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ABSTRACT. Can one use the discrete logarithm problem in matrix groups,
to build a better and secure cryptosystem? We argue, it is indeed the
case. This makes the group of circulant matrices suitable and attractive
for lightweight cryptography.

1. INTRODUCTION

Two of the most popular groups used in the discrete logarithm problem
are the group of units of a finite field and the group of rational points of an
elliptic curve over a finite field. The obvious question arises, are there any
other groups? There are matrix groups out there, for example, the group
of circulant matrices; that offers the same security of a finite field of about
same size, with half the computational cost. In this paper, we denote the
group of non-singular circulant matrices of size d by C(d, q) and the group
of special circulant matrices, i.e., circulant matrices with determinant 1, by
SC(d, q) respectively.

Let us pause here and discuss, what is a better security? Assume we are
working with some algebraic structure defined over a finite field Fq. This
algebraic structure can be a group, a vector space or something similar; in
which the discrete logarithm problem makes sense. If it turns out, solving
the discrete logarithm problem in that structure, is equivalent to solving the
discrete logarithm problem in some extension Fqk of Fq, for k > 1, then
obviously there is a security advantage in working with that structure. This
way, one can even quantify the security, bigger the k better is the discrete
logarithm problem. This is what we mean by better security. A good ex-
ample of better security is the group of elliptic curves. Due to the MOV at-
tack [7], one can reduce the discrete logarithm problem in an elliptic curve
over Fq, to a discrete logarithm problem in Fqk . For elliptic curves, this
k, the embedding degree, is usually very large. This is one of the biggest
security advantage of the elliptic curve discrete logarithm problem, which
makes it a standard in public key cryptography.

2010 Mathematics Subject Classification. 94A60, 20G40.
Key words and phrases. The discrete logarithm problem, circulant matrices, elliptic

curve cryptosystems, lightweight cryptography.
Research supported by a NBHM research grant.

1



2 AYAN MAHALANOBIS

In this paper, we show that the elliptic curves are not the only one with
better security. It is known, the group of non-singular circulant matrices
of size d over Fq, offers security of Fqd−1 [6]. The square and multiply
algorithm with these circulant matrices is faster than that of a finite field
of about the same size. The bottleneck for security being d, the size of the
matrix. So to get a really large security advantage, the size of the matrix
must be really big. See Section 4.1 for a detailed discussion.

Definition 1 (Circulant matrix C(d, q)). A d × d matrix over a field F is
called a circulant matrix, if every row except the first row, is a right circular
shift of the row above that. So a circulant matrix is defined by its first row.
One can define a circulant matrix similarly using columns.

A matrix is a two dimensional object, but a circulant matrix behaves like
a one dimensional object; given by the first row or the first column. We will
denote a circulant matrix C of size d, with the first row c0, c1, . . . , cd−1, by
C = circ (c0, c1, c2, . . . , cd−1). An example of a circulant 5× 5 matrix is:

c0 c1 c2 c3 c4
c4 c0 c1 c2 c3
c3 c4 c0 c1 c2
c2 c3 c4 c0 c1
c1 c2 c3 c4 c0


One can define a representer polynomial corresponding to the circulant ma-
trix C as φC = c0 + c1x + c2x

2 + . . . + cd−1x
d−1. The circulants form

a commutative ring under matrix multiplication and matrix addition and is
isomorphic to (the isomorphism being circulant matrix to the representer

polynomial)R =
F [x]

xd − 1
. For more on circulant matrices, see [2].

We will study the discrete logarithm problem in SC(d, q) in this paper. It
is fairly straightforward to see that one can develop a Diffie-Hellman key ex-
change protocol or the ElGamal cryptosystem from this discrete logarithm
problem. The ElGamal cryptosystem is described below.

All fields considered in this paper are finite and of characteristic 2.

2. THE ELGAMAL OVER SC(d, q)

Private Key: m, m ∈ N.
Public Key: A and Am. Where A ∈ SC(d, q).

Encryption.
a: To send a message (plaintext) v ∈ Fdq , Bob computes Ar and Amr

for an arbitrary r ∈ N.
b: The ciphertext is

(
Ar, AmrvT

)
. Where vT is the transpose of v.
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Decryption.
a: Alice knows m, when she receives the ciphertext

(
Ar, AmrvT

)
,

she computes Amr from Ar, then A−mr and then computes v from
AmrvT.

