2 = 1} in Algorithm 2. If we work with (2, 3)NAF, we
have a1 = 2, a2 = 3, w1 = 2 and w2 = 0.

III. ANALYSIS

In this section, we analyze the average Hamming weight
of the extended wmbNAF in Theorem 1 using Markov chain
[17], which is a tool for modeling randomized algorithms.
If a Markov chain with a finite state space is aperiodic and
irreducible, then there is a stationary distribution for the state
vector in the Markov chain.

Theorem 1: Over the prime field Fp with |p| = n,
the average Hamming weight of the extended wmbNAF is

n
( 1

a1−1+w1)log2a1+...+( 1
aj−1+wj)log2aj

, and the average number

of digits based on ai is
( 1

ai−1+wi)n

( 1
a1−1+w1)log2a1+···+( 1

aj−1+wj)log2aj
,

where bases set A = {a1, a2, . . . , aj} and the windows set
W = {w1, w2, . . . , wj} for 1 ≤ i ≤ j.

Proof:
Assume that a sequence of states S0, . . . , Sr appears, and

let πi,j denote the probability that the state following Si
is Sj . Then πi,j depends only on Si and Sj , not on the
states before Si. Then we have a r × r transition matrix
Π = (πi,j)ri,j=0. Let σ0, . . . , σr denote the probabilities that
states S0, . . . , Sr occur, then σ0, . . . , σr sum to 1. We define
j + 1 different states as follows.
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TABLE I
THE TRANSITION MATRIX IN THEOREM 1

Π =

0BBBBBB@

1
a1

(1− 1
a1

) 1
a2

(1− 1
a1

)(1− 1
a2

) 1
a3

· · · (1− 1
a1

) . . . (1− 1
aj−1

) 1
aj

1− ( 1
a1

+ (1− 1
a1

) 1
a2

. . .))

0 1
a2

(1− 1
a2

) 1
a3

· · · (1− 1
a2

) . . . (1− 1
aj−1

) 1
aj

1− ( 1
a2

+ (1− 1
a2

) 1
a3

+ · · · ))
0 0 1

a3
· · · · · · 1− ( 1

a3
+ . . .)

· · · · · · · · · · · · · · · · · ·
1

a1
(1− 1

a1
) 1

a2
(1− 1

a1
)(1− 1

a21
) 1

a3
· · · (1− 1

a1
) . . . (1− 1

aj−1
) 1

aj
1− ( 1

a1
+ (1− 1

a1
) 1

a2
. . .))

1CCCCCCA

S0: If s ≡ 0(mod a1) then output (0(a1)) and s = s/a1.
Check s. If s ≡ 0(mod a1) then stay in S0, else go to Si,
where 1 ≤ i ≤ j.

S1: If s ≡ 0(mod a2) then output (0(a2)) and s = s/a2.
Check s. If s ≡ 0(mod a2) then stay in S1, else go to Si,
where 2 ≤ i ≤ j.

. . .

Sj−1: If s ≡ 0(mod aj) then output (0(aj)) and s = s/aj .
Check s. If s ≡ 0(mod aj) then stay in Sj−1, else go to Sj .

Sj : If s′ = s(mods a), then output 0(aj) . . . 0(a1)s′(a1)

and s = s−s′

a
w1
1 ·····a

wj
j

, where there are wi digits based on ai for

1 ≤ i ≤ j. Check s. If s0 ≡ 0(mod ai)(1 ≤ i ≤ j) then go
to Si−1, else stay in Sj .

Since s is random, the probability of s ≡ 0(mod ai) is 1/ai
for 1 ≤ i ≤ j. When s is not divided by a1, the probability of
s ≡ 0(mod a2) is (1− 1

a1
) 1
a2

. The integer s will be processed
in Sj only if it do not satisfy the conditions of all the other
states. Therefore the probability of a number going to state Sj
is 1 − (σ0 + ... + σj−1). We show the probability transition
matrix in Table 1. The Markov chain here is aperiodic and
irreducible, then there is a unique stationary distribution σ for
the state vector. Therefore we have σ ·Π = σ.

Solving the equations σ0 + · · ·+ σj = 1 and σ ·Π = σ, we
get the stationary distribution vector σ = ( 1

a1−1 ·
1

1+C ,
1

a2−1 ·
1

1+C , . . . ,
1

aj−1 ·
1

1+C ,
1

1+C ), where C =
∑j
i=1

1
ai−1 .

Assuming that we have m digits in the extended wmbNAF
s =

∑m
i=0 s

(aki
)

i and l non-zero digits after λ state transac-
tions. Since we get one digit in state Si for 0 ≤ i ≤ j − 1
and w1 + w2 + . . . + wj digits in state Sj , m = λ(σ0 +
· · · + σj−1 + σj · (w1 + . . . + wj)). There is one non-zero
digit generated in state Sj and none in other states, hence
l = λ(σj · 1) = λ

1+C . Then the average density of non-zero
digits is d = l/m = 1

w1+w2+...+wj+C
. When Algorithm 2

stops, we have a returned value satisfying aσ0λ
1 · aσ1λ

2 · · · · ·
a
σj−1λ
j · (aw1

1 · a
w2
2 · · · a

wj

j )σjλ = s ≤ 2n+1 − 1, which means
λ < n

(σ0+w1σj)log2a1+(σ1+w2σj)log2a2+···+(σj−1+wjσj)log2aj
.