We first show that the security of the discrete logarithm problem in SL(d, q),
the special linear group of all matrices of size d with determinant 1, is
equivalent to the Diffie-Hellman problem. Since SC(d, q) is contained in
SL(d, q), this proves that the discrete logarithm problem is equivalent to
the Diffie-Hellman problem in SC(d, q). Assume that Eve can solve the
Diffie-Hellman problem, then from the public information, she knows Am.
From a ciphertext

(
Ar, ArmvT

)
she gets Ar. Since she can solve the Diffie-

Hellman problem, she computes Arm and can decrypt the ciphertext. The
converse follows from the following theorem, which is an adaptation of [4,
Proposition 2.10]

Theorem 1. Suppose Eve has access to an oracle that can decrypt arbitrary
ciphertext of the above cryptosystem for any private key, then she can solve
the Diffie-Hellman problem in SL(d, q).

Proof. Let g = Aa and h = Ab. Eve takes an arbitrary element v in the
vector space of dimension d on which SL(d, q) acts. We use the same basis
used for the representation of SL(d, q). Then v = (v1,v2, . . . ,vd) where
vi ∈ Fq. Let v̂i = (0, . . . ,vi, . . . , 0) and c = hv̂Ti . She pretends that A
and Aa is a public key. Sends that information to the oracle. Then asks the
oracle to decrypt (h, c). Oracle sends back to Eve, h−ac. Eve knowing v,
computes the ith column of Aab from h−1c. In d tries Aab is found. This
solves the Diffie-Hellman problem. �

3. SECURITY OF THE PROPOSED ELGAMAL CRYPTOSYSTEM

This paper is primarily focused on the discrete logarithm problem in the
automorphism group of a vector space over a finite field. There are two
kinds of attack on the discrete logarithm problem.

(i) The “so called” generic attacks, like the Pollard’s rho algorithm.
These attacks use a black box group algorithm. The time complexity
of these algorithms is about the same as the square-root of the size
of the group.

(ii) The other one is an index calculus attack. These attacks do not work
in any group.

Black box group algorithms work in any group, hence they will work in
SC(d, q) as well. The most efficient way to use black box attack on the dis-
crete logarithm problem, is to use the Pohlig-Hellman algorithm [4, Section
2.9] first. This reduces the discrete logarithm problem to the prime divisors
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of the order of the element (the base for the discrete logarithm) and then use
the Chinese remainder theorem to construct a solution for the original dis-
crete logarithm problem. One can use the Pollard’s rho algorithm to solve
the discrete logarithm problem in the prime divisors. So the whole process
can be summarized as follows: the security of the discrete logarithm against
generic attacks, is the security of the discrete logarithm in the largest prime
divisor of the order. We cannot prevent these attacks. These generic attacks
are of exponential time complexity and are not of much concern.

The biggest threat to any cryptosystem using the discrete logarithm prob-
lem is a subexponential attack like the index calculus attack [9]. It is often
argued [5, 10] that there is no index calculus algorithm for most elliptic
curve cryptosystems that has subexponential time complexity. This fact is
often used to promote elliptic curve cryptosystem over a finite field cryp-
tosystem [5]. So, the best we can hope from the discrete logarithm problem
in SC(d, q) is, there is no index calculus attack or the index calculus attack
becomes exponential.

The expected asymptotic complexity of the index calculus algorithm in
Fqk is exp

(
(c+ o(1))(log qk)

1
3 (log log qk)

2
3

)
, where c is a constant, see [9]

and [5, Section 4]. If the degree of the extension, k, is greater than log2 q
then the asymptotic time complexity of the index calculus algorithm be-
comes exponential. In our case this means, if d > log2 q, the asymptotic
complexity of the index calculus algorithm on circulant matrices of size d
becomes exponential.

If we choose d ≥ log2 q, then the discrete logarithm problem in SC(d, q)
becomes as secure as the ElGamal over an elliptic curve, because the index
calculus algorithm is exponential; otherwise we can not guarantee. But on
the other hand, in the proposed cryptosystem, encryption and decryption
works in Fq and breaking the cryptosystem depends on solving a discrete
logarithm problem in Fqd−1 . Since, implementing the index calculus attack
becomes harder as the field gets bigger. It is clear that if we take d� log2 q,
then the cryptosystem is much more secure than the ElGamal cryptosystem
over Fq.

4. IS THE ELGAMAL CRYPTOSYSTEM OVER SC(d, q) REALLY USEFUL?

For a circulant matrix over a field of even characteristic, squaring is
fast. It is shown [6, Theorem 2.2] that, if A = circ (a0, a1, . . . , ad−1),
then A2 = circ

(
a2π(0), a

2
π(1), . . . , a

2
π(d−1)

)
. Where π is a permutation of

{0, 1, 2, . . . , d− 1}. Now the ais belong to the underlying field Fq of char-
acteristic 2. In this field, squaring is just a cyclic shift using a normal ba-
sis [8, Chapter 4] representation of the field elements.
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It was shown by Mahalanobis [6], that if five conditions are satisfied, then
the security of the discrete logarithm problem for circulant matrices of size
d over Fq is the same as the discrete logarithm problem in Fqd−1 .

The five conditions are:
a. The circulant matrix should have determinant 1.
b. The matrix A should have row-sum 1.
c. The integer d is prime.
d. The polynomial

χA
x− 1

is irreducible.

e. q is primitive mod d.
In short, the argument for these five conditions are the following:

Let A = circ (a0, a1, . . . , ad−1) and let χA be the characteristic polyno-
mial of A. It is easy to see that the row-sum, a0 + a1 + · · · + ad−1, sum of
all elements in a row, is constant for a circulant matrix. This row-sum, α is
an eigenvalue of A and belongs to Fq. Clearly, αm is an eigenvalue of Am.
This α and αm can reduce a part of the discrete logarithm problem in A, to
a discrete logarithm problem in the field Fq. If the row-sum is 1, then there
is no such issue. This is the reason behind the condition, the row-sum is 1.

Now assume that
χA
x− 1

= f e11 f
e2
2 . . . f enn , where each fi is an irreducible

polynomial and eis are positive integers1. Then it follows, the discrete loga-

rithm problem inA, can be reduced to discrete logarithm problems in
Fq[x]

fi
,

for each i. Then one can solve the individual discrete logarithms in exten-
sions of Fq, put those solutions together using the Chinese remainder the-
orem and solve the discrete logarithm problem in A. The degree of these
extensions, the size of which provides us with the better security, is maxi-
mized when

χA
x− 1

is irreducible. This is the reason for
χA
x− 1

is irreducible.

The ring of circulant matrices is isomorphic to
Fq[x]

xd − 1
, moreover

Fq[x]

xd − 1

is isomorphic to
Fq[x]

x− 1
× Fq[x]

Φ(x)
, where Φ(x) =

xd − 1

x− 1
is the dth cyclotomic

polynomial. If d is prime and q is primitive modulo d, then the cyclotomic
polynomial Φ(x) is irreducible. In this case, the discrete logarithm problem
in circulant matrices reduce to the discrete logarithm problem in Fqd−1 .

4.1. What are the advantages of using circulant matrices? The advan-
tages of using circulant matrices are:

• Multiplying circulant matrices of size d over Fq is twice as fast com-
pared to multiplication in the field of size Fqd .

1Condition c. ensures that ei = 1 for all i.



6 AYAN MAHALANOBIS

• Computing the inverse of a circulant matrix is easy.
Since any circulant matrixA can be represented as a polynomial of the form
f(x) = c0+c1x+. . .+cd−1x

d−1. This polynomial is invertible, implies that,
gcd

(
f(x), xd − 1

)
= 1. Then one can use the extended Euclid’s algorithm

to find the inverse. In our cryptosystem, we need to find that inverse, and it
is easily computable.

We now compare the following three cryptosystems for security and speed.
We do not compare the key sizes and the size of the ciphertext, as these can
be decided easily.

1. The ElGamal cryptosystem using the circulant matrices of size d
over Fq.

2. The ElGamal cryptosystem using the group of an elliptic curve over
the finite field Fq.

3. The ElGamal cryptosystem over Fqd .

4.2. ElGamal over Fqd vs. the circulants of size d over Fq. Clearly the
circulants are the winner in this case. The circulants provide almost the
same security as the ElGamal over the finite field Fqd , but multiplication in
the circulants is twice as fast compared to the multiplication in the finite
field Fqd .

To understand the difference, we need to understand the standard field
multiplication. A field Fqd over Fq, an extension of degree d, is a com-
mutative algebra of dimension d over Fq. Let α0, α1, . . . , αd−1 be a ba-
sis of Fqd over Fq. Let A := (a0α0 + a1α1 + · · ·+ ad−1αd−1), B :=
(b0α0 + b1α1 + · · ·+ bd−1αd−1) and

C := A ·B = (c0α0 + c1α1 + · · ·+ cd−1αd−1)

be elements of Fqd .
The objective of multiplication is to find ck for k = 0, 1, . . . , (d − 1).