Therefore the average length of the extended wmbNAF sat-
isfies m < λ(σ0 + · · · + σj−1 + σj(w1 + · · · + wj)) =

(C+w1+···+wj)n

( 1
a1−1+w1)log2a1+···+( 1

aj−1+wj)log2aj
. Then the average ham-

ming weight of the extended wmbNAF is approximately

dm = n
( 1

a1−1+w1)log2a1+···+( 1
aj−1+wj)log2aj

. In the m dig-

its, there are λσi−1 + wiλσj digits in base (ai), which

is
( 1

ai−1+wi)n

( 1
a1−1+w1σj)log2a1+( 1

a2−1+w2)log2a2+···+( 1
aj−1+wj)log2aj

for

1 ≤ i ≤ j.

IV. COMPARISON

Now that we have the average Hamming weight of the ex-
tended wmbNAF, we compute the average computational cost
of the extended wmbNAF method for scalar multiplication
in this section. Assume that A,D, T,Q, S separately denote
mixed addition, doubling, tripling, quintupling and septupling.
When we use the formulas of point operations proposed in [9],
[10] for general curves, the computational cost of A, D, T , Q
and S are 7M + 4S, 2M + 8S, 6M + 10S, 10M + 14S and
17M + 14S, where M and S denote the multiplication and
square on Fp. When we implement the field operations using
software, we have 1S = 0.8M . Then the cost of doubling,
tripling and mixed addition are 8.4M , 14M and 10.2M .

In Table II, we show the average computational cost of
the extended wmbNAF and NAF methods without precom-
putations over prime field Fp with |p| = 160bits. The
(2, 3, 5)NAF1,1,0 method is the fastest one in Table II, which
is approximately 9.0% faster than the NAF method without
extra storage requirements.

We compare the extended wmbNAF with wNAF methods
that need precomputations and extra storage space in Table III.
We assume that it is acceptable if the extra storage requirement
is less than 10 points. In Table III, we obtain the lowest
computational cost when using (2, 3, 5)NAF4,1,0.

One advantage of the extended wmbNAF method is that the
time and space complexity of the recoding algorithm is just the
same as the recoding algorithm for NAF. Another advantage
of the extended wmbNAF method is that the the window set,
which determines the number of doublings and triplings, can
adjust to the costs of doubling and tripling. For example, if
we work on Fp with |p| = 160bits and use bases 2 and 3,
the (2, 3)NAF1,1 method is faster than the (2,3)NAF method
for general curves. But on binary fields, where the doubling
is much faster than tripling, the (2, 3)NAF method is faster.
This property is important sometime because there are various
elliptic curves and point operation formulas. When we use the
curves y2 = x3+x2+a over finite fields of characteristic three
[15], where tripling is faster than doubling, the (2, 3)NAF1,3

method is the best choice, because more triplings substitute
for doublings in the scalar multiplication by making a = 2133

in Algorithm 2.
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TABLE II
PERFORMANCE OF EXTENDED mbNAF AND NAF OVER Fp WITH |p| = 160 WITHOUT PRECOMPUTATIONS

Methods Point operation cost Total Cost
NAF 160D+53.3A 1887.7M
(2,3)NAF 126.6D+21.1T+42.2A 1789.3M
(2,3)NAF1,1 73.1D+54.8T+36.6A 1754.6M
(2,3,5)NAF 109.8D+18.3T+9.1Q+36.6A 1744.8M
(2,3,5)NAF1,1 64.5D+48.4T+8.0Q+32.3A 1718.5M
(2,3,5,7)NAF 99.2D+16.5T+8.3Q+5.5S+33.1A 1733.0M

TABLE III
PERFORMANCE OF EXTENDED wmbNAF AND wNAF WITH PRECOMPUTATIONS

Methods Point operation cost Total Cost extra Store(Precomputation)
NAF5(5NAF) 160D+26.7A 1616.3M 7 Points(1D + 7A)
(2,3)NAF2,1 89.3D+44.6T+29.8A 1678.5M 1 Points(1D + 1A)
(2,3)NAF3,1 100.4D+37.6T+25.1A 1625.8M 3 Points(2D + 3A)
(2,3)NAF4,1 108.4D+32.5T+21.7A 1586.9M 7 Points(2D + 7A)
(2,3)NAF2,2 68.9D+57.5T+23.0A 1618.4M 5 Points(2D + 5A)
(2,3,5)NAF5,0,0 130.2D+10.9T+5.4Q+21.7A 1582.1M 7 Points(1D + 7A)
(2,3,5)NAF4,1,0 100.5D+30.2T+5.0Q+20.1A 1578.2M 7 Points(2D + 7A)

In the extended wmbNAF method, we always have a
doubling before the addition if a1 = 2 and w1 6= 0. Then
we can use doubling-addition(denoted by DA) [9] to speed up
the implementation further. The cost of doubling-addition is
11M + 7S, which is 10.8% faster than one doubling and one
mixed addition.