Now notice that, if

αiαj =
d−1∑
k=0

tkijαk,

we can define a d × d matrix Tk as {tkij}ij . It follows that ck = ATkB
t.

The number of nonzero entries in the matrix Tk, which is constant over
k, is called the complexity of the field multiplication [8, Chapter 5]. The
following theorem is well known [8, Theorem 5.1]:

Theorem 2. For any normal basis N of Fqd over Fq, the complexity of
multiplication is at least 2d− 1.

Note that in an implementation of a field exponentiation, one must use a
normal basis to use the square and multiply algorithm.
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In our case, circulants of size d over a finite field Fq, the situation is
much different. We need a normal basis implementation for Fq. However,
to implement multiplication of two circulants, i.e., multiplication in R =
Fq[x]

xd − 1
we can use the basis

{
1, x, x2, . . . , xd−1

}
.

In a very similar way as before, if A := a0 + a1x + . . . + ad−1x
d−1 and

B := b0 + b1x+ . . . bd−1x
d−1 then C := A ·B = c0 + c1x+ . . .+ cd−1x

d−1.
Our job is to compute ck for k = 0, 1, . . . , d− 1. It follows that

(1) ck =
d−1∑
i=0

aibj where i+ j = k mod d and 0 ≤ i, j ≤ d− 1

It is now clear that the complexity of the multiplication is d. Compare this
to the best case situation for the optimal normal basis [8, Chapter 5], in
which case it is 2d − 1. So multiplying circulants take about half the time
that of finite fields.

It is clear that the keysizes will be the same for both these cryptosystems.

4.3. The elliptic curve ElGamal vs. the circulants of size d, both on
the same field Fq. In this case there is no clear winner. On one hand,
take the case of embedding degree. For most elliptic curves the embedding
degree is very large. The embedding degree, that we refer to as the security
advantage, for a circulant is tied up with the size of the matrix. For a matrix
of size d, it is d−1. So with circulants, it is hard to get very large embedding
degree, without blowing up the size of the matrix. On the other hand, a very
large embedding degree is not always necessary.

On the other hand, in elliptic curves, the order of the group is about the
same as the size of the field. For 80-bit security, we must take the field to
be around 2160, to defend against any square-root algorithms. In the case
of circulants, the order of a circulant matrix can be large. This enables us
to use smaller field with the same security. In circulants, one can use the
extended Euclid’s algorithm to compute the inverse.

So, as we said before, we are not in a position to declare a clear winner in
this case. However, if the size of the field is important in the implementa-
tion, and a moderate embedding degree suffices for security, then circulants
are a little ahead in the game. We explain this by some examples in the next
section.

It is clear that the keysize for circulant matrices will be larger than that of
the elliptic curve cryptosystem, both satisfying the following:

1: Security of 80 bits or more from generic algorithms.
2: Security from index-calculus comparable to the field F21000 , i.e.,

index calculus security of 1000 bits.
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5. AN ALGORITHM

Recall that C(d, q) is isomorphic to
Fq[x]

x− 1
× Fq[x]

Φ(x)
. We now describe an

algorithm to find a circulant matrix satisfying the above five conditions.

Algorithm 1 (Construct a circulant matrix satisfying five conditions).

Input q, d.
• construct Fq.
• τ(x)← A primitive polynomial of degree d− 1 over Fq.
• order← Order of the companion matrix of τ(x).
• Use Chinese remainder theorem to find ψ(x) such that ψ(x) = 1

mod (x− 1) and ψ(x) = τ(x) mod Φ(x).
• ψ(x)← ψ(x) mod (xd − 1).
• A← The circulant matrix with the first row ψ(x).
• A← Aorder.

Output A.

Using Magma [1] and Algorithm 1, we were able to compute several cir-
culant matrices over many different fields of characteristic 2. We produce
part of that data in Table 1. The row with q is the size of the field exten-
sion and the row with d is the size of the circulant matrix over that field
extension.

To construct the table, we considered all possible field extensions of size
q, where q varies from 240 to 2100. For each such extension, we took all
the primes, d, from 11 to 50. We then checked and tabulated the ones for
which q is primitive modulo d. For every extension q and for all primes d,
satisfying the primitivity condition, Algorithm 1 was used and the output
matrix was checked for all the five conditions and moreover the order of the
matrix A was found to be at least qd−3. So, if q is primitive modulo d, our
algorithm produces the desired matrix A, satisfying all five conditions. The
computation was fast on a standard workstation.

So now it is clear, that there are a lot of choices for parameters for the
ElGamal cryptosystem over circulant matrices. We describe our findings
with some arbitrary examples. For more data see Table 2.

In the case, q = 289,d = 13, we found the largest prime factor of the
order of A to be

7993364465170792998716337691033251350895453313.

The base two logarithm of this prime is 152.5. So even if we use the Pohlig-
Hellman algorithm to reduce the discrete logarithm in A, to the discrete
logarithm problem in the prime factors of the order of A, we still have the
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q 241 243 247 249 253 255

d 11, 13, 19, 11, 13, 19, 11, 13, 19, 11, 13, 19, 11, 13, 19, 13, 19,
29, 37 29, 37 37 37 29, 37 29, 37

q 259 261 265 267 271 273

d 11, 13, 19, 11, 13, 19, 13, 19, 11, 13, 19, 11, 13, 19, 11, 13, 19,
29, 37 29, 37 29, 37 29, 37 29, 37 29, 37

q 277 279 283 285 289 295

d 11, 13, 19, 11, 13, 19, 11, 13, 19, 11, 13, 19, 11, 13, 19, 13, 19, 29,
37 29, 37 37 29, 37 29, 37 37

TABLE 1. Fields from size 240 to 2100 and matrices from
size 11 to 50 that satisfy those five conditions.

security very close to the 80-bit security from generic attacks. The security
against the index calculus is the same as in F21068 .

In case of q = 239,d = 29, the largest prime factor of A was

3194753987813988499397428643895659569.

The logarithm base 2 of which is about 120. So from generic attack, the
security is about 260 or sixty bit security. From index calculus the security
is the same as the security of a field of size F21092 .

In the case of q = 245,d = 29, the largest prime factor of the order of A
is 15169173997557864184867895400813639018421 with more than 60 bit
security. The security against the index calculus is equivalent to F21260 .

In the case of q = 297,d = 11, the largest prime divisor of A is

50996843392805314313033252108853668830963472293743769141−
06957559915561,

the logarithm base 2 is 231. Security from generic attacks is 115 bits and
from index calculus is equivalent to the field F2970 , i.e., 970 bits security.

In the case of q = 243,d = 29, the largest prime factor of the order is

1597133026914484603924687622599912490649282490944114−
1855981389550399714935349,

the logarithm of that is 253. So this has about 125 bit security from the
generic attacks and 1204 bit security from index calculus attack.

In the case of q = 229,d = 37, the largest prime factor is

328017025014102923449988663752960080886511412965881,

with logarithm 167, i.e., security of more than 80 bits from generic attacks
and 1044 bits from index calculus.
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Using GAP [3], we created Table 2. In this table, all extensions q, q from
245 to 290 and all primes from 10 to 20 are considered. For those extensions
and primes, it was checked if q is primitive mod d. If that was so, then
the circulant matrix A was constructed and both the generic and the index
calculus security was tabulated.

5.1. Complexity of exponentiation of a circulant matrix of size d. Let
us assume, that the circulant matrix of size d is A and we are raising it to
power m, i.e., compute Am. We are using the square and multiply algo-
rithm. We know that squaring of circulants is free, and multiplication of
two circulant matrices of size d takes about d2 field multiplications. The
number of multiplications in the exponentiation is the same as the num-
ber of ones in the binary expansion of m. It is expected that a finite random
string of zeros and ones will have about the same number of zeros and ones.
So the expected number of ones in the binary expansion of m is 1

2
log2m.

So the expected number of field multiplications required to compute Am is
d2

2
log2m.
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Size of the Size of the Logarithm of Index-calculus
extension q matrix d the largest prime security in bits

11 115 470
247 13 77 564

19 207 846
11 157 490

249 13 83 588
19 112 882

251 11 92 510
11 129 530

253 13 92 636
19 312 954

255 13 80 660
19 239 990

257 11 123 570
11 232 590

259 13 91 708
19 262 1062
11 157 610

261 13 120 732
19 294 1098

263 11 123 630
265 13 96 780

19 131 1170
11 248 670

267 13 106 804
19 274 1206

269 11 242 710
11 242 710

271 13 111 852
19 281 1278
11 184 730

273 13 103 876
19 258 1314
11 184 770

277 13 121 924
19 359 1386
11 279 790

279 13 140 948
19 209 1422

281 11 143 810
11 284 830

283 13 132 996
19 443 1494

285 13 101 1020
19 245 1530

287 11 151 870
11 227 890

289 13 152 1068
19 323 1602

TABLE 2. Security for q from 245 to 290 and d from 10 to 20