We compare the different double-base and multi-base meth-
ods in Table IV and Table V. Because it is difficult to formally
analyze the average cost of double-base chain methods, we use
the data in [6], [12], [13] directly, which was estimated by
simulations. In these two tables, the extra storage requirement
of the tree-based DB-chain method is in its recoding algorithm.
Note that the space for eight scalars is equal to the storage
space for four points. In Table V, the (2,3,5)NAF1,1 method
gains the best improvement without extra storage require-
ments. When there are enough space for precomputation, we
use (2,3,5)NAF4,1 to get the fastest method. Even if we recode
the scalar using only two bases 2 and 3, we also get the fastest
methods (2,3)NAF1,1 without extra storage requirements and
(2,3)NAF4,1 with enough extra storage space.

V. CONCLUSIONS

In this paper, we formally analyze the average complexity
of the extended wmbNAF method for scalar multiplication
over large prime fields, and compare its performance to
other techniques in the literature. The analysis shows that the
(2, 3, 5)NAF1,1,0 method is approximately 9.0% faster than
the NAF method without precomputations and extra storage
requirements. If we have enough space for precomputations,
the (2, 3, 5)NAF4,1,0 provides the best perfromance. The ex-
tended wmbNAF method is the fastest double-base (multi-
base) method so far for scalar multiplication. Moreover, the
extended wmbNAF method has simple and fast recoding
algorithm similar to that of the NAF method.
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TABLE IV
NUMBER OF POINT OPERATIONS OF DIFFERENT DOUBLE-BASE AND MULTI-BASE METHODS

160 bits 200 bits 256 bits
Methods Average Computational Cost Extra Storage
Greedy DB-Chain [13] 150.7D+65.5T+58.0A 0
Tree-based DB-Chain [13] 145.7D+68.6T+52.5A 8 Scalars
SMBR [7] 85D+38T+18Q+31.44A 0
SMBR [7] 84D+36T+16Q+21.14A 7 Points
Extended DB-Chain [8] 118.1D+49.9T+36.8A 1 Points
Extended DB-Chain [8] 117.5D+49.7T+30.7A 3 Points
Extended DB-Chain [8] 117.2D+49.3T+25.9A 8 Points
(2,3)NAF1,1 36.5D+54.8T+36.6DA 45.7D+68.5T+45.7DA 58.5D+87.7T+58.5DA 0
(2,3)NAF2,1 59.5D+44.6T+29.8DA 74.4D+55.8T+37.2DA 95.2D+71.4T+47.6DA 1 Points
(2,3)NAF3,1 75.3D+37.6T+25.1DA 94.0D+47.0T+31.4DA 120.5D+60.2T+40.1DA 3 Points
(2,3)NAF4,1 86.7D+32.5T+21.7DA 108.4D+40.7T+27.1DA 138.8D+52.1T+34.7DA 7 Points
(2,3,5)NAF1,1 32.2D+48.4T+8.0Q+32.3DA 40.4D+60.5T+10.0Q+40.3DA 51.7D+77.5T+12.9Q+51.6DA 0
(2,3,5)NAF4,1 80.4D+30.2T+5.0Q+20.1DA 100.6D+37.7T+6.3Q+25.1DA 128.6D+48.3T+8.0Q+32.2DA 7 Points

TABLE V
NUMBER OF FIELD MULTIPLICATIONS OF DIFFERENT DOUBLE-BASE AND MULTI-BASE METHODS

160 bits 200 bits 256 bits
Methods Number of Point operations Extra Storage
Greedy DB-Chain [13] 2774.5M 0
Tree-based DB-Chain [13] 2719.8M 8 Scalars
SMBR [7] 1948.3M 0
SMBR [7] 1764.4M 7 Points
Extended DB-Chain [8] 2066.0M 1 Points
Extended DB-Chain [8] 1995.9M 3 Points
Extended DB-Chain [8] 1938.9M 8 Points
(2,3)NAF1,1 1681.4M 2101.5M 2690.3M 0
(2,3)NAF2,1 1618.9M 2023.7M 2589.4M 1 Points
(2,3)NAF3,1 1575.6M 1968.8M 2520.7M 3 Points
(2,3)NAF4,1 1543.5M 1930.2M 2471.3M 7 Points
(2,3,5)NAF1,1 1653.9M 2067.3M 2649.3M 0
(2,3,5)NAF4,1 1537.8M 1923.1M 2460.6M 7 Points
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